
TRANSFORMATIONS OF WLENER INTEGRALS UNDER
A GENERAL CLASS OF LINEAR TRANSFORMATIONS

BY

R. H. CAMERON AND W. T. MARTIN

Introduction. Let C be the space of all real-valued functions x(t) continu-

ous in O^t^l, and vanishing at / = 0. Wiener has defined a measure over the

space C and in terms of this measure he has defined an average or integral

over C which is intimately related among other things to the theory of the

Brownian motion [l, 2](l). The present authors have recently investigated

certain aspects of the Wiener integral [3, 4] and have obtained for instance

in [4] a result which shows how the integral is transformed under transla-

tions. In the present paper we determine how the integral transforms under a

certain class of linear homogeneous transformations. This result is also com-

bined with the earlier result on translations to yield a transformation formula

for the nonhomogeneous transformation—-translation plus linear homogene-

ous transformation. By applying the transformation formula to the special

i ¡near transformation

(0.1) y(t) = x(t) + X I    tan X(j - l)-x(s)ds,   - — < X < —,
J 0 2 2

we obtain as a corollary the evaluation of the characteristic function of the

chance variable / [:*;(/) ]2d/; namely,

(0 2) f    exp (ip j     [x(t)]2dt\dwx = (sec (ip)1'2)1'2     (- m < p < 00)

for a suitable determination of the multiple-valued function in the right-hand

member.

Our first transformation theorem is as follows:

Theorem I. Let Kx(t, s) be continuous on the closed triangle [0^t^,s,

O^s5=l] and let it vanish on the line segment t = 0 [0^s = l]; let K2(t, s) be

continuous on the closed triangle [0 = s^t, 0 = t = 1 ] ; let

' Kl(t, s)    when    0 é t < s, 0 < S á 1.

£2(¿, s)    when    s < t ^ 1, 0 S S < 1,

[2~1K1(s, s) + 2~1K2(s, s)    when    t = s,      0 g J g 1,

(0.3) K(t,s)=-
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0) Numbers in brackets refer to the Bibliography at the end of the paper. Other references

to the Wiener integral are given in [l ] and [2].
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(0.4)

00 1 /•   I /• 1

(0.5)   D = i + £_ I     ...
„-1   m ! J o ^ o

7(5) = K\s, s) - K\s, s),

K(si, îi) • • • K(si, s„)

K(Sp, si) ■ ■ ■ K(s,., s„)

dsi

185

0 á s S 1,

• • dsu.

Assume further that K(t, s) is such that the following conditions are satisfied:

(0.6A) For almost all s, K(t, s) is absolutely continuous in t onO — t — 1

after the jump at t = s is removed by the addition of a step function.

(0.6B) For almost all s, dK(t, s)/dt is essentially of bounded variation

0 = t — l. More precisely, there exists a measurable function H(t, s) which is of

bounded variation in t for each s and which for almost all t, s in the square

[0=t^l, 0 = s^l] is equal to dK(t, s)/dt(2).

(0.6C) The function H(t, s) mentioned in (0.6B) can be so chosen that

/sup   | H(t, s) | ds < oo       and var   [ H(t, s)]ds < «.
o    oáist Ja    oétéi

(0.6D)  The function J(s) is of bounded variation on 0 = s = l.

(0.6E) The determinant D^O.

Let S be a Wiener measurable subset of C, and let TS be the image of S under

(0.7) T:   y(t) = x(t)+f   K(t,s)x(s)ds
Jo

(so that y( ■ ) G TS if and only if y = Tx and x(-) Ç.S). Then we have

/.w exp (- $[x])dwx,
s

where(3)

(0.9)

*[*] = j   [—J"   K(t,s)x(s)ds^dt

Moreover if F[y] is any measurable functional for which either member of

(0.10) (below) exists, then the other member also exists and the equality holds:

(0.10)      f   F[y]dwy = | D\ f   F\x + f K(- ,s)x(s)ds   exp (- $[x])dwx.
J TS J S L J 0 J

(2) When we write dK{t, s)/dt we shall always understand that it is to be replaced, if neces-

sary, by the function H{t, s) to which it is equivalent in the square [OáíSl, OSjSI].

{>) See footnote 2.
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Remark. It is understood that integrals with a superscript W over the

integral sign and a subscript W on the differential are Wiener integrals;

ordinary integrals taken with respect to an ordinary real variable are Le-

besgue integrals; and ordinary integrals taken with respect to a function of

a real variable are Riemann-Stieltjes integrals. The two Stieltjes integrals

which occur in (0.9) cannot be put together in the form

I   \_dtl   K(t' sW*)ds~\dx®

since f„J(t)d{ [x(t)]2} cannot be rewritten in the form 2fcJ(t)x(t)dx(t) and

still necessarily exist as a Riemann-Stieltjes integral (see Remark on Lemma 7

of §9). Moreover the use of the average of K1 and K2 on the diagonal in (0.3)

is not a mere matter of convenience. It is necessary to obtain the right numer-

ical answer, since the values of K on the diagonal enter very explicitly into the

calculation of D in (0.5).

We shall combine this theorem with our theorem on translations given in

[4] to yield the following result:

Theorem II. Let K(t, s) satisfy the hypotheses of Theorem I and let xB(t)

be an absolutely continuous function of C whose first derivative x¿ (t) is essen-

tially of bounded variation on O^t^l. (By this we mean that there exists a func-

tion w(t) of bounded variation on 0^/^ 1 which equals x¿ (t) almost everywhere

O^tSl.) Let S be a Wiener measurable subset of Cand let LS be the image of S

under the transformation

(0.11) L:    y(t) = x(t) + x0(t) + f   K(t, s)x(s)ds.
Jo

Then

exp (- *[ic])aVs
s

where(*)

*[x] = f   {— [*<>(*) + f   K(t, s)x(s)ds~^ dt

(0.13) + 2 f   j f  — [x0(t) + K(t, s)x(s)]ds\ dx(t)

+ J*' J(s)d{[x(s)]2}.

(«) See footnote 2.
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Moreover if F[y] is any measurable functional for which either member of

(0.14) (below) exists, then the other member also exists and they are equal:

fJ L.
F[y]dwy

(0.14)

= | D\ j    F\x+xo+l    K(-, s)x(s)ds   exp (- <p[x])dwx.

We shall find it simpler to prove first a somewhat less general theorem

than Theorem I; namely:

Theorem la. Let K(t, s) satisfy the hypotheses of Theorem I and let F[x]

be a bounded functional which is defined on C and is continuous with respect to

the uniform topology and vanishes outside a region in C which is bounded in the

uniform topology. Then under the transformation T of (0.7) we have

(0.15)    f   F[y]dwy = \d\ f   F\ x + f   K(-, s)x(s)ds 1 exp (- $[x])dwx

where $[x] is defined in (0.9).

Most of the present paper will be taken up with the proof of this theorem.

Its proof will be based upon several lemmas stated and proved in §§1 to 9.

In §10 Theorem la itself will be proved and in §11 Theorem I will be obtained

from Theorem la by a simple argument. In §12 the results of Theorem I

and of the translation theorem of [4] will be combined to yield Theorem II.

In §13 a special case (0.1) of the transformation Twill be considered to yield

the evaluation of the integral (0.2).

1. Polygonal kernels. In this and the next two sections we consider a lin-

ear transformation

(1.1) T:   y(t) = x(t)+\    Kn(t, s)x(s)ds
Jo

where the kernel Kn is subject to the following three restrictions:

A. Kn(t, s) is continuous in (t, s) in the square [0^/gl, 0^5^l], it van-

ishes outside the square and on the edge t = 0 (0=s=^l) and it is polygonal

(of order re) in t for each s. This latter property means that Kn(t, s) is linear

in t from j/n to (j+l)/n,j=0, 1, ■ • • , re—1.

B. The determinant

(1.2) A„ = det (Aip + ojp)j,p-i,...,n (ojP = Kronecker's delta),

/i (p+l)/n / 1 \

Kn[ — > s)[l -\ns- p\]ds

is different from zero :
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(1.4) An5¿0.

C. The Fredholm determinant corresponding to the kernel Kn(t, s) with

X = — 1 is not zero. (This implies that £ is a 1-1 transformation of C into itself

and vice versa, if T is 1-1, then this Fredholm determinant is different from

zero.)

We shall denote by xn(t), corresponding to any function x(t) of C, the asso-

ciated polygonalized function, that is xn(t) is a function which is linear from

j/n to 0 + l)/M and which is equal to x(t) at the « + 1 points p/n, p = 0, 1,

Finally, let F[x] be a functional which depends only upon the values of x

at the points t = l/n, 2/n, • ■ ■ , n/n, and is a bounded continuous function

of these n values:

(1.5) F[x] = FE[x(l/n), x(2/n), ■•■ , x(n/n)] = £[*„].

Our purpose is to prove the following lemma.

Lemma 1.

f   F[y]dwy - | A» | f   fU, + f   £„(•, í)*.(j)oí1

(1.6) exp  j- f      f  — Kn(t, s)xn(s)dsIdt

-2 \       J    — Kn(t, s) xn(s)ds   dxn(t) l dwx.

2. Some preliminary results. In this section we shall derive a few prelim-

inary results, preparatory to proving Lemma 1.

First we shall prove:

Result 1. If xn(s) is any polygonized function of C, then for j = l, ■ ■ • , n

I    £„(—> s\xn(s)ds

"       ( P\ C (p+1)/n     / i      \
= £*»( — ) I KJ—,s)[l-\ns-p\]ds.

P~i      \n IJ (j>-i)/„        \ «       /

Proof. Since xn(s) is polygonal, it has the form

xn(s) = xn((p — l)/n)(p - ns)

(2.2)
+ Xn(p/n)(ns - p + 1)   for   (p - l)/n ^ s ^ p/n ■

Thus

(2.1)
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JKn (-I    S ] Xn(s)ds   =    zZ   \ K*[ ->    S) Xn(s)dS
0 \ re / p=l J (p-l)/n \ » /

n /A _   J\     /• p/n / y \

» L *» (-) I KA — >  s ) (p — res)¿s
p_i       \    n    / J (p-i)/n      \n       /

+ L  *»(—") f £«(—»  íW - ¿ + 1)¿5
p-i      \n/J (P_i)/„      \ re      /

= L *»( —) if»( —» i)(#+l-fu)di
p_o       \n / J p/n \ re       /

+    L    *»(— )   Í #»( —>    íVfM-#+l)dí
p-i      \n / J (j,_i)/n      \ re       /

»     (p\ c<p+1>/n /y    \
= S  *»( — ) I KA—> s) [l— \ns—p\]ds,

p-l \n / J (p-D/n \ » /

where in passing to the final equality we have used the facts that

(2.4) *„(0) = 0,        Knij/n, s) = 0   for    1 < s.

Result 2. If xn(s) is any polygonalized function of C, then

»zZ (AjP - Aj-i,p)Xn( — ) =   I    — Knit, s)xn(s)ds;
(2.5) ~ W      J°   9t

(j - l)/n < t < j/n, j = 1, • • • , re.

Proof. By the definition of the ^4's (see (1.3)) the left member of (2.5) is

equal to

■[l — \ ns — p\]ds

and by (2.1) this is equal to

(2.7) » j  [#»(— ' *) - K»(—~, sX\xn(s)ds.

Since Kn(t, s) is polygonal of order re in /, this is equal to

C1 3 7-1 j
(2.8) I    — Kn(t, s)xn(s)ds,- < / < —

Jo   dt re re

This yields (2.5).
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Since the expression (2.5) is independent of / on each interval (j — l)/n<t

<j/n and since xn(s) is polygonal of order «, the relation (2.5) yields the fol-

lowing result as a corollary.

Result 3. For any polygonal function xn(s) of C we have

"121  J2(Aip-Af-i.p)xnl—)\

+ 2«¿ j[*n(^) - *»(^)] Ê (¿i, - A^i,P)xn(ç^

= f f    —Kn(t,s)xn(s)ds\dt

2\ f    — Kn(t, s)Xn(s)ds\dxH(t).

(2.9)

+

We return to the transformation T of §1 and associate with it a trans-

formation Te of Euclidean «-space defined by

»

(2.10) TB:   Vi = ii + 12Aip£p, j = 1, ■ • ■ , n.
P~i

By property B of §1 the transformation Te is 1-1.

3. Proof of Lemma 1. By (1.5) we have

(3.1) f    F[y]dwy = f    ̂ [?(-)■ ■ ■ ■ , *(~)]*r*

Now the second member depends only upon the values of y(-) at the «

points 1/«, 2/w, • • ■ , «/«. Hence by Wiener's general theory it can be ex-

pressed as the following «-fold Lebesgue integral

w»/2      /»so /• oo

(3.2) x"'2^-«        J-M

r   2 2 2,
•exp (— «[»7i + (772 — 171)   + ■ • • + (17» — Vn-i) })dm • • • drjn.

We now carry out the linear transformation Te defined in (2.10); it carries

the 17,-into £/+^¡*<4 ,-p^p. Thus (3.2) becomes

(3.3)

w»/2      /» °o /» co r- » n -j

a„|—-I   ••• I   FE\ti + 2Z,Ai.ptp,---,tn+2~2A*.P$p\
irn'2 J _„ J _„o      L p_i p-i J

• exp < — n 2~2 ( ?/ — £y-i + XM jp£p _ Z) ̂  i-i.ptp ) ( d%i ' " ' ¿In-
V. ;=1 \ p=l p=l /  /
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In (3.3) A„ is the determinant (1.2) of the transformation Te. In (3.3) we

have also used ¿'s and A 's with subscripts zero with the convention that

(3.4) fo = 0;        Ao.p = 0, p - 1, • - • , »,

which is consistent with (1.3) and the fact that Kn(0, s) =0. Now in (3.3) we

isolate one part of the exponential function writing (3.3) in the form

«n/2      /»«jy»cor-n n ~|

lA»|—77        ■•• FB\ii+zZAi,P^p, ••• ,£„+ ¿ZAn.ptpl
Tn'2  J _M J _«, L p_l p-l J

•exp -j- re¿    zZiAjp- Aj-i,p)$p

- 2re¿ [fty - t¡-i) ¿ (Ai9 - ^--iJéJI
j—i L p—i J)

(3.5)

Í-1L p.

2    .      , ,2

■exp {- re[£i + fe - fx)  -I- • ■ • + (£n - £n-i) ]}<*&■•• df«.

By the general theory of Wiener integration this re-fold Lebesgue integral is

equal to the following Wiener integral :

•expí- re ¿I   ¿ (Ajp - Ai_i,p)x\ç-\\ \

(3.6)

'•[•hyp'-'K;)- ■•'O
+ zZA*.p{— ) \dwx.

Now we use Result 3 of §2 together with the simple observation (based on

(2.1) and (1.3)) that

"'Kir) + !/'"(£)' ■ ■ • ■ *(t) + £"•■-(£)]
-F|«»()+f   Jr.(-,s)«.(i)dsJ.

This makes (3.6) equal to the second member of (1.6) and thus Lemma 1 is

proved.

4. The Fredholm determinant as a limit. In the next four sections we shall

prove the following lemma.

Lemma 2. Let K(t, £) be continuous in the square
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(4.1) Oá*á 1,        OS! á 1.

For each positive integer n form the polygonalized function Kn(t, £) of order n

with respect to t, namely

(4 2) Kn{t' ° = K(U " 1)/W' Ö0 " M° + K{j/n' Í){nt ~j+ 1}'

/or    (;' - 1)/« < t <j/n, j = 1, • • • , «.

£on« the nth order determinant

(4.3) A» = det(A?k  +8jk)

where

n (*+l)/» /  j \

(4.4) ¿V = Kj—, V)[l -\m - k\ ]dV.
J (i-i)/n \ n       /

Then

(4.5) limA„ = Z?
»-♦»

where D is the Fredholm determinant for K(t, £) corresponding to X= — 1:

m i I £(si, ii) • • • £(5i, i„)

(4.6) £> = 1 + ¿ — f    • • •   f      .dst • • • ¿v
^=i  /*!•/ o w o  I

I £(i„, ii) • • • £(jm, iM)

The proof of this lemma will be made to depend upon two other lemmas

which will form the content of the next two sections.

5. The kernel as a limit. In this section we shall prove the following

lemma.

Lemma 3. With each point (t, £) of the square (4.1) associate two sequences

of positive integers \jn(t)}, {&»(£)} with

(5.1) jn(t)ún,        én(Oá#, «=1, 2, •••,

awd assume that

j (A
(5.2) lim —— = t,    uniformly in    0 ^ t ^ 1,

n-»»       M

and

kn(&
(5.3) lim ■- = £,   uniformly in    0 ¿ { ^ 1.

«-♦«>     n

Let K(t, £) oe continuous in the square (4.1) and let A'jf be defined as in (4.4).

Then
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lim nAínW,k„a) = K(t, ¿)

uniformly in (4.1).

Proof. First we observe that

•Ct»({) + l)/n

(5.5)
/'(*»(£)+l)/n

(re- re ¡ nt) — kniO \)dij = 1

and the expression re — n\ni) — /fe„(£)|   is positive in the range considered.

Hence

, («)
»4/»(«.*„«> - K(t, Ö

(5.6)
/(*n({) + l)/n| /7'   (¿) \

\kJ^—, v)- K(t,Q   in- n\nv- *„(Ö | )*,

\   re        / I
;£ max

where the maximum is taken over

(5.7)     oáfai,    oáíái,    (Mí)-D/»s?á(i.(o+i)/».

We shall show that this maximum approaches zero as re—* «>. For this purpose

let e be any positive number and write

(5.8)
K^<)-* c ö i   \ «     / i

+  \K I -— >   77 J  —   A„ 1 -?   71 1
I     \   re / \   re /1

Now since Kit, £) is uniformly continuous in (4.1) it follows that there exists

a positive number St such that

(5.9) \K((jn(t)/n), y,)-K(t,Q\ <-

for all re, /, £, v such that

(5.10) \jn(t)/n-t\<o(, 1\<K

Also since the function Kn(t, £) of (4.2) converges uniformly to K(t, £) when re

approaches infinity it follows that there exists a positive number N't such that

(5.11) | Kn(t, Ö - £(/, Ö | < e/2    for    re > 2V,'

and all (t, £) in (4.1).
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Now let Nt be so large that the following four conditions are satisfied

\jn(t)

-   t

n

*»(Ö-Í

< 8t,    for   « > N„

1
< — 5C,   for   » > Nt,

0 ^ t ^ 1,

o á î á i,

i     i
-<—5«,
iVe       2

A^/ < Nt

By (5.2) and (5.3) such an Nt exists. With this Nt we see by (5.7), (5.8),

(5.9), (5.10), and (5.11) that the maximum considered in the final member of

(5.6) is less than e for n>Nt. Thus (5.4) holds uniformly and the proof of

Lemma 3 is complete.

6. Terms of the Fredholm determinant as limits. In this section we prove

the following lemma.

Lemma 4. If N is a fixed positive integer and qu ■ ■ ■ , qN a permutation of

1, • • • , N, then

(6.1) lim        ¿       II¿ÍU=f    •••   f    II K(stf, sjds, (t, m PJ.
»-">    pi, • • -.Plf— 1 M— i •' o J 0      I¡=1

Proof. The limitand in (6.1) can be written in the form

(6.2) /• • •        A„(ji, • • • , sN)dsi • • • dsif,
o Jo

where A„(si, - • • , sn) is defined as follows. Let (si, ■ • • , Si?) be any point

of the N-cube 0^5,^1,^ = 1, ■ ■ ■ , N, and for each j = l, ■ ■ ■ , N, let p,- be

so defined that

Pi- I <       . Pi
n n

(6.3) 3 = 1, ,#.

Then for this point (si, • • • , sN) the function A„ has the value

W        (n)

(6.4) »^n^C.Pi. (Im = PJ-
p-1

For each positive integer « and each point s in 0 g s á 1 define

(6.5) Pn(s) = [«5+ 1],

so that if (ii, • • • , sn) lies in (6.3) then

(6.6) P: = Pn(s,).

Thus [p»(si), • • • , Pn(ijv)] merely names the iV-cube surrounding the point
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(si, • • • , Sx). With these p's we have by Lemma 3

(6.7) lim »¿„"<„„),,„(.„) = K(sqií, s„)
n—»oo

uniformly in Ogs?M^l, 0£s,, — l. Now since Kit, £) is bounded in 0 = t = l,

0^£^1, relation (6.7) implies that there exists an index N such that

(6-8) »^ *»(•»„) .*,<*>

is bounded in 0 ~ s„ = 1, 0 — sq/i < 1 for n>N. Hence

cl
dstr

(6.9)

lim   I      • • •   I    A„(ii, • • • , sN)dsi
n—»«  i/o •'0

/. 1 /.IN- • • I n *"(*«,. o^.
0 «/ 0      ii-1

and this yields Lemma 4.

An immediate corollary is the following.

Corollary 1.

lim        X)       [det G4p",«)<.i-i.•••,*]

(6.10)

•/ 0 «' 0

Ä"(ii, îi) • • • K(si, sn)

K(sN, Si) ■ • • K(sn, Sn)

dsi • • • ds¡f.

7. Proof of Lemma 2. By (4.4) and the fact that Kn(t, £) converges uni-

formly in (4.1) to K(t, £) as n approaches infinity we see that

(7.1) nA%

is bounded in re, j, k. Call its bound M. Then by Hadamard's lemma on de-

terminants, the determinant in the first member of (6.10) is in absolute value

not greater than

(7.2) NNl2(M/n)N.

(See for example Whittaker and Watson, Modern analysis, p. 213.) In the

limitand in (6.10) there are «^ such terms. Hence the limitand in (6.10) in

absolute value does not exceed

(7.3) nNN"i2(M/n)" = NN'2MN

and hence the (finite) series
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(») 1

(7.4)

1 + 2Z app + —     S    [det (APi,p,)i,j.i,2]
p—i *• •  p\,pï=i

+
1

+ —       H        [det (^p",w),-,y=i,...,»]
»! PI.- ■ -.Pn=l

is dominated (for all n) by the convergent series

NNI2MN
(7.5) i + Z

Nl

On using the corollary of the preceding section, we see that (7.4) has as its

limit when « approaches infinity the series (4.6).

This yields Lemma 2.

For later purposes we state and prove the following corollary.

Corollary 2. Let Kn(t, £) be the polygonalized form of a continuous kernel

K(t, £) as in equation (4.2) of Lemma 2. Denote by D the Fredholm determinant

(4.6) of K(t, £) corresponding to the value X = — 1, and by Dn the analogous Fred-

holm determinant for Kn(t, £). Then

(7.6) lim Dn = D.
n—*«

Proof. By (4.2) and the continuity of K(t, £) we see first that

(7.7) lim Kn(t, Ö = K(t, Ö uniformly in (4.1)
n-*oo

and secondly that there exists a constant M such that

(7.8) | K»(t, Q\<M   for    (t,0 in (4.1); » - 1, 2, 3,

Hence, for each positive integer N,

t                    Kn(si, sx) • • • Kn(sx, Sn)

lim /    ■ • • /      .
»—»«   •/ o v 0

Kn(Stf, Sx)   •  •  •   Kn(Stf, Sn)

K(sx, Sx) ■ ■ ■ K(sx, sN)

-/••/;.v 0 ** 0

K(sN, Sx) ■ ■ • K(sN, sN)

(7.9)

dsx • • • dstr

dsx dsif,

and  then by Hadamard's theorem on  determinants the  convergence is

bounded, the limitand in (7.9) being bounded by NNI2MN. Hence the series

' + ¿4i/' '"/'N-i   NUo Jo

Kn(Sl, Sx)   ■   ■   ■   K„(Sx,  SN)

K„(sn, Sx) • • ■ K„(sn, ijv)

dsx ds\
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converges boundedly to the series (4.6) for D.

This yields Corollary 2.

Similarly we have the following corollary.

Corollary 3. Let Kt(t, s) be Borel measurable in (t, s) for each e and uni-

formly bounded for all t, s,eonO = t = l,0?¿s^l,0<e<l, and let lim,..o+A'€(/, s)

= K(t, s)forallt,son0^t^l, O^s^l. Then limt^Dt=D.

8. Preliminary lemmas on Riemann-Stieltjes integrals. In this section

and the following section we shall prove three lemmas on Riemann-Stieltjes

integrals.

Lemma 5. Let

/vin                       p — \ p
fis)ds;        -- <t = —, p=l,---,n.

(p-l)/n « «

Then if fis) is a function of bounded variation on0^s = l and gis) is continuous

on this interval, it follows that

(8.2) lim   f  f"(t)dg(t)=  f  f(t)dg(t)..

For the proof, we first note that

V nt)dg(t) = i, T   f(t)dg(t)
J 0 p-lJ (p-l)/n

-tu*)-^yi.r m,
p-i l_   \ n / \    «    / J    J (p_i)/„

Now nf[Pn-i)/nf(s)ds is the average of f(s) on (p — l)/re = s ^p/n and hence there

exist two points s'T,p and s'n',P on this interval such that

(8.4) f(s'n,p)   énfPn        f(s)ds  = f(Sn,p).
J (p-l)/n

Let í7„,p = /'(5„,p) and 7?ñ'p=/(s»,p) if g(p/n)^g((p—l)/n), and let the reverse

be true, that is, ri'n,p=fis'n',p) and ri„',p=f(s'n,p) if the opposite inequality holds,

that is, if g(k/n) <g((k — l)/re). Then we can combine (8.3) and (8.4) and

obtain

(8.3)

(8.5)
ÊKv)-^)]'^/>'<'«"

*£[«&-<(¥)]-
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But the outer members of (8.5) are Riemann-Stieltjes partial sums for

fj(t)dg(t) which exists since/(/) is of B.V. and g(t) is continuous. Hence they

approach this integral as w—* °o , and of course the middle member does also,

and the lemma is proved. This lemma enables us to establish the next lemma:

Lemma 6. Let H(t, s) be measurable in t, s on the rectangle [0^i^l,0^s^l]

and satisfy

(8.6) f   M(s)ds < «
J o

and

(8.7) f   V(s)ds < »,
J 0

where

(8.8) M(s) =   sup    | H(t, s)\
OgiSl

and

(8.9) V(s) =   var   [B(t, s)].
oâiSi

Let

(8.10) lim xn(t) = x(t)
n—*<*

uniformly onO^t^l, where xn(t) and x(t) are continuous onO = t^l and vanish

at the origin and satisfy

(8.11) \xn(t)\^Pn^P, O^/^l,

and

(8.12) | x(t)\ ^p, 0 = t=l.

Then if

/' */»                               k — 1 kH(Z, s)d£ when- < t g —,   k = 1, 2, ■ - -, »
(fc-i)/»                                   n «

it follows that

(8.14) lim   f       J    £"(/, i)zn(î)di| o"/ =  f       T   ff(/, s)*(í)d$ 1 dt,
n-no  «oL^O J •* 0   L «J 0 J

(8.15) IJ     J   H»(t, jK(i)dild/U I'm» T   ikf(5)dj"| ,
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(8.16) lim   f        f   Hn(t, s)xn(s)ds \dxn(t) =   f       f   B(t, s)x(s)ds \dx(t),
n->»  J o   \-J 0 J *'oL«'0 J

(8.17) \f     f   H"(t, s)xn(s)ds~\dxn(t)\ ^ pi f   [M(s) + V(s)~\ds.

For the proof, we first note that (8.13) implies for almost all s

(8.18) lim Hn(t, s) = H(t, s)

for almost all ¿, and since by (8.13) and (8.8), (8.11) and (8.12), for all t

(8.19) | H"(í, í)*„(í) I ^ m»M(í) g jiAff»,

(8.20) | H(t,s)x(s)\ g ¿uAf(s)

we have by (8.6), (8.13), (8.18), (8.10) and the principle of dominated con-

vergence

(8.21) lim   f  H»(t, s)xn(s)ds =  f   H(t, s)x(s)ds,

(8.22) lim   j    #"(/, j)*(j)rfj =  f   H(t,s)x(s)ds
n—»oo  */ o •/ 0

for all í, Oá/ál. Moreover from (8.19) we have for all 2

(8.23) I    Hn(t, s)xn(s)ds   ^ pn f   M(s)ds g M f   Jtf(i)ds,

so that ftHn(t, s)xn(s)ds is uniformly bounded in » and t. Thus (8.14) fol-

lows from (8.21), and (8.15) follows from (8.23).

Next, in order to establish (8.16), we note from (8.13) that

(8.24)

/Hn(t, s)x(s)ds
o

/< */»          /• i                                    ¿_ j fe
d£ I    £(£, s)x(s)ds when- < t <—, k = 1,2, ■ ■ ■ ,n,

(*-i)/»    J o                                         n n

and that /„'/¿"(i, s)x(s)ds is of B.V. in t on O^igl since

Í*    ^* Í*   B(t,s)x(s)ds\^  f   \\x(s)\ f    \dtH(t,s)\\ds

g p f   V(s)ds.
J 0

(8.25)
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Thus by (8.24) and (8.25) it follows from Lemma 5 with f(t) =J^H(t, s)x(s)ds

that

(8.26)       lim   f       f   Hn(t, s)x(s)ds\dx(t) =  f        f   H(t, s)x(s)ds\dx(t).

Let us investigate the variation of Hn(t, s) in / for fixed 5. Letting H"(0, s)

= Hn(0+0, s), we have

var
og«si

dt

dt

[H"(t, s)] = nzz\nn(— + 0, s} - H»(-0, s\I
*_ll \M / \» l\

n-1 I /. (Jfc+D/n r. kin I

= zZ « I Bit, s)dt - « I H(t, s)dt\
k-l I     J k/n J (*-l)/n

n-1      I    /. (*+l)/n r- / J \-I       I

-L»II ir(í,*)-fl(<-—» »j a
t_i   1«/*/«       L \      »     /J   I
n-1        /. (*+l)/n I / 1 \ I

á Z> I fl(*,j)-£?"(/->  s) \dt
k-l      J k/n \ « / I

»-i   fi/»!   /     ¿    \       /     k-l    \

k-i    J o     \     \        n      / \ « /

g « f  I var  ff (|, i)l dt= re f     F(í)d¿
Jo    V>S{S1 j Jo

so that for all s,

(8.27) var   [H»(t, s)] = V(s).
0SIS1

Thus

(8.28) var       f   ff"(/, s)xn(s)ds 1 g m»-  f   V(s)ds = ¡x \    V(s)ds
og«gi L Jo J Jo Jo

and

var   \  f   Hn(t,s)[x(s) - xn(s)]ds\
os-isi    I Jo )

(8.29)

g  max   | x(s) — xn(s) \ ■  I    F(s)¿í
0S«S1 J 0

Hence we have from (8.28), (8.29), (8.11), (8.12)
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J    x(t)dt f   En(t, s)x(s)ds -  I    Xn(t)d, f   H"(t, s)xn(s)ds
Ko •'o Jo J o

=    f   x(t)dt f   H"(t, s)[x(s) - xn(s)]ds
I J 0 "O

+ f   [x(t) - Xn(t)]dt J    H»(t,s)xn(s)ds
Jo Jo

á    max   | x(t)\   •   var       j    Hn(t, s)[x(s) - xn(s)]ds

+ max   | x(t) — xn(t) | •   var Hn(t, s)xn(s)ds
0S«S1 OS'Sl Lv o J

á p max   | z(í) — xn(s) | ■  I    F(í)dí +  max   | x(t) — xn(t) | -p-  I   F(s)dj;
os«Si Jo os'SI •'0

and since xn(s)—>x(s) uniformly as n—* oo, it follows that

(8.30)

lim -} J    x(t)d, j    H»(t, s)x(s)ds

-J    Xn(t)dtf   Hn(t, s)x„(s)ds\ = 0.

But we may integrate these Stieltjes integrals by parts, and when we do we

obtain

f       f   Hn(t, s)x(s)ds]dx(t) - f      f   Hn(t, s)x„(s)ds | dxn(s)

(8.31) = *(1) f   H"(l, s)x(s)ds - *„(1) f   ff-(l, s)x„(s)ds
Jo J o

- f   *(<K f   ff"(/, s)^(i)ds + f   ac(/)ái f   #"(*, s)xn(s)ds;

and (8.31), (8.30), (8.21), (8.22) imply

lim | f       f  H-(/,í)*(í)¿íld*(/)
n->«o    (i/|   L«û J

-f      f JSr»(/, *)*»(i)aV|a*»(*)l -0,

which with (8.26) implies our third result, namely, (8.16).

Finally, to establish (8.17) we integrate the left member by parts and use

(8.11), (8.23) and (8.28), obtaining
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J        J     ff»(/,5)«.(s)áíldaw(0

= L„(l) f   Hn(l;s)xn(s)ds-  f   xn(t)dt f  H"(t, s)xn(s)ds
Jo Jo Jo

eßntunf     M(s)dSS\ + ^nUnj     V(s)ds\

which establishes (8.17) and completes the proof of the lemma.

9. Preliminary lemma on the jump of the kernel. In order to remove dis-

continuities from the kernel of the transformation with which we shall deal

in our theorems, we introduce an odd function which has a jump at the origin

and vanishes outside the e-neighborhood of the origin, namely

(sgn s — s/e   when     \ s\ i= e,
(9.1) 0.(,)= ^g

I        0 when     \s\ > e.

This function, which is defined for all positive e and all real s, will be multi-

plied by one-half of the amount of the jump of the discontinuous kernel and

then subtracted from it to produce a continuous kernel. The limits will be

taken as e—>0+, and in particular the limit given in the following lemma will

play an important role :

Lemma 7. Let J(s) be continuous and of bounded variation on O^s^l and

let x(s) be continuous on this interval and vanish at s = 0. Then if for 0 < e < 1/2

Í2í(s) is defined by (9.1), we have

(9.2) lim    f       f  — a,(i- t)J(s)x(s)ds \dx(t) =  f  J(t)d{[x(t)]2}.
c->o+  JoLJod/ J Jo

Moreover, if

(9.3) I x(s) I á ß, 0 á s ¿ 1,

(9.4) F =   var   [/(*)],
oáíái

(9.5) M =  max   |/(í)|,
oá»ái

we have

(9.6) f       f  — ü,(s- t)J(s)x(s)ds \dx(t)
IJ 0  L J 0   àt J

^ ß2(M + V).

Remark. This lemma is the critical lemma for the "Volterra case" of our

theorems, that is, the case in which the kernel of the transformation has a

line of jumps along the diagonal; and this lemma explains why the Stieltjes
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integral of J in our theorems is written as it is. We could not, for instance,

replace the right member of (9.2) by

(9.7) 2       J(t)x(t)dx(t),
•I o

which appears to be formally equivalent to it, because this integral need not

exist as a Riemann-Stieltjes integral. Thus, if J(t) =1 and x(t) =t112 cos ir/t

when t9^0, the R-S sums of (9.7) would be made arbitrarily great, so that

(9.7) does not exist; but of course the right member of (9.2) would exist and

would have the value unity. When (9.7) fails to exist in the R-S sense, we

may think of the right member of (9.2) as giving a sort of "Cauchy principal

value" or "Cesàro mean," and the fact that we have to use a "Cauchy prin-

cipal value" here is connected in some indirect and deep lying way with the

fact that in our theorems we have to use an arithmetic mean along the diago-

nal of the kernel in calculating the Fredholm determinant. Moreover the

latter fact is not a mere matter of normalization, but has definite significance

in the numerical calculation of our results. It might seem, therefore, that the

type of Stieltjes integral used here, or the type of average used in evaluating

it, may not be without numerical significance in the results. At any rate, we

can prove our theorems using an integral of the type used in (9.2), and have

so far not been able to do so with any other type.

In order to facilitate the proof of the lemma, we first extend the definition

of x (s) and J(s) so that they are continuous and constant outside the interval

O^s^l. In particular,

(9.8) x(s) = 0   when    s g 0.

Now in order to evaluate the repeated integral in (9.2), we first note by direct

calculation that

,      , d      t (1/e    when     I s - 11 < e, s j¿ t,
(9.9) —ü,(s-t) = \

dt (O     when    \s -t\> e,

and since the non-existence of the function at the three points s=t — e, s = t,

s = t+e does not affect the Lebesgue integral, we obtain by using (9.8), (9.9),

and integration by parts

f       j    ~üí(s-t)J(s)x(s)ds]dx(t)

1   Cx Y ("nin C+«.1) "l

(9.10) =— I        I J(s)x(s)ds \dx(t)

J /» 1 J      /• 1 /.min ((+€,1)

= — *(1) I      J(s)x(s)ds-I    x(t)d, I J(s)x(s)ds.
e J i-t t J o J t—t
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Defining the smoothing function

(9.11) J.W=-f   'jiQdt,
€   J t

we are able to simplify the last integral, thus

1      /• 1 /»min (í+f.l)

— j    x(t)d, I J(s)x(s)ds
i   J 0 J t—t

If1 f¿      /.min (I+..1) -I

= TJo  X{t)ldtJt J(s)*(s)dsjdt

= — j   f     «(/)/(/ + «)*(* + t)dt - f   x(t)J(t - t)x(t - t)dt\

= —j   Í*     xit)Jit + t)x(t + ¿)dt - f     x(t+ ¿)J(t)x(t)dt\

= — f     x(t)x(t + 0 [J(t + e) - /(/) ]dt
(Jo

= — f    x(t)x(t + t)[j(t + e) - J(t)]dt
« J o

i r1
-j      *(/) x(t + t) [J(t + e) - /(/) ]¿<

« J i-t

= J   *(*)*(* + i) [— /.«)] ¿Í - *(r«)*(re + e) [j(r, + e) - J(r.) ],

where 1 — e^T.^l, the existence of r€ being established by the law of the

mean for integrals. Hence, if we can show that

(9.13) lim    f   x(t)x(t+t)\— Jt(t)~\dt=  (   [x(t)]2dj(t),
«-h>+ Jo Ldt        J Jo

it will follow that

J      /• 1 /»min(l+f,l) n 1 ■

(9.14) lim — I    x(t)dt I J(j)a;(5)di =  I     [*(/)]«/(/),
«-►o+   « J o              J <-t Jo

since lim€.o + [J(r«-)-e) — J(t,)] =J(1) — J(1) =0 and ;e(¿) is bounded.

In order to establish (9.13), let J(t)=P(t)-Q(t) where P(t) and Q(t) are

continuous everywhere and are increasing (not merely monotonically increas-

ing) functions on the interval 0 ^t g 1 and are constant outside that interval.

Then if
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(9.15) P.(t) = - f ' 'p(Qdi   and   Q,(t) = - f '   0(0«.
e «/ 4 e J |

we note that Pt(t) and Qt(t) are (definitely) increasing functions on the inter-

val — e^t^l and constant elsewhere, that Jt(t)=Pf(t) — Q,(:) everywhere,

and that £i(-e)=£(0), Q,(-e)=Q(0), £€(1)=£(1), Q.(1) = Q(1). Now
£,(/) and P(t) have continuous increasing inverses Pr1(s)and P~*(s) defined

on £(0)^5^£(1), and Q,(t) and Q(t) have inverses Q7l(s) and Qrl(s) on

Q(0)^s^Q(l). Since lim„0+£«W =£(0 uniformly in t, we have lim.-o+PrH*)
= P-*(s) for all 5 on £(0) gs^£(1), and hence

lim    f  *(/)*(*+ e)   —£«(<) \dt = lim   j    x(t)x(t + t)dP,(t)
€-<o+ Jo L dt A t—o* J o

/Pil)       -i -i»[i\ (í)]*[P. (s) + t]ds

(9.16)
/•PO)

= j      «[p-^Mp-'í*)]*
Jp(o)

=  f1 [x(t)]2dP(t).
J 0

Similarly

(9.17) Mm   f *(0x(i + .) [-ö.(0l¿/ - f   [*(0No«,
«-KT   ^o l_ Oí J J o

and since J(t)=P(t)-Q(t) and Jf(t)=P,(t)-Q,(t) we obtain (9.13) by sub-
tracting (9.17) from (9.16), and (9.13) establishes (9.14) as noted aboVe. Now

taking limits in (9.10), integrating by parts, and applying (9.14), we have

lim    I f   — QJs - t)J(s)x(s)ds \dx(t)
<-k>+ J0  LJo   dt J

[J     C 1 "I 1     T1 /»min (í+í,1)

*(1)— I    J(s)x(s)ds   - lim — I    *(*)d, I J(s)x(s)ds
€   J 1_« J e-»0+     É   J 0 J t-t

= *(i)j(i)*(i) - f'[*(/)] w(0
J 0

= f'/«¿[zW]2,
•/ 0

and this establishes (9.2).

To establish (9.6), let
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J(t) 1
J*»--~ + T    var    [/(öi'

J(')        1
e*w = --^+t var I7«)]'

2 2   -»<{Si

P*iQdS,
e ^ (

and

QT(t) = - f   V(Ö«
e J t

and note that P*, Q*, P*, Q* are monotonically increasing functions for which

var   [P*(t)] = P*(l) - P*(0) = P.*(l) -P*(-t) =    var    [P.*(0]
ogigi -«g(Si

and

var   [Q*(0] = e*(D - G*(0) = Q.*(D - <?.*(- «) =    var    [&*(*)].
OSlgl -«S«S1

Now J(t)=P*(t)-Q*(t) and J,(t)=P*(t)-Q?(t), and we have

(9.18)

var    [/.(/)] =    var    [P*(*)] +    var    [Q*(t)]
-«á<ál -«S«Sl -<S«ál

= P*(l) - P*(0) + Q*(l) - Q*(0) =   var   [7(0] = V.
OSigl

Then from (9.12), (9.3), and (9.18) we see that

• min ((+«,!) [

(9.19)

and since

(9.20)

1      /» l /• mi

- I    x(t)d, 1 J(s)x(s)ds\
í   J 0 J Í-.

= I — f    '*(<)*(< + «) [A* + t) - 7(f) ]dt
\   ( J o

I r1-'
x(t)x(t+¿)djt(t)

J a
áM2F,

1 f1
e(l)—        J(s)x(s)ds

€   Ji_,
g fi-M-fi

we obtain (9.6) from (9.10), (9.19), and (9.20). This completes the proof of

the lemma.

10. Proof of Theorem la. To prove Theorem la we approximate K(t, s)
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by kernels of the type which appears in Lemma 1. Thus, for 0<€<l/2, let

1 r , ro á t g n
(10.1) At(t, s) = — [Qt(s - t) - Qt(s + 0)}j(s)    on

where Oe(s) is defined by (9.1); and let

(10.2) Kt(t, s) = K(t, s) + kit, s).

It is clear that K,(t, s) is continuous in the whole square [O^/iSl, Ogs^l]

since both K and At are continuous except when t = s, and for this diagonal,

as / increases (for fixed s) and passes t = s, the functions K and A€ change by

J(s) and —J(s) respectively. Moreover for each of these functions, the value

on the diagonal is the arithmetic mean of the right-hand and left-hand limits.

We also note that Kt(t, s) is uniformly bounded, that£«(0, s) =0 (Ogigl),

and that for all t, s in the square (including the diagonal)

(10.3) lim Kt(t, s) = K(t, s),
€-K)+

since for all í (including 5 = 0)

lim Qt(s) = 0.

Next, for each positive integer « form the polygonalized function Kt,n(t, s)

of order « with respect to t, namely,

£«,„(/, s) = Kt(y^A, s\ (j - nt) + Kt(—,  s) (nt - j + 1)

(10.4) H_

for-á t g — ;   j = 1, 2, • • • , »;     0 ^ s á 1.
« «

We note that £«,»(0, s)=0for O^s^l. Let Z>e and Dt,n denote the Fredholm

determinants obtained by putting Kt and £,,» in place of K in (0.5). Then,

since £\,» and £e are obviously bounded, we have by (10.3), (10.4), and

Corollaries 2 and 3 of Lemma 2,

(10.5) lim Dt = D
«->o+

and

(10.6) lim £>e,n = £v
»—►00

Thus, since D^Oby (0.6E), there exists an «i such that Dt ^ 0 when 0 < e < ei.

Similarly, there exists « = «i(e) such that Dt,n^0 when «>«i(e) and 0<€<€i.

Moreover if Ae,„ is obtained by replacing K by K€ (and hence Kn by £,,„)

in Lemma 2, we have



208 R. H. CAMERON AND W. T. MARTIN [September

(10.7) limAt,„ = Z?„
n-*«

and hence we can find W2 = re2(e)>«i(e) such that when

re > re2(e),       0 < t < «i,    then   At,„ ^ 0.

Finally, F[xn] is a functional of x which depends only on the values of x(t)

at the points t=l/n, 2/w, • • • , w/re and is a bounded and continuous function

of these values. (Here x„ denotes the polygonalization of x, as defined in §1.)

We have now verified all the hypotheses of Lemma 1 for K,,n and the func-

tional P[*n]. and we therefore have when w>re2(e), and 0<e<€i,

(10.8)

where

(10.9)

X
w

F[yn]dwy
c

= | A,,„ | I      F\ x* + j    K,,n(-, s)xn(s)ds   exp (- $t¡n[x])dwx,

$*,n[x]   =    f J       — K,,n(t, s)Xn(s)ds\ dt

2f      I  y Kt,n(t, s)xn(s)ds~\dxn(t).+

Our next step is to take limits as re—» °o on both sides of (10.8) and obtain

(10.10)

where

(10.11)

/.

w

F[y]dwy
c

= \D.\(    ^1* + /   Kt(-,s)x(s)ds\exp(-9,(x))dwx,

*.(*) = j     J  — Kt(t, s)x(s)ds~\ dt

+ 2 f      f  — K.it, s)x(s)dsI dx(t).

The passage to the limit on the left of (10.10) is immediate, since, y„—>y in

the uniform sense and thus P[yn]-^P[y], and since F[y„] is bounded so that

we may employ the principle of bounded convergence. Passing to the right-

hand member, we notice that (10.7) takes care of the factor outside the in-

tegral; and hence if we can show that the integrand of the right member of

(10.8) approaches that of (10.10) boundedly, (10.10) will be established.
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Now since £,,»(£, s)—>Ke(t, s) uniformly in / and s, and xn(s)—>x(s) uni-

formly in s, it follows that /0£«,B(i, s)xn(s)ds—^ftKt(t, s)x(s)ds uniformly in t

and

(10.12) limFÏxn+f   £«,»(■, 5)*»(5)d/|=£r*+ f   £,(•, s)x(s)ds~\

boundedly in x. We next show that there exist an integer N0 = No(e) and a

subset r = T(e) of C which is bounded in the uniform topology and such that

when x$r, n>N0, 0<t<eu

(10.13) FÏx + f   £.,„(■, s)z(i)dil = 0.

This is based on our hypothesis that F(x) vanishes outside of a bounded

domain, say G; and on the fact that we can solve

(10.14) y(t) = x(t) + f   £,.„(/, £)*(£)#

and obtain

(10.15) x(t) - y(t) + f   K?n(t, f)y(0¿í
J o

throughout C for sufficiently large «, since the Fredholm determinant

D,,n7¿0 when w>«i(í), 0<e<ei. In fact, it follows from (10.6) that we

can choose No = No(e) so great that |-D,,»|è |-0,1/2?*0 when n>N0, and

hence [£/«,»]_1 is bounded in « for all n>N0. Thus the resolvent kernel

K~k(t, £) is uniformly bounded in /, £, n for fixed e when Og/gl, 0^£gl,

«>Aro(«), since it is the product of [-Df,»]-1 by a Fredholm numerator de-

terminant D,,n(t, s) which is uniformly bounded in t, s, e, n because it is given

by the familiar Fredholm algorithm in terms of the uniformly bounded

Ki,n(l, £)• For fixed e, we now define r = T(e) as the set of functions x(t)

obtained from (10.15) by letting y(t) range over G and n range over the set

of integers iVo + 1, iVo+2, • • • . We readily see that this T and No satisfy

the desired conditions, namely that Y be a subset of C which is bounded in

the uniform topology, and that (10.13) holds when xÇ£Y, n>N0, 0<e<€i.

Since (10.14) takes C into C (for Ke,n(t, £) is continuous and vanishes when

t = 0) and takes functions which are not zero at t = 0 into functions which are

not zero when / = 0, it follows that the inverse transformation (10.15) takes

C into C, and hence T is a subset of C. Moreover G and £,,„ are uniformly

bounded, and hence so is the set Y of functions x(t) defined by (10.15) in

terms of functions y(t) in G. Finally, if x(/)^r, then for each n>N0, the

corresponding y(t) defined by (10.14) is not in G, and since £ vanishes out-
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side G, F(y) is zero. Thus (10.13) is established in the specified region, and the

set r has the specified properties.

Turning next to the second factor of the integrand of the right member

of (10.8), we note that for each xÇC, 0<e<ei,

(10.16) lim $,,„[*] = $«[*].
n—><*

This follows immediately from (8.14) and (8.16) of Lemma 6, with

■dKt(t, s)/dt playing the role of H(t, s) of the lemma, and, in consequence,

SKt,n(t, s)/dt playing the role of Hn(t, s) (since (10.4) implies (8.13)). Hy-

potheses (8.6) and (8.7) of Lemma 6 are given by hypothesis (0.6C) of the

theorem together with (10.1) and (10.2). Now (10.12) and (10.16) imply that

for each x, the integrand of the right member of (10.8) approaches the integral

of the right member of (10.10). It remains to show that the limits are ap-

proached boundedly. To do this, let y be so great that when x(t) is in the uni-

formly bounded set T, we have \x(t)\ gy for all t on 0 — t^l. Thus when

maxoáfsi|x(¿)| >y, n>N0, 0<e<€i, the equation (10.13) must hold; and con-

sequently when maxoa¡ái|*n(¿)| >T> n>N0, 0<e<ei, we have

(10 17) F\xn + J    Ke,n(-, s)xn(s)ds   exp (- $,,„(*)) = 0.

On the other hand, if max0s¡ái|a;„(¿)| ^7, n>N0, 0<e<€U we find from

(8.15) and (8.17) of Lemma 6 (with dKt(t, s)/dt playing the role of H(t, s)

and 7 playing the role of /x„) that

(10.18)       | $«,„(*) | = lyf   Mt(s)ds~\  + 2y2j   [Mt(s) + V.(s)]ds,

where M,(s) and Vt(s) are the analogues of M(s) and V(s) of Lemma 6 as

applied to the function dK,(t, s)/dt. Thus we may take (by (0.6C), (10.1),

(9.9), (10.2))

(10.19)       Jf.(j) =  I     sup     — Kit, s)    ds + — j     \j(s)
J o osigi     dt 2« J o

ds

and

var     — Kit, s) Ids H-|     | 7(«) | ds,
o ogigi Ldt J «Jo

where the star indicates that dK/dt is to be replaced by an equivalent func-

tion for which the integrals exist, as given in (0.6C). Hence if B is an upper

bound for the bounded functional Fix), we have when max0sígi|#n(¿)| á7,

»>iVo,0 <«<«!.,
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(10.21)

£\ xn + I    £,,»(•, s)xn(s)ds   exp (— $,,»(*))

^ B exp fíy f   Mists'] + 2y2 f   [Af,(s) + F.(s)]dîY

Combining this with (10.17), we see that (10.21) holds whenever n>No,

0<e<€i independently of the size of max \xn\. But the right-hand side of

(10.21) is independent of x and of w, and therefore (10.21) shows that the con-

vergence of the integrand of the right member of (10.8) is bounded in x

and n, and the passage to the limit is justified. Using (10.12) and (10.16) in

taking limits on (10.8), we obtain (10.10); and thus (10.10) together with

(10.11) is established.

Having taken limits in (10.8) as «—► co and obtained (10.10), we next take

limits as e—»0+ in (10.10) and obtain (0.15). The argument is carried out on

the same lines as the preceding. The left members of (0.15) and (10.10) are

identical, and the factor \D,\ outside the integral on the right of (10.10) ap-

proaches | Z? | by (10.5) and we thus need only show that the integrand on the

right of (10.10) approaches the integrand on the right of (0.15) boundedly.

Dealing first with the factor £, we note that

I r1
A,(i,

¡J o
s)x(s)ds

(10.22)

I i  r1
=   —        [Qf(s - t) - Í2,(í + 0)]j(s)x(s)ds

I  2 J o

1 /» min (f+f ,1)

- I | Q,(s - t)J(s)x(s) | ds
2 Jmax (i-,,0)

— I        i2,(j + 0)/(5)z(s)   ds
2 Jo

2

+

^ •— «   max   | J(s)x(s) \,
2      osssi

so that for fixed x,

(10.23) lim    f   Kt(t, s)x(s)ds =  J    K(t, s)x(s)ds
,-K)+   Jo Jo

uniformly in t, 0^¿^1. Since £ is continuous in the uniform topology,

(10.24) lim£|a;+r   Kt(-, s)x(s)ds] = F\ x + j    K(-, s)x(s)ds],

and since £ is bounded, the limit is approached boundedly in x. We next

show that there exist a positive number e0 and a subset f of C which is

bounded in the uniform topology and such that when ^^r',0<e<eo,
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(10.25) Flx+ f   Kt(-, s)x(s)ds\ = 0.

Choose G as before, so that F(x) =0 when x(£G, and solve

(10.26) y(t) = x(l) + f   Kt(t, |)*(£)¿í
J o

obtaining

(10.27) x(t) = y(t) + f   K;\t, í)y(í)¿f
»'o

throughout C for sufficiently small e. By (10.5) we can choose e0 so small

that when 0<e<i0, \D,\ = \D\/2^0, so that [D,]"1 is bounded in e for all

positive €<«o- Thus the resolvent kernel Kr1^, £) is uniformly bounded in

/, £, ewhen Ogf^l, 0¿£ál, 0<e<i0, since it is the product of [D,]'1 by a

Fredholm numerator determinant Dt(t, s) which is uniformly bounded in

/, s, é because it is given by the Fredholm algorithm in terms of the uniformly

bounded K,(t, £). We now take V as the set of functions x(t) obtained from

(10.27) by letting y(t) range over G and e range over the set 0<e<e0. Then

T' and €0 satisfy the required conditions, for V is obviously a uniformly

bounded subset of C, and if xQT', then, for each ein 0<e<«0, the correspond-

ing y defined by (10.26) is not in G, and F(y) =0. Thus (10.25) is established

in the specified region, and V has the specified property.

Turning next to the second factor of the integrand of the right member

of (10.10), we shall show that for each x£C,

(10.28) lim $«[*] = #[*].
e-V"

Differentiating (10.2) and using (10.1), we have for almost all i, 5 in the

square (6),

a /} 1        rl

(10.29) — Kt(t, s) = — K(t, s) + — — Qt(s - t)J(s),
dt dt 2   dt

so that for almost all t we have by (9.9),

C1 d r ' d
I    — Kt(t, s)x(s)ds =  I    — K(t, s)x(s)ds

J o   dt J o   dt
(10.30) 1      /»min «+«,»

+ — I J(s)x(s)ds.
2tJmhx («—«.o)

It follows from the law of the mean for integrals that if e^/^1 — e, the last

(«) See footnote 2.
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term of the second number of (10.30) can be written J(T,,t)x(Te,t), where

t — e¿T,,i^¿+«; and hence we have (using (0.3) and (0.4)) for almost all

ion 0á<ál,

— Kt(t, s)x(s)ds =        — K(t, s)x(s)ds + J(t)x(t)
o   dt J o   dt

(10.31) =—j   f   K2(t, s)x(s)ds+ f   K1(t,s)x(s)ds\

d   r1
= —       K(t, s)x(s)ds.

dlJo

Moreover for fixed x, the limit in (10.31) is approached boundedly, since from

(10.30)

(10.32)
1/1 d

— Kt(t, s)x(s)ds
i   dt

^   max
OSsSl

x(s) Usup
o os<Si

- K(t, s)
dt

ds + max
0S»S1

J(s)

and the right-hand side is finite by hypothesis (0.6C). Hence by the princi-

ple of bounded convergence we have from (10.31) and (10.32)

(10.33) lim    f   j— K,(t, s)x(s)ds\ dt =  f   |— f   K(t, s)x(s)ds 1 dt,

and we see that the first term of the second member of (10.11) approaches

the first term of the right member of (0.9), and it remains to show that the

second term of (10.11) approaches the sum of the second and third terms of

(0.9). We do this by applying Lemma 7 to the second term of the right-hand

side of (10.29), obtaining

(10.34)

lim   f       j    — K,(t, s)x(s)ds]dx(t)
«-•o J o  L J o   dt J

= f     f  — K(t, s)x(s)ds~^dx(t) +~fo J(t)d[x(t)]*;

and thus (10.33) and (10.34) establish (10.28), which, together with (10.24),
implies that the integrand on the right of (10.10) approaches the integrand on

the right of (0.15) for each fixed x.
Finally, we complete the justification of the limiting process and estab-

lish (0.15) by showing that the convergence is bounded. To do this, choose

y' so great that when x(E.Y', maxosisil^Wl ay', and note that when

maxosiSi|*(0| >y' and 0<e<€0, (10.25) holds, so that
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(10.35)
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f\x + f   Kt(-, s)x(s)ds] exp (- $.(*)) = 0.

[September

- K(t, s)
dt

ds + max   | J(s)
OSsSl

On the other hand, if max0áígi|a:(/)| ^y' and 0<e<«0, we let B denote an

upper bound of Pas before, and let(6)

(10.36) ß =  f    sup
Jo   OSfál

so that by (10.32),

(10.37) If       f   — K.it, s)x(s)ds\dt\ = (y'/3)2.
\ J o   L J o   dt J      |

Similarly, we let

(10.38) ß' = f   var  \—K(t, s)\ ds +   var   [7(*)],
Jo oá'Si Ldt J ogsSi

so that by (10.29), (10.28), (9.6), (9.3), (9.4), (9.5) we have

(10.39) J        f  —K,(t,s)x(s)ds\dx(t) = (y')\ß + ß'),

since

(10.40)

f       f   — K(t, s)x(s)ds\dx(t)

= *(1) {    |— K(t, s) I     x(s)'ds -  f   a:(í)¿í f   — •&(*, í)*(í)ás
Jo   L3i J<=i J0 J o   dt

by integration by parts. Thus when maxogigi|:e(i)| ^7' and 0<e<eo, we have

from (10.11), (10.37), (10.39)

(10.41)

\f\x + j   Ke(-,s)x(s)ds]\exp(- #,(*))

g 5exp((y')2(^2+2/3-{-2r));

and since (10.35) holds when maxogigi! x(<)| >Y'> 0<e<e0, it follows that

(10.41) holds whenever 0<e<e0, irrespective of the size of x(t). But the right

member of (10.41) is independent of x and e, and therefore (10.41) shows that

the convergence of the integrand of the right member of (10.10) to its limit

as e—>0+ is bounded in x and e, and the passage to the limit is justified. Thus

by (10.24) and (10.28), we obtain (0.15) from (10.10), and the proof of Theo-

rem la is complete.

(«) See footnote 2.
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11. Proof of Theorem I. We shall derive Theorem I from Theorem la.

(The method used is similar to that used in [4] in obtaining Theorem II of

that paper from Theorem I of that paper.) First let 7 be a quasi-interval

(11.1) Xy <?(',)< My,

j - 1, • • • , »; 0 < h < - - - < t» á 1 (- » é X, < Pi ú <*>).

Let e>0 and let <pi,t(t]) be a continuous "trapezoidal" function which equals

zero outside the interval \¡<v<p¡, equals unity inside the interval X, + e<v

<p, — t, and is linear on the remaining intervals. (If X,- takes on the improper

value — co, so does X, + e, and so on.)

Also let ¡¡rt(u) be a continuous polygonal function on 0^u< <x> which

equals zero for M>l + l/e, equals unity for 0:Sw<l/e and is linear elsewhere.

Let pi(y) be the characteristic functional of I (that is, pi(y) = l if yG.1

and 0 otherwise), and let

(11.2) pz„(y) = *.|~max | y(t) | "I fl <t>iÁy(t/))-
LosíSi J í-i

First we observe that

(11.3) Pi..(y) S pi(y)    as    «\0 (y(-)mC),

for if y(-)(£I, then at least one of the inequalities (11.1) isnot satisfied and

the corresponding <ji,-,,(y(i,)) will be zero for every €>0, while if y(-)££ then

for sufficiently small positive e each factor 4>i,t(y(tj)) will be unity and also

the factor \pt [max| y (t) \ ] will be unity. Thus (11.3) holds for all y on C. Next

we note that

F[y] = piAy]

satisfies the hypotheses of Theorem la. (Boundedness, Wiener summability

and the fact that it vanishes outside a uniformly bounded domain are obvi-

ous. Continuity follows from the continuity of the individual factors in

(11.2).) Hence the conclusion (0.15) of Theorem la holds for £r,«[y], and by

monotone convergence (see (11.3)) it also holds for £/[y].

This yields

(11.4) f    pi[y]dwy = \D\f    Pz\* + f   K(-, s)x(s)ds~\exp(- <t>[x])dwx

which is equivalent to (0.8) of Theorem I with S=T~1I. By progressively

enlarging the scope of S we obtain (0.8) for every Wiener measurable subset

5 of C. The details of the proof of this and of the proof of the remaining por-

tion of Theorem I are entirely similar to those given in §5 of [4]; for this

reason we omit further details of the proof.
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12. Proof of Theorem II. We now consider the transformation Z, of (0.11),

and we resolve it into the product of two transformations

(12.1) T:   z(t) = x(t)+f   K(t, s)x(s)ds,
Jo

(12.2) 7":    y(t) = z(t) + x0(t).

The transformation T is one to which Theorem I applies, and V is one to

which Theorem II of [4] applies(7). Hence if 5 is any Wiener measurable

subset of C and if F[y] is any Wiener measurable functional defined for y

in T'TS, then by Theorem II of [4] we have

J.w
F[y]dwy

T'TS

(12.3)

= expf-  f   [xi (t)]2dt\ f  F[z + xo] exp ( - 2 f   x¿ (t)dz(t) Jdwz,

this equality holding whenever either member exists.

Next we apply the transformation T using the (measurable) functional

(12.4) G[z] = F[z + xo] exp (- 2 f   x¿(t)dz(t)\,

we find

expi -  f   [x0'(t)]2dt\ f  F[z+ x0] exp Í - 2 f   x¿(t)dz(t)\dwz

= \D\ exp(-  (   [x¿(t)]2dt\f   F\x+xo+f   K(-,s)x(s)ds\

(12.5) .expf-2f   x¿(t)dx(ty)

•expi-2 I    Zo'Mcd   I    K(t, s)x(s)ds   J exp (- $[x])dwx

= \d\J    F\x+Xo+)    K(-, s)x(s)ds   exp (- y[x])dwx.

C) In the translation theorems of [4] it was actually assumed that x¡ (/) exists every-

where on 0£igl and that xá (í) is of bounded variation on Oá/Sl. It is easily seen that the

two theorems of [4] still hold if it is assumed merely that Xn{t) is absolutely continuous on

Oá/gl and that Xo (i) is equivalent toa function w{t) which is of bounded variation on 0 í'ál.

It is this slightly modified form of Theorem II of [4] which applies to the transformation (12.2)

of the present paper.
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Combining (12.3) and (12.5) we obtain the conclusion (0.14) of Theorem

II.
By selecting F[y] to be the characteristic functional of the set LS we

obtain (0.13).
13. An example. In this section we use our transformation theorem, Theo-

rem I, to evaluate the characteristic function

(13.1) f    exp(ipf   [x(t)]2dtjdwx {—  oo   < n <  oo)

of the chance variable ft [x(t)]2dt. The characteristic function (13.1) is evalu-

ated (8) by a consideration of the special linear transformation

(13.2) T:   y(t) = x(t) + X f   tan \(s - l)-x(s)ds
Jo

for

(13.3) - tt/2 < X < r/2.

We shall first show that the transformation (13.2) satisfies the hypotheses

of Theorem I. Writing

(13.4) K}(t, s) = 0, E?(t s) = X tan X(s - 1) (0 £ t ¿ 1, 0 ¿ sí 1),

0 when 0 á K J, 0 < î S 1,

X tan \(s - 1) when   î < / < 1, 0 3¡ í á 1,(13.5) K(t,s) =

. 2-!X tan \(s - 1)

(13.6) J(s) = 2-'X tan \(s - 1),

we easily see that (0.6 A-D) are satisfied. Also

,    K(si, si)

p-i  P'.J o Jo

when   t = s, 0 ¡£ s ¿ 1,

0 ¿ s S 1,

£(íi, sp)

dsi dsM

(13.7)

£(jp, Sx) ■ • ■ K(sp, sp)

= E — { i   ^(*. ')às\ - exp Í   T   £(j, i)dij

( — I    X tan X(j — l)ds J = exp Í -— log sec \(s — 1)     J

(-log sec X ) = (cos X)1/2.

p-0   p\

expl

= exp

(8) The expression (13.1) can also be evaluated by a modification of the method of Paley

and Wiener [2] using the statistical independence of terms in the orthogonal development of

dx(t). For this method it seems preferable (or even necessary) to use as an orthogonal set the set

{21'2cos (n + l/2)7ri}, rather than the set {exp (Inirit)}.
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Thus D 9^0. Hence (0.6E) holds and Theorem I applies to the transforma-

tion (13.2). We apply the transformation formula (0.10) to the entire space C:

f   F[y]dwy = \£>\fc F[* + X/   *»*(*- 1)•«(*)*]

•exp (— $[a;])ájra;

with

(13.9) |D| = (cosX)1'2

and

*[*] =  f   x2 tan2 x(5 - l)-[x(s)]2ds + f  X tan \(s - l)d{ [x(s)]2}
Jo Jo

(13.10) = X2 f   tan2X(j - l)-[x(s)]2ds - X2 f   [x(s)]2 sec2\(s - l)ds
Jo Jo

= - X2 f   [x(s)]2ds.
Jo

Hence

f   F[y]dwy = (cosX)1'2   f   Fjz + xf   tan \(s - 1) • xis)ds1

•expíx2!     [#(j)]2¿j W¡c

and with P[y] =1 we obtain

(13.12) f    exp(X2 I     [x(s)]2ds)dwx =-
Jc \   Jo / (cosX)1'2

The relation (13.12) holds for all real X in —7r/2 <X <ir/2, since the trans-

formation (13.2) meets the requirements of our theorem for such values of X.

The right-hand member of equation (13.12) is single-valued and analytic in

the complex X-plane if this plane is slit along the real axis from (ir/2, «>)

and from ( —7r/2, — *>). (We consider the branch which is positive for X real

and in —7r/2<X<7r/2.) With this interpretation equation (13.12) holds for

all complex values of X for which the integral in (13.12) converges and repre-

sents an analytic function. Now the integral in (13.12) converges for all real

values of X in X2 <ir2/4. Also if X is complex we have

f      expíx2 f   [x(s)]2dsj \dwx =  f    exp i(Re X2) f   [x(s)]2ds\dwx,

(13.11)
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and hence the integral in (13.12) converges for ReX2<7r2/4. If we consider

the left member of (13.12) as a function of the complex variable X2 and

integrate around a contour lying in Re X2<ir2/4, we are able to interchange

the order of integration by the (mixed) Fubini theorem. Hence, by Morera's

theorem, the left member of (13.12) is analytic in ReX2<7r2/4, and hence

(13.12) holds for Re X2<ir2/4, with (cos X)1'2 having the determination which

is real and positive for X real and on the interval —w/2 <X<7r/2. (It may be

noted that the Wiener integral in (13.12) diverges for Re X2 ̂ ir2/4 and hence

(13.12) holds whenever the integral has a meaning.) Writing \2 = ip, where

p is real, we obtain the result (0.2) mentioned in the introduction.
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