
A CLASS OF HARMONIC FUNCTIONS IN THREE
VARIABLES AND THEIR PROPERTIES

BY

STEFAN BERGMAN

I. Introduction

1. General remarks on operators generating solutions of partial differen-

tial equations in two variables and harmonic functions in three variables. In

order to study the properties of real solutions of partial differential equations

d2U       d2U dU dU
(1.1) L(U)m—T + —T + A— + B — +DU = 0,

ax\ ox2 dxi dx2

integral operators of a certain type have recently been applied in papers [3,

4](x), and other publications indicated in [4].

By means of these operators it was shown that a duality exists between

certain classes C(E) of complex solutions, u, of an equation L and analytic

functions/(z) of a complex variable z =Xi+tX2.

These complex solutions were obtained in the following manner:

To every differential equation L whose coefficients A, B, D are entire func-

tions of xi and x2, integral operators(2)

u(xi, Xi) = P(/) -  f1 E(«, z, t)f[z(l - t2)/2]dt/(l - t2)1'2,
(1.2) J-i

Z = Xi + ÍXí, Z = Xi — ÍXí,

have been determined which transform analytic functions, /, into complex

solutions, m, of L such that when/ ranges.over the totality of analytic func-

tions, Re[P(/)] ranges over the totality of real solutions of L (Re = the real

part).

We have a certain amount of freedom in choosing E for a given equation L,

Presented to the Society, October 28, 1944, under the title Representation of potentials

of electric charge distributions; received by the editors June 30, 1945.

(') The numbers in brackets refer to the bibliography. The present paper does not presup-

pose knowledge of previous publications of the author.

(2) The relation u = P(/) can be interpreted as a mapping (in the function space) of the class

of analytic functions, /, into the class, (^(E), of complex solutions « of L. It should be stressed

that in this approach the domain in the XiXj-plane in which the functions u(x,, x¡) are considered

iá not a fixed region. The representation (1.2) in many instances is valid in any simply con-

nected domain which includes the origin and in which the function u under consideration is

regular. (It may well happen that this domain is the whole plane or a Riemann surface over the

whole plane.) A further feature of this approach is that the use of operators yields results con-

cerning the behaviour of u outside the domain, in which it is represented by (1.2).
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that is, using integral operators (1.2) and conveniently changing the func-

tion E, we can obtain various classes, (3(E), of complex solutions of the same

equation (3) L. By a convenient choice of(4) E we obtain a certain class (?(E)

of complex solutions u, where each u is connected in a comparatively simple

manner with the corresponding function /. See [4] and the papers indicated

there.

Since the theory of analytic functions of a complex variable has been ex-

tensively studied, the use of the integral operator described above enables us

to "translate" many results of this theory to the case of above-mentioned

complex solutions of L, and consequently use them for the study of real solu-

tions of L. The class of functions u mentioned above is particularly suitable

for transferring certain essential properties of analytic functions to the theory

of partial differential equations. On the other hand for the derivation of some

special properties of real solutions it is more convenient to use other classes

of complex solutions than the class mentioned above. Further, using generat-

ing functions different from those of the first kind we obtain various new theo-

rems concerning the IPs. These results often are different from those which

have been obtained by analogous considerations but using the generating

function of the first kind. These are some of the reasons why the derivation

and investigation of all possible operators which transform analytic functions

of a complex variable into solutions of L is of considerable interest.

The next step in the development of this theory is the application of a

similar method to equations in three variables. The Laplace equation in three

variables represents the simplest case in this study.

Investigating solutions of this equation we can consider either a single

harmonic function h(xi, x2, x3) or a "harmonic vector" H (that is, a triple of

functions), whose components satisfy the relations

(1.3) VH = 0,       V X H = 0.

We note that in the case of two variables the relations (1.3) are the Cauchy-

Riemann equations.

There exists a simple relation between the theory of harmonic vectors and

that of harmonic functions, since by applying the operator V one can obtain

a harmonic vector from a single harmonic function.

Another alternative consists in considering either real or complex har-

monic functions and vectors. In physical applications we need, of course, real

functions ; but in the process of investigation it is sometimes more convenient

to operate with complex functions.

(*) To each choice of E corresponds a certain relation between the real and imaginary

parts of u, U and V, respectively. If therefore «i and «2 are two complex solutions of L, which

have the same real part but which belong to two different classes, then, in general, the imaginary

parts, Vi and V¡, of u, and u¡, respectively, will be different.

(*) This function E is often denoted as the generating function of the first kind.
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As has been indicated before in the study of different properties of real

solutions of an equation it may be more convenient to u'se one operator rather

than another.

This is particularly true in considering equations in three variables. In

[l,2] the author has introduced the operator(6)

h(xi, x2, x3) = P2(/) m ff(Z, f)<tf,
(1.4) J¡¡

z = xi + ux + \~i)x2/2 + a - rW2

which generates harmonic functions from analytic functions of two complex

variables Z and f. Here S is a closed curve in the complex £" plane. As we shall

explain in more detail in the next section, it is of interest in the three-dimen-

sional case to investigate in addition to (1.4) other types of integral operators

which generate harmonic functions.

In the present paper the operator(6)

(1.5) h(xu xt, x3) = H(E) =  f E(*i, xt, x3; f)/(f)áf
J a

which generates harmonic functions and which is different from (1.4) is con-

sidered. Here

/   3 \ -1/2

(1.6) E(xlf Xi, x3; f) =  j £ [xh - w*(f)]2|       ,

Wjb(f), k = l, 2, 3, being some fixed rational functions of f.

2. The theory of operators in the case of harmonic functions in three

variables and the theory of integrals of algebraic functions. In an approach

based on the introduction of integral operators the following two questions

present themselves almost immediately:

(1) The determination of the domain(7), a, in which the operator, that

is, the integrals (1.2), (1.4), (1.5), respectively, in the cases under considera-

tion, represents a solution of the equation.

(2) The determination of means for analytic continuation of the solution

outside the domain a (or a connected subdomàin of a in which a solution is

(6) (1.4) is a generalization of the Whittaker operator, which we obtain by substituting

J-""«*1 in (1.4), and specializing 2 to be the unit circle. It should be stressed that in the approach

developed here and in previous papers of the author the interest lies not in the operators them-

selves but mainly in their use as a tool for translating results from one theory to the other and,

in the ultimate goal, as a means for studying real solutions of L.

(6) The function / is denoted as the associate function of h with respect to the operator E.

(7) Clearly it can happen that the domain in which the integral operator exists consists of

several disconnected regions, in each of which the integral operator represents another function,

or another function element of the same function.
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defined by the integral operator) into the whole domain of regularity of the

solution under consideration.

A closer examination of operators (1.4) and (1.5) leads in problem (2) to

the conclusion that in the case of harmonic functions it is useful to consider

not all harmonic functions generated by the operator when the function /

appearing in the integrand ranges over the entire class of analytic functions

of a complex variable, but rather certain subclasses of harmonic functions,

name'ly those for which the results of the theory of analytic functions of a

complex variable possess a particularly simple "translation" with respect to

the operator to be employed.

In order to clarify what is meant by this last statement it will be useful

to compare (from a certain point of view) the similarities and differences that

occur in the transition, by operators, from analytic functions to solutions of

differential equations of elliptic type in two variables with those that occur

in the passage to harmonic functions in three variables.

In passing from analytic functions of one complex variable to harmonic

functions in three real variables, we increase the number of variables, render-

ing the corresponding "translation" of the results of analytic function theory

more difficult of interpretation, and, as a consequence, these "translated"

statements often assume a form which is quite different from that in the case

of harmonic functions of two variables.

On the other hand in the case of equations L, see (1.1), in (1.2) a generat-

ing function E(z, z, t), z=xx—ix2, appears which has a transcendental char-

acter and which considerably changes the behaviour of the obtained functions

at infinity; in the case of harmonic functions in three variables there exist

operators whose generating function is either 1, see (1.4), or an algebraic func-

tion of xi, Xi, X3, see (1.5).

This fact suggests considering at first the subclass of harmonic functions

whose associates, /, are rational or algebraic functions. The study of the sub-

class obtained by (1.4) or (1.5) becomes in this case the investigation of

integrals of algebraic functions, which in addition to the (complex) integra-

tion variable f depend upon three real parameters, namely the cartesian co-

ordinates Xi, x2, Xî of the space. The classical theory of integrals of algebraic

functions is a highly developed branch of analysis, and the investigation of

the subclass of harmonic functions obtained in the manner described above

reduces itself to interpretation of classical results on integrals of algebraic

functions.

As a consequence of this fact, the study of the various operators that may

be employed in the case of harmonic functions in three variables forms a par-

ticularly interesting study, since in this case there correspond to the totality

of algebraic functions of one variable many different classes of harmonic func-

tions in three variables. For instance the operator (1.5) (when/ ranges over

the totality of algebraic functions) yields a harmonic function with singulari-
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ties along segments(8) of rational curves('), while the operator (1.4) yields in

the same case only functions which are, as a rule, singular along closed curves.

3. A general survey of methods and results. This paper is an investigation

of certain properties of harmonic functions h(xi, x2, x3) oí three real variables

generated from the class of analytic functions /(f) of one complex variable

by means of the integral formula

(1.7) A(X) = JE(X; ttrtf)#,

see (1.5). In this formula X represents the number-triple (xi, x2, x3) and may

be interpreted as a position vector in the space r of three dimensions; f is a

complex parameter ranging over the complex f-plane; 8 is a specified curve in

the f-plane; E is given by (1.6), and/(f) is an analytic function of f. It will

be assumed hereafter that f is restricted to the regularity domain of /. It is

evident that E is a complex harmonic function, so that the integral Â(X) is

a complex harmonic function in three variables.

In addition to problems (1) and (2) of §1, this paper considers the question

of determining the special properties of h which result from the particular

form of/—namely that/ is a rational function (see the remarks in §2).

The integrand of (1.7) is an analytic function of f which depends on the

three real parameters (xi, x2, x3), that is, it represents a three-parameter fam-

ily of complex analytic functions. A function of this family belongs to each

point X£r, the euclidean three-dimensional space. For a fixed X, the inte-

grand is a two-valued analytic function of f, defined on a Riemann-surface of

two sheets, denoted by 5R(X). The number of branch points depends on the

form of the tt.-(f), as well as on the particular point X. As X ranges over r,

SR(X) changes continuously, that is, the branch points of 9î(X) continuously

change their positions in the f-plane. It may happen that two distinct branch

points coincide for certain values of X. Denote the set of all points X for which

two branch points coincide by €; the set 8 is henceforth to be excluded from

consideration. If there are any values of X for which a factor of E vanishes

identically, independently of f, such points are also to be included in 8 and

therefore excluded from the domain of definition of (1.7) (§1 of chap. II).

Furthermore, the integrand becomes infinite at all the zeros of the quantity

under the square root (1.6). The set of points X for which this happens lies

on a surface 3, and clearly the integral (1.7) is not defined on $• Conse-

quently the integral representation (1.7) of h is defined in the domain

ct = r — 8 — 3. The form and mutual relations of the singular lines 8 and the

(*) The harmonic functions which are singular along a segment of a rational curve in the

Xi, Xi, xs space represent a very important subclass of harmonic functions. They admit the

physical interpretation as potentials of linear charge distribution along segments mentioned

above.

(9) A curve is said to be a rational curve if it can be represented in the form xk = ut(t),

where «t are appropriate real rational functions of the real variable /.
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discontinuity surface 3 can be explicitly determined when the functional forms

of M,(f) and of/(f) are given (§3 of chap. II). The first problem may now be

considered as solved in principle^0).

In order to continue A(X) outside a it is necessary to find out how the

surface 3 is determined by the path of integration, 8. In §4 of chap. II, it is

shown how to construct 3 when 8 is given. As 8 varies 3* varies also (changing

the domain a). The boundary curve of $ does not vary however, since the end

points of 8 are kept fixed.

For a fixed point X the value of the integral is the same no matter how 8

is deformed, provided that it passes over no singularity, because the integrand

is an analytic function of f. By varying 8 we vary 3, and therefore a. This

process defines the harmonic function h(X.) at points which were not included

in the initial domain of regularity of the integral representation; therefore

this is a method of analytic continuation^1). In general, a point of 3 (not

on its boundary) is a regularity point of h(X) (§5 of chap. II). On the other

hand, a surface 3 may contain points over which h(X.) cannot be continued.

These singularities are (in general) independent of the particular integral

representation and may be regarded as singularities of the function h which

can not be removed by analytic continuation.

Remark 1.1. It is clear that in the general case h(X.) defined by analytic

continuation is a many-valued function of X. If h(X.) is continued analyti-

cally around one of the singular curves, it may happen that h will not return

to the same value from which we started. This is analogous to the situation

in the theory of many-valued analytic functions, and an analogous device

may be used in treating it. A generalization of the Riemann surface may be

defined, each "sheet" consisting of a region in space of three dimensions, called

a space-sheet. Different sheets which may be finite or infinite in number and

extent are joined at the singularity curves, which here play the part of

"branch-lines."

Chapter III is devoted to the special case where/(f) is a rational function.

The integral formula (1.7) for h(X.) then becomes a hyperelliptic integral in f

depending on the parameter xi, x2, x3. The methods of Weierstrass for the

theory of algebraic functions are employed because they lead to explicit for-

mulas from which it can be seen how the functions defined by the integral de-

pend on X (§1 of chap. III). The Riemann surface 5R(X) which is determined

by E(X; f) possesses an even number, say 2p + 2, of branch points; its genus

is p. (Clearly p is independent of X.) By a linear transformation (3.1) one of

(l0) The reader is cautioned to distinguish carefully between the harmonic function Ä(X)

and its particular representation in the form of the integral (1.7). In general, the integral repre-

sents A(X) only in a part of the full domain of regularity (which is found by analytic continua-

tion). See below.

(u) In §6 of chap. II we use this device to obtain a formula for the saltus at a point of the

discontinuity surface 3.
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the branch points is removed to infinity. Call the modified Riemann surface

SB(X) (§2 of chap. III). Now cut 2B(X) by p loop-cuts and p crosscuts in the

manner described in §3 of chap. Ill and introduce the periods of the normal

integrals of the first and the second kind of the surface SB(X). These periods

[period functions waß(X), r)aß(X.)] are infinitly many-valued functions of X.

They become single-valued functions if we consider them in a suitably con-

structed domain of the type described in Remark 1.1 (§4 of chap. III). Now

we form the Weierstrass H-functions (§5 of chap. Ill), with the aid of which

the normal integrals of the first, second and third kind may be defined. These

integrals depend on the end points of the integration path 8 as well as on X.

Then in §6 of chap. Ill, A(X) is expressed as a linear combination of normal

integrals with coefficients which are algebraic functions of X. Finally in §7

the theta-functions 6(ui, ■ ■ ■ , u„;X) are introduced, whose parameters (not

appearing, as arguments of 6) are period functions of §4 of chap. III. p

is the genus of 2B(X).
It is one of the most important achievements of the theory of algebraic func-

tions that the normal integrals of the second and third kind can be expressed

explicitly in a closed form in terms of integrals of first kind, the 0-functions, and

the first derivatives of 0-functions. As a consequence of this theorem we ob-

tain in §7 the following result: Consider the subclass of S (E, f0, fi) of harmonic

functions which one obtains fixing E, see (1.6), and the end points f0 and fi,

but permitting / to range over the totality of rational functions in f. Every

subclass S (E, fo, fi) possesses a finite basis, more precisely, there exists a

finite number of (transcendental) functions in X which can be determined

from E, fo and fi and such that every function A(X) of the subclass can be

represented as a (closed) algebro-logarithmic expression involving the above

0-functions, their derivatives with respect to ua, and some algebraic functions

in X as well as finitely many functions mentioned above.

4. Concluding remarks. In addition to investigating a class of harmonic

functions which play an important role in physical application, the purpose

of the present paper consists in developing an approach to three-dimensional

harmonic functions in the framework of the theory of operators.

As we have emphasized there exist operators similar to (1.4) and (1.5)

which transform analytic functions of a complex variable into classes of solu-

tions of partial differential equations of elliptic type in three variables. (They

degenerate in the case of the Laplace equation to (1.4) and (1.5), respec-

tively.) It is of interest to usé these operators to study not only the "transla-

tion rule" which governs the transition from analytic functions of one com-

plex variable to the class of (complex) solutions of these equations, but also

the relations which exist between the latter class and classes of harmonic

functions in three variables.

The present paper and [l, 2] form one of the bases for investigations of

this kind.
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The considerations of chapter III assume that the associate/(f) is a ra-

tional function of f.

In order to generalize them to the case where the associate/(f) is an entire

or meromorphic function of f it would be at first necessary to develop a

theory of integrals of entire or meromorphic functions of a complex varia-

ble(ls).

The present knowledge of the theory of analytic functions of a complex

variable makes the development of such a theory quite feasible.

In this connection I should like to indicate one further interesting possi-

bility of applying the method employed in the present paper.

Suppose that/(f) is an entire function, that we fix the initial point, say

fo of the integration curve, and that we consider the behaviour of our functions

as a function of the end point, f, of 8 when f —» oo. If the function E and the

series development of h(xi, x2, x3) at the origin are given, then it is possible

from these data to determine the coefficients of the associate function/(f).

Since we assume that/(f) is an entire function, the classical theorems give

us the upper bound for the growth of/(f), and consequently upper bound of

the integral (1.5) at a fixed point Xi, x2, x3, where the end point of the integra-

tion curve goes to infinity.

Harmonic functions generated in a way similar to that developed in the

present paper were considered in the literature. (We wish especially to indi-

cate the important paper by Sommerfeld [6] where functions of the form

/i ir                                                                    J                                                                                   gi<t>'ln
-_   .-.-da

a-o [(xi - p cos a)2 + (x2 - p sin a)2 + (x3 - z)2]1'2 e'"'" - e'*''n

are considered.)

However the papers mentioned above are devoted to quite different ques-

tions from those studied here, and have almost nothing in common with our

considerations.

II. The properties of the integral (1.5)

1. Notation. An exact description of the operator. In the following, let

N l   N

(2.1) Uk  =   Uk(0   =   22 ^¡fc-l.nf" /   22 A2k.nt", k   =   1,  2,  3,
B—0 /       n—0

denote three rational functions of a complex variable f ; A*,„, k = \,2, • • • , 6,

« = 0, 1, 2, • • • , A, are complex numbers. Let

(2.2) X = «iii + x2i2 + x3is

represent the (variable) vector m three-dimensional Euclidean space; Xi, Xi, Xt

(12) This approach becomes particularly fruitful when we investigate complex functions

h{x\, x2, x3) since in this case we can apply many results in the theory of value distribution of

entire functions of a complex variable.
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are Cartesian coordinates in this space and i* is a unit vector in the xk direc-

tions, k = l, 2, 3. We now form the expression [Zt-i (xk — «t(f)2]1'2. The term

in brackets when multiplied by the product of the denominators of the m*'s is

a polynomial, P(f, X), in f which depends upon X. A formal computation

yields

Pis, x) = |[ n( E^w) j[ 22 (** - «*(f))2]|

i r " ~~\2 r N ~~\2 r N "i2
=    Z      Z (XkA2k,n - A2k-i,n)tn       \    22 A2k',¿» II    22 A2k»,¿'

k-1 L n-0 J     L M-0 J      L v-0 J

(2.3)
3

=   22  22  (XkA2k,y  —   A2k-X,i)(xkA2k,n

- A2k-1,n)A2k^A2k,mA2v,,A2k:,,?+»+»+m+'+'.

Here *'-* + lf k"=k + 2 (mod 3), 22=Z?-o22Lo22?-o22l-o'Z?-oZ?-o-
The algebraic function [P(f, X)]1/2, X fixed, defines a Riemann surface,

$R(X). By

(2.4) eK = eKÇK), n = 0, 1, • • • , 6A - 1,

we denote the branch points of 9î(X). Clearly the e«(X) are the zeros of the

polynomials P(f, X) (see (2.10)).

The points X of the space r,

(2.5) r = E[x\ + xl + xl < oo],

for which at least two branch points e«(X) coincide (although for other X

differing from one another) will, in general, form an algebraic curve

(2.6) «i = E[P(f, X) = 0, Pf(f, X) = 0],        Pf^óP/óí.

Remark 2.1. Eliminating f from both equations in the bracket of (2.6) we

obtain an equation with complex coefficients whose arguments are *i, x2, x3.

Taking the real and imaginary parts of this equation, we obtain two real

relations between xi, x2, x3, which, in general, define a line. It may, however,

happen that one of these equations vanishes identically(13), then (2.6) repre-

sents a surface unless the resulting equation is a line in r. (2.6) may, on the

other hand, be only a point in r. (See the example given in §2.)

We denote by 82 the set

(2.7) «s = E   ôo(X) m 22 (xkAik,N - ^24_i,^)2^L',^2*»,j\t = 0

(") If we were to consider our functions in the (six-dimensional) space of the three complex

variables *,, x¡, x3, these exceptional cases would not appear. Since, however, we consider only

the real (three-dimensional) space we must take into account that some exceptional cases do

occur. In order to stress this fact, we shall, in the following, add the phrase "in general" when

formulating results of this kind.
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and shall write

(2.8) g = «t + 82.

Remark 2.2. If the uk are polynomials, then 82 is empty. If the uk are frac-

tions of two polynomials then, in general, 82 is an intersection of two surfaces

of second order. This intersection becomes a single point if all A,,n, N=l,

2, ■ • • , 6, are real. We write

(2.9) E(X, f) = —-Í-—- =  n( ÍA2k,A/ [P(f, X)]"2
r 3 1»*      *_i\^_i        //
I   £ (Xk - uk(í))2\

where

(2.10)

P(t,X) =b0(X) ti [r-e.(X)J,

3
^-\ 2        2 2

¿>o(X)   =     ¿_i (xkA2k,N  —   -42fc_l,jv)   ■ A2k' ,N- A2k"tN,

see (2.3).

We now define the operator P by

(2.11) P[/, 2, X G U(Xo)] =  f E(X, f)/(f)¿f, X G U(X„).

Here U(X0) is a sufficiently small neighborhood of Xo and / is an analytic

function of f regular in a domain 3), which domain includes the integration

curve 8. 8 is an oriented curve in the schlicht f-plane, which is assumed to

consist of finitely many regular arcs. The initial and end points of 2 will be

denoted by f0 and fi, respectively.

If? is placed on the Riemann surface 5R(X), X£r — 8, then its initial point

can be located either in one or in another sheet (except those cases where f 0

coincides with one of the branch points e«(X) of 5K(X)). If the curve 8 does not

intersect any branch point e«(X) then the location of 8 on 9Î(X) is uniquely

determined by the choice of the sheet in which fo lies. Thus:

Remark 2.3. For all values of X, XGt-S, for which S does not intersect

any branch point e«(X) of 9î(X) the integral (2.11) is a two-valued function

of X.

Definition 2.1. LetE be a fixed function introduced in (2.9). If ? ranges over

all possible admissible curves and/(f) ranges over all analytic functions satis-

fying the above conditions, then the totality of functions represented by the

integral (2.11) forms a class of harmonic functions, which class will be denoted

by 3C(E).
If we restrict the set of admissible integration curves ?, requiring that

their initial and end points are two fixed points, say fo and fi, then the in-
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tegral (2.11) will range over a subclass of functions 3C(E), which subclass will

be denoted by S (E, f0, fi).
2. Examples. 1. Let

«*(f) = ak + ôjtf, k = 1, 2, 3.

Then

3

(2.12) P(f, X) = £ (*» - a* - 4iT)*.
¿-i

The line 8 (see (2.8), (2.6), (2.7)) is in this case the intersection of two sur-

faces of the second order, namely of

>-l V        «_i

«+1      (<)S («)» («)    C«)
I) (a,'        +   a,"       +   Cty'    Oty" )

(2.13)

^ «+i   w    («) («) w
+ X„<x„" ¿j (— 1)      a"   («>•     ~ a*'    ~ a'" )

«-1

— X„X)(— 1)   Mk   («r'    + a,>') ~ -4»'    + «»'    - A¥»a,»\
«-1

- W* - 4Ï")/*}  = 0

and of

3.33
Ely>V    (l>   (2)

»-1 i-1 «-1

(2.14) — £ S *»** ̂ 2 (a, a,    — a, as )~^2, x,^j (A, ak   + A, ak )
y-l Jn=1 «-1 v-l        k-1

V1        V1 /•   (1)^(2)    i       (2)¿(1)\    I     /l(1)/(t2) A
— 2-r **2^ (a» A<   + a, Ak) + A, A,   =0

*-i     »-i

where v' = v + l, v" = v+2 (mod 3),

S 3

bk = ak   + iotk     and   ¿4,   + ¿4,   = — a, £ 6* + b, ¿J c*-
i-l fc-1

2. Let

(2.15) «* = ^(f), oárái,

be three real rational functions. Then 8 becomes the curve E[x* = z>*(f),

O^f gl]. Assuming that/(f) is real for Ogf ¿1, the expression (2.11) repre-

sents the Newtonian potential of linear charge distribution along the above

line.

3. uk = Ak2Ç2. Then
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3 3 3 432

p(f, x) = 22 (*k - Ant ) = 22 *k - 2f 22 Aux, + t22 a™,
k-l k-l

S 3

P.(f, X) = - 4f22 Aux,, + 4ï22 a™,
k.

( 22 Ak2xk)

k-l

«i = E

k-l

, i

22 xk — = 0

22 A
= e  22xk22Ak2 — ( 22 AkiXk\

L  k-l        k-l \  k-l /   J

2        2 2 22 2 22 2

= E[xi(^422 + ^432) + Xi(Au + Asi) + x3(Azt + A&)

82 is empty in this case.

We obtain for the e*(X)

— 2xiX2Ai2A22 — 2xiX3AuA3i — 2x2x3A22A32 = Oj.

ek(X) = ±

3 //    3 \ 2 3 2      3       A

22 AkiXk ± ( ( 22 AkiXk ) — 22 A™ 22 ** )
ifc-1 \\ *-l / *=1 fc-1       /

1/2     "I

22Aki
k-l

1/2

3. The domain, a, in which the integral (2.16) exists. The function A(X)

is defined by (2.11) in a sufficiently small neighborhood U(X0) of X0. The first

problem which arises is to determine the domain, a, of r —ê for which the in-

tegral

(2.16) f E(X, f)/(f)df -  f
» [sC?/^')]™

t62V-l   / \"11/2Jo(A) n (r - «.(x)JJ
■¿r

exists.

To every point f, say f = fo(14), there corresponds in the X space a circle

m*),
(2.17) Wo) = E[P(fo, X) =0],

which is the intersection of the sphere

(2.is)        ©(r.) - e [ 22 (** - **(r<>)2) - ¿ wî(r.) = o],

«*(r<>) = vk(u) + ¿o>*(ro),

(") Note that J"o is sometimes employed to denote an arbitrary point of the f-plane, some-

times the initial point of 8+L and sometimes an interior point of 8. This should cause no con-

fusion as it will be clear from the context which is meant.
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of radius p(fo)= [E*-iW*(fo)]1/2 and center at [fi(fo), *>2(fo), v»(fo)], and of

the plane

(2.19) H(J-o) = E I" £ (x* - Vk(Ço)) w*(fo) = ol

passing through the above center. We note that the function E(X, fo) (see

(2.9)) is regular at every point of r —8 except on 'iß(fo) where it becomes in-

finite.

Theorem 2.1. Le//(f) be a regular function of f at every point of 8 + L(16);

then the integral (2.16) represents throughout

(2.20) a = r-8-S,       3 = [£ *(f), f G 8 + L],

two functions, both of which are defined at every point of a.

Proof. 1. When f ranges over £, the expression E(X, f) in (2.9) becomes

infinite only at those points X which belong to 3- For other values of X,

XGr —8, E(X, f) is a regular function of f, and therefore the integral (2.16)

exists at every point X of the domain (2.20).

2. We shall now prove that (2.16) is two-valued. According to Remark 2.3

it will suffice to show that for all points X of a the integration curve S does

not intersect any branch points e«(X), k = 0, • • • , 67V—1, of 5R(X).

E(X, f) becomes infinite only at those points X for which the denominator

(2.21) P(f, X) = 60(X) I   IT if - ««(X)

(see (2.9) and (2.10)) vanishes. But if some point f, say fo, of £ coincides with

a branch point e«(X), then the corresponding X lies according to (2.17) on

$(fo), and therefore by (2.20) on 3- Consequently X does not belong to a.

According to whether we locate the initial point in one or another sheet

of 9Î(X) we obtain (in general) two different values for (2.16).

From the above considerations it follows immediately:

Corollary 2.1. In every connected part of a, every branch of the integral

(2.16) represents a harmonic function of Xi, x2, x3.

4. The discontinuity surface 3. In the following we shall denote by b the

totality of those points f of the schlicht f plane for which

r   3    i     11/2
P(f) = I   E «fc(f)J

(is) We denote the boundary of the manifold under consider by the corresponding Roman

letter, for example 2+L, g+g, p+p denote the curves Í, g, p, together with their boundary

points.

)]
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vanishes. In this case the circle ^ß(f) (see (2.17)) degenerates to a point.

Remark 2.4. In the case of Example 2, the curve 8 consists of points of b,

and 3= E'ÏKD, f£8] degenerates to a curve, which represents the line of

(linear) charge distribution.

We shall assume in the following in this section that 8f^b = 0.

In this case every ^ß(f) divides the plane 21(f) into two parts (see Fig. 2),

(2.22)     u,(f) = e|(- D'TzUb- %(r)Y-m(r)l > ol,    « = 1,2.

The points of u2(f) can be connected with X= oo by a curve lying in 21(f)

which does not intersect ^(f) ; in order to connect a point of Ui(f) with X = oo

we have to cut ^(f) once or in general an odd number of times.

f plane

—I

2

Fig. 1. The neighborhood n(f) of a point fo.

Remark 2.5. If through a point X, say X = Xi, there passes only one ^ß(f),

f £8, then the (sufficiently small) neighborhood U(Xi) of Xi is divided into

two parts lL.(Xi), k = 1, 2. (U»(Xi) is assumed to include u«[e,(Xi)], e„(Xi)£8,

k = 1,2.) Each of the neighborhoods U«(Xi) is connected. Therefore each

branch of the integral (2.11) yields two harmonic functions, say /?i(X) and

hi(X), according to whether the point X0 lies in Ui(Xi) or U2(Xi).

Definition 2.2. Let f0 be a point of 8, and rt(fo) a sufficiently small neigh-

borhood of fo. 8 being a smooth curve divides rt(fo) into two parts n«(fo),

k = 1, 2. See Fig. 1. Suppose that through the point X0 of 3 = [ 22 $ (f ), T £ 8 ],
there passes only one circle ^ß(f), f £8, say ^(fo)- See Fig. 2. If to every

f£n»(fo),wehave(16)

(2.23) \m)]r\ [U(Xo)] G lUXo), ß - 1, 2,

and, vice versa, to every point X£lL.(Xo) the corresponding point f = e«(X)

(which lies in the neighborhood n(fo)) lies in nv(fo), v = l, 2, the point will

be said to be a regular point of 3?.

In the case where several circles "¡ß^*0), v=0, 1, • • • , cr, f(v)G8, pass

through Xo, Xowill be said to be a regular point of 3= [S^(f), fG8] if it
is possible to decompose 8 into a finite number of parts, 8 = 22°-i%*, such that

(16) Note that the above statement has to hold for v= 1 as well as for v=2, and that the

neighborhood rii(fo) may be mapped into either the neighborhood Ui(X0) or U.2(Xo). In the

former case rtîfro) will map into U2(X0) while in the latter it will map into Ui(Xo).
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only one ~(n, rE~.+L., passes through Xo, and if Xo is a regular point of 
each 3.= [L~(r), rE~.] in the sense indicated above. 

FIG. 2. Discontinuity surface 3', the plane !l(ro) and the neighborhood U(Xo). 

Remark 2.6. Through every point X pass 6N circles ~(n, since according 
,to (2'.10) the equation ~(r, X) =0 has 6N roots r=e.(X), K=O, 1, ... t 

6N-1. Hence it holds for (1', see above, 

(2.24) (1';;;;; 6N. 
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In §8 sufficient conditions in order that a point X be a regular point of 3

will be derived.

If several $(f), f £8, pass through the point X, then the neighborhood

U(X) will, in general, be divided into finitely many connected neighborhoods

U«(X), k = 1, 2, • • • , s. Each branch of the integral (2.16) defines in each

U«(X) a regular harmonic function ht(X), k = 1, 2, • • • , s.

5. The proof that each of the functions hK(X) is regular at every regular

point Xi of 3-W-WO.

Theorem 2.2. Lei/(f) be regular ow-S+L, let (8+L)P\b = 0 and let the point

Xi, XiGr-8, be a regular point of 3 - $(f o) - Ç(fi).
The functions ht(X) defined by (2.16) in U«, k = 1, 2, ■ ■ • , s, are regular at

the point Xi.

Proof. Since X1G3f-Ç(r0)-?(fi)=E[E?(f), f£8] there must exist a
number of points, say fw, v = l, 2, ■ ■ ■ , a on 8, such that P(^'\ Xi)=0. We

decompose? into <r parts, 8,.,8=E»-i8,', 8,P>8„ = 0, such that in every 8„ there

lies only one fM, say ff*\ h(X) given by (2.16) may be represented in the form

(2.25) A(X) = É*W(X),        A«(X) =  f   E(X, f)/(f)#.
,=i J i,

We now consider a single function

(2.26) *W(X)-  f   E(X, f)/(f)áf,
J zr

at the point Xi. For fG8„ there exists only one point f = fw such that

$(fw) passes through Xi. The surface 3, = E[E$(f). f &,] divides a suffi-

ciently small neighborhood U(Xi) (see Fig. 2) into two simply connected

parts U,(Xi), k = 1, 2, in which we define two functions.

(2.27) A,(,)(X) =  f   E(X, f)/(f)áf,       X G U,(Xi), k - 1, 2.

(Clearly it may occur that both /^"'(X), /c = 1, 2, are function elements of the

same function.)

Let

(2.28) S = min [ | e«(Xi) - e„(Xi) |,   k * a;   c,    k = 0, 1, 2, • • • , 67V - l]

and let e < 5/2 be a sufficiently small positive quantity. We introduce now in-

stead of 8„ a new (smooth) curve 8 * which possesses the same end points a

and ß, but we replace the interior segment af w¿> by amb, which lies in n2(f(,,))

and has the property that the distance of every point of amb from fM is

larger than e/2 but smaller than e. (See Fig. 3.) Xi does not lie on

3,* = E[E^P(f), f £8*]. For, by assumption, no zeros of P(f, Xi) lie on aa

or bß. Were a zero, say f(,) of P(f, Xi), situated on amb then we should have
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(2.29) \e,(Xi) - e„(X)| < e < 5

in contradiction with (2.28).

Let Xo of (2.11) be a point of Ui(Xi). We shall show that in this case the

function AÍ*'(X) obtained by applying the operator (2.11) (where 8 = 8,) re-

rw—t—

m

Fig. 3. The curves 8 and 8*.

mains unchanged when the integration curve 8,=aö + af Mb+bß is replaced

by 8* =aa+amb+bß, that is, that

(2.30) hi"\x) = f e(x, f)/(r)¿r = f E(x,r)/(r)¿r
J Sy J St,

holds.
Indeed, since X0£Ui(Xi) and Xi is a regular point of 3, no zero of P(f, X)

lies in rii(f(,,)).Therefore, when by a continuous and one-to-one transformation

we deform 8 * into 8„, that is, when the arc amb sweeps over the area bounded

by a Çwbma, we do not encounter any singularity of E(X0, f)/(f); for, by as-

sumption/if) is regular in the neighborhood w(fM) oí fM and the singularities

of E(X0, f) are zeros of P(f, X0) which lie in tti(fw), while the above domain

(bounded by aÇMbma) lies in n2(fw). On the other hand E(Xi, f), f £8»*, is not

infinite and the second integral of (2.30) is regular at X = Xi. Since in every

neighborhood of Xi there are points of Ui(Xi), the right-hand integral of

(2.30) is the analytic continuation of hiM(X) into the point Xi.

6. The saltus of the integral (2.16) on passing a discontinuity surface

3-¥(fo)-$(ri)- Let Xo be a regular point of S-$(fo)-Wi). As was in-

dicated in §4 the neighborhood U(X0) is subdivided by 3 into finitely many

connected neighborhoods lL.(Xo), n = l, 2, ■ ■ ■ , s. Each branch of (2.16) de-

fines in every neighborhood U«(X0) a harmonic function h,(X.). If one passes

from IL(Xo) into U*(Xo) through the point X0 the integral (2.16) undergoes

the saltus

(2.31) A,(X„) - h(X0).

Theorem 2.3. The saltus (2.31) of the integral (2.16) on passing through a

regular point Xo from U„(Xo) to U„(X0) equals either

TÚ Í£¿»*r*Y|/(r)ár
C r'.s    L k-i \ „=o / J

(2.32) +
Jh.i

[0N-1 -11

*o(Xo)II (r - e«(X*))J
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taken over some conveniently chosen path, or some combination of such in-

tegrals with integral coefficients. Here fi,i=[fi, + (P(fi, Xo))1/2] and fi,2

= [iti +(P(fi» Xo))1/2], that is, the points which are situated in the first and

second sheet of 9î(Xo) and whose f coordinate equals fi.

Proof. According to (2.20) through the point X0 passes one or several

circles $(f w), fw£8, since X0£3. We assume at first that only one circle,

say <ß(f(0)), goes through X0. According to the considerations of §3, see (2.17)

and (2.21), one branch point of 3t"(X0), say e«(Xo), must lie on 8, and accord-

ing to (2.21) we have e<(X0)=f(0) (see Fig. 4b). Let U(X0) be a sufficiently

small neighborhood of X'o. As indicated before, see §4, 3 divides ll(Xo) into

two connected parts, say Ui(X0) and U2(X0). Further let Xi be a point of

tti(Xo); through Xi passes some circle $(f),say W(1)) =E[P(f(1\ Xi)=0].

Fig. 4a. Riemann's surface Fig. 4b. Riemann's surface Fig. 4c. Riemann's surface

dtQLi)- SR(Xo). 8t(Xi).

From (2.17) and (2.21), it follows that f(1) equals some branchpoint of Rie-

mann's surface 9?(Xi), say (see Fig. 4a)

(2.33) f<« = ef(Xi).

Since the distance | e„(X0) — e«(X0) |, U5¿k, is larger than a fixed constant

and since the zeros, e„(X), of P(f, X) =0 vary continuously with X, p must

be equal to k, that is, we must have

(2.34) r<» = e,(Xx)

if the point Xi is near enough to Xo and if f(1) belongs to a sufficiently small

neighborhood n(fco>) of fco). Similarly we choose a point X2£U2(X0) which

must lie on the circle E[P(f(2), X2) =0] such that (see Fig. 4c)

(2.35) f(2> = e,(X2).

According to our assumption only one ^3(f(0)), f<0)£8, goes through X0.

The neighborhood n(f(0)) is divided by 8 into two connected parts ni(f(0))

and n2(f<0)). Since X0 is a regular point of 3, and since Xi lies on one and

X2 on another side of 3, f(1) must lie in one part, say ni(f(0)), and f(2) in

another part, say n2(f(0)) of n(f(0)). Since Xi and X2 belong to a, they are

outside of 3, and e«(X,), s = l, 2, can not lie on 8.

Let [e«(X), e,+i(X)], XGU(X0), be a cut of the Riemann surface 3Î(X)
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along which one sheet of 9î(X) is connected with another sheet. Since we

have assumed that only one circle $(f) passes through X, c,+i(X), X£U(X0),

does not lie on 8. Since further e«(Xi) lies on one side of 8 and eK(X2) on another

side of 8, we can assume that 8 does not intersect [e,(Xi), e»+i(Xi)] and cuts

[e«(X2), ex+i(X2)] only once.

Now let 8* be a new curve which is chosen in such a manner that the point

e«(Xi) lies inside the domain bounded (in the schlicht plane) by 8+8*, and

c«(X2) lies outside 8+8*. Note that on 9Î(X2), 8+8* is not a closed curve since

the end point
fi.i = [Ti, + (P(fi, Xi))1'2]

lies in one sheet of 9Î(X2) and

ri,2 = [fi, - (P(fi, X,))1'2]

lies on another sheet of 5R(X2). (See Fig. 4a-4c.)

According to the considerations of §5

Í\(Í2A2k,A
(2.36) f j(x., tm#. 5(x, r) =   *vr°-—

[bo(X) II (r - fc(X)) J

represents the analytic continuation of hi(X) into the point X2, while A2(X2)

equals

(2.37) f s(x2, r)/(r)#.
Jg

Therefore

(2.38) hi(X2) - h2(X2) =  f     S(Xi, f)/(f)¿f.
Jg_g*

Since X2 can be chosen arbitrarily near to X0 and the functions &i(X) and

h2(X) are regular at X = X0, (2.38) yields the theorem.

If through the point X0 several circles iT3(fM), f w£8, pass, then similarly

as in §5 we subdivide 8 into a finite number of parts, 8 =2ZLi8», such that on

each 2, there lies only one point f(l,). Since the saltus of h(X) equals the sum

of the jumps of fSyS(X, f)/(f)df, Theorem 2.3 follows in this case as well.
7. Sufficient conditions for analytic continuation of the function h(X) rep-

resented in U(X0) by the integral (2.16). §§3-6 were devoted to the study of

the behavior of the integral (2.16). The second problem which arises is to

study the analytic continuation of the functions represented in a connected

part of a by the integral (2.16) outside the domain of representation by this

integral. The next chapter will be devoted to the study of this question for a

large subclass of functions of the class 3C(E) namely those for which the as-

sociate/ is a rational function. As we shall see the theory of these functions

is in a certain manner a "translated" theory of hyperelliptic integrals. It will
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be, however, of some interest to develop the considerations of §5 in order to

give here sufficient conditions such that h(X) may be continued along a line.

Definition 2.3. The point Xi will be denoted as an ordinary point of h(X)

with respect to its image e„(X:) if there exists a neighbourhood U(Xi) of Xi,

such that to every point XGU(Xi) there corresponds one and only one circle

$(f) of radius p, p^po>0, and f belonging to the neighbourhood n[e„(Xi)]

of e,(Xi).

Remark 2.7. In this case, we have a one-to-one correspondence, 5(f)—»f,

between the family [E-S(f), f G»(er(Xj)) jof segments 5(f) = [U(Xi) ]H [$(f)j
and the points of the neighbourhood n[e„(Xi)].

Theorem 2.4. Let g+g be a curve in r —8 of finite length, which consists

of points Xi, each of which is an ordinary point of hi(X) with respect to its image

e,(X). Further let us assume that the curve f = eK(X), XGfl+g, lies in the domain

of regularity o//(f ).
The function hi(X), XGUi(Xi), XiGg, given by (2.16) can be analytically

continued throughout g.

Proof. The idea of the proof is to show that by starting with the point X

we may repeatedly apply the procedure described in the proof of Theorem 2.2.

The surface 3*= [E?(f)> f G8 *] cuts g for the first time at some point,

say at X = X2, and therefore the segment of g bounded by Xi and X2 will lie

in the regularity domain of hi\X).

Repeating our procedure we obtain hiM(X) continued along the segment

X2X3 of g, and so on. In order to prove that after finitely many steps the whole

curve g will be exhausted it will be sufficient to show that the distance be-

tween any two consecutive points X, and X,+i can be taken larger than a fixed

constant which depends on hi(X) and g but is independent of the location

of X, on g.

This fact will easily follow from the following two lemmas.

Lemma 2.1. Let g+g be a curve described in Theorem 2.4. To every t, there

exists a continuous 17 (t), where

(2.39) lim v(r) = 0, 17(7) > 0 for e > 0,
T-K)

such that

(2.40) I e«(Xj) - e»(X2) I < r

if Xi and X2 are two points of $for which | Xi — X2| <n(r).

Proof. The existence of the above function follows from the fact that the

zero point e«(X) of P(f, X) =0, see (2.3), is a continuous function of the co-

efficients of P(f, X), and that (xi, x2, x3) vary over a bounded closed set.

In (2.28) we introduced the quantity 5 = 6(Xi) ; now let v be the minimum

of the ô(Xi) when Xi varies over p+p, that is, let
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(2.41) v = min [ | eK(X) - e,(X) \, X £ 9 + g, k * <rj.

Lemma 2.2. Let Xi, X2 be two points of g such that

(2.42) \Xi-X2\<*n(v/2).

Then

(2.43) I eK(Xi) - e,(X2) \ ^ v/2, k ^ a.

Proof. From

(2.44) I et(Xi) - e,(Xt) | ^ | et(Xi) - e,(Xi) \ - | e,(X2) - e,(Xi) |

(2.43) follows, since from (2.35) we have | c«(Xi) -e„(Xi) | ¡= v and from (2.42)

and Lemma 2.1 we obtain |e„(X2) — e„(Xi)| ¿v/2.

If, now, we choose e (used in the proof of Theorem 2.2) such that

(2.45) 0 < « < v/2,

then we obtain for the lower bound p of | X„—XJ+i|,

(2.46) P = vW2).

Indeed, if fj"' =e«(X,), and f,+i = e„(X,+i) is the first following intersection

of g with 3* then |X,+i-X.| ^*(e/2). Were |X,+1-X.| <??(e/2) and <t = k,

then by Lemma 2.1 we should have |e«(X,+i)— e«(X,)| <e/2 in contradiction

with our construction. Were f,+i = e„(X,+i), o-^k, and were |X,+i —X,|

<rj(e/2) <n(e), then by Lemma 2.2 we should have |e,(X1+i) — e«(X,)| >e,

which is again in contradiction with our construction.

Remark 2.8. If 8 is sufficiently smooth, if 3 = EK@(f), f£8],
©(f) = [^(JOlnlUXi), is sufficiently small, and if Xi£3i is an ordinary point
of Ä(X) with respect to its image e«(Xi)£8, then Xi is a regular point of 3.

8. Sufficient conditions in order that a point X be a regular point of a dis-

continuity surface 3f. The notion of a regular point of a discontinuity surface

was introduced in §4. Here we shall give sufficient conditions in order that

a point X=Xo be a regular point of 3-

Theorem 2.5. Let X0 be a point of the surface 3= E$(f), f£8], fo£8,
through which point passes one and only one circle

(2.47) Wo) = EI" ¿ (y* - w\) = 0, ¿ ykwk = 01
L k-l k-l J

where yk = Xk—vk, vk^Vk(Ço), Wk=-Wk(Ço) [see (2.17), (2.18), (2.19)].

A sufficient condition in order that X0 be a regular point is that(17)

(2.48) 22bk(Zo, vo) j      ,-^0.
_ k-l o[i, Vii-lo,V-V>

(17) In the following we use the same symbols uk, wt without distinguishing whether the

argument is f or (£, rf).
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Here ¿>*(£, 77) -«i(f, r,)p~2, jk-l, 2, &,(£, 17) = 1,
2        i i

P   = Wi(f, l) + Wi(f, »i)i f = £ + il», f0 = £0 + tJ7o.

Proof. Instead of Xi, x2, x3 we introduce now a new coordinate system

Si, Si, st such that the origin coincides with the point X0, the tangent to 'iß(fo)

at Xo with the positive Si axis(18).

As a formal computation (which is omitted) shows we have

{Xi = — w2p_1Ji + Wir^Si — wiw2r~lp-ls3 + »1 — WiWipr1,

Xi = Wip^Si + w2r~1s2 — wïw2r~1p~1s3 + v2 — W£m¡p~l,

x3 = w3r-xSi + pr~1s3 + v3 + p,

I 1 2  1/2 Ü 2 1/2
r = (wi + w2 + Wt)    ,        p = (wi + wt)    .

If in
3 2 2 '

(2.50) E Í [* - *»«")]   - Mï)} = 0,    E [** - Vk(t)]wk(t) = 0,
*-i *-i

we replace the xk by the s*, substitute Si = 0, and express s2 and j3 as functions

of £ and 77, then the relations

(2.51) s2 = j2(|, 77; £0, iîo),       Í3 = 53d, rç, ?o, 170)

define a mapping of the £17 plane into the plane 2l(fo), see (2.19), in which the

circle ^ß(fo) lies. If the Jacobian of transformation (2.48) does not vanish at

(£> v) = (£o> Vo) it means that the mapping of the plane into the plane Sl(fo)

is one-to-one at the point (£0, ̂ 0).

Since in a sufficiently small neighborhood U(X0) of X0, the arcs

(2.52) [<P(f)]n[U(Xo)]

of the circles ^(f), fGn(fo), are perpendicular to 2I(fo), the correspondence

between the points f, f Gn(fo), and arcs (2.49) is one-to-one.

A formal computation shows that the Jacobian of the transformation

(2.48) at (£0, Vo) equals the left-hand side of (2.45), which yields the statement

of Theorem 2.5.

III.  THE BEHAVIOR IN THE LARGE OF THE FUNCTIONS OF THE CLASS

3C(E) WITH A RATIONAL ASSOCIATE

1. Introduction. As we showed in Chapter II, the integral (2.16) repre-

sents a two-valued function which is defined at every point of the domain a

of the three-dimensional euclidean xi, x2, x3 space.

In every connected region, 6, of the x%, x2, x3 space(19) the function obtained

(18) The direction of the axes st and s3 are not yet uniquely determined since we may rotate

the SiSs plane around the Ji axis, but for our purposes it is unessential how we choose the s¡ and îj

axis in the plane which is normal to the Ç(fo) at Xo.

(19) b is not necessarily schlicht in the euclidean Xi, Xi, x3 space; it may be situated in two

space sheets, that is, a three-dimensional analogue of a plane domain which lies on two sheets

of a Riemann surface.
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represents a regular harmonic function. In general, this .function can be ana-

lytically continued outside the domain b, where it is represented by (2.16).

In the present chapter we shall study these functions in the large, that is,

in the whole domain of regularity of the function under consideration. As was

indicated in chapter II, §§5 and 7, the main tool for the analytic continuation

of our functions outside b consists of a suitable change of integration in the

f plane.
On the other hand if we assume that/(f) in (2.16) is a rational function,

(2.16) becomes a hyperelliptic integral. The theory of these functions has been

developed to a great extent, in particular the question of how these functions

change when the integration path (with fixed initial and end point) is varied

has been investigated in detail. As was stressed in chapter I our investiga-

tion reduces itself to the "translation" of classical results of the theory of

hyperelliptic integrals(20). Naturally, the fact that the Riemann surface on

which our integrals are defined depends upon the variables xi, x2, x3 causes

additional complications.

2. Reduction to the Weierstrass normal form. In order to apply the results

of theory of hyperelliptic integrals, in particular to use the techniques de-

veloped by Weierstrass, we have to reduce our integrals to the normal form

employed by Weierstrass, see [7].

First of all we introduce a new variable of integration (21),

(3-D i= [r-«o(x)]-i

(that is, f = £-1+eo(X)). The Riemann surface over the £-plane which we

obtain from 9l(X) by applying the transformation (3.1) will be denoted by

SB(X), XGr-8. 2B(X) has (6A-1) branch points

a,(X) = [eK+i(X) - eo(X)]-\ k = 0, 1, • • • , 6A - 2,

and a branch point at £ = oo.

Let

(3.2) „= ± [Pa,X)]"2

where
6AT-2

*(f.x) = n [«-««(x)].

(!0) The limitation of space makes it impossible for us to discuss all results of the theory of

hyperelliptic integrals from this point of view. We shall limit ourselves to discussion of one typi-

cal case, but we should like to emphasize that the considerations of various other theorems of

the theory of hyperelliptic integrals lead to results which are of interest for the theory of har-

monic functions in three variables, and of importance in the applications of this theory.

(!l) We notice that by writing as argument a complex number, £, we do not completely

describe a point of the Riemann surface 2B(X), since it is necessary in addition to the location

of the point in the (schlicht) plane to indicate the sheet in which the point is situated. (Many

authors use for point the symbol (£, rf)). However in order to avoid complicated formulae, in

the following we shall use only a single letter £.
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We introduce the expressions

£3"-2 ñ i" E ¿«Ur1 + *o(x})"l
*-i L ,1=1 J

(3.3)      5(£, X) = E(X, f)„-£ =
¿£ / 6JV-2 -v   1/2

|»o(X) II kw(X) - e0(X)]|

and(22)

(3.4) g(£,X) =/[£-i -e0(X)] =

E ^.„(r1 - e0(X))"
n-0

E A..(r» - «o(X))-
n-0

r«i» S(£,X)g(£, X)¿£
(3.5) _^_^-/_*} XGU(Xo).

The operator (2.11) now assumes the form

'îi«>5(£,X)g(£,:

ío(X)

Here £o(X) and £i(X) are the initial and the end point of the image of 8 on

the Riemann surface 2B(X). (That is to say,

£o(X) = [f„ - e0(X)]-i,

£i(X) = [fi - eo(X)]-1.)

3. The domain p. In using the classical approach to the study of (3.5) we

have to take into account that the integrand depends in addition to the in-

tegration variable £, upon xi, x2, x3, which can be considered as parametric

variables.

Following classical considerations, in particular the methods due to Weier-

strass (see [7]), we introduce on the Riemann surface SB(X) integrals of the

first, second and third kinds, and determine their periods.

2B(X) is a multiply connected domain, and in order to determine the

periods we must, by conveniently chosen loop cuts(M) @2,(X) and crosscuts

@2l+i(X), k = 0, 1, • • • , p — 1, p=3N— 1, transform 3B(X) into a simply con-

nected domain, SB*(X). 3B(X) depends upon X, since its branch points aK(X)

vary with X. In order to determine in a unique way the periods [which can

be defined as integrals over the cuts @„(X)], it is necessary to make certain

restrictions upon the domain in which X varies.

r —8 is a connected three-dimensional domain. In general, not every closed

simple curve in r —8 can be reduced to a point without cutting 8. On the other

hand, it is possible by cutting it by a segment of an appropriately chosen sur-

face, £, to obtain a domain p = r — 8 — ïwhich possesses the property that every

(") Since now/is assumed to be a rational function of f it can be written as quotient of two

polynomials.

(23) As usual all loopcuts lie in one sheet, the crosscuts lie partially in one, partially in

another sheet. Each @,(Xo) intersects @,_i(Xo) and ©,+i(Xo) exactly at one point each.
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closed curve in p can be reduced to a point in p. In addition we may require

that every boundary point of £ which is not at infinity belongs to g.

Let Xo be some fixed point of p. We rearrange the a»(X0) in such a manner

that

(3.7) a0(Xo) < ai(Xo) < • • • < a*,(X0), p = 3A - 1.

(A <B means that Re A ¿Re B, and ImA <lm B if Re A = Re B.)

We connect both sheets of 2B(X0) along the segments [a2«(X0), a2,+i(X)]

of straight lines, k = 0, 1, ■ • • , a2p+i(Xo) = oo. Each of the (above-mentioned)

cuts @,c(Xo) is supposed to consist of two segments of straight lines which

are parallel to [a,(X0), a«+i(Xo)] and of two halfcircles with the centers at

o«(Xo) and a«+i(X0), respectively. If now X varies in p then the a,(X), being

functions of X, move, and therefore the @«(X) move also. Since however the

points X for which two aK(X) coincide are excluded it is possible to arrange

the <§„(X)'s so that they change continuously(24). Since further any closed

curve in p can be reduced to a point, the sense of direction on every @«(X) is

determined in a unique manner.

4. Period functions. In order to define the normal integrals we introduce

the Weierstrass H functions, defined on SB(X).

We write

(3.8) A(£, X) = Û U - «2»-i(X)],       Q(f, X) = É [€ - fl*.(X)]
n—1 »-0

and following Weierstrass (see [7, pp. 340-343]) define(26)

H(£, X)„ = A(í, X)/2„ [i - ata-iÇX.)], j

Mns.-       C[««(X),x].ir(f.x)        U-L2,..,„
N'[a2a-i(X),X]-2vU - Oia^X)]2

NU*, X)   r_v__ v*    "1
Hit, e, x) - 2(^ _ &^ yN^ x) + N^ x)j.

The "period functions," that is, the periods of the normal integrals of the

first and second kind, are defined by(26)

(24) We drop the requirement that the [a«(X),aI+i(X)] are segments of straight lines and

consequently each cut will consist of two lines of a form similar to the corresponding

fa«(X), o»+i(X)] and two halfcircles with the centers at a«(X) and a»+i(X), respectively. Since

only the topological structure of the cuts is of importance for our purposes, the form of the

cuts is unessential.

(26) We use here Weierstress' original notation.

(M) Note that in contrast to 8 which can be situated either in one or in another sheet,

6,(X) are defined directly on the Riemann surface 22 (X).
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2toa(3(X) = 2ü)„    (X), 277„/s(X) = 2t]a    (X),

(3.10)

where

"-1   2J

2<Zß(X) = 2£ coa (X),       2v*aß(X) = 2£ „„ (X),

7V(£, X)       ¿£
2«;(X) =  f        /?(£, X)„¿£ =  f

•J %<X) •/ e2ß(X)   £ — a2a-i(X.)    t)

(3.11) a = 1, 2, ■ ■ • , p; ß = 1, 2, ■ ■ ■ , p,

2r,aß(X) =  f        #*(£, X)ßdl.
J e2/3(X)

Remark 3.2. We note that u>%(X) are entire functions of the aK(X) (see

[7, p. 359]) and that

Ö[a»_i(X),X]     ¿H(X)
2^(X) = - 2

7V'K_i(X),X] ¿>a23-i(X)

The functions aaß(X), co^s(X), 77„ß(X) and ^(X) are single-valued in p.

If, however, starting from a point Xo and moving along a closed line (which

intersects £ and which can not be reduced to a point without intersecting 8)

we return to the point X0, then, in general, the integration curve will not nec-

essarily coincide with the starting curve and each waß(X) will assume a new

value. Since however /Lf(£, Xo)„c7£ (where the integration is taken over any

closed curve) equals

(3.12) ¿ [2nßuaß(Xo) + 2«*«%(Xo) ],
0-1

nß, nß* being integers, we obtain the following:

Theorem 3.1. The functions coaß(X), co*ß(X), r]aß(X) and ri*ß(X) are, in gen-

eral, infinitely many-valued functions which are defined in r —8.

If we move along a closed curve in r — 8 which can not be reduced to a point

by a one-to-one continuous transformation, then uaß(X) and «^(X) increase by

an expression of the form (3.12). Similar results hold for the r)aß(X) and 77*^(X).

We note further that from a classical theorem of Fuchs [5 ] on periods of

normal integrals the following result obtains: The functions waß(X), ■ ■ ■ con-

sidered as functions of Xi, satisfy an ordinary differential equation whose

coefficients are algebraic functions of xi, x2, x3. Similar equations hold when

coaß(X), ■ ■ ■ are considered as functions of x2 as well as of x3.

5. The normal integrals of the first, second and third kinds. Following

Weierstrass we now define in p the normal integrals of the first, second and

third kind, namely
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(3.13) °°CX) ) a =1,2,-
tar.)

oo(X)

£(X)

E(%', X)«¿f'l
^O(X)

/> i(X)
F*(r,x)a¿r,

oo(X) I

/> £(X)

[£T(|W(X), £'; X) - W>(X), £'; X)]d{',
«O(X)

£ - £(X) = [f - eo(X)]-S      £<» - £<»(X) = [f»> - eo(X)]-\

£<°>=£«»(X) = [r<0)-eo(X)].

According to our previous considerations the functions (3.13) can have

singularities on the circles

(3.15) •$[«„]    and    Ç[f]

in addition to those of %.

The function (3.14) can be singular also on

(3.16) <P[r<D]    and    Ç[r<»].

If now we continue analytically the functions (3.13) and (3.14) along a

line, which line can not be reduced to a point without cutting ê, then the func-

tions /(£, X)a and J*(j-, X)a increase by a function. These functions are (3.12)

in the case of J(£, X)a and analogous expressions with w's replaced by r/'s in

the case of /*(£, X)a.

In addition J and J* will, in general, increase by a function if we move,

in p, along a closed curve which cannot be reduced to a point without cutting

either Ç[«o] or $[?].

Analogous results are obtained for (3.14).

6. The representation of the integrals (2.16) in terms of normal integrals

of the first, second and third kind. In this chapter we assume that the func-

tion/, appearing in (2.16), is a rational function of f. Then 5(£, X)g(£, X)

in (3.5) will be also a rational function of £. In the theory of hyperelliptic in-

tegrals it is shown that every such integral can be expressed as a sum of nor-

mal integrals with constant coefficients.

This theorem can be immediately generalized to the problem which is be-

ing considered. In this case the above-mentioned coefficients are no longer

constant but are, as we shall see, algebraic functions of Xi, x2, x3.

Theorem 3.2. An integral of the form (2.16) with a rational associate f can

be represented as a sum of normal integrals of the first, second and third kind

associated with the Riemann surface 2B(X) of the function [P(£, X)]1'2,'intro-

duced in (3.2). That is to say, integral (2.16) with a rational associate can be

represented in the form
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¿ C,(X){/[&(X); £<»(X), f(»(X);X] - 7[£„(X); £<»(X), £«»(X); X]}
r—l

- E (|!(X)[7(6(X);X). - J(£o(X); X)„]
o-l

+ ga(X) [/*(£i(X);X)a- 7*(£o(X); X)„]}

+ ¿ [P,(£i(X); X) - FÁWX); X)].
»-i

iïere £,(X) = [f, —e0(X)]-1, k = 0, 1, and the coefficients CV(X), ga(X) and

g*(X) of the development are algebraic functions of xi, x2," x3. F, are algebraic

functions of xi, x2, x3.

Proof. According to [7, p. 264] every rational function of £ and r¡, and

therefore in particular the integrand of (3.5), can be represented in the form

5(£, X)g(£, X) =- F(f, X) = ¿ C,(X)H(£„ £; X)
»=i

(3.17) - ¿ UÎ(X)H(£, X)„ - ga(X)H*(ï, X)a}
a-l

+ |[sf-<{'x)!
We have therefore to show that the coefficients C,(X), ga*(X), ga(X) are alge-

braic functions of xi, x2, x3, and that P»(£, X) are algebraic functions of £ and

Xi, x2, x3. According to [7, p. 264]

(3.18) C,(X) - Tí«;, X)-Jí]    ,

that is, the C,(X) is equal to the coefficient of the power of /_1(27) of the series

development of the local uniformizing variable /, at a point at which the

integrand becomes infinite. Since P(£, X) is an algebraic function of £ and

Xi, x2, x3, and the values of £ for which F becomes infinite (that is, the zeros

of the denominator of 5(£, X)g(£, X)) as well as the coefficients of the develop-

ment can be differentiations and algebraic operations, the C,(X) are algebraic

functions of xi, x2, x3.

The same holds for the functions

i r     *   ¿£H
(3.19) C._„(X)-F(£«) —, n > 0,

n \_ dt Ji-n-i

and

(") We denote by [s]t* the coefficient of tk of the development of 5.



244 STEFAN BERGMAN [March

(3.20) ^»-[^^

where £(o,)are the branchpoints ai(X),a3(X), • • • , o2„_i(X), see [7, p. 340].

(3.21) ¿?,(£, X) = -22 C„-r(X) ¡Hit £«', X) —]
L dt Jf-i

where -fz"(£, £*, X) is the function introduced in (3.9). (They are obviously

algebraic functions of £ and xi, x2, x3.) Similarly

(3.22)

22 cv„(x) r^(£;, X)„ 4^1     = &>..&),
» L dt Jí»-i

r

22 c,.-n [n*n'„ x)a 4^1    = b*ux)
n L "/ J¡n-i

where iî(£, X)„, H*(%, X)a are the functions introduced in (3.9). Hy,a(X),

i/^„(X) are algebraic functions of xi, x2, x3, and therefore

ga(X)   =   ¿H,..(X),

(3.23) '"1

¿(X) = ¿ flî.„(X) - C<«>(X)
v~i

are also algebraic functions, which completes our proof.

7. The application of 0 functions. The introduction of 6 functions and

representation of the integrals of the second and third kinds using these func-

tions in terms of the normal integral of the first kind is one of the important

achievements of the theory of algebraic functions.

The interpretation of these results in the frame of the theory of harmonic

functions in three variables yields the following result:

In chapter II the subclass S [E, f0, fi] was introduced. Since g(f) is an

arbitrary rational function of f, these subclasses consist of infinitely many

functions.

We associate with such a subclass of 6 functions, which functions we obtain

in the usual manner, substituting for the periods (which are constants in the

classical theory) the period function introduced in §4 of the present chapter.

The functions

(3.24) 0(Ul • • • up; X)

depend, in addition to the p variable u„, p = 3N—l, upon xi, x2, x3.

The subclass S [E, f0, f ] possesses a finite basis with respect to algebro-

logarithmic functions and the 8 functions described above; that is, there exist
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p functions /(£, X)„ such that every h(X) belonging to S [E, fo, fi] can be ex-

pressed in closed form, which form involves only algebro-logarithmic func-

tions and the 6 functions and their derivatives, where the arguments

ai, • • • , up of the 6 functions are replaced by linear combinations of the

/(£, X)a with coefficients which are algebraic functions of Xi, x2, x3.

We proceed to more detailed formulation of the result.

We write following Weierstrass [7, pp. 532-533]

e(v1( ■ • • , v,\ X) - É É 2(ßy(X)vßVy,

(3.25) p
fßf(X)   =   E Uaß(X)yay(X)

where u}aß(X) and ?7„7(X) are period functions introduced in §4. Further, we

write

p    f r   p

(3.26)      x(«i. ■ • • ,n„;X) = ttî^ E  n-nß\   E
a-l (3=1 L 7-1

'    (w(X))aßo,*ß(X)

co(X) J

where co(X) = | w„,(X) | and (co(X))a/3 = [aw/dco«,]. Then

(3.27) 6(ui, ■■■ ,u„; X) = exp U(vu ■ ■ ■ , v„; X)]-0(vj, • • • , v„; X)

where

p
(3.28) e(vh • • •, v,\ X) -   £   exP [x(»i, • • • , «P; X)] + 2« X) n,vr

y-l

(see [7, p. 531]) and

(3-29) V'p = X —-—- u„.
„_i     2o)(Xj

Remark. We shall in the following use the abbreviation

dd(ui, • • • , u„; X)
fl<«>(Ul, • • • , up; X) =

áu.

In order to obtain the mentioned representation of the integrals of the

second and third kind in terms of the integrals of the first kind, we have to

introduce certain new functions of X, namely

(3.30) wß(X) = 2-1 £ /(MX)),
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(see [7, p. 597]) where the p,(X) have to be determined in the following man-

ner. Consider

(3.31) 22 K&it, X)ß / J2 Kß*G(t, X)
0-1 /    0-1

(see [7, p. 594]) where Kß and Kß* are arbitrary constants and G(£, X)a

= [/f(£, X)a]-/(£)2 (see [7, p. 109]). If we determine the points for which

the denominator vanishes and the numerator is not zero we obtain the (2p —2)

points p,(X).

Remark 3.1. The points py(X) depend upon the choice of the constants Kß,

Kß, the right-hand side of (3.30) is however independent of these constants

(see [7, p. 594]).
According to [7, p. 597] we can now express the integrals of second and

third kind in terms of integrals of the first kind. We have namely

0<«>[/(£, X)! - W!(X) - J(aa, X)i, • • • , X]
/*(£, X). - /*(£„, X).

(3.32)

(see [7, p. 511]) and

£[£; £i; £i*, x]

6[j(i, X)i - wi(X) - J(aa, X)i, ■■• ,x]

QM [/({„, X)i - wi(X) - J(aa, X)i, • • • , X]

0[/(£o, X)i - wi(X) - J(aa, X), ■ ■ •., X]

(3.33)

E[£o; £i; £i*. X]

_ 0[7(£i; X)i - J(£; X)i - wi(X), ■ • • , X]

0[7(£o; X)! - /(£; X)t - Wi(X), • • ■ , X]

0[/(£*; X)i - /(£o, X)x - wi(X), • ■ • , X]

6[j(Zi*; X)x - /(£, X)i - wi(X)i, •■■ ,X]

X exp  ÍJ2 [Jifa X). - /(£i*; X)„] [/*(£; X). - /*(£*; X)«]
I  o-l

(3.34) £[£î £i, £* X] = exp \f,B(S, £', X)á£'l.

where
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