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I. Methods and concepts

1. The mathematical analysis of the statics of shells(2). It is possible to

treat the equilibrium of a thin shell as a problem of three-dimensional elastic-

ity. The boundary conditions are usually difficult to satisfy and the solutions

are complicated, but there are cases of success, a notable one being given by

Lamé(s) for a shell of any thickness bounded by arbitrarily loaded or dis-

placed concentric spheres. When the shell is thin the variation of stress across

it is often not particularly interesting, and a simpler but more enlightening

description may be constructed in terms of the resultant forces and moments

per unit length across a normal section; the theory of this description, under

some special assumptions about the nature of the displacements produced,

is called the bending theory of thin shells. For portions of the shell far from

supports or points where one of the radii of normal curvature is small, the

moments and certain other terms are negligible in comparison with the re-

sultant stresses; the theory resulting when the former quantities are neglected

is called the membrane theory of thin shells. We shall but touch on the bending

theory to aid us in clarifying our notions; our concern in this paper is the

membrane theory of shells whose middle section is initially a surface of revolu-

tion.

The raison d'être of the membrane theory is its simplicity in contrast to

the bending theory, which, so far as I know, has not been forced to yield

practical results except for the sphere, the circular cylinder, and the cone(4).

In particular, the bending theory offers difficulties, as far as practical solutions

are concerned, even for simple surfaces, when the load or support is not axially

symmetric(6), although these difficulties have been overcome in some cases.

Even when the solution given by the membrane theory is not adequate, it is

customary to use it as a first approximation to which correcting terms from

the bending theory are added. Even though the membrane theory is much

simpler than the bending theory, except in cases of axial symmetry it has

rarely been treated with successC). The purpose of this paper is to supple-

ment Fliigge's excellent treatise, Statik und Dynamik der Schalen, in its treat-

(2) For a brief history of the investigations of shells, see Love (1927) pp. 5, 29. References

are to the list at the end of the paper.

(•) Lamé (1854).

(4) Flügge (1934), chaps. 6, 7; Timoshenko (1940), chap. 10; Geckeler (1929), pp 238-260;
Love (1927), pp. 565-613.

(6) Flügge (1934), p. 147.
(•) For a discussion of the treatment of unsymmetrical problems in the membrane theory

previous to this work, see §11, next to last paragraph.
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ment of the membrane theory of shells of revolution by giving an easy and

practical method of exact solution of all the equations concerned, and by using

this method of solution to discuss the limitations and capabilities of the mem-

brane theory in general.

2. The method of this paper. I have not attempted to replace any portion

of Fliigge's book in its entirety, and hence I have not repeated the results of

that work except when it seemed advisable to preserve the continuity of de-

velopment; with a few exceptions, mostly in Chapter II, this paper contains

new results (or new derivations) only(7). On the other hand, it is self-con-

tained; the reader will require a knowledge of the fundamental notions of

three-dimensional elasticity and of power series solutions of linear differen-

tial equations, but nothing of the theory of shells.

Since a shell is a three-dimensional body, and since the equations of three-

dimensional elasticity are well established, I think it preferable to derive the

equations of shell theory as consequences of the general equations of elasticity

rather than to follow the usual practice of deriving them from figures(8).

The two surfaces of revolution for which the equations can be solved by

quadratures without the use of Fourier series, namely the cone and the circu-

lar cylinder, are conveniently excluded from the general discussions of the

theory; a complete treatment of cylinders of all types has been given by

Fliigge(9), while in the next chapter I give a discussion of the cone, which

should serve to acquaint the reader with the characteristic advantages and

defects of the membrane theory without introducing the complications of

calculation which are the chief obstacle in the general theory which follows.

3. Revolution coordinates. We shall find it convenient to describe a thin

shell in terms of a reference surface, called the middle surface, on which there

are any convenient coordinates a1, a2. To obtain a three-dimensional coordi-

nate system we erect normals at each point of the middle surface and call

the distance measured outward along these normals x; then sufficiently near

to regular points of the middle surface a1, a2, x are suitable coordinates(10).

x =+5/2 and X——8/2, where 5 = ¿(a1, a2), are the equations of two other

surfaces equally distant from the middle surface. By a thin shell we mean

the region between x = +5/2 and #=—5/2, if, except perhaps at certain

singular points, | 8/R\ <K1, where R is the minimum radius of normal curva-

ture of the middle surface. 5 is called the thickness of the shell. A point where

one of the radii of normal curvature of the middle surfaces vanishes or be-

comes infinite will be called a singular point or singularity of the shell.

Throughout this work we shall be interested only in the case when the

(7) In particular, the sections on the membrane theory of shells of revolution in Flügge's

book to which I have nothing to add are pp. 25-37, pp. 58-66.

(8) For a note on the different derivations of the equations, see §8, footnote 27.

(») Flügge (1934), chap. 3.

(l0) Such systems are those called "normal" by Synge and Chien (1941), p. 109.
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middle surface is a surface of revolution. We shall always use meridians and

parallels as coordinate curves upon it(u), and the corresponding three-dimen-

sional coordinate system we call revolution coordinates. If we use the longitude

angle 6 as a parameter for the meridians, if <f> is the colatitude angle, r2 the

distance along the normal to the surface to the axis of revolution, r\ the radius

of curvature of the meridian on the middle surface, dm the element of arc

Fig. 1. Conical Coordinates. Fig. 2. Revolution Coordinates.

length on this meridian, then the element of arc length in revolution coordi-

nates is defined by the equation(12)

if\ + x\2
(1) ds2 = (-J dm2 + (r2 + x)2 sin> dd2 + dx2.

At a singularity of the shell, the element of arc length is undefined. If the

middle section is a cone, it is convenient to parametrize the parallels by the

distance y along the meridian from  the apex; formula  (1)  becomes,  if

a = ir/2— 4>,

(2) ds2 = dy2 + (y sin a + x cos a)2dd2 + dx2.

Such a coordinate system we call conical coordinates (see Fig. 1). If the middle

section is not a cone or cylinder, it is convenient to use <f> as a parameter for

the parallels, the element of arc length becoming then (see Fig. 2)

(3) ds2 = (r, + x)2d<t>2 + (r2 + x)2 sin2<t>de2 + dx2.

4. Stress resultants and moments. For three-dimensional bodies we are

(u) To parallel the succeeding treatment for shells whose middle surface is not a surface of

revolution one should use the lines of curvature as coordinate curves, as does E. Reissner (1941).

02) In succeeding sections we refer to this formula as (3.1), and so on.
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accustomed to describe the distribution of forces by means of the stresses r,/

(physical components) giving components of the force per unit area across a

surface. For thin shells one can obtain a simpler and more enlightening pic-

ture by introducing stress-resultants, quantities defined on coordinate curves

on the middle surface which when integrated along such a curve give the

same total pressure as do the stresses integrated over a normal section of the

shell cut along the curve. Thus, for example, the stress resultant N<¡, in the <f>

direction across a 0= const, curve is defined by the relation

n $ n S      n +5/2

Nffz sin <j> dd =  I r^- (r2 + x) sin <¡> dddx.

Hence, by differentiation,

«+»/»       /        x\
A7"* =  I rw[H-jdx.

J -i/2        \        r2 /

Resultant moments are similarly defined. In all, we have, in the conventional

notation, ten resujtants(13) :

f+W / XK Z.+5/2 / XK

N* =   I        rw I 1 -1-) dx, Ne =   I m I 1 -\-) dx,
J -5/2 \        fi ' J -5/2 \ rj

,.+5/2 / XK ,.+5/2 / j\

N& =   I t^(1 + — \dx, Ne* =   I r+(fl-|-) dx,
J -5/2 \ í"2 / •/ -5/2 \ f\ /

r+tl2 / XK ,.+5/2 , x\

(1)0*=- uAl + —)dx, Qe=-\ Tex(l + —)dx,

,.+5/2 / ^V ,.+5/2 / ^X

Af^ = —  I XT a ( 1 H-1 <fo, Me = —  | st« ( 1 H-) ¿s,
J-í/2 \        r%/ J _j/2 \        ri/

,.+5/2 / ^X ,.+5/2 / xk

M^e = —   I XT4,e ( 1 + — 1 dx,       Met — ~  I %TH ( 1 H-) dx.
J S/2 \ f2/ J-5/2 \ T\/

The moments M+ and Me tend to bend the meridians and parallels, respec-

tively, M^e and M$+ to twist them.

While these components are not symmetric, the symmetry of the stress

tensor implies the relation

Te 4,(,+í)-r-(,+í)--^Wi+í)]

+¿h-(1+£)];
(I3) These are the components of the "macroscopic force and bending tensors" of Synge and

Chien (1941). They were introduced by Love in 1888.
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integrating, we find that

Me¿       Mé>e
(2) Ne* - N*e =- •

r2 r-i

Body force (<f>x, <£*, <j>») (physical components) we may replace by an

equivalent force per unit area acting on the middle surface :

/+S/2       / x\ / x\
4>Jl + —)(l + —)dx,

-5/2        \        rxf \       r2/

/.+«/*     / x\  / x\
(3) Yb = 4>* (l + — )[l + —)dx,

J -5/2       \        fi/ \        r2/

.+5/2

Xb = <t>e{l + —)[l + —)dx,
J-5/2       \        fi/ \        rj/

while surface loads (Z,,, F„, X„) and (Z,-, F<, X<) in the —*, <j>, 6 directions

respectively on the outer and inner surfaces may be replaced by equivalent

surface forces acting on the middle section :

C4)   r--(i+¿)(i+¿)r--(i-¿)(,-¿)r*

Let (Z|, Yt, Xt) be the resultant force per unit area of the middle section due

to the load :

(5) Zt=Zb + Z„    Yt = Yh + Y„  X, = Xb + X..

Then the combined load on the shell may be represented by this equivalent

force density, provided we add a suitable moment density (Lv, Lz) :

,.+5/2 / x\  / x\
L„= - **,(l + —)(l + —)d*

J-5/2 \       n/ \       r2/

m   - IK1+B 0+¿)r-+(' - ¿) 0 - ¿) 4
(6)

L. - - afr(l + —)(l + —)á*
J-5/2 \ fi/  \ r2/

-|[(,+¿-)(,+¿)x-+(,-¿-)(i-¿)4
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All these definitions, which have been phrased for an element of arc length

(3.3) in revolution coordinates, can be transferred to conical coordinates with

element of arc length (3.2) if we replace r\ by =»,</> by y, and r2 by y tan a re-

spectively.

From the usual sort of equilibrium considerations it is easy to show that

the resultants transform according to the tensor law under orthogonal trans-

formations.

CW»

(N'4>+d-¿jjíde)rid*

[^•+¿«v.w.]*7^t     I    */„,+!»„)

{_AVo+-- (A>0)¿* ]¿9

r,¿0

Fig. 3a.

Stress resultants and load force density.

A visualization of the forces and moments acting on a small section dF

of the shell may be seen in Fig. 3.

II. Conical shells

5. The equations of the bending theory for conical shells. Let the three-

dimensional stresses and strains (physical components) be r„, ■ • • , (,„ • • • ,

the physical components of body force be <¡>x, • • • . Then the equilibrium equa-

tions of three-dimensional elasticity(14) written in conical coordinates with

element of arc length (3.2) are

à   . , drve
— [(y sin a + x cos oî)tvv\ — Tee sin a -\-
dy dd

(!) d  r i       ,
H-[(y sin a + x eos o)tvx] + (y sin ex + x eos ol)<¡>v = 0,

dx

(») Love (1927), p. 90; Trefftz (1928), p. 81; Sokolnikoff (1941), p. 179.
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d
[(y sin a + x cos ce)Tye] + Tye sin a +

by dd

d
(1) H-[(y sin a + x cos a)Txe\ + rl9 cos a + (y sin a + x cos a)0e = 0,

dx

d   r                                            !         â   r T
— [ (y sin a + * cos a)^!] -\-[(y sin a + x cos a)^,,]
d* dy

ÔTxe
-\-Tee cos a + (y sin a + a; cos a)<£x = 0.

dd

Mf4,r¡d<ti

I M*ro+— (M^ro)^ \de

^«iro+r- (Mtfr^dç Idd

Fig. 3b.

Moment resultants and load moment density.

To these equations we add Hooke's law connecting the stresses and strains(16)

(16) Love (1927), pp. 102-103;Trefftz (1928), pp. 61-62;Sokolnikoff (1941), p. 179.
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and the conditions of compatibility(16). We shall suppose there exist unique

functions rxx, • ■ ■ , exx, • • • satisfying all these equations, such that on

x=+5/2,

T xx   — ^O!
= YB Txe — X0,

and onï= —5/2,

T xX  — ¿it — Yi,       Trf - Xi,

while on some boundary (or boundaries) y = const., ryx, t„«, and ryy assume

prescribed values. If we integrate the equations (1) with respect to x from

— 5/2 to +5/2, using the definitions (4.1) and (4.5), we obtain three equi-

librium equations in terms of the resultants :

dNy       1 csc a dNey
- + — (Ny - Ne) +-+ F« = 0,

dy        y y        dy

(2)
ôNve

dy

1 csc a   dNe
-(Nye + Ney)+-—
y y        dd

cot a
Qe + Xt = 0,

d dQe
sin a — (yQy) -\-h Ne cos a + y sin aZt = 0.

dy dd

If we multiply the first and second of equations (1) by x and integrate from

— 5/2 to + 5/2, using (4.1) and (4.6), we obtain two more equilibrium conditions :

(3)

d dMev
— (yMv) - Me + csc a-yQy + yLy = 0,
dy dd

d dMe
— (yMye) — Mey + csc a-yQe + yLx = 0.
dy dd

The conditions satisfied on boundaries y = const, can be translated by the

definitions (4.1) into boundary conditions on the solutions of the systems (2)

and (3). While we now have five equilibrium equations in ten resultants and

moments instead of three equations in six stresses, the new system is much

easier to handle because the boundary conditions have been reduced by six;

In order to obtain a manageable description of the deformation, we agree

to treat only those problems which lead to displacements having the following

properties(17) :

(I)     | «„!««/*,   | €*!««/.«,   |«„|«8/Ä, R
dt,

dy
«1,

dexx

dd
«1,

(II) | txx/E | « | e„ + vA/(i -v)\,

(") Odqvist (1937).
(") These are essentially the assumptions of E. Reissner (1941).



1945] THE MEMBRANE THEORY OF SHELLS OF REVOLUTION 105

where R = y tan a, A is the cubical dilatation, E is Young's modulus, and v

is Poisson's ratio. Assumption (I) states that a line initially normal to the mid-

section is deformed into a line essentially normal to the deformed mid-section,

and that the thickness 5 is great enough that if A5 is the change in 5 due to

the deformation, then | A5| <$C52/i?. Assumption (II) does not state that rxx

is negligible in the equilibrium considerations, but that the contribution of

the dimensionless ratio txx/E to the deformation is negligible. As a conse-

quence, from Hooke's law we see that, approximately,

(4) «. - - rA/(l - v);

this equation implies, by Assumption (I), that |A| <$C5/¿?, that is, the cubical

dilatation is much smaller than the relative thickness, and that, since p«l/3

for most structural materials, exxœ(«„,, + e««)/2, or that the normal deforma-

tion is the negative of the mean tangential deformation, and that, in particu-

lar, deformations in which the shell is compressed or extended both in area

and thickness are excluded. These assumptions are such as to exclude very

thin or very thick shells, and to make the displacements of points on the

middle surface a sufficiently accurate indication of the distribution of dis-

placements throughout the shell, as we shall see shortly.

By using (4) we may simplify the remaining equations of Hooke's law,

three of which become :

r„ = (J2/(l - V2))(eyy + veee),    Tee = (£/(l - v2))(<ee + **„),

rve = Eeye/(l + v).

We shall not need to use the last two equations of Hooke's law, so I do not

write them here.

Let the displacements of a point in the 6, y, x directions be denoted by

u, v, w respectively. Then the expressions giving the strains in terms of the

displacements become(18)

du
-\- v sin a + w cos a

dv dd dw
€yy = —!       e$e = ■-;-> *xx =->

3y y sin a + x cos a dx

dv _ du
(6) -h (y sin a + x cos a)-M sin a

dd dy
tye =-

2(y sin a + x cos a)

(dw       dv\   /
-+ — )/2,   erf =
dy      dx//

du dw
(y sin a + x cos a)-u cos a H-

dx dd

dy       dx)/ 2(y sin a + x cos a)

(18) Love (1927), p. 54; Trefftz (1928), p. 78; Sokolnikoff (1941), pp. 177-178.
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Let us now express the displacement (u, v, w) of a point (9, y, X) in terms

of X, the displacement (U, V, W) of its projection (0, y, 0) on the middle

surface, and the strains, using the equations (6). For example,

rx du
— dx,

Jo     dx
u= U +

Jo     dx

dw
U cos a-

,x ddcx dd rx
= U - -d(X - x) + 2        ixSdx

Jo     y sin a + x cos a J 0y sin a -\- x cos a

£/ cos a-

= U + X-
y sin a

rx        x-x       r 5eXIn /•*
—   I      -\2exeCosa- \dx + 2 I     e^ds.

J o     y sin a + x cos a L do J J 0

Rearranging this result, and carrying out a similar computation for v and w,

we obtain the formulas

[cot a             CSC a   3ÍF"]
-U-

y                  y      dd Ay

dexx
2(ysina — xcosa)exe + (X — #)-

Cx dd
+        -;-:--dx,

Jo y sin a + * cos a
7)

dW      rxY 9««»
v=V - X-h \(X - x)-■ + 2exv   dx,

dy       J0   L ôy J

w = W +  I     eI¡c¿a;.
^ o

Replacing X by #, and retaining only terms of up to and including the sec-

ond order in x, we find that under Assumptions (I) and (II) the relations

(7) become simply

x (                            dW\
— I U cot a — CSC a-),
y \ dd J

u= U +
y

(8) dW
v = V — x-)

dy

w = W.

We can now put these expressions into the formulas (6) for the strains, put
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the resulting equations into Hooke's law (5), and evaluate the integrals (4.1)

for the resultants and moments. We are justified in retaining terms in x2

in the integrands; hence the resulting expressions are correct up to and in-

cluding terms in 54, since any terms in x3 would vanish in the integration.

We obtain the following formulas expressing the resultants and moments in

terms of the displacements U, V, W of the middle surface :

fdV       vcsca/dU \1
NV = D\- H-(-+ Fsin« + Wcosa)

v idy y     \dd /J

K d2W
-cot a-j

y dy2

rcsca /dU \ dV~\
Ne = D\-(-1- V sin a + W cos a ) + v-

L    y     \dd / dyj

iTcotaf d*W .     dWl
-\-V cos a + W cot a cos a + csc a-\- y sin a-   ,

y'sina L dd2 dy J

D(l-v)rdV dU 1
N„e =-)- y sin a-U sin a

2y sin a L dd dy J

(9)

2y sin a L dd dy

tf(l - f) cot a r dU                              d2W      dWl
-\-y cos a-U cos a — y-1-,

2y3 sin a      |_ dy                              dddy       dd J

D(l-v)rdV dU                   1
Ne„ = -—;-   —- + y sin a-U sin a

2y sin a L dd dy                     J

K(l - f)cotar BV          d2W      dWl
-|-cot a-F- y-,

2y3 sin a      L do           dddy       dd J

rd2W       cota   dV
My = K\-

L dy2 y       dy

v  /dW      csc2 a  d2W       cot a csc a   dU\l

y\dy y       dd2 y dd Jj

r 1 / d2W dW\ â2Wl
Me = K  —   F cot a + W cot2 a + csc2 a-\- y-) + v-  ,

Ly2\ dd2 dy / dy2 J

K(l-v)f âU d2W      dWl
Mve = -   U cos a — y cos a-h y-,

y2 sin a L dy dddy       dd Jy2 sin a L dy dddy

K(\-v)r      dv du
Mey =-   cot a-y cos a-

2y2 sin a L dö dy

d2JF dW
-2 —
dddy dd

r-i
+ £/ cos a + 2y -^f- - 2 ̂ -  ,
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where

(10) D = £5/(1 - v2),      K = £5'/(12(l - v2)).

D and K are called the flexural rigidity and the bending rigidity respectively.

E, and hence also D and K, has been assumed independent of x, but not

necessarily of y and 6. Similar expressions could be written down for Qe and Qy,

but we shall not need them. Of course, these formulas satisfy identically the

relation (4.2), which in conical coordinates has the form

cot a
(11) Ney - Nye =-M,v.

y

Equations (2), (3), and (9) form a system of thirteen equations in thirteen

unknowns, which can easily be reduced by elimination to a system of three

equations in U, V, W alone. These are the equations of the bending theory.

If the three-dimensional solution of a problem in question produces a state

of strain satisfying Assumptions (I) and (II), there will exist a solution of

these equations, and this solution will be as correct as the corresponding three-

dimensional solution, provided we are justified in neglecting powers of

5/(y tan a) higher than the fourth. In this form the bending theory pre-

sents a rather complicated but completely correct picture of the behavior

of a thin conical shell under small deformations with small strains satisfying

Assumptions (I) and (II). If such a deformation is produced by given loads in

a given shell, the bending theory equations will be correct. An estimate of the

validity of the assumptions can be obtained by computing the values of the

strains at the middle section by substituting the solutions U, V, W in (6)

and putting x equal to zero; if these values of the strains do not satisfy As-

sumptions (I) and (II), we know the bending theory is inadequate to treat the

problem in question. If these values of the strains do satisfy Assumptions (I)

and (II) at the middle surface, we are reasonably sure the bending theory is

adequate; if we were certain the strains did not vary much with x, we should

be certain the bending theory was correct for the problem in question.

We have two boundaries y = const, (one may be the apex, the other at

infinity) at which three stress components, and hence five resultants and

moments, may be prescribed. These ten quantities are subject to the six con-

ditions of equilibrium of the entire body under all its loads. Hence we may

prescribe four independent boundary conditions on the moments and re-

sultants.

The formal difficulties of the bending theory are considerable unless fur-

ther simplifying assumptions are made. Under conditions of complete sym-

metry with respect to 6, when the shear resultants and moments vanish, the

equations may be solved in terms of Bessel functions if 5 is a constant(19),

(») Flügge (1934), pp. 160-165; Timoshenko (1940), pp. 475-479.
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or with simpler functions if 5 =ky. Our concern with these equations, however,

is only to clarify the nature of the membrane theory.

Before leaving the bending theory we should notice that the effect of the

singularity at x = 0, y = 0 is that the resultants and moments should not be

expected to have much meaning in its vicinity, since the integrals defining

them are unaffected by the stress distribution in the portion of the region

where x>0 and y <0 which lies in the cone (the shaded region in Fig. 4). The

bending theory is not necessarily incorrect in this vicinity, but it does not

furnish a satisfactory description of events. For an accurate picture we should

Fig. 4.

resort to the three-dimensional theory. Usually, however, the apex is not a

point of interest. Since 8 is undefined at the apex, so are Tee, rey, and r«,, so

the equilibrium equations (1) cannot be expected to have a meaning there,

and hence neither can the equations of the bending theory; we shall content

ourselves for the present with the artificial requirement that all resultants

and moments remain finite at the apex, the boundary condition customarily

imposed. Further discussion of singularities we defer until §§9, 15.

6. The equations of the membrane theory, and their integrals. Since we

are supposing that, except near y = 0, 5/(y tan a)<Kl, it follows that

K/(y2 tan2 «)«£>, and the terms in (5.9) of which K is a coefficient may

be neglected unless they are much larger than the terms of which D is a

coefficient. Under the assumptions of the classical theory of elasticity, that

displacements and their derivatives are small, these terms will then be neg-

ligible except (i) near the apex, y = 0, or (ii) when they are prescribed quanti-

ties at certain boundaries. When these quantities are negligible the shell is

said to admit a state of membrane stress, and the equations of the bending

theory are much simplified. All moments vanish, and Nye — Ney. Equations

(5.3) give us the values of Qy and Qe at once:
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(1) Qv = Lv,        Qe = Lx.

If we define quantities Z, Y, X:

csc a  dLx       1   d

y       do        y   dy

(2) F ^ F«,

cot a
X — A| — -Lx,

y

the remaining equilibrium equations (5.2) become simply

dNy       1 csc a  dNeu
—- + - (Ny - Ne) +--ï + F = 0,

dy y y        dd

(3) dA7"«,,       2 csc a   dA^o
—+ -iV„ +-+x = 0,

dy        y y        dd

Ne = — y tan o¡ Z.

For most cases of interest, the load moments are negligible, and (Z, F, X)

represents the equivalent force density of load on the middle section. The

relations (5.9) which do not vanish may be rearranged into the form

dF        1

dU y sin a
(4) -h F sin a + W cos a = --(Ne - vNv),

dd E8

dV dU 2y(l + v)
csc a-1- y-U = -N6y.

dd dy ES

The equations (3) and (4) are the equations of the membrane theory of

cones; like those of the bending theory, they form a determined system, from

which by elimination we could derive three equations in the three unknowns

U, V, W alone.
When we have solved the equations of the membrane theory for a par-

ticular boundary problem, we can always tell whether the problem in question

admits a membrane state of stress by substituting the displacements U, V, W

in the equations of the bending theory (5.9); if all the terms following K are

of the same magnitude as those following D, then we know that our solution

of the membrane theory equations is a solution of the bending theory equa-

tions correct up to and including terms of the second order in 5/(y tan a).

Thus except near the apex of a cone whose behavior is described by the bend-

ing theory, there is always a membrane state of stress unless the boundary
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conditions forbid it. It is possible, of course, that even near the apex there

may be a membrane state of stress.

In the usual treatment of the theory Hooke's law is written in the form

1 1 i + v
(5) «»» = —- (Ny — vNe),        «es =-(Ne — vNy),      eey = ——- Nev.

Eh Eh Eh

If tyy, ees, eey are regarded as approximations to the three-dimensional strains,

the expressions (5) are incorrect; they contradict our earlier formulation of

Hooke's law (5.5), and furthermore such strains cannot satisfy the conditions

of compatibility, even approximately(20). The equations (5) give the correct

values of the three-dimensional strains at the middle section, but it is incor-

rect to neglect their variation across the thickness of the shell. The conditions

of compatibility may in fact be used, with the aid of equations (5), to compute

the correct values of the derivatives of the strains with respect to x evaluated

at the middle section. The preceding treatment shows that in the theory of

shells it is quite unnecessary to introduce two-dimensional strains at all(21).

The two systems (3) and (4) are separate, so that (3) may be solved

alone. As a consequence we see that if the load (X, Y, Z) is independent of

the thickness of the shell, so are the membrane stresses, and in any case the

membrane stresses are not affected by the material of the shell. By consider-

ing different types of shells of varying thickness but the same middle section,

one may get quite different displacement distributions corresponding to the

same state of membrane stress.

The integrals of the membrane equations (3) and (4) may be written down

at once(22) :

Ne = — y tan a Z,

Ney _ _ J_J¿W + j (x _ sec a fi) ,«,],

1 r C Í csc a  dNty        \       1
ir.--7|;JW+J(zt«« + —-— + Y)ydy\

(6) c ay
F = C(0)+      (Ny-vN,)-£,

J Mo

r r/2y(l + v) dV\dy-\

y tan a dU
W =-(Ne — vNy) — sec a-V tan a.

Eh dd

(2°) Truesdell (1943), pp. 51-54.
(21) For a correct "Hooke's law" for stress and moment resultants, see (8.10).

(22) The first three of these results were apparently first given in series form by Dischinger

(1928); see Flügge (1934), pp. 45-46.
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In these results E and 5 may depend on y and 6. The arbitrary functions

A and B represent two boundary conditions on the stresses out of the original

four of the bending theory; the other two have been absorbed by the vanish-

ing of the moments. The arbitrary functions C and D represent a rigid

translation along the axis and a rigid rotation about the axis respectively,

and may be chosen in any convenient way.

7. Examples. While we have seen that a membrane state of stress is not

likely to exist near the apex of a closed cone, solutions for closed cones are of

interest far from the apex. Let us suppose X = 0(y~1), Y=0(y~1), Z = 0(y~l)

as y—»0; then a necessary and sufficient condition for the resultants given by

(6.6) to remain finite at the apex is that A (9) = 0 and B (9) — 0. In other words,

for a given load distribution there can exist at most one boundary problem for

a closed cone admitting a membrane state of stress near the apex. For ex-

ample, suppose the cone is subject to its own weight:

(1) X = 0,        F = p cos a,       Z = p sin a,

p being the surface density of the shell (note that although we do not need to

specify whether the thickness 5 is a constant or not in order to obtain the

following equations (2), they represent the effect of the shell's own weight

only in the case of constant thickness, since we have assumed p is constant in

order to obtain them) ; then the only boundary problem which might be satis-

fied by membrane stresses near the apex is that for which

(2) Ne = — py sin a tan a,       Ney = 0,        Ny = — py sec a/2.

Since this state of stress is independent of 9 and since the total force

across the boundary y=yo is directed axially and is of magnitude

[— (pyo/2) sec a] [cos a] [2iry0 sin a], equal to the weight of the shell above

y=yo, this solution is for the problem of a cone uniformly supported. From

(6.6) we may compute the displacements, when 5 is constant:

V = p(l2 - y2) sec a/(ÍES),

(3) V - 0,

W = p [(1 + 2k)y2 - Z2]sec a tan a/(4£5),

where we have evaluated the constants of integration by prescribing that

U = 0, V = 0 at the lower edge y =/.

Although the results (2) and (3) are solutions of the membrane equations

which remain finite at the apex, nevertheless a membrane state of stress does

not exist near the apex, for if we put these displacements back into (5.9) we

find that although Mye = 0, Mty = 0, Ney = 0, Nye = 0, Mv^0, and M,^0,
nevertheless Ne and Ny become infinite as y—>0. Then while the stress result-

ants (2) describe a membrane state of stress far from the apex, near the apex

they are not justified at all, and are in fact meaningless. A closed cone stand-
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ing under its own weight does not admit a membrane state of stress near the

apex, even though a solution of the membrane equations yielding formulas

which remain finite at the apex exists for this problem.

A membrane state of stress may be inadmissible by the nature of the sup-

port at y = /. For example, there is no solution of the membrane theory equa-

tions finite at the apex and satisfying the condition Ne = 0 at y=l, when the

load is given by (1); we must resort to the bending theory in this case(23).

We may now ask, is it ever possible for a closed cone to admit a state of

membrane stress near the apex? Since a necessary condition for finiteness at

the apex is that .¡4(0) =0 and 5(0) =0, there must be axial symmetry; for

simplicity let us suppose all quantities expansible in power series in y near

the apex, and let us suppose 5 = 0(1). Then the conditions that the terms fol-

lowing K in the expressions (5.9) remain finite at y = 0 may be shown to be

V = Vo + h        W = - Vo tan a + <t>,

where Vo is a constant and <j> and \p are arbitrary power series starting with y3.

Putting these results into the first parts of the expressions (5.9) for Ne and Nv,

we see that these resultants may be arbitrary series starting with y2, and hence

by the equilibrium conditions (6.3) the loads Fand Z may be arbitrary series

starting in y. For example, suppose

(4) X = 0,        Y = py cos a,       Z = py sin a;

this load represents the weight of a uniform cone with varying density, or of

a tapered cone of uniform density. The corresponding resultants and displace-

ments are quickly found :

(5) Ne = — py2 sin a cos a,       Ny = (— py2/3) sec a,

p(l3 - y3)
V =-(sec a/3 — v sin a tan a),

3Eh

p tan a r
(6) W =- [y3([l/3 + p] sec a/3 - [l + v/3] sin a tan a)

Eh

I3 .
-(sec a/3 — v sin a tan a) J.

These displacements are for a uniform and homogeneous cone, 5 and E both

being constant; the solution (5), (6) is a correct first order approximation to

a solution of the bending theory equations when 5/(y tan a) is small, valid

even near the apex, and hence represents a membrane state of stress. For a

tapered cone, say S = ky, the stresses (5) are still correct, but the displace-

ments become, if E is constant,

(23) For this example worked out in detail, see Flügge (1934), p. 165.
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p(l2 - y2)
— (sec a/3 — v sin a tan a),

(7) W~ [y2([v + 1/2] sec a/3 - [l + v/2] sin a tan a)

2kE

p tan a

kE

l2
-(sec a/3 — v sin a tan a) J.

The displacements (7), however, correspond to a membrane state of stress

only far from the apex, so that the resultants (5) are now not correct in a re-

gion near the apex.

(a)

(b)
(c)

Stresses

Equations

Equations

Equations

(2)
(5)
(5)

Displacements

Equations (3)

Equations (6)

Equations    (7)

Stresses are read normal to the meridian. The broken line represents the deformed meridian,

the displacements being greatly exaggerated.

Fig. 5.

The preceding three examples (see Fig. 5) are good instances of the flexi-

bility of the membrane theory; for the load (1), a membrane state of stress

can exist only far from the apex, while for the load (4), the same stress dis-

tribution (5) represents everywhere a membrane state of stress with displace-

ments (6) if the thickness of the cone is constant, but is correct only far from

the apex with displacements (7) if the cone is tapered. They indicate also the

care with which the membrane theory should be handled.

Another problem of possible interest is that of a closed cone subject to

wind pressure. Various authors have been accustomed to approximate wind

pressure by a load of type:

(8) X = 0,        F = 0,       Z = F cos a cos 0,

supposing F to be the surface force of the wind on a flat normal surface and

the wind to be coming from the direction 0 = 0, and experimental studies show

that while such a load is not sufficient to fit wind pressure curves, it represents

an important component (see (14.3)). The only stress distribution (6.6) finite

at the apex is



1945] THE MEMBRANE THEORY OF SHELLS OF REVOLUTION 115

Ne = — F y sin a cos 0,      Nye = (— Fy/3) sin 0,

Ny = (Fy/2) cos 0(csc a/3 - sin a).

It is interesting to notice that the shear is independent of the vertex angle a,

while for a = 35°16' the resultant Nv vanishes everywhere. If we preclude a

rigid body motion by prescribing £/=0, F=0 for y—I, we obtain from (6.6)

the displacements for a uniform cone:

F(y2 - I2) cos 0
F = ■-   csc a/3 — (1 — 2v) sin a],

4£5

,,«N u -—ÎË-1-2^ + *)^ - y2)/3 + <y -/)2(csc2 «/3 - ! +2")/4].
(10) jEo

F cos 0 sec a r
IF =-;-   - y2(9 sin2 a + 6 + 12k + csc2 a)

12£5

+ 2y/(l + 10k + csc2 a) + 3l2 cot a(csc2 a/3 - (1 - 2k))].

A membrane state of stress exists only far from the apex.

Since little can be done in the membrane theory with a closed cone whose

stresses are free of singularity, we shall now consider some examples when the

stress is allowed to become infinite with y_1 at the apex y = 0. Such a singular-

ity often occurs when the region of application of a load is diminished indefi-

nitely ; in this case the solution is said to represent a point load, and sufficiently

far from the singularity it may be considered to approximate the stress and

displacement patterns due to a load applied in a very small region near the

point where the singularity occurs. First let us consider the effect of a load P

in the direction of the axis. For such a load the total force across any section

of the cone, say y=yo, should be axially directed and of magnitude P. From

(6.6), since the cone is free of surface and body forces except at the apex, we

obtain the stress resultants

(11) Ny= - P csc 2a/(iry),       Ne = 0,       Ny» = 0.

We may check these results by comparing them with the solution of the three-

dimensional equations of elasticity given by Neuber(24) for an infinite tapered

cone bearing an axial point load P at the apex. In spherical coordinates

(r, <j>, 9) this solution is

t„ = — [A - 2(2 + v)B cos <t> + C],

(12)
1   r COS é

— \ - A-h (1 - 2v)B cos 4> + C cot2 <f>  ,
r2 L 1 + cos <j} J

(*) Neuber (1934), pp. 207-208.
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Tee = —   —A-h (1 - 2v)B cos <j> — C csc2 <f> \,
r2 L 1 + eos <¡> J

sin 4> r 1 "l
(12)        Tr4, =-   - A-h (1 - 2v)B + C cos <t> csc2 <*>   ,

r2   L 1 + cos <t> J

where

Tri = 0, T0» =  0,

1 + cos ß cos y
A =-C,

(1 — cos j3)(l — cos 7)

(13) B= -

C = -

C

(1 - 2k) (1 - cos /3)(1 - cos 7)

P(l - 2k)(1 - cos ß)(l - cos 7)
-■->
27r(cos ß — cos 7) (cos2 ß + cos2 7 + 2k cos. ß cos 7)

the cone being bounded by <f> =7 and <f> —ß, y>ß. If in these results we make

the substitutions <¿>«a, /3»a, 7««, r(y —j3)«5, rrr = iVv/5, T6e'=Ne/h,

Ter = Ney/h, we find that r^««0, Tr0«O, and we obtain the equations (11) for

Ny, Ne, and Nev. In this case then the solutions of the membrane equations

give a correct first approximation to the solutions of the complete equations

of the infinitesimal theory of elasticity when the cone is thin. The displace-

ments corresponding to (11) for a cone of uniform thickness are

F = - [P/(2irEh)] sec a csc a log (y/l),

(14) U - 0,

W = [P sec2 a/(2x£8)][i» + log (y/l)],

where again we have prescribed that Z7 = 0, F = 0 when y=l.

Another case of interest is that of pure torsion. The boundary conditions

are that at y=/, ^„ = 0 and Ney= [M/(2irl2)] csc2 a, there being an axial'

moment M applied at the vertex. We obtain a state of pure shear :

Ne = 0,        Ny - 0,        Nt, = M csc2 a/(27ry2),

(15) M(l + k) csc2 a I2 - y2V   ;            F = 0,        IF = 0,         U=-—-■-,

2irEh y

where the displacements are for a cone of uniform section.

Suppose now we have a uniform conical roof of surface density p supported

by a pillar at the apex (or held down by a guy wire at the apex) and supported

at its base by several symmetrically placed equal pillars (Fig. 6). It is reason-

able to suppose the structure so set up that conditions are the same at each

pillar, and uniform across each, in other words, that at y = l
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CO between the supports,
(16) Ny  =    <

\P (constant) at the supports.

The most convenient way to find such a solution is to superpose upon the

Fig. 6.

solution (2) a second solution for a load X = 0, F=0, Z = 0, which satisfies at

y =/ the boundary condition

((pl/2) sec a between the supports
(17) Ny=     <

IP' (constant) at the supports

We notice that, except at the discontinuities of /, f'(9) =0. The solution con-

tained in (6.6) satisfying the boundary condition (17) is

Ne = 0,        Nev = 0,        Ny = lf(d)/y,

(18) V=[f(6)/(Eh)] log (y/l),        i/ = 0,

W= - [f(d)/(Eh)][v + log (y/Q] tan a,

where i/ = 0 and F=0 at y = l, and 5 is assumed constant. P' should be de-

termined from consideration of the equilibrium of the whole structure. If we

suppose the central column bears a load H, that the peripheral columns are n

in number and each of angular width 2e, then

(19) P' = (pl/2) sec a - (pirl2 sin a - H)/(2tnl sin a cos a).

Fig. 7 shows graphs of the stress and displacement distribution for equations

(2), (3), and (18) superposed, when H— —T,Tbeing a tension equal to twice

the weight pirl2 sin a of the cone, when «=4, e = x/32, a=ir/3. The lines

drawn from the edges of the supports up to the vertex are lines of discontinu-

ity of both stresses and displacements.

= f(d), say.
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When H = 0, the column or guy wire may be removed and we may no

longer speak of a point load, but the singularity at the apex does not disap-

pear. Sufficiently far from the apex, the resulting solution will be the correct

one for the cone with a free apex (see §16) ; the singularity in the membrane

stresses does not necessarily indicate a singularity in the three-dimensional

solution of the same problem, since when the stresses are 0(1) at y = 0 the

resultant Ny may become infinite with y-1, as can be seen from (4.1). The

general character of the solution is as in Fig. 7, but the stresses and displace-

ments are not so great.

t
Deformed middle

section (exaggerated)

+0-

[between supports'

at supports r

N,
between

supports

Nt at supports

Stresses read horizontally.

Fig. 7.

In this chapter we have seen from the example of the cone that the mem-

brane theory produces ready solutions to fit a large variety of physical situa-

tions, but that while sometimes these solutions are correct approximations,

sometimes they are not, depending on the region in which they are considered

and the type of boundary solutions they are made to satisfy. We shall find

results of the same character in the general theory of shells of revolution,

which we now proceed to investigate.

III. The differential equations of the membrane

THEORY FOR AN ARBITRARY SHELL OF REVOLUTION

8. The differential equations of the bending theory. Using the expression

(3.3) for the element of arc length, we can set up the equations of the three-

dimensional theory of elasticity in revolution coordinates. To put them in a

convenient form we need to notice that

(1) — [(ri + x) sin </»] = (ri + x) cos <t>.
d<j>

To prove this relation, suppose that the Cartesian equation of the middle

surface meridian in some axial plane is r=f(z), where the z-axis is the axis of

revolution. Then we have the geometrical formulas

d       ese2 ó  d
(2)     /' = - cot <j>,     — =-»
W     J d<¡>        /"     dz

r2 = / csc <p, ri= —
csc' <j>
->
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from which (1) follows if we carry out the differentiation on the left. The

equilibrium equations of three-dimensional elasticity (M) can now be put in

the form

d. . dTj$
— [(r2 + x) sin <t> t^\- (ri + x) cos <f> Tee + (fi + x)-
d<¡> do

sin <j>    d
■\-;-[(ri + x)2(r2 + *)?>«] + (r¡ + x)(r2 + x)4>^ sin <*> = 0,

ri + x dx

dree        d   . n
(ri + a;)-1- — [(r2 + x) sin <> r»#J + (rt + ä) cos tf> t(0

d0        d<£

sin ó    d   .
(3) +-[(n + a;)(r2 + a;)2^] + fa + *)(r2 + x)4>e sin « = 0,

r2-\- x dx

d
— Ifa + a;) fa + x)txx\ — fa + x)t^ — fa + a;)TM
dx

drfli d §
+ fa + x) csc <£-h csc # — Ifa + a;) sin <£ t^x\

dd d<t>

+ fa + x)(r2 + *)<*>* = 0,

while the expressions(26) giving the strains in terms of the displacements be-

come

1     rd»
«** =       —

r\ + X\_d<p J

ees
csc 4> fdu

=-\- v cos <£ +' w sin <f> \,
r2+*Ld0 J

dw
€xx  =

da;

csc ó dv
-   fa + a;) —

2(n+*)(r,+ *)L d0
d«!

+ fa + *) sin 4> — ,
déJ

(4) €6« = —-;—~~7—:   (ri + *) 77 — w(ri + *) cos *

1        r du dw "I

6,1 =   0/      .i.     J   (^ +  *)  — - M + CSC * —    -2fa + x) |_ da; d0 J

1        P dv dw~\
_|_fa+*)_-, + — j,

2(f|

(*) Love (1927), p. 90; Trefftz (1928), p. 81; Sokolnikoff (1941), p. 179.
(») Love (1927), p. 54; Trefftz (1928), p. 78; Sokolnikoff (1941), pp. 177-178.
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where u, v, w are the displacements in the directions of 0, <f>, x respectively.

We shall now derive the equations of the bending theory as we did for conical

shells in §5. We shall not repeat the general discussion made at that time, for

all our observations, with a few obvious changes, are effective here as well.

If we integrate equations (3), prescribing on a; =+5/2 and x= —5/2 the

boundary valuestxx= —Z0, t$x= Y0, Tex = X0 and txx— —Zi, t$x= Yi, Tex = Xi

respectively, and introducing the quantities defined by equations (4.1) and

(4.5), we obtain the equilibrium equations

d   . . dNe*
— fa sin <t> A7*J — ri cos <j> Ne + fi-r2 sin <f>Ç* + Yt r-¡r2 sin 4> = 0,
d<f> dd

dNe       d
r\-1-fa sin <t> N^e] + r\ cos 4> Ne* — r^ sin <t>Qe + Xtrir2 sin <t> = 0,

(5) d0        d<f>

d    r ,
sin <j> fa N<¡, + n Ne) -\-fa sin <f>Q^,J + r\Qe + Z<rxr2 sin <j> = 0.

d<f>

If we multiply equations (3) by x and then integrate, using also the definitions

(5.6) we obtain two more equilibrium equations :

d 1 dMe$
— fa sin<j>M^\ — r\ cos <j> Me + r\-rir2.sin <t> (Q+ — Ly) = 0,
do d0

(6)
BMt       d

ri-1-fa sin <f> Mtfl + n cos <j> Me* — rir2 sin <j>(Qe — Lx) = 0.
d0        dtf>

Again we suppose that the deformation will satisfy Assumptions (I) and (II) of

§5, expressed, of course, in revolution coordinates, and we deduce simplified

Hooke's law equations similar to (5.5). The expressions for the displacements

u, v, w of the point (<f>, 9, x) in terms of the strains and of the displacements

U, V, W oí its projection (<f>, 9, 0) on the middle surface are easily shown to be

x / dW\        C •   *- £ /3e„ \
u = U-\-[U - csc<f>-)+        -1-csc 4> - 2t6x ) d{

r2\ dd )     J o    r2 + £ \ d0 /

+ 2 f   «¿S,
J o

(7)
x( dW\       Ç*   x-$/dexx \ /•*

„ = 7 + — (F_        )+        -(-2fM)« + 2l    €^£,
n\        d</> /    Jo   fi + i\^ / Jo

w = jF + r e„#,
J o

which become, under Assumptions (I) and (II), simply
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dW
-csc « — U
dd

u = U — x-
r2

(8) dW
-F
d<t>

V - x

w = W,

when terms of at most the second order in x are retained. If we put these

results into the expressions (4) for the strains, and with the aid of Hooke's

law compute the integrals (4.1), we obtain a set of formulas, correct if we re-

tain terms of at most fourth order in 5/i?, giving the resultants and moments

in terms of U, V, W, fj, r2, and their derivatives; these expressions can be

made symmetrical if we introduce the following abbreviations :

■E« — «<f>* | i-o,        Ee — tee \ *—o>        Ee<¡, — (j$ | x—o,        E^e — **91 x—o,

csc<l> r 1 (d2W dU\      cos* /âW \-\
Ke =-   —(-—csc«--) +-(-F)   ,

H    lr2 \ d02 dd J n    \ dd, / J

„_±.»r±(!£_ril.
n d«Lri \B4> /J

csc« /dV \
(9)        ©o* = Ee4.-(-U cos « I,

2ri    \ dd /

1    3U
(S^8 = E$e-,

2r\   dd,

*6<t>

csc« T 1 /d2W      dF\       cos« /dW \-|

r2    Lri \d0d«       d0/ r2    \ d0 /_]'

K^e = k$/2.

We may notice that since Ee<¡,=E^e, it follows that Sí+ + @#« = jEí0. With the

aid of the abbreviations (9), the expressions for the resultants and moments

become

N* = D[E* + vEe] + K(-)!—£* + «J,
Vi      r2 / Lri J

(10) tf, = 7J[£9 + vE*] + k(-) |~— £* + «j,

A> = D(l - k)£^ + K(l -v)(-j I— ®e* + m].
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(10)

Ne* - D(í - v)Ee* + K(l -")(—- —) \jT S*» + *'*]'

M* = K L* + vue + (-j £ J,

M, = îL + kk0 + (-J£j,

M«0 =  K(l  — I»)     K(+ + Ktf + Í-J @9*    ,

Af*j = K(l — v)   K& + <c«* + (-J @«»   ,

where the moduli D and JT are defined by (5.10). Equations (10) may be

considered as a macroscopic Hooke's law, but we shall prefer to regard them

merely as expressions giving the stress and moment resultants in terms of

U, V, W and their derivatives. We could write down similar expressions for

Qt and Qe, but we shall not need them.

The equations (5), (6), and (10) are the equations of the bending the-

ory (27). A straightforward but prohibitive way to solve them would be to

eliminate Q¿ and Qe from (5) by using (6), then to substitute the expressions

(10) into the results, obtaining three partial differential equations in U, V, W

alone.

If the middle surface is a sphere, the formulas (10) are greatly simplified,

and the shear resultants and moments become symmetrical. Practical solu-

tions have been obtained for spheres even under unsymmetrical conditions

by Schwerin(28). If loads and boundary conditions are independent of 9, then,

whatever the form of the shell, the shear resultants and moments vanish,

and a much simpler theory results, especially when, as is customary, in the

equations (10) the terms following K in the expressions for N* and Ne and

the terms involving E$ and Ee in the expressions for M+ and Me are neglected;

this simplified theory yields ready results for spheres and cones of constant

(") The preceding derivation, deducing all the equations of the bending theory from three-

dimensional elasticity with the aid of Assumptions I and II, has not been given previously so

far as I know. The first general treatment of thin shells is due to Aron (1874), who introduced

averages rather than resultants. The first correct general treatment was given by Love in 1888;

an account of his work may be found in Love (1927), chap. 24. A neat derivation in vector nota-

tion is given by E. Reissner (1941). An elegant derivation in tensor notation of much more gen-

eral equations of shell theory is given by Synge and Chien (1941), who develop separately a

"macroscopic" and a "microscopic" theory; in the terminology of their paper, the present deri-

vation deduces the macroscopic theory from the microscopic under the assumptions of small

thickness and smaller strains and displacements. I have not followed the method of any of these

authors.

(») Schwerin (1918).
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thickness, and for tapered cones, and a discussion of it forms the bulk of the

standard treatments of the bending theory(29). With these special theories we

are not concerned here.

9. Singularities (bending theory). The expressions (8.10) give the terms

up to the third order in the series expansions of the stress and moment re-

sultants in powers of b/R, where R =min fa, r2)> under the Assumptions (I)

and (II) regarding the deformations. Under the assumptions of the three-di-

mensional theory of elasticity, that U, V, W, and their derivatives are all

small, it is clear that when | 5/i?| is sufficiently small the series will converge

and the evaluations (8.10) will be sufficiently accurate. At a singularity of

the middle surface of the type where R—>0, the series will usually diverge;

near a singularity, the expansion may or may not be justified, depending on

the magnitude of U, V, W and their derivatives. The divergence of one or

more of these series does not mean that there is no three-dimensional solution

of the problem in question, but that the description given by the bending

theory is not a convenient one in this region.

For a surface free of singularity, if there exists a solution of the three-

dimensional equations satisfying prescribed values of the stresses on the

boundaries(30), we may state at once an existence theorem for the bending

theory : Under prescribed finite body forces and prescribed finite surface

forces, for a thin shell with middle section an arbitrary given surface of revolu-

tion there exists a unique set of functions satisfying the bending theory par-

tial differential equations such that the stress and moment resultants assume

prescribed values, subject to the condition of equilibrium of the whole body,

on the edges «=«o and «=«i, provided that the strains given by the three-

dimensional theory satisfy the Assumptions (I) and (II).

The apex of a closed shell is often a singularity, for example, for a cone or

for any pointed dome. Unfortunately it does not seem possible to make any

general statements regarding the convergence of the series in problems con-

cerning such shells. While the divergence of the series for some or all of the

stress or moment resultants near the singularity may be of little concern to

us if we are interested only in behavior far from the singularity in question,

we need some boundary condition to be applied at such a point in order to

obtain a solution valid elsewhere. It has been customary heretofore to require

that all stress and moment resultants remain finite at the apex, and Flügge

in a deceiving particular example(31) has claimed, wrongly, to show that this

boundary condition is a requisite one. As a matter of fact, if finiteness at the

apex were necessary to obtain a satisfactory solution, a great variety of prob-

H Flügge (1934), chap. 7; Timoshenko (1940), chap. 12.
(30) The existence of such a solution is probable from physical considerations. A mathe-

matical existence theorem has been proved when the displacements, rather than the stresses,

are prescribed on the boundaries; see Trefftz (1928), pp. 124-128.

(81) Flügge (1934), p. 40.
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lems of technical interest, in particular all those involving pointed shells un-

der unsymmetrical loads or supports, would not be amenable to the treatment

of the bending theory, as we shall see in §15. Alternatively, if a small hole is

cut out around the singularity, some of the resultants and moments may be

made to vanish on the edge of this hole, and it might be argued that such a

solution is the desired one, but it can be verified experimentally, say, for the

cone, that the stress patterns given by such a solution depend significantly

upon the dimensions of the hole, and that those resultants and moments

which do not vanish become infinite as the size of the hole is diminished in-

definitely. In any case either of these approaches is arbitrary, for near a

singular point one might well expect the resultants to become infinite, as

they clearly may (see the definitions (4.1)) even when the stress is quite

small, without anything's being affected except the convergence of the series

in Ô/R. When the series converge, term by term comparison indicates that

the terms in 5 must form an equilibrium system by themselves, as must the

terms in 53, and so on. As a boundary condition let us prescribe that the terms

in 5 must continue to form an equilibrium system in the limit at a singular

point, even though the series may diverge and the terms become infinite,

and similarly for the terms in 53. Since the series usually diverge we may

be going too far in prescribing this term by term equilibrium; I suggest it

because it seems a reasonable boundary condition, automatically satisfied at

all points which are not close to singularities, which will enable us to find well

behaved solutions for numerous interesting problems not previously amenable

to the methods of shell theory. When a solution of the equations of the bend-

ing theory satisfying in this sense the conditions of equilibrium cannot be

found, we shall say simply that the problem in question is insoluble. Since

we have preserved only two terms of the series in question, we shall never be

able to show that a problem in question is not insoluble; we shall often, how-

ever, be able to say that a problem is insoluble from considering only the first

or second terms, and if these two terms can be made to form equilibrium sys-

tems we shall describe the problem as soluble in the best sense which we can

expect from the theory. In any case we shall not attempt to use these solutions

near the singularity; we are imposing this boundary condition at a singularity

simply to obtain solutions valid sufficiently far away from it.

We shall not pursue the study of singular points here, but we shall take

up in detail in §§15-17 their role in the membrane theory.

10. The equations of the membrane theory. Since except near a singular-

ity K/R2<KD, the terms following K in (8.10) may certainly be neglected

in regions far from a singularity unless the boundary conditions prescribe

that these terms are large. When it is justified to neglect these terms we de-

scribe the situation, as we did in the case of the cone, as a state of membrane

stress. From equations (8.10) we see that the moments are negligible, that

Ne^ — N^e, and that the expressions for A7^, Ne, and Ne* are simplified. The
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equilibrium conditions (8.6) yield the results

(1) Q* = Ly,       Q6 = LX.

If now we define effective load components Z, F, X :

—-   — fa sin «L„)+>•!£*  ,
sin «Ld« J

Z = Zt +
r\T2

Y = Yt- Ly/n,

X = Xt — Lx/r2,

the remaining equilibrium equations become simply

d  . , dNe*
— fa sin « A7* J — r\ cos « Ne + r\-1- Frir2 sin « = 0,
d« d0

3N,       d
(3) ri-1-fa sin «A7*«J + ri cos «A7^ + Zrir2 sin « = 0,

d0        d«

A7*       Ne— + — = - Z,
ri r2

while those of the equations (8.10) which do not vanish may be rearranged in

the form

BV n
-+W = -(N.-vNe),

dU r2 sin «
(4) -+ F cos « + IF sin « =-(Ne - vN*),

dd Eh

r2 dU      dF 2(1 + k>2 sin «
— sin «-1-U cos « =-Ned,.
n dd,      dd Eh

These are the equations of the membrane theory. It is customary to treat

problems in the bending theory by first solving the equations of the membrane

theory under suitable boundary conditions and then superposing correcting

terms involving solutions of the complete bending theory equations; that this

process is justified is clear when we realize that the equations (3) and (4) are

really the first terms in the expansions in powers of 8/R oí the complete

equilibrium and stress-displacement equations. When the shell is free of singu-

larity and the boundary conditions are consistent with a membrane state of

stress, a membrane state of stress will always exist for a thin enough shell.

In practice it is observed that correcting terms supplied by the bending theory

fall off exponentially from the supports, and that hence if a problem is soluble

its solution, sufficiently far from singularities and supports, is given by the
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membrane theory. A solution of the systems (3) and (4) does not necessarily

represent a state of membrane stress, however; near a singularity, when the

series for the stress resultants diverge, the solutions may be meaningless, even

though quite valid elsewhere (recall the examples given in §7).

From the preceding remarks and the fact that the systems (3) and (4)

are separate, the system (3) alone sufficing to determine the three stress re-

sultants, it follows that sufficiently far from supports and singularities of a

sufficiently thin shell, deformed in accordance with the assumptions of three-

dimensional elasticity and Assumptions (I) and (II), the state of stress is inde-

pendent of the displacements and of the thickness and material of the shell, pro-

vided the loads X, Y, Z are independent of the thickness of the shell. X, Y,

and Z may depend on 5 through equations (2), (4.3), (4.4), and (4.6) ; if terms

in 5/R are neglected, then any load distribution X, Y, Z is independent of 5.

Indeed, one state of stress leads to a variety of displacement distributions,

depending on the thickness and material of the shell, which play an essential

role in the equations (4). Its widespread adaptability, combined with the

relative simplicity of its partial differential equations, makes the membrane

theory at least the starting point in practically all elastic considerations of

shells.
11. Stress functions. In order to solve the equations (10.3) it is convenient

to introduce Fourier series :

00 00 00

N* ~ £ #♦»«**-      N> ~ £ N6ne™\     Net ~ £ M*.«1"',
—00 —oO —00

*      ' 00 00 00

Z ~ £ Z,«'"», F ~ £ F.«'-», X ~ £ XneM.
—00 —CO —00

The coefficients are functions of« only. In practice cosine series for N+, Ne, Z,

and F, and sine series for Ne$ and X, are usually sufficient; the coefficients

of the cosine series will of course be 2(N<¡,n+N*,_»), and so on. If we multiply

equations (10.3) by (l/2ir)e_in9á0 and integrate from 0 to 27T, we obtain the

equations satisfied by the Fourier coefficients :

A7*»   ,    Nen
(2) -+-= - Zn,

ri r2

à
(3) — fa sin « AV) — r\ cos « Nen + inrx Ne*n + F„ nr2 sin « = 0,

dd,

d
(4) inn Nen + n cos « Ne<t,n + — fa sin « Ne^n) + Xn nr2 sin « = 0.

dd,

These equations form a system of ordinary differential equations for the

Fourier coefficients, but their complexity renders them unmanageable unless
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some tricks are used, or unless ,« = 0. The analytically clumsy description of

the middle surface in terms of its radii of curvature should be abandoned in

favor of the Cartesian equation of the meridian introduced in §8. Let us first

define the stress functions of Nemenyi,

(5) U„ = fa sin2 « AV,

and by putting (2) into (3) to eliminate Nen derive an expression for Ne*»

in terms of U„ :

d /U„\
(6) inriNet» = — csc « — I — 1 — Z„rif2 cos « — F„rir2 sin «.

dd> \f /

Using (6) to eliminate Ne^n from (4), and again using (2) and (5), we obtain

an equation satisfied by U»:

d [r2   d /UAH d mn\   ,     ,      ,    U»
-[ — )   - cot « — I — ) + »2 csc2 « —

d«Ln dd>\fJj dd,\f J f

(7) d r      í     2 2 .
= — \Ynr2 sin  « + Znr2 sin « cos «J

d<¡>

— Z„ rif2(»2 — cos2 «) + F„ rifj sin « cos « — inXn rxr2 sin «.

If we use the geometrical relations (8.2), this equation becomes simply

(8) -—+(n2-l)J-Vin = gn(z),
dz1 f

where

gn(z) m-- [ff'Zn]+f[i + (n2 - 1)(1 +/'2)]ZB
dz

(9)
dY

+ p —- + 3ff'Yn + inXnf(l + Z'2)1'2.
dz

The equation (8) is the central equation of the membrane theory of shells of

revolution.

The general solution of the equation (8) may be written in the form

(10) Un = C„U„1 + Z?„Un2 + Un„

where U„i and U„2 are two linearly independent solutions of the homogeneous

equation associated with (8), C„ and Dn are arbitrary constants, and Unp is a

particular integral. A particular integral may be written explicitly :

(ii) w-p = ¿ f " *»(Ö [u».(«)u.i(ö - u.i(öu.i(«) H
«ií J a



128 C. TRUESDELL [July

where a is any convenient point and the constant SB is the Wronskian de-

terminant of U„i and Un2-

Later we shall wish a notation for the complete solution :

(12) U„c ̂  C„U„i + Z?nU„2.

The VLnc we shall call the complete stress functions, the Unp the particular stress

functions.

When the stress functions VLn have been chosen as solutions of (8), the

system (2), (3), (4) will be satisfied if we obtain Nt„, Nen, Ne<¡,n from

AV = (1 + /'2)1/2U„//2,    Nen = /"U„/[/(l + Z'2)1'2] - /(l + /,2)172Zn,

(13) d /UA
inNetn = — Í-—V + f(f'Zn - FB).

The equation (8) is very easy to handle, as we shall see by numerous examples

in Chapter IV.

The form of the equation (8) indicates that the stress functions will be

real, since if Zn = Z~n, F„= F_„, and Xn = X-n, that is, if the loads are real,

then the equation for U„ is the same as that for U_n, so that by a proper ar-

rangement of the constants U„ = U_„-

The stress functions (5) are very similar to those introduced by Nemenyi

(1936) from graphical considerations; essentially the preceding derivation

was given by Nemenyi and Truesdell (1943). A stress function for the mem-

brane theory when the shell has a quite arbitrary middle surface has been

given by Pucher (1938); it does not seem closely connected with these stress

functions, and the differential equation for its Fourier coefficients for the case

of a surface of revolution is more complicated than the equation (8). Pucher

gave as examples of the use of his stress function a general solution for the

spheroid in terms of hypergeometric functions and a simple algebraic solution

for generalized paraboloids; these, and the original solutions of H. Reissner

(1912) for the sphere and Dischinger (1928) for the cone, were, so far as I

know, the only general solutions of the system (11.2), (11.3), (11.4) published

until the paper by Nemenyi and me (1943).

The relative usefulness and convenience of Pucher's and Nemenyi's stress

functions may be seen by comparing Pucher's solution for spheroids, involv-

ing hypergeometric functions, with my simple algebraic solution (22.7) for

a triply infinite family of surfaces including not only spheroids but also hy-

perboloids, ovoids, and more complicated surfaces.

12. The case of axial symmetry. In the case of axial symmetry, when

n = 0, the integral of (11.8) can easily be written explicitly. When w = 0 in the

third of equations (11.13) we may integrate directly, obtaining the result

(1) Uo = - /[ j 'fif'Zo - Yo)di + C0J,
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where Co is an arbitrary constant and a is any convenient point. From (1)

and (11.13) we may compute N^o and Neo', to find the shear New, we may

take the equation (11.4) when w = 0 and after a little manipulation obtain

the result

(2) New = -f2[j V(l + /'2)1/2» + A,],

where D0 is an arbitrary constant.

A loading of practical interest in the case when w = 0 is that due to the

surface density p (not necessarily constant) of the shell: Z0=p cos «,

Yo = p sin«, -X"o = 0, or

(3) Z„ = - pf(l + f'*)-U>,        Yo = p(\ + Z'2)-1'2.

The integral (1) then assumes the form

(4) Uo= -/[J*V(i+/'2)1/2# + c„],

whose geometric significance is obvious; doubtless this result was familiar to

builders long before the science of mechanics was established.

The integral (1) has served as the basis of many engineering computations,

some of which may be found in the standard treatments of the membrane

theory(32); it is too well known to detain us here.

13. An example comparing the three-dimensional theory and the mem-

brane theory. Suppose we have a sphere of radius R and of constant thickness

5 subject to a uniform internal pressure p. The appropriate solution of the

three-dimensional equations is(33) :

p(R - h/2)3 r       (R + 8/2)'-i

Tzx     h(3R2 + 52/4) L (R+ x)3 J'

p(R - h/2)3 r (R + Ô/2)3"
Tee =

r (R + o/2)H

iL     "  2(2? + x)3i'h(3R2 + 52/4) L 2(2? + x)3

t$$ — Tee,    Txe = 0,    t,^ = 0,    Te$ = 0,    exe = 0,    exj, = 0,    eet ~ 0,

p(R - h/2)3   r       „      ,A (R + h/2)3-
«II =

r (R + 5/2) n
■   1-2*- (1 +v)--—\,
L (R+x)3 J'hE(3R2 + 52/4) L (R + a;)3

;/2)n

a:)3 J'

p(R-h/2)3    r (1 + k)   (R + h/2)3
eee = -   l — 2k H-

hE(3R2 + 52/4) L 2 (R + x)3

(32) Flügge (1934), pp. 25-37; Timoshenko (1940), pp. 356-372.

(») Love (1927), p. 142.
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e*« = «m,        « = 0,        v = 0,

p(R-h/2)3   r       ,     wa (1 + k)   (2? + 5/2)3"
7f =

r (i + v) (R + 5/2)n
(2? + *)(1 - 2k) + > ,

L 2 (2?+*)2 Jô£(32?2 + 52/4) |_ 2 (R+ x)

where the boundary conditions satisfied are that on x= +5/2, txx = 0, rxe = 0,

Txt = 0, while on x = — 5/2, txx = — p, Txe = 0, tx¿ = 0.

Now in order for this solution to be correct in the three-dimensional theory

it is necessary that | exx\ «1, | tee\ <3C1, |.e**| <C1; then from (1), we see that

it is necessary that ¡/w/EI <5C5/2?. This condition is not so strong as Assump-

tion (I), §5, which demands that |eXI| <K5/2?, hence that

(2) |/>k/£|«(5/2?)2.

Assumption (II), §5, demanding that |t*»/22| <3C| €m+kA/(1 — v)\ is always

correct when | 5/2? | <3C1. Hence (2) is the only condition which need be satis-

fied by the material and dimensions of the shell, provided only that the shell

be thin, in order for the equations of the bending theory to be correct.

The range of applicability of our theory may be seen by an example.

Suppose by "a<3Cl" we agree to mean "ag.01." Then for a spherical steel

tank, for which £ = 30,000,000 Ibs./sq.in., v = .3, 5 = 1", 2? = 10', we can treat

pressures up to 65 lbs./sq.in. in the bending theory, and hence in the mem-

brane theory, with accuracy. The three-dimensional theory, however, is ac-

curate for pressures up to 7,000 lbs./sq.in.

It is sometimes assumed that the theory of shells is particularly applicable

to very thin shells. This example, and indeed a moment's reflection would

suffice, shows us that it is not applicable when the shell is too thin, and that

in fact there is a range of thickness too small for the theory of shells and yet

suitable to the three-dimensional theory. The explanation is, of course, that

if the shell is too thin, the deformations will be too pronounced to satisfy the

special assumptions of shell theory.

When the material and dimensions of the shell are such that condition (2)

is satisfied, we are justified in using the expansions (8.10) and in retaining only

the terms involving D. We obtain the results

N* = pR/2,      Ne = pR/2,       Ne* = 0,

U = 0, F = 0, IF = (1 - v)R2p/(2Eh),

exactly the solution which may be obtained directly in the membrane theory

with the aid of the integral (12.1).

14. The case when n= +1. If in (11.8) and (11.9) we consider the case

when n — \, we find by integration and a little rearrangement that

Ui - Co» + Dx + j ' [(z - Q(ßi + ff'Yi + if(\ + n"*Xi)

- Pf'Zx + PYx]di,
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where all the functions in the integrand are of the argument £, and Ci and D\

are arbitrary constants. A similar result holds when «= — 1.

The case when n = +1 is met most frequently in practice with a loading

of type

X = 0,        F = 0,       Z = F sin « cos 0,

or

(2) Z = - F(i + /'2)-i/2 cos 0,

which is used to represent wind pressure. Careful small scale experiments of

Nemenyi(M) have produced curves of wind pressure which might well be fitted

with sufficient exactness by a load

(3) Z = A + B cos « + C sin « cos 0 + D sin « cos 20,

in which a term of type (2) occurs.

15. Closed domes. In this section we shall use the terms insoluble and

soluble as defined in §9. A necessary condition for solubility is that the mem-

brane stresses alone shall form an equilibrium system in the limit at the singu-

larity, or, as we shall say briefly, that the problem is soluble in the membrane

theory. A problem which is not soluble in the membrane theory is not soluble

in the bending theory. We must remember that solubility in the membrane

theory does not at all imply that a state of membrane stress exists near the

singularity; a soluble problem, again, is one for which we can find a solution

valid far from the singularity which, even though it may become infinite,

continues to form an equilibrium system in the limit at the singularity.

We shall investigate the type of singularity of greatest practical interest,

namely the apex of a closed dome, and we shall derive conditions for solubility

in the membrane theory. Let us consider the equilibrium of a ring cut off by «

and «+A« in the limit as A«—>0. The conditions of equilibrium of this ring

under membrane stresses only are

r2r r d (cos 01 d (sin 0)
0=1 — (Na r2 sin « cos «)< > H-(Net r2 sin «) < >

Jo    Ld« lsin0l       d« lcos0j

+ fir2 sin«M- F cos« +Z sin «K >. + X<        > J \dB,

C 2Td . 1
0=1 — (Nq r2 sin2 «) — rxr2 sin «(F sin « + Z cos «)   dd.

These conditions are satisfied in virtue of the differential equations (10.3)

when the integrands are finite; but at an apex, where r2 sin «—»0, these inte-

grands may not remain finite. Let us suppose the quantities Nt, Net, X, Y,

(M) Nemenyi (1936).
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and Z replaced by their Fourier series. Then our conditions of equilibrium

are that the quantities

X„rir2sin«,        Ynnr2 sin « cos «,        F„rir2 sin2 «,

Z„rir2 sin « cos «,       Zn rir2 sin2 «,

(2)       — [Ntnr2 sin « cos «],       — [Nn»r. sin «],      — [Nt*r2 sin2 «]
u« dd) dd,

must all remain finite as r2 sin «—»0. With the aid of (8.2) and (11.13) the

quantities (2) may be written in terms of the stress functions : the quantities

i+/'2 d_r/au     i+/'2 d_run

/"      dzl  f  }' /"      dzlfl'
i+/'2 d r   ¿ /iu

/"      dz ['ï®-«*-«]

must all remain finite as/—»0.

We may suppose without loss of generality that the apex is at z = 0. Near

zero let the function/ be written in the form

(4) / = z<V(z),

where ju is a positive constant and ^ is a power series such that 1^(0)5^0, a

form which will suffice for cases of practical interest. When y.-^ 1/2, the apex

is a singularity of the shell ; for any positive p it may be a singular point of the

differential equation (11.8) of the stress functions. When ju<l/2, the apex is

like a plate, with vanishing Gaussian curvature, and the element of arc length

(3.3) and consequently the differential equations (10.3) are meaningless. In

this case the boundary conditions (1) and (3) are clearly necessary conditions

of equilibrium, since the series for the resultants and moments converge.

When/ is of the form (4), if there is a singularity of the differential equa-

tion (11.8) at z = 0 it is regular(35), and we may easily calculate the exponents

a„i and an2 of U„i and U„2(36). We find that

«m = (1 + [1 - 4m(m - 1)(«2 - l)Y'2)/2,

an2 = (1 - [1 - 4m(m - i)(n2 - l)]"2)/2.

When the apex is an ordinary point, the exponents are of course 0 and 1.

We shall now work out conditions equivalent to (1) and (3) but expressed

in terms of the loads and the exponent in (4). When a sum of terms must be-

have in a certain manner in the limit, we shall suppose each summand must

(*) The apex may not be a singularity of the differential equation at all, for example, if

/=z+z'or/=sin z.

(36) Those results in the theory of power series solutions of second order linear differential

equations used in this paper may be found in Whittaker and Watson (1927), pp. 194-201.
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behave at worst in the same manner; then our resulting conditions will be

sufficient but not quite necessary, since it is possible (though unlikely) that

the sums which occur might have a cancelling effect. Strictly necessary con-

ditions might be worked out in the same way, but they are too complicated

to be useful. We shall consider Un written in the form (11.10). It is convenient

to distinguish three types of shells:

Case l: ß<l (flat top),

Case II: m = 1 (pointed top),

Case III : /*>1 (spired top).

First let us consider the complete stress functions UBe only, for the case

when |m| =2.

Case I. ¿u<l. An easy calculation with the exponents (5) shows that UBj

will never satisfy conditions (3), but that Un\ will satisfy them if

[1 - 4M(/i - 1)(»2 - 1)]1/2 è 3 - 2n,

or, equivalently, when

(6) |«|fc(W.

When the condition (6) is satisfied, then the boundary condition at the apex is

(7) Dn = 0    when    | » | à 2.

Case HA. p = l,f"(0)s¿0. The exponents are 0 and 1; U„2 (which may be

logarithmic) will not satisfy conditions (3), but U„i, a power series starting

in z, will satisfy them. The boundary condition is (7).

Case IIB. p = l,f"(0) =0(z°-2), where a is an integer greater than 2. Then

z = 0 is an ordinary point of the differential equation. U„2, a power series with

a constant term, is again unsatisfactory. It is possible to show that

]Xni = z-\-Aza-\- • ■ ■ , and hence conditions (3) will be satisfied by it. The

boundary condition again is (7).

(These two possibilities exhaust Case II for a shell of form (4).)

Case III. ju>1. When |«| _2 the exponents (5) are conjugate complex

numbers with real part equal to 1/2. The complete stress functions may be

written in the real form

U„c = zll2[An cos (j3„ log z) «lB + Bn sin (ßn log z) «2b],

where ßn is the imaginary part of the exponents and «i„ and «2„ are power

series which do not vanish at z = 0. The conditions (3) can never be satisfied

when \n\ =-2.
The cases when « = 0 and n = ± 1 are of no interest when there is no load.

Let us call the part of A7«B dependent on U„i, say, N$. It is interesting to

determine the behavior of N$ at the apex, when \n\ ^2. This behavior may

be observed from the formulas (11.12) and the exponents (5).

Case I. N$ is zero, finite, or infinite according as a„i>/i+l, aBi=ju+l,
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oeni<fjí-\-l; in other words, as we can easily verify, according as

(8)     | «| > [2/(1 - M)]1/2,   I «1 = [2/(1 - m)]1/2, or   | W| < [2/(1 - M)]1/2.

Cases II and III. In this case A7^ is finite, zero, or infinite according as

Rlani>2¡jL, Rla„i = 2n, or Rla„i<2p. Hence we may easily see it is always in-

finite.

With the aid of (6) and (8) we may now construct a table summarizing

these results. In each entry, besides the words "soluble" or "insoluble," we

have put the value approached at the apex by N^.

M    -2 If.  =3

2/16>íí^2/25

2/9>í« = 2/16

2/4 >^ 2/9

insoluble

zero

insoluble

zero

insoluble

zero

insoluble

zero

insoluble

zero

soluble

zero

insoluble

zero

soluble

zero

soluble

zero

soluble

zero

soluble

zero

soluble

zero

M-l/2 soluble

finite

soluble

zero

soluble

zero

soluble

zero

2/4<^<7/9

(9)
i. = 7/9

7/9 </.< 14/16

/i = 14/16

soluble

infinite

soluble

infinite

soluble

infinite

soluble

infinite

soluble

zero

soluble

finite

soluble

infinite

soluble

infinite

soluble

zero

soluble

zero

soluble

zero

soluble

finite

soluble

zero

soluble

zero

soluble

zero

soluble

zero

M = l soluble

infinite

soluble

infinite

soluble

infinite

soluble

infinite

/•>! insoluble

infinite

insoluble

infinite

insoluble

infinite

insoluble

infinite
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From table (9) we can see that the condition of finiteness at the apex

which has been used up to the present as a boundary condition(37) cannot be

satisfied by a large class of surfaces, in particular by any pointed dome, when

| »| ^2, but that the boundary condition used in this section can be satisfied

by all surfaces of practical interest when 1/2 ^¡p ¿= 1, and will lead to solutions

which are correct sufficiently far from the apex.

Table (9) tells us also when it is possible for there to be a membrane state

of stress at the apex. If the problem concerns all values of n which are abso-

lutely greater than 1, then a necessary condition for a membrane state of

stress at the apex is /¿ = l/2, that is, that both radii of normal curvature are

finite and not zero, and the apex is like that of a sphere. To see whether a

membrane state of stress actually does exist there, we must calculate the dis-

placements and estimate the terms neglected in (8.10) (cf. the examples in §7).

Now we must consider the effect of the load. Suppose that at the apex

(10) Z„ = 0(z't»>),    Yn = 0(s"<">),    Xn = 0(z*<»>).

Then conditions (1) may be expressed in terms of these exponents.

(11) Case I: p(w)§2(l-2/x), v(n) ^2(1-2^), x(») = l-3ju-  Case  II:  If

f"(z)=0(za), where a is zero or a positive integer, then p(n) i£a— 1, v(n)

^a— 1, x(n)^a — 1.

In view of our preceding discussion, Case III is not of interest, except possi-

bly when w = 0 or n— ±1. One result contained in the criterion (11) is that

if ¡x = \/2, any loading finite or zero at the apex will lead to a soluble problem;

another is that if /x = l and/"(z)= .4+ Bz+ ■ ■ • , AB ¿¿0 (and this is the case

of greatest interest), any such loading will again lead to soluble prqblems.

We must also consider the effect of the loads on the particular integral

Unp. Suppose that at the apex gn(z)=0(z'ï(-")); then an easy computation in

(11.11) with the exponents (5) shows that UnP = 0(zT(n)+2), provided no log-

arithmic terms arise due to the integration. This result is not altered even

if Un2 is logarithmic, for the logarithmic terms due to it in Unp will cancel.

Using this estimate of ]Xnp and the form of gn(z) as given by (11.9), we can

show that the conditions (11) are sufficient to assure that Unp will satisfy the

conditions (3). Under the same conditions (11), the terms in (3) in which

FB and ZB occur explicitly will not occasion trouble. If a logarithmic term

appears in Unp due to the integration, as it can if there is a term in gn(z) in-

volving z~", where a equals either of the exponents (15.5) +a positive integer,

then UBj, = 0(zt<b>+2 log z), ancj the signs "è" in (11) must be replaced

by">."
In a similar way we can calculate the limiting value of that part of Ntn

due to the dependence of VL„P on Zn, F„, Xn respectively, at the apex, using

(") Flügge (1934), pp. 40, 48, et passim.
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the formulas (11.12); in view of the insolubility of problems of Case III when

\n\ ^ 2, we shall confine ourselves to the Cases I and II.

(12) The part due to Z„ is zero if p(w)>l — 2\x, finite but not zero if

p(n) = 1 — 2p, infinite if p(n) < 1 — 2p. The part due to F„ is zero if v(n) > —ß,

finite but not zero if v(n) = —p., infinite if v(n) < —p. The part due to Xn,

when «t^O, is zero if x(«) > — P> finite but not zero if x(n) = ~M> infinite if

x(n) < -ju-

in case logarithmic terms occur in Unj>, the corresponding cases of finite but

nonzero stress in (12) should be deleted and incorporated in the infinite case.

For completeness we should calculate similar results for the cases when

« = 0 and w=+l. For these cases we use the integrals (12.1), (12.2), and

(14.1). The criteria (11) are still valid. By a proper choice of C0 and Do, any

problem of Cases I and II when « = 0 is soluble if the conditions (11) are

satisfied; the value of Nto at the apex is given by (12). By a proper choice

of D\, a problem when n = +1 is soluble in Cases I and II only, and if and only

if the conditions (11) are satisfied; the stress Nti or Nt,-i will be infinite at

the apex unless C\ is properly chosen, in which case its value will be given

by (12). The criteria for Case III when n = 0 are as follows: the problem is

soluble if p(0) è -2, v(0) ̂  -2, x(0) =■ -2;Nto is zero at the apex if p(0) > -1

and u(0)>—1, finite but not zero if p(0) = —1 and v(0)= —1, or if p(0) = — 1

and u(0)>-l, or if p(0)> — 1 and u(0) = -l, and infinite if p(0)<-l or if

v(0) < — 1; A94,o is zero at the apex if x(0)> —1, finite but not zero if x(0) = — 1,

and infinite if x(0) < — 1.

With the foregoing results one may determine immediately the solubility

of a particular problem and the behavior of the stresses at the apex. For ex-

ample, consider the load (12.3) due to the weight of the shell; here p(0) =0,

u(0) = l— ß in Case I, u(0)=0 in Cases II and III. Then, from (11), we may

see that in Case I, the problem of a shell under its own weight, uniformly sup-

ported, is soluble if p.èl/2; in Case II it is soluble if f"(z) =.<4+23z+ ■ • • ,

AB 5^0; in Case III it is always soluble. Whenp, = l/2, Nto is finite at the apex;

if ß>\/2, it is zero. If now instead of supporting this shell uniformly we sup-

port it on m symmetrical columns, we shall need (see §21) solutions involving

U„i when n=m, 2m, • • • , in addition to the previous solution. Then from

(9), the problem will be soluble if l/2ís¡uí51; from (8), the stress Nt will be

finite or infinite at the apex according as m> [2/(l-/i)]1,!ormá [2/(1—p.)]1'2,

and in particular, it will always be infinite when p = l, finite when p. = 1/2.

The mere recitation of the results of this section has been lengthy and

tedious. The patient reader, if he has persevered this far, will readily excuse

my omitting practically all steps of the proofs, since they are lengthy but

straightforward calculations, and he may in fact wonder why I have carried

out these investigations at all. When I began to study the membrane theory

I was particularly interested in Case II (pointed domes), and was surprised

first to notice that in all the examples of unsymmetrical loads or supports
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which I could work out the stress Nt became infinite at the apex, and second

to observe that all the works on the membrane theory which I could find

with one exception simply overlooked, probably because of the complications

in calculation by all previous methods, any unsymmetrical problems involv-

ing pointed domes. The exception was Fliigge's approximate numerical ex-

ample which I shall discuss in §24, but by exhibiting an exact solution for

Fliigge's problem I found that his result, as far as the apex was concerned,

was incorrect. Was it then impossible to treat any pointed domes in the mem-

brane theory? In considering this question I undertook the preceding in-

vestigation, which shows that the answer must be "yes" if the old boundary

condition of finiteness at the apex is used. By formulating the new boundary

conditions (1) and (3) I have been able to treat any pointed dome (Case II).

The preceding investigation was necessary to show that the new boundary

conditions can really be satisfied in a variety of problems where the old can

not. The spired dome (Case III) remains excluded from the theory of shells,

except in the case of axial symmetry of load and support. Both the new and

the old boundary conditions can be satisfied always for a dome with a sphere-

like apex (p = l/2) for any finite load system. The remainder of Case I, when

0<p<l/2 and when l/2<p<l, is not of much technical interest. We may

roughly summarize the results of technical interest in this section:

I. If the loading does not become infinite at the apex, a problem involving

a dome with a sphere-like apex (p = 1/2) is soluble, the correct boundary con-

dition at the apex being (7), and the stress resultants will be finite, possibly

zero, at the apex.

II. Under the same conditions a problem involving a pointed dome (p = 1)

is soluble iif"(z)=A+Bz+ • • • , AB 9*0, the correct boundary condition at

the apex being again (7), but now the stress resultant Nt will be infinite at

the apex, except possibly in the case of axially symmetric loading and support.

Thus we see that the problems of greatest technical interest can all be

treated satisfactorily in the membrane theory. That the stress functions afford

an easy and efficient approach for numerical results as well as for the general

considerations for which we have used them up to now, we shall see in Chap-

ter IV. In particular, that the infinite Nt at the apex of a pointed dome does

not detract from the practical usefulness of the solution we shall see by an

example in §24.

16. A note on the cone. From all the preceding discussions one surface

for which p- = l must be excluded, the cone, since the original coordinate sys-

tem in which the partial differential equations (10.3) were expressed is not

valid for it. By using the integrals (6.6) we may parallel the discussion (I

spare the reader the details) and reach the following conclusions. If X = 0(y~l),

Y=0(y~1), and Z = 0(y~v) at the apex, the conditions of equilibrium at the

apex can be satisfied, and the boundary condition is

(1) ¿(0) = 0.



138 C. TRUESDELL [July

We have already seen in §7 that the stresses can be finite at the apex in

cases of axially symmetric load and support only. These results show that the

cone is no exception in Case II. In particular, the solution (7.18), (7.19) when

H = 0, for a cone supported on several pillars, while it seemed arbitrarily se-

lected, may now be seen to be correct sufficiently far from the apex.

17. Open domes. If we have a shell free of singularity when «oá«íá«i,

it is clear that we may find a solution of the membrane equations satisfying

one prescribed condition at «=«o and one at «=«i.

While many practical problems concern domes free of singularity, some

interesting open domes are singular at one boundary, and hence must be

treated as in §15. We shall consider one such type of dome, where

(1) /(*) = «(z) + z'«(z), 0 < v < 1,

« and \f/ being power series such that «(0)^0, ^(0)^0. Such a dome has a

flat top with a hole of radius «(0) in it. The singularity of the differential

equation (11.8) becomes regular if we choose z" as a new independent varia-

ble, and the exponents ßni, ß»2 at the origin are

(2) Ä.1 = 1/k,       ßn2 = 0.

Hence U„i = z+ • • • , Un2 = l+ • • • , but the criteria will not be the same as

for §15, Case II, since f"(z) = Az"~2+ • • • . Conditions (15.3) are satisfied if

and only if vïîl/2, the boundary condition again being Dn = 0. N$ vanishes

at z = 0 in all cases. We shall not devote the space required for a detailed

analysis like that of §15; an example of the difference in behavior of the

stresses for two shells of parabolic meridian, one of type (15.4) and one of

type (1), may be seen in §21, Fig. 8, and §25, Fig. 19.

18. Displacement functions. When the equilibrium equations (10.3) have

been solved by the method of §11, the quantities on the right-hand sides of

equations (10.4) are known, at least up to two arbitrary functions, and we

may regard the system (10.4) as three equations for U, V, W. Let us intro-

duce Fourier series for these quantities :

00 00 00

(1) U ~ ¿ UneinB, V ~ X) Vneine,        TF ~ ¿ Wnein>,
—00 —00 —0O

where Un, Vn, and Wn are functions of « alone. If we multiply the equations

(10.4) by (\/2ir)e~intd9 and integrate from 0 to 27r, we obtain the equations

of the Fourier coefficients:

dVn n
(2) -+ TFB = -— (Ntn - vN0n),

dd. Eh

r2 sin «
(3) inUn + Vn cos « + JFn sin « = -(N6n - vN^n),

Eh
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r2 dUn 2r2(l + v) sin «
(4) — sin «-Í7B cos « — inVn =-Netn-

r\ dd, Eh

These equations form a system of ordinary differential equations for the

Fourier coefficients, but their complexity renders them unmanageable unless

some tricks are used, or unless w = 0(38). Let us introduce the displacement

functions 93B:

(5) 2SB =- Vn csc «.

Eliminating Wn from (2) and (3), and using (5), we find an expression for Un

in terms of the displacement function 35„ :

¿SSn       r2 sin « r\ sin «
(6) inUn = sin2 «-1-(NSn - vNtn)-(A7«« - vNe»).

dd, Eh Eh

If we put (5) and (6) into (4) we obtain a differential equation for S?n:

r2   .       d[ ¿5B„1 d35B .
— sin « —   sin2 «-   — sin2 « cos «-n2 sin « 2ßB
ri dd)]_ dd, A dd.

r2 á r>2 sin « ri sin « "I
=-sin « —   -(Nen - vNtn)-(Ntn - vNSn)

ri d«L   225 £5 J

(7) •   *      \sm « cos « . .
-1- [r2(Nen - vNtn) - n(Ntn - vNen) \

Eh

2in(\ + v)r2 sin «
-1-Netn-

Eh

If we use the geometrical relations (8.2) and the function/(z) representing the

meridian of the shell, this equation becomes simply

d2%n      if"       f'\ d%n f"

where

¿ri "I        d ri+/'2 ,1

4-w- -«"-¿in**-"N'-)\-t"Arir(JV"-'H
(9)

/' 2»»(1 + k)/"
+ ¿- (1 + f'2)(Ntn - vNen)- (1 + f'2y'2Netn.

fEh Eh

The solution of (8) may be written in the form

(10) S3„ = EJ8nl + FJSn2 + »»„

(3S) So far as I know, the only general solution of these equations which has been exhibited

explicitly before this present work is that for the sphere; see Flügge (1934), pp. 54-58.
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where 93„i and 93„2 are two linearly independent solutions of the homogeneous

equation associated with (8), En and Fn are arbitrary constants, and SS„P is

a particular integral. It is easy to verify that a particular integral is given by

f(z)f"(z)   r*    h (£)
(11) %.,- "/     I "),,'        [g^l(Ög,.W  -gnl(z)SBB2(ÖR,

SB(«)      •'a    /(£)/(£)

where SB(z) is the Wronskian of 93„i and 93n2, and a is any convenient point.

When the functions S3B have been found as solutions of (8), the equations

(2), (3), (4) will be satisfied if we obtain t/„, FB, W„ from the formulas

(l+/'2)-1'235„,

1 + f'2   d (1 + f'2)3'2
- "F" 7,[<1 +'",-'"a!-! - 1^L ["~ - '"-'•

1     dSßn f     . . l+/'2r

Unfortunately the solution we have given here is not so convenient as

that given in §11 for the equilibrium equations, for while there it was the

complete solution which was of greatest interest, here it is the rather nasty

particular integral.

The boundary conditions to be imposed on the displacements will usually

be their vanishing at some support. Since in general the apex of a closed

dome will not admit a membrane state of stress the behavior of the displace-

ments near it will not be of interest. Should one desire, however, to investi-

gate the displacements near a singularity, he could easily do so by methods

similar to those of §15. We shall merely notice that the exponents 7„i and 7„2

of the solutions S3„i and S3n2 near the apex of a closed dome of type (15.4) are

given by the formulas

(13) 7nl = ^M " 1 + [1 " 4/i(M " 1)(W2 " 1)]l/2}/2'

7b2 = {2p - 1 - [1 - 4p(p - 1)(«2 - l)]»/»j/2;

the radicals are the same as those in the exponents (15.5) of U„i and Un2.

The form of the equation (8) indicates that the displacements may become

infinite not only at singularities of the shell but also at points of inflection

of the meridians or at points where the middle surface is perpendicular to the

axis of revolution, and hence that a membrane state of stress may not exist

near such points. Now in many cases by making Fn zero in (10) we can find a

displacement distribution which remains finite near such points. By this

choice of constants we have effectively prescribed a certain displacement at

the supports; then for such a displacement, and such a displacement only,

may there be a membrane state of stress valid near the point in question. Such

a state of affairs is not unexpected, for we have seen before that whether a

(12)

FB =

JFB =

inUn =
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given solution of the membrane equilibrium equations represents a membrane

state of stress, that is, whether it gives a correct first approximation to the

stress resultants in a given region, will depend on the particular one out of

the many corresponding displacement distributions which is chosen. The

criteria for such choices we could easily work out, but they are not sufficiently

interesting to be worth the space demanded.

Before leaving the general subject of displacements, we should mention

the elegant method of Flügge for finding the displacements of particular

points(39), which, while of restricted applicability, often leads to the result

more quickly than the general methods outlined here.

IV. Examples

19. An indirect method of solution of the stress equation. The complete

stress functions Une(40) satisfy the equation

(1) U'n'c+f-(n2- l)U„c = 0.

We may write this equation in the form of a system:

(2) /"// = A2p(z),

(3) U"c/Une = - A2(n2 - l)p(z),

where p(z) is some function of z. Since (2) and (3) are of exactly the same type,

the complete stress functions UBC may be obtained by replacing A2 by

—A2(n2 — 1) in the general equation of the family of meridians satisfying (2),

the process being subject to the proper alteration in the case when this change

produces or destroys an integer exponent difference. By choosing functions

p(z) for which equation (2) is easily integrable, we may find the equations of

many doubly infinite families of surfaces for which the equations may be

solved exactly in terms of familiar functions; in the succeeding sections we

shall enumerate and apply some of these results.

Equations (2) and (3) show conversely that if we have the complete stress

functions for a surface with meridian/, they are also complete stress functions

for any surface with a meridian belonging to the family

(4) r = Áa + B J* dz//2],

where A and B are arbitrary constants, since if/ satisfies (2), so does any

function r included in the family (4). For example, the complete stress func-

tions valid for the sphere, for which/= (a2 — z2)1'2, are equally valid for any

surface whose meridian is of form

(39) Flügge (1934), pp. 59-63.

(") We are using the terminology and notations of §11.
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(5) r = (a2- z2)l'2[A + B tnh"1 (z/a)],

in particular for spheroids and for hyperboloids. The solution given originally

by H. Reissner(41) for the sphere may be put in the form(42)

r     (a - z\"'2 (a + z\"'H

From these complete stress functions we may construct, with the aid of

(11.11) and (11.13), the general solutions of the equilibrium equations for any

member of the family (5). It should be remarked that this result holds only

after we have expressed UBC in terms of z. For a sphere, the complete stress

functions (6) may be written in the form in which they were originally given :

(7) UBC = sin «[CB tan» («/2) + Dn cot» («/2)],

but this representation is no longer correct for the other members of the

family (5), since the relation between « and z is a function of/.

The value of the stress functions is greater than that of a mere device to

solve the partial differential equations of equilibrium. VLne is much more in-

timately connected with the surface than are the stresses; no two surfaces in

general lead to the same solutions of the equations of equilibrium, but any

complete stress function is the common property of a doubly infinite family

of surfaces. It is probably unnecessary to remark that the reason that two

different surfaces having the same complete stress functions will nevertheless

have different stress resultants is that the relations (11.13) which deduce the

stress resultants from the stress functions are themselves functions of/.

20. The displacement equation. Unfortunately there seems to be no such

simple method of finding solutions for (18.8). We may observe, however, that

if SBnc is the complete solution of (18.8) for a surface with meridian/, it is also

the complete solution for surfaces with meridian Af, where A is any constant.

Thus for example, from the solution of Rayleigh for the sphere(43),

(1) S3»c = En tan» («/2) + F„ cot" («/2),

we may find the displacements of spheroids and hyperboloids with meridian

f = A(a2 — z2)112 by expressing the result in terms of z:

/a   _   A n/2 ,a  + ¡An/2

(2) 93Bc = £B(-)     +Fn(-)    .
\a + z/ \a — z/

From (2), with the aid of (18.11) and (18.12), we may construct the general

solutions of the displacement equations for spheroids and hyperboloids.

(") H. Reissner (1912); Flügge (1934), pp. 38-39.
(**) This simple result is to be contrasted to that of Pucher (1938) (for the case when 5=0

only), involving hypergeometric functions.

(*») Flügge (1934), p. 57.
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Our choice of displacement functions has been a happy one, for while in

general under the same load distribution no two surfaces will have the same

displacement distribution, each complete displacement function is the com-

mon property of an infinite family of surfaces.

We notice that the equation for the displacement functions usually has at

least one more singularity than that for the stress functions. Thus if the stress

functions are Bessel functions, the displacement functions will be hypergeo-

metric functions; if the stress functions are hypergeometric functions, the

displacement functions will be Heun functions, and so on.

21. Bessel and exponential functions; paraboloids. A natural choice for

p(z) in (19.2) is some power of z; we may write

(1) f" + A2(z + a,y>m-2f= 0, w^O,

as the equation for the meridians. Its integral family is easily shown to be

(2) / = (z + ayi2Bm[2mA(z + a)1»2"1'], »^0,

where we have put Bm [x] as a convenient notation for the general solution of

Bessel's equation in x of order m. Then for the family (2) we shall have the

complete stress functions

(3) Une = (z + ay2Bm[2miA(n2 - l)172(z + a)1"2"»].

We notice that if | n | > 1 the complete stress functions for a surface whose

meridian is a combination of Bessel functions of the first kind are combina-

tions of Bessel functions of the second kind, and vice versa. The solution (3)

breaks down when n = +1, and is not of interest when n — 0 ; we shall observe

this same phenomenon, naturally enough; with the other solutions in this

chapter, and we notice now once and for all that if we wish solutions involving

terms in which « = 0or +1 we should resort for them to (12.1) and (14.1).

When m = i/2, the formulas (2) and (3) may be put into the form

(4) / = A sin (az + b) + B cos (az + b),

(5) IL., = C„ sh [(n2 - iy2(az + b)] + Dn ch [(n2 - l)172(az + b)].

For the members of the family (4) for which 23 = 0 it is easy also to find the

complete displacement functions :

S3BC = EnF(- l + i(n2-iy<2,-\-i(n2- l)1'2; - 1/2;sin2[(az + b)/2\)

(6) + Fn sin3 [(az + i)/2]F(l/2 + i(n2 - l)1'2,

1/2 - i(n2 - l)1'2; 5/2; sin2 [(az + b)/2]),

where F(a, ß; y; x) is the hypergeometric function. A similar result holds

for the other half of the family (4). For an example of a boundary problem

involving a dome with a meridian belonging to the family (4), see §24. For

the subfamily of (4) for which
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(7) / = Ae"

the complete displacement functions are

S±i.. - «"[Ei + Fi«],

[July

(8)
S3BC = e"[En cos (a(n2 - iy<2z) + Fn sin (a(n2 - l)1/2z)],       n ^ ± 1.

Fig. 8. Fig. 9.

(9)

JV^J, constrained to unit value at the base, is read normally to the meridian.

If m becomes infinite in (2), from the form of (1) we can see that our

family of meridians becomes

/ = A (z + a)" + B(z + a)1-", p * 1/2,

f = (z + ay>2[A + B log (z + a)}, p -1/2,

for which the complete stress functions are given by the formula

(10) VLnc =   (2 + ay2[Cn(z + C)«<"> + Dn(z + o)~««»>J,

where [g(w)]2=^l/4—p(p—1)(»2—1). This result is exactly what we should

expect from the exponents (15.5). We may gain a qualitative estimate of these

solutions from Fig. 8 and Fig. 9, which give plots of A7^', when n = 2, 3, 4,

for two meridians included in the family (9), the parabola/ = z1/2, and the

top-shaped curve/ = z1/2 log z, the value, which is prescribed to be unity at the



1945] THE MEMBRANE THEORY OF SHELLS OF REVOLUTION 145

lower edge, being read along the normal to the meridian.

For the sub-family of (9) for which 23 = 0, it is easy to find the complete

displacement functions :

(11) 93Be = (z + a)"-172[£B(z + «)«<») + Fn(z + a)-«(">],

where q(n) is the same function of n which was defined for the stress functions

(10). The complete displacement functions for the meridians

(12) f =A(z +a)"2 log (z +a)

are given by the equation

23»c = log (z +

(13)

JeTm     t  j.   w2    2 sh log (z + a)«2!
a) <En\ ch log (z + a)"'2-:-;—-——

I    L n log (z + a)   J

j?I\i     r.j.   wi     2chlog(z + a)"/2Tl
+ F„ sh log (z + c)n/s-¡-——-— \>.

L n log (z + a)     J j

One of the surfaces easiest to treat in the membrane theory is the parab-

oloid, for which

(14) f=2A(a-Zy2.

Let us find the membrane stresses in such a shell, subject to its own weight,

supported uniformly on m symmetrical columns at its base z = 0. First we

shall need a solution for the shell supported uniformly at each point of its

base; evaluating the constant of integration in (12.4) in accordance with con-

ditions (15.3), we find that

as)   ^*°= ~2pia+A*~ z)1/2f(a+A2- z)3/2 - A%v\.^a - »)1>

Neo = - ANto/(a + A2 - z) - 2A2p,   Neto = 0.

Upon this solution we shall superpose a second, for which X = 0, F=0, Z = 0,

satisfying the conditions

. (— P(v — me)/(me) at the supports,
(16) A7*|_o= <

\P elsewhere,

where 2e is the angular width of the supporting columns, and P = — Nto |<-o> or

(17) P = 2p(a + A2yi2[(a + A2)3'2 - A3]/(3a).

The boundary stresses (16) form an equilibrium system, and when P is chosen

by (17), the stress Nt will vanish between the supports. Net will not vanish

everywhere between the supports, so we must suppose some sort of rigid ring

is attached to the bottom of the shell to absorb the shear, or else we must

regard our solution merely as a first approximation to which correcting terms

from the bending theory should be added. The Fourier series, for (16) is
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(18)
2P -

Nt |,-o =-¿_,
t     B=m,2m,3w

sin nt
cos nd,

if we suppose the supports occupy the regions where — e = 0^í, 2ir/m — t^9

^2-ir/m + e, ■ ■ ■ , 2(m-l)ir/2-t¿9^2(m-l)ir/2 + e. We now construct

from the complete stress functions (10) a solution such that (18) will be satis-

fied; the boundary condition at the apex, as we saw in §15, is £>„ = 0.

2Pa(a + A2- z)1'2        "

" *(a - z)(a + A2)"2 n-mh.

A2Nt/(a + A2- z),

2PaA »

(19)      Ne = -

Net = —
6(a-z)(a + ^2)1'2„_m,tr.

h nt ( z\

«    V a)

n nt / z\

n    \ a J

cos nd,

n/2

sin w0.

Fig. 10.

For the case when m=3, e = 7r/6, a = i, A=i, a plot of this solution, with

(13) superposed, at the meridians 0 = 0, ir/6, ir/3, that is, at the middle of

the supports, at the edges of the supports, and midway between the supports,

is given in Fig. 10.
When the supports are very narrow, we can simplify the' calculation by-

letting « approach 0 in (19). The series then become geometric series for cer-

tain values of 0; in particular,

(i - ¿Y. 2Pa(a + A2 - z)1'2       V        a)
Nt «-o = —

m/2

(20)

Nt\

(a- z)(a + A2y2

2Pa(a + A2- z)1'2

'-0-t)
0-t)"

-T/2m  —
(a - z)(a + A2)1'2

1 +
(-7)"
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Nt |9=ir/tn  =

2Pa(a + A2 - z)

(a - z)(a + A2)1'2

- z)1'2       \ a)

m/2

1  +

(20)

Ne \e-x/2m

2PaA

(a-z)(a + A2y2

0-t)
m/2

1  +
(-t)"

For the case when m = 3, a = l, .4=1, these results are plotted in Fig. 11 to

the same scale as Fig. 10.

The reader may note that the general considerations of existence and value

at the apex of §15 are easily verified in this example. In particular, when

Fig. 11.

m = 2, the stress resultants will be finite but not zero at the apex, but when

m>2 all but the part due to (15) will vanish at the apex.

To compute the displacements corresponding to the solution (19), we be-

gin with the complete displacement functions

(21) 93BC = En(a - z)»'2 + Fn(a - z)—'2

which are given by (11). Since the apex is not a singularity of (17), we shall

expect all displacements to remain finite there; hence F„ = 0 is a boundary

condition. To (21) must be added a particular integral from (18.11):

(22)
93BÎ (1/n) J" Ä,(Ö(a - Ö[(« - Ön/2(<* - 2)-'2

- (a - Ö~B/2(a - z)nl2]d£.

The function hn(z), given by (18.9) from the stresses (19), although even

when 5= const, it is rather long, can be computed by straightforward cal-

culations and the quadrature (22) can be evaluated with elementary functions,

but the result is too cumbersome for us to tarry over it here. The constant En

should be evaluated by the condition  ¿7 = 0 when z = 0. Upon this solution
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should be superposed one corresponding to (15), which is easily computed.

It is interesting to compare these results with those for the corresponding

problem for the top-shaped shell whose meridian is

(23) / - z1'2 log z.

Unfortunately the integral (12.4) for the everywhere supported shell is not

elementary, and is indeed quite hard to handle. When the dome is supported

at z = Zo, Zo<l, the part of the solution corresponding to (19) is

2P    [z + (1 + log z/2)2]1'2    zo (log zo)2
Nó= -

t     [z0 + (1 + log zo/2)2]1'2   z    (logz)2

4z3
(24)     Ne =-;-Nt,

z + (1 + log z/2)2

2P Ze(log zo)2
Net =-

sin nt / z \n/2
-Í—)     (

n     \zo /
cos nd,

*        «    zta+U + logzo/2)2]1'2

A        sin nt , . / z\B'2
•        Z       - [1/2- (logz)"2/«](-)     si

n-m,2m,- • • « \Zo /

The family (2) does not contain any Bessel functions of zero order, but a

different analysis will yield a result for them, too. The integral of the equation

(25) /" + a2A2[\ + (az + &)"2/4]/ = 0

is

(26) f=(az + by2Bp[A(az + b)],

where p= — (1— A2)ll2/2; accordingly thé complete stress functions for this

family are given by the equation

(27) U„c = (az + by2Bn[iA(n2 - l)172(az + b)},

where m= [l+^42(n2 —1)]1/2/2. The case of greatest interest is that for which

.4=1, namely, that for which

(28) f=(az + by2[AJo(az + b) + BY0(az + b)].

For this family

U2B,C = (az + ¿)1/2{C2B2B[(4»2 - l)172(az + b)]

•D2n2iB[(4«2 - iy2(az + b)]},

(29)U2B+1,C = (az + 6)1'2{C2n+17B+1/2[2(»2 + ny2(az + b)]

+ i»2B+17_B_1/2[2(«2 + ny2(az + b)]}.



1945] THE MEMBRANE THEORY OF SHELLS OF REVOLUTION 149

While a balloon is essentially a shell which derives a shape of its own rather

than being rigidly constricted to any form, the meridian

(30) / - «»'»/„to
is not unlike the shape often assumed (see Fig. 12). Let us investigate a

boundary problem which might be considered that of a balloon subject to the

pull of 2m symmetrically attached ropes acting on that part of the bag be-

tween z = zi and z = z2. Then

z2 á z ú Z\,
ÍF on 2m symmetrical regions of angular width 2e}

0 elsewhere

0, z > zi or z < z2.

'}■

Let the boundary conditions be the vanishing of Nt at the lower edge, z = z0.

We may represent the load (31) in the form

(32) F = <    W  L n-

'o,
m,2m, • •

sin 2««
cos 2nd

]■
Z2 Ú Z íá Zi,

z > zi or z <

A set of stress functions satisfying the boundary condition at z = 0 (see §15)

is given by the formula
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(33) U2„ = z1'2^Cn7n[(4»2 - l)172z] + f F(z, t)dt\ |»| > 0,

where

F(z, t) =- Pi2g2n(t){ln[(±n2 - l)1'2z]2fB[(4»2 - iyn]

- 7B[(4«2 - iy2t]Kn[(4n2 - iy2z]},

(34) /3F sin 2nt FJ0(t)

g2n(t) = <      irnt       L    2
tJi(t) \j0(t), z2 = t =Zl,

0, / < z2 or Zo = / > Zi.

Then

i z^C^InKin2 - iy2z], z<z2,

,«v   it )21,2(c2n7„[(4«2 - l)i'2z] +  f*F(z, t)dt), z2 = z = zlt
(35) U2n = <        \ J J2 /

[z1'2ÍC2B/n[(4«2  -   3)172Z]  + J    F(Z, t)dt\, Z0  =   Z  =   Z!.

The condition Nt = 0 at z = z0 yields the value of C2„:

(36) C2n= -  f lF(z, t)dt/In[(in2 - \y2zo\.

These results dispose of the terms for which w^O in (32); there remains the

term in which « = 0:

— í"Vo(s)  f " í1/2/o(0^, z < z2,

(37) Uo = <   F C'1
1   — Z1/2/0(z) ¿1/2/o(Ö^, 22  â   Z  =   Zx,

0, Zi g z ;S Zo,

as can easily be verified from the integral (12.1). The load (31) does not

form an equilibrium system ; its resultant downward force should be cancelled

by a symmetrical upward force due to the lift of the atmosphere.

22. A transformation. Conicoids. Sometimes the knowledge of the solution

for a surface with meridian / will lead us to the solutions for some other sur-

face with meridian g. Say that

(1) /"// - A2p(z),

and say we make the substitution z=«(x). The question then is, can we find

some g, g=g(f, x), such that g satisfies an equation of the type
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d2g   /

(2) -¿/, - IM

say? Of course, neither p, «, nor q is to be a function of A or 23. A straightfor-

ward analysis in the theory of transformations of linear differential equa-

tions shows that such a g can be found only for the transformation «(x)

= (ax + b)/(cx-r-d), and then

(ax + b\
(3) g=(cx + d)f(-— ).

\cx + d/

Then from the discussion in the beginning of §19 we may conclude that if

the Uncfz) are the complete stress functions for a surface with meridian/(z),

for a surface with meridian (3) the complete stress functions are

(cx +
(ax + b\

In particular, we may verify and extend an earlier result by supposing that

c = 0 and d = 1 ; it follows that if the UB<! are the complete stress functions for

f(x), then the functions Unc(ax-\-b) are the complete stress functions for

Af(ax+b).
From (21.4) and (21.5) we have at once that for surfaces such that

(4)     / = (ex + d) {A sin [(ax + b)/(cx + d) ] + B cos [(ax + b)/(cx + d) ]},

the complete stress functions are given by the equation

UB. - (ex + d){Cn sh [(n2 - \y2(ax + b)/(cx + d)]

+ PB ch [(»2 - l)1/2^* + b)/(cx + d)]\.

From our solution for the paraboloid (the case when ß = 1/2 in (21.9) and

(21.10)), by applying the bilinear transformation, we may see, after a rear-

rangement of constants, that for a surface with meridian

(6) / = (a- Zy2(b - Zy2[A + 23 log ((a - z)/(b - z))]

the complete stress functions are given by the expression

r     (a - z\"'2 (b - z\-'2"l
(7)      tu = (a-zy\b-z)1'2\Cn(j^zrj  + Dn{—J J•

The family (6), when b=—a, is simply that of spheres, spheroids, hyper-

boloids, and so on, which we found already (19.5); it contains various ovoids

also. For the subfamily of (6) for which 23=0, namely the conicoids and

ovoids only, it is not difficult to find the complete displacement functions

from (18.8) :
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(a - z\-'2 (b - z\-'2

This result contains (20.2) as a special case. For graphs of the stress coeffi-

cients N$ derived from the solutions (7) for the sphere, two spheroids, and a

hyperboloid of two sheets, see Figs. 13-16.

Nti. *»« . N*2

Fig. 13. Fig. 14.

,.<!)      „<»       »(1>

Ntt < "*3 • "*2

Fig. 15.
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Fig. 16.

23. Two general families of surfaces. Most of the results hitherto consid-

ered are special cases of the two following.

Consider the equation

(1)
A2(l - ß2)(a - b)2

f" + —-—- i - 0.
4(z - a)2(z - b)2

If we define X and y by the formulas

(2)    \^A/2+ [(ß2- l)42+l]172/2,    y ^ A/2 - [(ß2 - 1)A2 + iy2/2,

and make the substitution

/ = (z - a)<*-*-T>/»(a - *)»■»+*>/» f,

then (1) assumes the form

(3)
d2v       (I - X - y      1 + X + y) dv \y(a - b)2

-1->-1-v — 0.+
n-x-
K   z — adz2       {   z — a z — b    j dz      (z — a)2(z — b)2

Hence the integral of (1) is given by the expression(44)

(4)       / = (z - ay^-^'^z - 5)<i+*+iO/2H~h<^\
when X¿¿y. Replacing 42 by — A2(n2— 1) in X and y is equivalent to replacing

X and y by X(w) and y(n) respectively, where

X(n) = i{X + y + [(X - t)2 - »2(»2 - l)"1'2]1'2} (n2 - l)1/2/2,
(5)

y(n) = i{\ + 7 - [(X - 7)2 ~ n2(n2 - l)"1'2]1'2}^2 - l)1'2^.

(") Whittaker and Watson (1927), p. 208.
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Hence the solutions Une for the five parameter family of surfaces (4) are ob-

tained by replacing X and y by X(w) and y(n) respectively. This analysis of

course must be modified when X=7, when the result turns out to be exactly

what we have found earlier in equations (22.6), (22.7).

Fig. 17.

The equation

(6) /" + A2[- a2 + b/(z -a)+ c/(z - a)2]f = 0

may be put into the form

d2f
(7)

dy'
+ {- 1/4 + p/y + (1/4 - q2)/y2\f = 0,

which is Whittaker's equation(a), if we choose y, p, q, and r by the definitions

(8) y = r(z- a),        p m bA/2,        q = (1/4 - ¿42)1'2,        r =. 2a4.

Replacing .42 by — A2(n2— 1) in (6) is equivalent to replacing p, q, and r by

p(n), q(n), and r(n) respectively, where

p(n) m iP(n2 - l)»'2,        q(n) =: iq[n2 - 1 - n2/(iq2)]"2,

r(n) = ir(n2 - l)1'2.

Accordingly if the meridian is included in the family

(10) / = BW„[r(* - a)] + CW-p,q[~ r(z - a)],

the complete stress functions UB<: may be obtained by replacing p, q, and r

by p(n), q(n), and r(n), respectively, in (10). This analysis includes much of

that of §21 as special cases.

A result of equal generality could be written down when the meridian is a

(*) Whittaker and Watson (1927), pp. 337, 339-340, 343.
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hypergeometric function, but the formulas are too complicated to be useful.

Some special cases are considered in the succeeding sections.

24. Two pointed domes. Let us consider the pointed dome whose meridian

is the parabola

(1) / = (A/a2)(a2 - z2)

(see Fig. 17). We shall first solve the problem of such a dome subject toits

own weight and uniformly supported. A straightforward calculation with the

integral (12.4) yields the solution

pp       ra*/ a2\        2Az/a2 + P
Nto =-— ( 1 H-) log

n>LA\       16A2J

(2)

4(a2 - z2) LA \        16A2/ 2A/a + a

+ 2a,0+¿)(zp "aa)+¿{aa* " zp4

2¿2(a2 _  Z2)

Neo =- [- pz - Nto/P2],
ai

where for convenience we have used the abbreviations

(3) p m (1 + 442z2/a4)1'2,        a = (í + 442/a2)172.

When the shell is subject to "wind pressure" (14.2), the solution, given by

the integral (14.1), may be shown to be

Fa6p cos 0   r / a2 \ z 2Az/a2 + p
Nt =-—-   C(z - a) + ( 1 + —).— log--

2A(a2 - z2)2l \       84V a 2A/a + a

/ 3a2 a4 \
+ (1-)(p-a)

\        16.12     32^V

a2

(a2/2 + 4^2/3)(p3 - a3) +
84*

A
(4)   Ne =-(a2 - z2) [F cos 0 + 2AN J(a2p2)],

a2

a* "1
-(p*- a") \,
044 J

Net =  -

i2

24 tan 0

a2p

Fa4 sin 0  r 1 / a2 \        2Az/a2 + p
Nt-■-  C H-11 +-llog—--

2(a2 - z2) L a \        8¿V 24/ö + a

/24 1 442        3 1 \ z

\ a3       AaA a*        4o2      44 V p

/ 1 4 \ zp3l      2A2(a2 - z2)
+ (-h-)(3zp/2)H-•   +-Fsin0,

\342      3a2 4^.2J a*p
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where

C - - (l/Aa)[2A2/a2 + 1/4 + 44»/a» - 34/(4a) - a/(84)]

+ — [1 + 3a2/(442)] + <*V(442).
a

We now consider a problem which was treated by approximate methods

by Flügge(4"), namely that of a shell with meridian (1) supported on m col-

umns at z = 0, as was the paraboloid of §21. Flügge replaced the differential

equations of equilibrium by difference equations, then computed the solutions

by interpolation, separating the infinite from the finite portions of the solu-

tions at the apex by taking means. Flügge's numerical result is that A7¿ = 0

at z = a, but in §15 we have seen that when ß = l, which is the case in the pres-

ent problem, Nt must be infinite at the apex. Possibly the apex is no longer

a singularity in the difference equations. It is easy to show that

(5)  UBi=(a2-z2)F([3+Í(8«2-9)1'2]/2, [3-i(8«2-9)>'2]/2; 2; l/2-z/(2a)).

Un2 we shall not wish. The complete stress functions may be expressed in any

one of a variety of forms, as hypergeometric functions with argument

1— z2/a2, Legendre or Gegenbauer functions, and so on, but we shall use the

form (5) as a point of departure. In view of the discussions of §15 a solution

analogous to (21.19) valid sufficiently far from the apex is

2Pa2(l + 442z2/a4)1'2 ^,       sin nt

Nt = —
í(a2-z2)(l + 442/a2)1'2n_m,tr....       n

F([3 + i(Sn2 - 9)"2]/2, [3 - i(8n2 - 9)"2]/2; 2; 1/2 - z/(2a))

F([3 + ¿(8m2 - 9)1'2]/2, [3 - i(8n2 - 9)172]/2; 2; 1/2)

2A2        a2 - z2

cos nd,

(6)   Ne =-Nt,
W a4   (l + 442z2/a4)

2P4 "
Net =-2-1       sin nt

'* ae(l+442/a2)1'2B_1B.tí....

F([5 + i(Sn2 - 9)"2]/2, [5 - i(Sn2 - 9)1'2]/2;3; 1/2 - z/(2a))   ,

F([3 + i(8»2 - 9)l'2]/2, [3 - i(8n2 - 9)1'2]/2; 2; 1/2)        "* "*'

where P is chosen so that P= — A7^!— o, A7^ being given by (2).

The hypergeometric function in the denominators is difficult to compute

from the series, which converge very slowly when n is large, but the for-

mula(47)

(") Flügge (1934), pp. 47-49.
(«) Whittakerand Watson (1927), p. 298, exercise 13.
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F([3 + ¿(8w2 - 9)1'2]/2, [3 - i(8n2 - 9)172]/2; 2; 1/2)

IT1'2

" T(3/4 + i(8n2 - 9)1/2/4)r(3/4 - i(8n2 - 9)1'2/4) '

together with the asymptotic expansion of the r-function(48), from which we

may show that

T(x + iy)T(x - iy) ~ 2tt exp [- 2x - 2y arctan (y/x)](x2 + y2)*-"2

• {1 + 289*/(1728[z2 + y2]) + (173*2 + 259y2)/(31104[*2 + y2]2) + • • • },

enables us to derive an asymptotic formula which serves for ready computa-

tions :

F([3 + i(8»2 - 9)1'2]/2, [3 - i(8n2 - 9)1'2]/2; 2; 1/2)

« 2-"4(«ir)-1'2 exp [3/2 + ([8»2 - 9]1'2)/2-arctan ([8n2 - 9]1'2/3)].

Thevaluesof this function for« = 8, 16, • • • are 5.36X10», 1.31X1014,
But even when z>a/2, that is, in the upper half of the dome, the remaining

hypergeometric series occurring in this example converge so slowly as to

make computation impractical unless some asymptotic formula is used. In-

stead of attempting to complete this example numerically, we shall consider

a dome of a very similar meridian for which the computations are much

easier. In passing we need merely notice that at the apex z = a the hyper-

geometric functions in the numerator of (6) have the value 1, while at the

base z = 0 they are very large; thus the effect of the singularity at the apex

will be confined to a very small region near it.

A shell whose meridian is practically indistinguishable from (1) (see Fig.

17) is given by the formula

(7) /= 4 cos [«/(2a)].

The solution for the uniformly supported shell loaded only by its own weight

is

lap   {l + [4V/(4a2)] sin2 [«/(2a)]}1'2

3v cos [«/(2a)]

(8) • [{l + 427r2/(4a2)}372 - {1 + [4V/(4a2)] sin2 [«/(2a)]}3'2],

Neo = - [pA2ir/(4a)] sin [«/a]

AV(cos [irz/a] + 1)

~ 8a2{l + [¿27r2/(4a2)]sin2 [«/(2a)]}     *'

The solution for the shell supported on m columns is easily found from the

results (21.5):

(48) Whittaker and Watson (1927), p. 253.
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(9)

Nt = -

Ne =

C. TRUESDELL [July

2P(1 + [42ir2/(4a2)] sin2 [vz/(2o)]y*

t cos2 [«/(2a) ]

" sin nt sh [ir(n2 - l)x'2(a - z)/(2a)]
T.-;-COSW0,

»_».£....       n sh [«•(»*- l)«»/2]

tt242cos2 [«/(2a)]

4a2[l + [4V2/(4a2)] sin2 [«/(2a)]}
Nt,

PAt        , , (
A7«* =-sec [«/(2a) ] < tan [«/(2a) ]

at I

-   z

• sin M« sh [x(w2 - l)»'2(a - z)/(2a)]
y.-;-1-sin nd

*-»,£.... n                sh[Tc(n2 - l)x'2/2]

(n2 - l)1'2 ch [w(n2 - iy2(a - z)/(2a)]            )
sin nt

sh [7r(n2 - l)1'2^]

N,

9=0

500-250 0

6=0

0+250 +1000    +1500     +2000
+500

Fig. 18.

For comparison with Fliigge's numerical results for the meridian (1), I have

appended a graph (Fig. 18) of the solutions (8) and (9) superposed, when

£ = l,a = ll,4=15, e = 7r/64, jm = 8. The results are qualitatively the same as

Fliigge's, except that in his work, as we said before, the fact that Nt is infinite

at the apex does not appear. The quantitative difference may be due to three

reasons: that Fliigge's results are approximate, that Flügge does not state,

and indeed does not seem to use, the width of the supports, and that the

meridian (7) is slightly different from the meridian (1). The effect of the non-

uniform support is noticeable only in the lower half of the dome, and in that

there is a singularity, quite unperceivable except in a small region near the

apex.

25. Two open domes. The dome whose meridian is the hyperbola (see

Fig. 19)

(1) f=A/z
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is free of singularity in the region where z>0. Let us first treat a shell sup-

ported uniformly at z = z0 bearing uniformly a load H, say the weight of some

Fig. 19.

superstructure, at z = S\. Then we shall prescribe that Nt» |.-« shall be the re-

sultant of the downward force/length due to the load, —H(2wr2 sin «)|,_,j,

and a horizontal force/length due to a stiffener :

*. 1/2
(2) AV.I-.. **-H(A  + zi)    /(21r4zl).

From the integral (12.4) the desired solution is easily found.

/>(42 + z4)1'2r(42 + z4)1'2      (42 + z4)1'2

Nto =

(3)
2z

- log
z2 + (42 + z4)1'2

z2 + (A* + z4)1'2 "     irap

-1-
■ap J

To solve unsymmetrical problems we shall need the real form of the solution

(21.9),

(4)
|-(8«2- 9)1'2 z "I

U« = 4nz>'2 sin I-^— log —J.

Suppose now the shell bears its load H at z = Zi on r symmetrical columns of

angular width 2tj, and is itself supported at z = z0 on s symmetrical columns of

angular width 2e, 0=0 being the location of the center of one column of each

set; then upon (3) must be superposed the solution
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2P
Nt = z1/2(42 + z4)1/2{-—

1   ijz}'2(42 + z4)1'2

(5)

r(8»2-9)1'2 zl

H   2    logd

r(8»2-9)1'2 zil

L—;—logd

■(gw2_  9)1/1
sin [

sin me
X        y_]-cos n0

n-rj!...     n        .   r(8»2- 9)1'2
sin

+•
ezj'2(42 + z4)1'2

.   r(8«2-9)"2 zl
äin   -log —
J^ 2 ëzJ
• p

sin   -

sin
Esin nt

- cos nd)
n=.,2.....     n        .   V(8n2- 9)1'2        80"*

i—log;r.

where

(6) P = — Nt» |i-n,        Ö = — ^*o |«-<o>

A^o being given by (3).

If the meridian is of form

(7) / = a + fa', v > 0,

points on the ring z = 0 are singularities, and the considerations of §17 are

applicable. It is not difficult to verify that

(8) 0,1 = zF((l + p)/(2v), (1 - p)/(2v); 1 + 1/v; - bz'/a),

where p= [l — iv(v— \)(n2— l)]1'2. The case when v = 1/2,

(9) / = a + ¿z1'2,

(see Fig. 20) is of particular interest; for this case

(10) UBl = zF(i + n, 1 - w; 3; - bz"2/a) = zHn-i(- bz"2/a),

where Hn(x) is Jacobi's polynomial(49). For a profile of Ntn,w see Fig. 20, with

which Fig. 8, §21, should be compared, the meridians being of the same shape

but the one shell having a closed top, the other an aperture. All sorts of un-

symmetrical problems are easily solved with the meridian (9).

(«) Bateman (1932), p. 392.
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K("     A/"'     »r«>
"*i ,  "t3 ,  ^ti

Fig. 20.

26. Two domes with a point of inflection in the meridian. The meridian

(1) / = Azf(i + Bz)

has a point of inflection at the point z= — 4(¿u — l)/(23(/¿ + l)). The stress

functions satisfying the boundary conditions at z = 0, if they can be satisfied

at all, are given by the formula

(2) Uni = 2"+l)'!F(ff, b; c; - Bz),

where

p ;= [1-4M(m- \)(n2- l)]1'2,        a^(p + q)/2,        b m (p - q)/2,

q= [1 -4p(jt+ l)(n2- l)]"2,        c^i + p.

When ß = \/2 the formula (2) becomes simply

(3) Um = z<"+1>'2F(«/2 + i(3n2 - 4)1'2/2;«/2 - i(3n2 - 4)1'2/2;n + 1; - 23z).

If one sketches a curve of the family (1), he will find the point of inflection
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hardly noticeable, as may be seen from the special case for which we give a

profile in Fig. 21.

Fig. 21.

A meridian with a much more marked point of inflection is given by

(4) / = (tan z)1'2.

For this meridian, the complete stress functions satisfying the boundary con

ditions at the apex z = 0 are given by the formula

U„i = tan<"+1>'2 zF([n + 2 + i(3n2 - 4)1'2]/4,

[n + 2 - i(3n2 - 4)1'2]/4; n/2 + 1; - tan2 z).

Fig. 22.
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Unlike the series occurring in (24.6), the hypergeometric series (5) converge

very rapidly even reasonably far from the apex, provided n is not too large,

and the profile (Fig. 22) was not very tedious to compute. Since the exponent

of (4) at the apex is 1/2 (see §15), all sorts of problems may be treated suc-

cessfully for this meridian; the labor of computation is much less than for

the meridian (1).

27. Stress functions for a few other surfaces. To save possible labor for

engineers computing shells we list a few other meridians and their stress func-

tions.

If c=-l/2 + (l-42)1'2/2, and if 2Z[x] is the complete solution of the

associated Legendre equation, then the stress functions Unc for the family of

surfaces with meridian

(1) /=sf[tnh(z + a)]

may be obtained by replacing A2 by — A2(n2 — 1).

/ = A(e> - e») (cf. (21.4)),

Uni = F(i(n2 - l)1'2, - i(n2 - l)1'2; 1; e*-»).

/=(sinz)1'2 (cf. (21.4), (26.4)),

(3) U„i = sin<»+1"2 zF([n + 1 + i(n2 - l)1'2]^,

[n + 1 - i(n2 - l)1/2]/4; n + 1/2; sin2 z).

/=4tanz (cf. (26.4)),

Uni = F(a, â; 1; sec2 z)

7T1'2

(4) =-F(a, d; 1/2; - tan2 z)
r(6)r(5)

2t1'2 tan z
+ ———-— F(b, I; 3/2; - tan2 z),

T(a)T(a)

where a=[l+i(8n2-9y2]/4:,b = a + l/2.

f = A sin2 z,
(5)

U„i = sin" zF(- 1, 0; p + 2i(n2 - l)1'2, p - 2i(n2 - l)1'2, 2p, 1/2; sin z),

where p= —1/2 — i(8n2 — 5)1/2/2, and F(a, q; a, ß, y, 5; x) is the function of

Heun(50). This last meridian is an example of Case III, §15, and hence, as we

may verify from the stress functions themselves, is not suitable for problems

of shell theory unless the apex is cut out. Should one wish to treat it, a more

convenient solution can be obtained in the form

(so) Whittaker and Watson (1927), pp. 576-577, exercises 7-10
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(6) UBC = a» + \T, (amcos 2mz + bm sin 2wz),
M—1

where ai = 0, a2 = 2(w2 —l)a0/(«2+3), &2 = 2&i/(«2+3), and both the an and

the bn satisfy the same recurrence formula

(m2 + 2m + «2)am+i = 2m2am — (m2 — 2m + n2)am_i.

28. Nemenyi's integral equation. If we integrate the equation of the stress

functions (11.8) twice, by reversing the order of integrations we obtain a

linear integral equation satisfied by the function Un :

Ü„(z) =UB(a) + (z-a)U„'(a)

(1) C' /"(Ö C     ff
+ (1 - n2) \    dü(z - 0 ¿-^-\Xn(0 + I   del    gn(v)dv.

J a f(í) Ja Ja

Since by differentiating (1) we may obtain (11.8), (1) is an equivalent form

of the stress equation. If it is possible to satisfy the conditions of equilibrium

at the top of a closed dome, z = a, we shall find that U„(o)=0, and usually

Un'(a)=0. Then for the homogeneous stress functions UBc the equation (1)

becomes the integral equation

(2) UBC(z) = (1 - n2) i" (z - Ö 4^U"c(i)^
J a A«)

originally deduced by Nemenyi(61) from graphostatic considerations. It was

through this equation that Nemenyi introduced stress functions which are

essentially the UBC and arrived at a special case of (11.8). Nemenyi has given

a simple physical interpretation of (2); the right-hand side represents the

static moment of a section of the meridian line of the middle section from the

apex z = a to z, subject to a load f"\X„c/f- Then if one has a start at the apex,

one may proceed in finite steps downward, computing approximate values of

Une by graphical means. To obtain U„ when there is a load, one need only

add the integral involving gn(z) in (1), which may be computed mechanically

if necessary. To obtain the start at the apex, one may approximate the middle

section either by the curve f = Az" or by the curve/=4z"(l+23z) which we

have treated exactly in the previous sections (see (21.9) and (26.1) respec-

tively). Thus the stresses for any load distribution on any dome may be found

approximately.

While the graphical means just outlined may serve to treat a quite arbi-

trary meridian, it is tedious to carry out. A more practical approach, proba-

bly, would be, given a meridian, to find one approximating it closely from

one of the numerous infinite families which we found in the previous sections

to be amenable to a simple exact solution.

(") Nemenyi (1936).
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Index of definitions and notations

Only those quantities used in more than one section are listed. The num-

bers refer to the section where the quantity or term is defined.

complete stress functions

conical coordinates

displacement functions

insoluble

membrane stress

moment resultants

particular stress functions

revolution coordinates

singularity (of a shell)

soluble

Nt, Nt, Nye, Ney, Net, A7*«

Ain, Ntn,  Netn

11

3

is a(;b
9 p

6,10 Qt, Qe, Qy
4 R

11 ru r2

3 u,v,w

3 U,V,W

9 Un,   Vn,   Wn

soluble in the membrane theory     15    UB, U»i, Un2, UBP, Un

stress functions

stress resultants

thickness

A (9), B(9)
Cn,Dn

D
E

F

f,f(z) 8
gn(z) 11

hn(z) 18 9

K 5 ß
Lx, Ly 4 v

Me, Mt, Met, Mte, My, Mey, Mye 4 <p

11      93„, SSnl, «U 25BP
4 x
3    X,Y,Z

6 Xt, Yt, Z,
11 y

5 z

5
18    a

14, 7     a„i, a„2

8
A

4
11
15

12,7
4

3,5,9
3

5,8
5,8

18
11
18
3

6,10
11
4
3
8

3
15
3
5
3

15
5
3

References

This bibliography lists only those books and memoirs to which the text

refers explicitly.

Three-dimensional elasticity

Books

A. E. H. Love, The mathematical theory of elasticity, 4th ed., Cambridge, 1927.

E. Trefftz, Mathematische Elastizilätstheorie, Handbuch der Physik, vol. 6, 1928, Berlin.

I. S. Sokolnikoff, Mathematical theory of elasticity (notes), Brown University, 1941.

Memoirs
G. Lamé, Mémoire sur l'équilibre d'élasticité des enveloppes spheriques, Journal des Mathé-

matiques vol. 19 (1854) pp. 51-87.



166 C. TRUESDELL

H. Neuber, Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitälstheorie, Zeit-

schrift für Angewandte Mathematik und Mechanik vol. 14 (1934) pp. 203-212.

F. Odqvist, Équations de compatibilité pour une système de coordonnés triples orthogonaux

quelconques, C. R. Acad. Sei. Paris vol. 205 (1937) pp. 202-204.

The theory of shells

Books
J. W. Geckeler, Elastosiatik, Handbuch der Physik, vol. 6, 1928, Berlin.

W. Flügge, Statik und Dynamik der Schalen, Berlin, 1934.

S. Timoshenko, Theory of plates and shells, New York and London, 1940.

Memoirs

H. Aron, Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten

elastischen Schale, Math. Ann. vol. 78 (1874) pp. 136-174.
H. Reissner, Spannungen in Kugelschalen {Kuppeln), Müller-Breslau Festschrift, Leipzig,

1912.
E. Schwerin, Über die Spannungen in symmetrisch und unsymmetrisch belasteten Kugeln

{Kuppeln) usw., Dissertation (1917), Berlin, 1918.

F. Dischinger, Schalen und Rippenkuppeln, Handbuch für Eisenbetonbau, vol. 6, 1928,

Berlin.

P. Nemenyi, Beiträge zur Berechnung der Schalen unter unsymmetrischer und unstetiger

Belastung, Bygningsstatiske Meddelelser (Denmark), 1936.

A. Pucher, Über die Spannungsfunktion beliebig gekrümmter dünner Schalen, Proceedings

of the Fifth International Congress of Applied Mechanics, New York, 1939.

E. Reissner, A new derivation of the equations for the deformation of elastic shells, Amer. J.

Math. vol. 63 (1941) pp. 177-184.
J. L. Synge and W. Z. Chien, Intrinsic theory of elastic shells and plates, Karman Anniver-

sary Volume, Pasadena, 1941.

P. Nemenyi and C. Truesdell, A stress function for the membrane theory of shells of revolution,

Proc. Nat. Acad. Sei. U.S.A. vol. 29 (1943) pp. 159-162.
C. Truesdell, The membrane theory of shells of revolution, Dissertation (1943), MS in Prince-

ton Library.

Differential equations and special functions

E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge, 1927.

H. Bateman, Partial differential equations of mathematical physics, Cambridge, 1932.

Princeton University,

Princeton, N. J.


