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BY
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1. Introduction. As is well known, the repeated Laplace equation

(1.1) V4H = 0,        V4 = (d2/dx2 + d2/dy2)2

occurs in several branches of applied mathematics. One of its applications

is in elasticity in connection with bending of plates. Here (1.1) is satisfied by

the normal deflection of the middle plane of a bent, thin, uniform, initially

plane plate, in regions free from normal loadi}). If proper displacements and

slopes are applied to the boundary, then (1.1) has to be solved subject to the

boundary conditions

(1.2) II = a,       dH/dn = ß

where dH/dn is the normal derivative, and a, ß are prescribed functions over

the boundary. For a plate which is loaded with a normal pressure p, the nor-

mal deflection satisfies the nonhomogeneous equation

(1.3) V4H = p/B,       B = EP/12ÍI - o-2)

where B is the "bending stiffness" of the plate, E is Young's modulus, 5 the

plate thickness, and <r Poisson's ratio. In solving (1.3) subject, say, to bound-

ary conditions of "built-in edges"

(1.4) H = 0,        dH/dn = 0,

if a particular solution Ho, not necessarily fulfilling (1.4), can be found, then

the problem may be reduced to finding a "complementary solution" satisfy-

ing (1.1) and proper boundary conditions of the form (1.2). In particular, for

uniform pressure p, solutions of (1.3) are given by

Presented to the Society, April 14, 1933 under the title Application of analytic function

theory to two-dimensional elasticity problems; received by the editors February 23, 1945.

(') See for instance Love, A treatise on the mathematical theory of elasticity, 4th ed., Cam-

bridge University Press, 1927, chap. 22, §§313, 314; or else Geiger and Scheel, Handbuch der

Physik, vol. 6, 1st ed., Geckeier, chap. 3, part 7. These references will be cited in the following

as "Love," "Handbuch," respectively.

In the derivation of (1.1) and (1.3) below, assumptions for the normal deflection analogous

to that of the simple beam theory are made, namely that the deflection is largely due to the

curvatures induced by the moments about the x, y axes, existing in the plate material, and that

the shearing stresses X„ Y2, while in static equilibrium with the normal loads and the bending

moments, produce negligible deflections.
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(1.5) H = [(p/B)x*/4\, (f/B)r*/64], r2 = x2 + y2,

and the reduction of the loaded clamped edge problem to (1.1), (1.2) may

always be carried out. If known tractions (shears and moments) are applied

over the boundary, the boundary conditions are more complicated and in-

volve second and third order derivatives(2).

Another application of (1.1) in elasticity is in connection with stretching

of thin plates. To each such state of stress in a plate there corresponds a solu-

tion H oí this equation, known as "Airy's function," unique except for an

additive first degree polynomial P=Ax+By + C, and such that the compo-

nents of stress are given in terms of H by means of

(1.6) Xx = d2H/dy2,      Xv= - d2H/dxdy,       Yv = d2H/dx2;

here Xx, Xv, Yy are the average values of the respective stress components

throughout the plate thickness. If given tractions are applied over the bound-

ary, equations (1.6) yield boundary conditions involving second-order deriva-

tives ; however, by integration of the traction across any curve C from Pi to

P2 one is led to

(1.7) dH/dx]2 = - Y,       dH/dyfpl = X,

where the bracket is defined by

(1.8) 4>]Fp\ = <t>(Pi) - 4>(Pi),

and X, Y are the resultant traction components across C(3). From (1.7) one

may derive once more boundary conditions of the form (1.2).

The displacement components u, v in the x, y-directions under plane stress

may also be determined in terms of H, and as follows. Let

(1.9) 5 = V2H.

By virtue of (1.1), V2s = 0, that is, s is harmonic. There exists consequently

a conjugate harmonic function /, such that s+it is an analytic function of

x+iy. Let

(1.10) S+ iT =  |  (s+ it)d(x + iy)

(2) The boundary conditions now become (see Love, Handbuch, loe. cit.) Mb— — B[vHb

+ (l-<r)d2w/dn2], S+dMT/ds=-B[d(VHti)/dn+(l-<r)(d/ds)(diw/dndt)], where ilia = applied
bending moment over boundary, ilfr=applied twisting moment over boundary, 5=applied

shear moment over boundary, and where n, t are rectangular co-ordinates along the tangent to

the boundary and the outer normal at the point in question oriented the same way as the posi-

tive x and y directions, and 5 is the arc length along the bounding curve.

(3) If C is traversed from Pi toward P2, equations (1.7) hold with X, Y representing the

components of traction exerted by the region to the right of C upon the region to its left.
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be the integral of this analytic function, then

(i id       (w'v) = (1/2G)C(5, r)/(1 + a)~{d/dx' WyW

+ a rigid displacement;

here u, v are the average values of u, v throughout the plate thickness and

G = £/2(l+<r) is the rigidity modulus. For the proof of these relations the

reader must be referred to Love(4) or the Handbuch^). Their derivation is

based upon the assumptions that normal stress component Zz vanishes every-

where, while the shears X„ Yt vanish over the faces of the plate. The latter

conditions are satisfied if the faces are free from traction, the former holds

very nearly if the thickness is not large. The resulting state of stress is known

as "generalized plane stress."

Airy's function also applies in case of "plane strain" in which u, v are in-

dependent of 2, while the normal displacement w vanishes or at least dw/dz

is everywhere constant. The only modification required in applying (1.6)-

(1.11) is that l/(l+ff) in (1.11) be replaced by l-r/(6).

A further application of (1.1) occurs in the slow flow of viscous incompres-

sible fluids. Here (1.1) is satisfied by the flow function (sometimes referred to

as flux function or stream function) in terms of which the velocity compo-

nents u, v are given by (7)

(1.12) u=-dH/dy,       v « dH/dx.

Corresponding to prescribed motion along the boundaries, one is led to assign

values of dH/dx, dH/dy.
It is clear that the boundary conditions (1.2) are essentially equivalent

to the boundary condition.

(1.13) dH/dx = 7,        dH/dy = 5,

where y, 5 are proper functions along the boundary. The special case of (1.13)

where y, 8 are constants is of great physical interest. For bent plates this

corresponds to a rigid displacement of the boundary; where the deflection Is

caused by displacing different parts of the boundary relative to each other,

each part being displaced as a rigid body, the right-hand constants in (1.13)

need not have the same constant values for each part. In the case of Airy's

function the conditions (1.13) with constant y, 8 correspond to a boundary

free from stress. For the motion of a viscous fluid, constant y, 5 in (1.13)

correspond to a boundary moving as a rigid body and possessing translational

motion. In all these cases (of constant y, 5), by subtracting a proper first

(4) Love, loc. cit., pp. 204-208.

(') Geiger and Scheel, loc. cit., vol. 6, pp. 109-113.

(«) Love, loc. cit., pp. 204-208. Handbuch, vol. 6, pp. 109-113.
(7) H. Lamb, Hydrodynamics, 5th ed., §342, p. 580. By equating the body forces to zero

in equation (3) of p. 580, the biharmonic equation results for the flow function.
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degree polynomial P from H, (1.13) may be reduced to

(1.14) dH/dx = 0,       dB / by = 0

and hence also to (1.4). When (1.13) applies over a composite boundary but

with possibly different constants 7, 5 over each point, the polynomials P

which reduce (1.13) to (1.14) will in general differ for each part of the bound-

ary.

In a sense (1.14) is the analogue of the condition of constancy of harmonic

functions, frequently encountered in potential theory.

2. Solutions of (1.1) in terms of harmonic and analytic functions. It may

be shown by repeated application of Green's theorem that solutions of (1.1)

in a real domain in the (x, y)-plane are analytic in x and y(8). Change varia-

bles from x, y to the complex variables

(2.1) z = x + iy, z = x — iy, i2 = — 1,

whence

(2.2) x = (z + z)/2 = R(z),        y=(z- z)/2i = I(z),

R, I denoting respectively "the real part of," "the imaginary part of" (more

precisely "the coefficient of i in the imaginary part of"). It is found from the

formal rules for transforming derivatives that

(2.3) d/dx = d/dz + d/dz,       d/dy = i(d/dz - d/dz)

whence the Laplacian becomes

(2.4) V2 = 4d2/dzdz

while the repeated Laplace equation (1.1) takes the form

(2.5) d*H/dz2dz2 = 0.

Now H is originally considered for real x and y only, hence only for values

of z, z that are conjugate imaginaries of each other; however, the analyticity

of H allows one to extend H to complex x, y close to the real values, and hence

to values of z, z which vary independently. One may therefore consider the

partíais d/dz, d/dz as bona fide partial derivatives, and show that (1.1) and

(2.5) apply for all z, z.

Integration of (2.5) yields

(2.6) 2H = f(z) + fi(z) + zg(z) + zgi(z),

where /, /1, g, gi are arbitrary analytic functions of their respective complex

arguments. From (2.6) follows on applying (2.4)

(8) See, for instance, the author's paper: Green's formulas for analytic functions, Ann. of

Math. vol. 39 (1938) pp. 46-18.
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(2.7) V2H = 2[g'(z)+gi(z)].

If it is assumed that

(2.8) gi(z) = g~Cj,       fi(S) - /(z),

then (2.6) takes on the form

(2.9) 2H = f(z) +f(z)+ zg(z) + zgjzj

or simply

(2.10) H = R[f(z) + zg(z)];

at the same time (2.7) becomes

(2.11) V2H = 2[g'(z) +Y(¿j] = 4R[g'(z)].

It will be shown that (2.6) and hence (2.10), (2.11) may be assumed to apply

without loss of generality in the real case, that is, when H is real for real x, y.

Indeed, considering the real case, subtract the real quantity

2[g'iz)+7iz)]

from V2H as given by (2.7); the result, namely

(2.12) giiz)-7(z),

is real. However, (2.12) is also analytic in z. Now an analytic function of a

complex variable, which is real for all values of the latter, must reduce to a

(real) constant. Absorbing this constant into g' one is led to the vanishing

of (2.12), whence

(2.13) Si'(2)-7¡3T,

and integrating and absorbing the constant of integration into g, one obtains

the first relation (2.8). It now follows from (2.6) that

/'(*)+/i(s)

is real. From this the second relation (2.8) is established in a similar fashion

by subtracting the real quantity

2[f'(z) +7®]

and integrating.

Unless the contrary is explicitly stated, the real case will be assumed

throughout the following.

We shall adopt the notation

(2.14) f(z) = Fix, y) + iF'ix, y),    F = *[/(*)],    F' = /[/(*)],

and similarly for g(z), G, G'.
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The following alternative forms may be used in place of (2.9), (2.10) for

representing the general (real) solution of (1.1)(9):

(2.15) H = R [f(z) + zzg(z) ] - R(f + r2g) = F + rK,

(2.16) H = R[f(z) + (z + z)g(z)/2] = R(f + xg) = F + xG,

(2.17) H = R[f(z) + (z- z)g(z)/2i] = R(f + yg) = F + yG,

H = R[f(z) + (z/z)g(z)] = R[f(z) + e~™g(z)]
(2.18)

= F + cos 26G + sin 26G';

here r, 6 are polar co-ordinates in the [z = (x+iy)]-plane. Obviously for the

same function H, the analytic functions /, g, and the harmonic functions F,

G are not the same in the various representations ; their mutual relations are

readily found, however. Thus

(2.19) g |(2.10)   =   Zg|(2.15)   =   (g/2) |(2.16)   =   (ig/2)\ (2.17)   =   (g/z) |(2.18),

(2.20) /| (2.10)   =/|(2.16)   =/+ Zg/2 |(2.16)   = f + Zg/2i\(2.l7)   = /| (2.18),

where the notation is self-explanatory.

We shall now express various boundary conditions for formulas of §1 in

terms of z, z, using the form (2.9) for H.

The boundary conditions (1.13) specifying dH/dx, dH/dy yield

(2.21) dH/dx - idH/dy = 2dH/dz = y - i5

and (using the form (2.9) for H)

(2.22) 2dE/dz = f'(z) + zg'(z) + gjz) = (7 - io).

Conversely, (2.22) or its "conjugate equation"

(2.23) 2bE/dz = f'(z) + zg'(z) + g(z) = (y + i5)

is equivalent to (1.13)(10). The boundary conditions (1.14) therefore reduce to

2dH/dz = f'(z) + zg'(z) + g(z) = 0,

2Ô7Î/ÔZ = f'(z) + zg'(z) + J® = 0.

Equations (1.7) may be replaced by

X + ÏY = dH/dy - idH/dx]Pp\ = - 2idH/dz]p\
(2.25) ._ _,p,

- (- i)[f'(z) + g(z) + zg'(z)]pl

or by its conjugate equation

(9) The form (2.9) is probably due to Goursat; the forms given on the right hand of (2.15),

(2.16) are due to Almansi, Annali di Mathematics (3) vol. 2 (1899) §3.

(10) Since the real case is understood, y and 8 are real. In the contrary case (2.6) is used in

place of (2.9) and dH/dz is equated to (y+iS)/2.
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(2.26) X - iY = 2idH/dz]pl = i[f'(z) + gjz) + zg'iz)]*].

Using the form (2.9), (2.10) for H and recalling (2.11), equations (1.9),

(1.10), (1.11) for plane stress can be transformed respectively into

(2.27) j = V2H = 4R[g'iz)],

(2.28) S+iT=-4giz),

2G[u - iv] = 4g(z)/(l + a) - 2dH/dz

(2.29) = 4¡(3)/(l + o-) - [f'iz) + zg'iz) + gjzj]

= 1(3 - ff)/(l + <r) - /' - zg',

while for the case of plane strain

(2.30) 2G[u - iv] = (3 - 4<r)| - /' - zg'

takes the place of (2.29). These expressions are to be credited to N. Muschelis-

vili(u); they were also obtained by the author independently in 1931 (12).

Boundary conditions corresponding to given displacements at the boundary

now lead to prescribed values of

(2.31) "!-/'- zg' = 2G(w - iv)

over the boundary, where

v = (3 — ff)/(l + a)   for plane stress,
(2.32)

v œ (3 — 4<r) for plane strain.

3. The boundary conditions H = dH/dn = 0 over a straight line. We prove

the following theorem :

Let H be biharmonic and let it satisfy the boundary conditions

(3.1) H = dH/dx = 0    along    x = 0.

Represent H in the form

(2.16) H = R[fiz) + xgiz)].

Then the following two functional equations hold:

(3.2) /(*)+/(-*) =0,

(3.3) k(z) + K- 2) = 0,        kiz) = g(z) + f'iz).

Conversely, if (2.16), (3.2), Í3.3) hold, then (3.1) is satisfied.

The notation in (3.2), (3.3) is explained as follows: As stated in §2, the

(") Zeitschrift für angewandte mathematik und mechanik vol. 13 (1933) pp. 264-265.

(u) See the author's paper entitled Thermal stresses in cylindrical pipes, Philosophical

Magazine (7) vol. 24 (1937) p. 209.
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conjugate of an analytic function of z, say of/(z), is analytic in z; denote it

by/(z):

(3.4) W)=m-

The latter function / may, of course, be considered for the argument z as

well as for — z, resulting in /(z), /(— z) respectively. More explicitly, if for

any constant a

(3.5) f(z)   = E/n(z-«)n

is the expansion of/(z) near z = a in integral powers of z — a, then

ffî- E/»(2-«)n

and f(z) is given by

(3.6) f(z) = £/»(»-«)"

and its analytic continuations. The function /will be said to be "conjugate

to" the function /. It is of interest to note that if f(z) is broken up into its

real and imaginary parts as in (2.14), then

(3.7) 7ÖÖ = f(z) = F(x, y) - iF(x, y),

(3.8) f(z) = F(x, - y) - iF(x, - y),

(3.9) /(- z) = F(- x, y) - iF(- x, y),

so that while /(z) involves reflection in the axis of reals along with change of

sign of i, f(—z) involves reflection in the imaginary axis along with a similar

change of sign.

To prove (3.2) put H=0 for x = 0. There results from (2.9)

(3.10) 0 = R[f(z)] = [f(z) +W)]/2 for x = 0.

Replacing

W)
by f(z) and noting from (2.2) that for x = 0, z= —z, there follows

f(z)+f(-z) =0.

This has been proved for pure imaginary z. However, an analytic function

of z cannot vanish at an infinite number of points of the z-plane having a

finite limit point in its region of analyticity without vanishing identically.

Hence (3.2) holds for all z.

To establish (3.3) now apply 3/dx to (2.16) and put dH/dx = 0 for x = 0.

Noting that R, â/ôx are permutable, and since df(z)/dx = df(z)/dz=f'(z) one

obtains
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0 = R[f'iz) + giz)] = R[kiz)] for x = 0

whence (3.3) follows in a similar manner.

In terms of F, G, the results obtained appear even simpler. The boundary

conditions (3.1) lead from (2.16) to

(3.11) F = 0, Fx + G = 0 for*«0,

where Fx = dF/dx, and the functional equations (3.2), (3.3) simply amount to

(3.12) F* = -F,

(3.13) K* = - K,       K = FX + G,

where stars denote reflection about x = 0, that is substitution of — x for x:

(3.14) F*(x, y) = F(- x, y).

Equations (3.12), (3.13) thus state that the harmonic functions F, K are odd

about x = 0.

Conversely, let (3.2), (3.3) hold. Putting # = 0 in (3.2) or its equivalent

(3.12) leads to the first equation (3.11); (3.3) or (3.13) similarly leads to the

second equation (3.11). Hence (3.1) holds.

So far H has been assumed biharmonic and hence analytic in a region en-

closing x = 0. It will be shown now that if the boundary conditions (3.1) hold,

then analytic continuation across x = 0 is always possible.

Let A be a region abutting on ï = 0 along a segment 5. Let H be bi-

harmonic in R including the boundary points of R which comprise S and sup-

pose that along 5, H satisfies (3.1). It will be shown that H may always be

continued analytically across S to the region R* which is the mirror image

of R in x = 0 by means of (3.2), (3.3) or their equivalent equations (3.12),

(3.13), and so continued H will be analytic in R+R* inclusive of the points

of S.
Indeed from the first equation (3.11), if one recalls a familiar theorem of

Schwartz, follows that F may be continued analytically to R* by means of

negative reflection in x=0, that is, into the function F(x, y)=— F*(x, y)

= —F(—x, y) ; in other words, by means of (3.12). Similarly from the second

equation (3.11) follows that K = FX+G may be similarly continued analyti-

cally across 5 into R* by means of negative reflection. Hence G = K — FX, too,

is analytically continuable into R*. Similar conclusions apply to the analytic

functions/, g, k of which F, G, K form the real parts.

If H satisfies (3.1) along two different intervals Si, S2 of x = 0 (for instance,

to each side of an isolated singular point P lying on x = 0), then the branch

of H obtained by analytic continuation into R* across Si need not, of course,

be the same as the branch obtained by continuation across S2.

If H satisfies (3.1) and if P is isolated singular point of H lying in R,

then H is also singular at P*, the mirror image of P in x = 0; otherwise ana-



1946] TWO-DIMENSIONAL BIHARMONIC ANALYSIS 257

lytic continuation from R* into R would make P a point at which H is ana-

lytic. Moreover, the nature of the singularity at P* is completely determined

by the singularity at P. Indeed, let Hi, H2 be two biharmonic functions, both

satisfying (3.1) and possessing the same singularity at P so that Hi — H2 is

analytic at P. Then Hi, H2 will possess the same singularity at P*, because

Hi—H2 must also be analytic at P*. The precise aspect of the singularity at

P* corresponding to specific singularities at P will be considered below and

in the next section.

A simple yet general method of obtaining harmonic functions F which are

odd in x is by putting

(3.15) F =Fi-Fi* = Fi(x, y) - Fx(- x, y),

where Pi is an arbitrary harmonic function. The corresponding solution of

(3.2) is given by

(3.16) f(z) = fi(z) - fi(-z)

where/i is an arbitrary analytic function. This will now be applied to obtain

biharmonic functions H satisfying (3.1) and having prescribed singularities

in x>0. This problem is encountered in the following section in the determina-

tion of proper Green's function in x>0.

Let

(3.17) Hi = R[fi(z) + xgi(z)] = Fi + xGi

be given, and suppose that/i, gi possess proper singularities in x>0 but sup-

pose that they are analytic in x^O; the problem is to find

(3.18) Hi = R[f2(z) + xg2(z)] =F2+ xG2

where f2, g2 are analytic in x>0 and such that

(3.19) H = Ih + H2 = R[f(z) + xg(z)] = F + xG, f = fi + f2, g = gi + g2,

satisfies (3.1). As shown above, (3.1) may be replaced by (3.2), (3.3) or by

(3.11).
Applying (3.16) toward the solution of (3.2) we put

(3.20) Mz) = - fi(-z).

The function k(z) occurring in (3.3) now becomes(13)

(3.21) k(z) = fl (z) +f{(-z) + gi(z) + g2(z)

and g2 must be chosen in it so that (3.3) is satisfied. Note that if this were

done again by means of (3.16) by identifying the sum of the first three terms

(") The term fl (—z) is to be interpreted by first differentiating the function /i(z), then

putting —z in place of z and not as the result of first putting —z for the argument of/i, then

differentiating. A similar notation is used in (3.22), (3.23).
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on the right-hand side of (3.21) with/i(z), then the resulting g2 would admit

singularities in x>0, introduced by the reflection of the function fi'(-z). To

avoid this we put

(3.22) g2(z) = -2f{(-z) -iii-z)

and are thus led to

(3.23) k(z) = fl(z) - f{(- z) + gi(z) - §i(- z).

It will be observed that both the first two terms on the right-hand side of

(3.23) as well as the last two terms agree in form with the right-hand side of

(3.16); hence (3.3) is satisfied. Summarizing, the equations (3.20), (3.23)

furnish a solution of the problem in question. In terms of the harmonics Fi, Gi,

the result may be stated as follows :

(3.24) F2= -Ff,

(3.25) G2= - [2Fix+Gi]*,

where, as in (3.14), a star indicates reflection in x = 0.

Denote the linear functional operation leading from Hi to H2 by L:

(3.26) H2 = L(Hi),

this operation being given more explicitly by

L(Hi) = R{-fi(- z) - x[2f{(- z)+gi(- z)]}

= i-Fi + 2xFix,+ xGi)*

provided that Hi is given by (3.17). An alternative form for L is given by

(3.28) LiHi) = i- Hi + 2xHix - x2V2Hi)*;

this has the advantage of operating on Hi as a whole (rather than on its com-

ponent parts Fi, Gi). To prove this write (3.27) as follows:

(3.29) LiHi) = [- (Fi + xGi) + 2x(FXx + Gi)]* - [- Hi + 2x(Fix + Gi)]*

and utilize the relations

Bix = Fu + Gi + xGix,       V2Hi = 2Gix

which follow from (3.17) by differentiation.

Suppose it turns out that

(3.30) Ht**L(Hi) = Hi.

Then H = Hi+H2 = 2Hiand Hi satisfies (3.1) directly. Conversely, if Hi satis-

fies (3.1), then (3.30) holds. To prove this, applying (3.12), (3.13) to Fu Gu

there results

(3.31) Fi*= -Fi
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(3.32) (Fix + Gi)* = - (Fix+Gi).

Differentiation of (3.31) yields

(3.33) (Fix)*=Fix

and hence from (3.32)

(3.34) (Gi)* = - (2Fix+Gi).

Multiplying (3.34) by x and subtracting from (3.31)

Fi* - xGi* = (Pi + xGi)* = (Fi, + 2xFix + xGj)

whence applying the star operation,

(3.35) (Fi + xGi) = (Fi, + 2xFix + xGi)*;

a glance at (3.27) reveals that (3.25) is none other than (3.30). It has thus been

shown that (3.30) is both a necessary and a sufficient condition for the func-

tion Hi to satisfy the boundary conditions (3.1).

In common with ordinary reflection L has the property that its square is

the identity:

(3.36) L2(H) = H

where H is an arbitrary biharmonic function. Indeed, as previously shown, for

an arbitrary biharmonic H,

(3.37) H+L(H)

is biharmonic and satisfies (3.1). Therefore this function must also satisfy

(3.30). Hence
L[H + L(H)] = H + L(H)

whence (3.36) follows.

4. Green's function for the half-plane. We now apply the results of §3

to the determination of the Green's function Y for the problem of a bent plate

for a half plane, corresponding to the boundary conditions (1.4). Correspond-

ing to the differential equation (1.1) and the boundary conditions (1.4), the

Green's function for a region R is defined by the following: In R, Y satisfies

(1.1) with the exception of one point, the pole of Y; at the boundary, Y satis-

fies (1.4) ; at the pole Y is singular after the manner of

(4.1) 77i = rilnn,

where ri is the distance from the pole, that is, Y =Hi+an analytic biharmonic

function.

The physical significance of the Green's function lies in the fact that it

represents the deflection of the plate corresponding to a normal concentrated
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point load at the pole(14), while the boundary is "built-in" or clamped. To show

that r is the proper analogue of the familiar Green's function y of potential

theory, corresponding, say, to the boundary condition of vanishing potential,

recall that y for a region R is harmonic everywhere inside R with the exception

of a pole, vanishes at the boundary of R, and becomes infinite at the pole

after the manner of In ri. Physically y represents the potential due to a con-

centrated charge at the pole, while the boundary is held at zero potential.

A well known formula of Green expresses the solution of the Dirichlet prob-

lem for a region R at any point P in terms of its boundary values and y. By

repeated application of Green's theorem one proves similarly that the solution

of (1.1) over a region R satisfying the boundary conditions (1.2) is given by

(4.2) H(P) = (l/8x) f [a(s)d(V2T)/dn - ß(s)V2V]ds
J B

where the pole of r is at P and the integrand is evaluated over the boundary

B, over which the integration is carried out(16).

We shall choose the half plane x>0 and put the pole at z = b>0 on the

real positive axis. The singularity of T in x>0 at z = b is given by (4.1) which

is biharmonic except at z = b. Since

Hi = r[ In n = | z - b |2 In \z-b\ = R[(z - b)(z - b) In (6 - z)
(4-3) .

= R[zizi Inzi],

where Zi=z — b, there results upon expressing Hi in the form (2.9)

(4.4) gi(z) = 2(a - b) In (b - z),       fi(z) = (b2 - z2) In (b - z).

The determination of Hi may now be carried out by means of (3.20) and

(3.22). It turns out to be less laborious, however, to adopt the alternative

procedure of using (3.26), (3.28). From

(4.5) Hix = (2ri In n + ri)dri/dx = (2 In rx + l)(x - b),

(4.6) V2Hi = 4R[d2(ziZi In zi)/dzidzi] = 42c(ln zx + 1) = 4(ln n + I),

there results

(4.7) H2 = (- r\ In ri - 4xb In n - 2xb - 2x)*.

The last term may be omitted without affecting the values of either H2 or

H2x at x — 0. Hence we put

(") By using (1.3) for a distributed load, then concentrating the load at a point, it can be

shown that (4.1) represents the deflection in an infinite plate due to a load £ = 5/8x.

(16) More exactly, one proves in this way that if a biharmonic function satisfying (1.2)

exists, it must be given by (4.2). We avoid the question of existence theorems of these solutions

here. They are similar to the existence theorems of the Dirichlet problem and no doubt may be

treated by similar methods (say by variational methods and by means of integral equations).
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(4.8) Hi = (— rx In n — 4xb In n — 2xb)* = - r2 In r2 + 4x£> In r2 + 2xb,

whence

(4.9) r = Hi + H2 = r\ In rx - r\ In r2 + 4x6 In r2 + 2xb.

Note that since r22 = ''i2+4xc>, (4.9) may be replaced by

(4.10) T = fî(ln ri - In r2) + 2xb.

From (4.8), (4.5), (4.6) follows

(4.11) Hi = [- Hi - 2bHix - b2V2Hi + 2b2]*.

Now —H* is the negative image of Hi obtained by replacing x by — x and

changing signs, and might be described as the deflection due to a force — L

placed at z = — b, where L is the applied force due to Hi at z = b. The singular-

ity of Hix is also at z = — b and might be described as due to a concentrated

moment (about the y-axis) placed at z= —b; this singularity may further be

visualized as the limit as S approaches zero of forces L/h, — L/h placed at

z= — b and z= —b + 8. The singularities of V2i?i are of even higher order.

V2Hi may be visualized as the limiting deflection due to a force — 4Z/52 at

(x=— b, y = 0) and four forces each equal to L/h2 and placed at (x, y)

= (b + h, +ô), as h approaches zero, or again, V2Hi may be described as the

deflection due to a proper bending moment applied around the boundary of a

circular hole r2 = constant.

It is clear that biharmonic functions satisfying (3.1) and possessing point

singularities at z = b corresponding to various x, y-derivatives of ri2 In rt may be

obtained by a similar method. However, they may also be obtained by proper

differentiation of T with respect to either b or y. Since dri/db= — dri/dx,

dr2/db=dr2/dx, it follows that the ¿»-derivatives may be expressed in terms of

x-derivatives. In particular, if His singular at z = b after the manner of

(4.12) Hi = d(r\lnri)/dy

then (4.11) can still be applied for finding H2 except for the omission of the

constant term 2&2. However, if

(4.13) Hi = d(r\ In n)/dx = - d(r\ In n)/db,

one obtains by differentiating (4.10) with respect to b a function H2 which is

not derivable from (4.11) without even further modifications. The rule (4.11)

by no means replaces the general rule (3.28).

From (4.10) follows

V2r | x.o = 8b2/(b2 + y2), — V2r | f_o = - I6b3/(b2 + y2)2
dx
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and hence (4.2) becomes (16)

H(x, y) = (1/t) [+"{a(y')2x*[x2 + (y - y')2]"2
(4.14) J_«,

- ß(y')x2[x2+ (y- y'YY^dy'.

Since the region x>0 is infinite, proper restrictions must be postulated for

the behavior of H and its derivative at infinity in order that (4.2) apply with-

out an added contribution arising from the boundary at infinity.

Green's functions for other regions but for the same boundary conditions

(1.4) will be considered below.

5. Other problems for the half-plane. In case of Airy's function the bound-

ary conditions (1.4) apply not to fixed but to completely free boundaries. The

Green's function T of the preceding section is still of interest on account of

its use in (4.2) for obtaining biharmonic functions satisfying (1.2). However,

as Airy's functions, Hi, T given by (4.1), (4.10) suffer from the difficulty

that the displacements u, v associated with them are multiple-valued. We

proceed to construct for the infinite plane, and for the half-plane with a free

or a fixed edge, the Airy's functions corresponding to the stress induced by a

concentrated point force (acting, of course, in a direction parallel to the plate).

We shall adopt the form (2.10) for H rather than (2.16) in order to be able

to use the displacement equation (2.31). Put

(5.1) g(z)= In z.

There results from (2.31)

(5.2) 2G(u - iv) = v log z - z/z - /'.

Multiple-valued displacements will be avoided by choosing

(5.3) /' = - vlogz

whereupon (5.2) yields

(5.4) 2G(u - iv) = 2v log r - e~2ie.

To examine the singularity of the resulting stress distribution at z = 0 apply

(2.25). There results

(5.5) - v In z + z/z + In z]£ = iX - Y.

Upon going once around the origin counterclockwise the left-hand member

of (2.26) increases by (1+^)2^. Hence there is a traction exerted upon the

region inside any circle \z\ =r by the region outside it of amount (l+v)2ir

in the direction of positive x. The Airy's function H in question therefore

(") See L. F. Richardson, Proceedings of the Physical Society of London vol. 23 (1911)

p. 78.
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represents the stress due to a concentrated point force — (l+p)27r. With a

slight modification of/' we put

/ = — vz In z,        g = In z

and obtain

H = [L/2t(v + l)]R[vz Inz-zlnz]

= (L/2t)[(v - l)x In r/(v + 1) - yfl]

as the Airy's function corresponding to an applied load L in the direction of

positive x (see Fig. la). The corresponding displacements are given by (5.4)

and agree with the expressions given by Love(17).

By proper differentiation and superposition one obtains from (5.6)

(5.7) H = [L/2*(v + l)]R[(v - 1) In z - z/z],

(5.8) H = (L/r)R(i In z) = - (L/2tt)6,

(5.9) H = (L/r)(v - l)/(» + l)P(ln z) = (L/v)(v - l)/(v + 1) In r

as the Airy's functions corresponding to applied singular loads shown sche-

matically in Figs, lb, lc, Id. In every case Fh=L and ô is allowed to ap-

F

Fig. la. Fig. lb. Fig. lc. Fig. Id.

proach zero. The singularity of Airy's function (5.8) may be described as a

"concentrated moment" at the origin, while (5.9) is said to be due to a

"center of pressure" or "expansion nucleus" at the origin ; both states of stress

(5.8), (5.9) are radially symmetric about r = 0.

Consider next Airy's functions for the half-plane x>0 with a concentrated

load at some internal point z = b>0, when the boundary x = 0 is either com-

pletely free (no applied traction) or held rigidly (no displacement allowed).

First let the force be in the x-direction and at z = £>>0. Adapting (5.6) we put

(5.10) Hi = R[v(z - b) In (b - z) - (z - b) In (b - z)]

and let H=Hi+H2 where H2 is free from singularities in x>0. If x = 0 is a

free boundary, the boundary conditions (3.1) may be used and we may apply

the results of §3, say by means of (3.26), (3.28). As a variation, however, we

shall indicate a different procedure; the latter, while considerably longer, has

(") Loc. cit., p. 208.

1» Jr
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the advantage of being applicable with little modification to the boundary

condition of no displacement.

Continuing with the form (2.10) for H as well as for Hi, H2 and recalling

(2.26) it will be noted that the boundary condition

(5.11) 2dH/dz = f'(z) + zg'iz) + gjz) = const.

applies along a free edge ; the right-hand constant may be equated to zero by

adding a linear term in z, z to H if necessary; this we suppose to be the case:

(5.12) f'iz) + zg'iz) + gjzj = 0.

Suppose now that (5.12) holds for x = 0, then replacing g(z) by g(s) and z by

— z and substituting/=/i+/2, g=gi+gi we obtain

(5.13) f{ (z) + fi (z) + gi( - z) + g2( - z) - zgl (z) - zg2' (z) = 0.

From §3 it follows that if/i, gi are singular at P in x>0 but not at P*, the

reflection of P in x = 0 (this is the case with/i, gx of (5.10) with P at z = b>0),

then/2, gi will be singular at P*. Equating separately to zero the parts of the

left-hand member of (5.13) which are singular at P and at P* respectively,

we obtain

(5.14) f{ (z) + gii- z) - zg{ (z) = 0, fi (z) + fi(- z) - zg{ (z) = 0.

If/ii gi are given, the first equation (5.14) determines g2; the second one then

yields/2.

Similarly (2.3) yields as the condition of zero displacement

(5.15) vgjz) - zg'iz) - f'iz) = const.

and the constant may again be chosen as zero. Similar manipulation of (5.15)

leads to

"I2 (- z) + zg/ (z) - fi (z) = 0,

v|i(-z)+zg2'(z)-/2'(z) =0.

To obtain the Airy's function sought, we merely put in (5.14), (5.16)

(5.17) /i = [viz - b) + b] In ib - z),        gi = b In (Ô - z)

and determine g2, /2.

We now turn to the determination of Airy's function for the half plane

*>0, corresponding to given tractions applied over x = 0. This problem may

be reduced to the boundary conditions (1.2) and may be solved by means of

(4.14). The following direct treatment, however, is also of interest.

Returning to the proof of §3 it will be noted that either (3.2) or (3.12) is

equivalent to the boundary condition iZ"=0|i_0. Equations (1.6), (1.7) show
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that this corresponds to vanishing normal tractions Xx over x = 0, that is,

to purely shearing stress applied over x = 0. Similarly either (3.3) or (3.13)

is equivalent to the boundary condition dH/dx\ x_o, corresponding to vanish-

ing shearing tractions Xv and purely normal applied stresses over x = 0.

As a very simple solution of (3.2), (3.12) we choose

(5.18) /= 0,        H = R(xg) = xG.

There results from (1.7), (1.6) along the boundary x = 0

(5.19) - F = R(g) = G(0, y),

(5.20) Xy = - dY/dy = - d2H/dxdy = R[ig'(z)] = - l[g'(z)] = G„(0, y).

A similar simple solution of (3.3), (3.13) is obtained by letting k = 0, hence by

choosing g, f, H in accordance with

(5.21) *=-/',        H = R(f-xf),

resulting in vanishing dH/dx, Xv at x = 0. There is obtained along the bound-

ary x = 0 from (1.6), (1.7)

(5.22) X = dH/dy | = R[df(z)/dy] | = R[if'(z)] \ = - l[f'(z)],

(5.23) Xx = dX/dy = d2H/dy2 = R(d2f/dy2) = - R[f"(z)].

By properly choosing/, g above, many interesting stress distributions re-

sult. As examples of special interest we consider first the special case of (5.18),

(5.24) /= 0,        g = tlnz.

This leads to

(5.25) H = x6

and to the boundary resultant traction components

tt/2    for    x = 0, y > 0,
(5.26) X = 0,

{- t/2    for    x = 0, y < 0,

corresponding to a shearing force t in the y-direction applied at the origin

along the otherwise free boundary x = 0. The similar case of a normal con-

centrated force at the origin is obtained by choosing in (5.21)

(5.27) lnz=/',

resulting essentially in

(5.28) H = R(z In z - x In z) = - yd.

fir/2    for    x = 0, y > 0,
(5.29) 7 = 0,       -X = I(lnz)=\

It/2    for    x = 0, y < 0,

corresponding to an applied force t in the normal or x-direction along x = 0.
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By proper superposition of the two solutions just found, any traction over

x = 0 may be obtained.

Further examples of interest are obtained by choosing e~Xz for g or / in

(5.18), (5.21), where X is a real positive constant. There result a sinusoidal

shearing and normal tractions over x = 0. The corresponding Airy's functions

are also obtainable directly by seeking solutions of (1.1) of the product form:

(5.30) u=Y(y)X(x).

Such solutions are found to be

(5.31) u *• e*Xi»X(x)

where X satisfies the differential equation

(5.32) A'4» - 2X2A" + X = 0

and therefore consists of a linear combination of

(5.33) eXx, xeXx, e~Xx, xe^1.

For real X in the half plane x>0 only the last two terms are used to avoid

infinite stresses for x= + <». By choosing X so that A'(0) =0, there result a

sinusoidal normal stress and zero shearing stress; similarly, A"(0) =0 yields

a sinusoidal shearing traction and vanishing normal traction.

Arbitrary tractions over x = 0 may now be found by superposing these

solutions, say by means of proper harmonic analysis, for instance, by means

of Fourier integrals.

6. Circular boundary. Consider first a circular boundary r=a along which

the boundary conditions (1.4) hold so that

(6.1) H = 0,        dH/dr = 0 for r = a.

We shall adopt for H the form (2.15) slightly modified, however, by replacing

r2 by r2 — a2:

(6.2) H = F + (r2 - a2)G = R[f + (r2 - a2)g].

The factor (r2— a2) vanishes along the circular boundary, hence the form

(6.2) is a close analogue of (2.16) that proved so convenient for the rectilinear

boundary x = 0.
Applying (6.1) along the boundary there results

(6.3) F = 0,        dF/dr + 2aG = 0 for r = a.

The analogy to the rectilinear boundary can now actually be put to use by

introducing the conformai transformation

(6.4) z = aew,    w = u + iv;        r = ae",    6 = v,

whereupon r = a goes into m = 0 and (6.3) becomes
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(6.5) F = 0,        dF/du + 2a2G = 0 for u = 0.

These conditions differ from (3.11) only in that x, y, G are replaced respec-

tively by u, v, 2a2G. Hence the solution of §3 may be adapted to the present

problem. In particular it follows that if (6.1) applies along a segment S of

the circle r = a, that F, G, H may be continued analytically from a region R

to one side of the segment 5 to the region R* which is the inverse image of R

in the circle r = a. If P is an isolated singular point of H to one side of r=a,

other than r = 0, then P*, the reflection (or inverse image) of P in r = a, is

a singular point of (the analytic continuation of) H.

Adapting equations (3.2), (3.3) to the present case we state: A necessary

and sufficient condition that H satisfy (6.1) along a circle r = a or any seg-

ment thereof is that H be represented in the form (6.2) where the functions

/, g satisfy the functional equations

(6.6) f(z) + f(a2/z) = 0,

(6.7) k(z) + k(a2/z) = 0,        k(z) = 2a2g(z) + zf'(z).

These relations follow by replacing/, g, z by/, 2a2g, w in (3.2), (3.3), then

expressing w in terms of z (equation (6.4)). If

(6.8) f(z) =F(r,e) + iF(r,6),

then the nature of f(a2/z) is rendered clear from

(6.9) f(a2/z) = F(a2/r, 6) - iF(a2/r, 6)

which shows that f(a2/z) is equal to the conjugate of the value that/ takes

on at the inverse image point of z, a2/z.

Equations (3.19)-(3.29) may now be adapted to obtain biharmonic func-

tions satisfying (6.1). There results from (3.19), (3.24), (3.25)

H =Fi+F2+ (r2 - a2)(Gi+G2)

(6.10)
= R[fi(z) +fi(z) + (r2 - a2)[gi(z) +g2(z)]]

where Pi, Gi are arbitrary harmonics and F2, G2 are given by

(6.11) F2= - Fi*, Gi = - [(r/a2)dFi/dr + Gi]* = - (l/r)(dFi/dr)* - Gi*

where stars now indicate inversion in the circle r=a:

(6.12) F*(r, 6) = F(a2/r, d).

In terms of/i,/2, gi, gi in (6.10) this is equivalent to(18)

(6.13) fi(z) = - fi(a2/z),

(l8) In (6.15),// (a'/z) is to be interpreted as follows. First derive the function/i(z) as in

(3.6), then differentiate it obtaining// (z) and finally substitute a'/z in place of z. In (6.12) the

term (dF/dr)* is to be interpreted by carrying out the r-differentiation, then replacing r by a2/r.
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(6.14) giiz) = - gi(a2/z) - f{ ia2/z)/z,

where/i, gi are arbitrary.

To revert to the form (2.15),/i — a2gi in Hi is replaced by/i, resulting in(")

R[fi(z) + r2gi(z)],

R{[ji(a2/z) + r2gi(a2/z)

+ (r2 - a2)z~1[fl(a2/z) + a2gl (a2/z) ] ],

Hi + Hi,

where again fi, gi are arbitrary.

If ft, gi (in either (6.10) or (6.15) or Fi, Gi in (6.10)) possess singularities

in r>a but are analytic in r¿a, then H2 is analytic in r>a and H possesses

the same singularities in r>a as Hi. With the possible exception of r = 0, the

last statement also holds with the inequalities reversed : by choosing Hx prop-

erly singular for r<a but analytic in r^a, H2 will be free from singularities

in r ¿a and H will possess the same singularities as Hi there, except possibly

for r = 0 where the behavior of H2 depends upon the nature of Hi at z = °o.

The singularity due to H2 at z = 0, if any, must be removed without interfer-

ing with the boundary conditions (6.1).

As an elementary example, consider the well known case of a circular hole

in an infinite tension member, the edge of the hole being free from stress. Let

(6.16) Xx=Xy = 0,    Yy=l;       Hi = x2/2

be the uniform tensile stress in a uniform plate (without the hole) and its

Airy's function. This describes the behavior of the stress and Airy's function

at infinity even in the presence of the hole. To transform Hi to the form

(2.15) note that

Hi = (z + z)2/8 = R(z2 + «)/4 = R[(z2 + r2)/4]

whence
/i = z2/4.        gi = 1/4.

Applying (6.15) there results

H2 = R(a*/4z2 - r2/4: - a2r2/2z2)

whence

(6.17) H = ic(z2/4 + a4/4z2 - aV2/2z2) = cos 26(r2/4 + a*/4r2 - a2/2).

As an example of a less elementary nature we shall obtain the Green's

functions for the problem of the bent plate for the region R outside the circle

(19) To avoid confusion it is preferable to introduce first a new symbol, say 4>, in place of

fi—a'gi in (6.13), (6.14), then replace <f> by/i.

(6.15)

Hi

- H2

H =
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r = a, with the "built in" boundary condition (6.1) at r = a. Let the pole be

chosen at z = b>a and let Hi be given by (4.3). Using the form (2.15) for H

there results

Hi = R[(z-b)(z-b) In (6 -z)]
(6.18)

= R[r2(z - Viz-1 In (b - z) - b(z - b) In (b - z)]

whence

(6.19) gi = (z - b)z-' In (b - z),     /i = - b(z - b) In (b - z).

Substitution in (6.15) leads after considerable algebraic reduction to

(6.20) H2= - r\ In r2 + r\ In r/b + (a* - r\\ - br'1 cos 6)

where r2 is the distance from a2/b, the inverse image point of b in the circle

r = a:

(6.21) r2 = \z - a2/b\.

There results for the Green's function

(6.22) H = T = rî[ln n + In (r/b) - In r2] + (a* - r*)(l - br~* cos 0).

The boundary conditions (6.1) at r = a may be checked directly on (6.22).

As pointed out above, equations (6.15) may lead to a singularity at z = 0.

This, indeed, is the case at present, the terms of (6.22) which are singular at

z = 0 being

r\ In (r/b) - (a2b/r) cos 8.

Replacing them by a linear combination of 1, r, r cos 6 having the same value

along r = oas well as the same r-derivative there, one obtains as a further pos-

sible Green's function

(6.23) H = T = rî[ln n - In r2 + In (a/b)] + (a* - r2)(a* - b2)/2a\

This has the advantage over (6.22) of having no singularity at r = 0.

If the Green's function Y for the region inside the circle r=*a is sought,

b is chosen positive and less than a, and (6.23) still furnishes the proper

Green's function. While for the region external to a circle either (6.22) or

(6.23) can be used for Y, for the region internal to a circle the Green's function

is unique, only (6.23) will do, (6.22) being disqualified by the singularity at

the center r = 0.

If one allows a, the radius of the circle, to become infinite, (6.23) will be

found to approach the Green's function (4.10) for the half-plane, once proper

consideration is given to the different position of the origin in the two cases.

We give the interpretation of the singularity of (6.23) at z = a2/b. The in-
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verse image of z = b in the circle r = a can be carried out along similar lines to

that of the Green's function for the half-plane by transforming the term

— r2 In r2 as follows :

2 2 r22lr 21 22
— ri In r2 = — r2 In r2 — [(a   — b )/b] [x — a /b] In r2 — (a   — b ) In r2.

If we identify H' = —r22 In r2 with the deflection due to a concentrated force at

z = a2/b, equal and opposite to the initial force at z — b, and express the re-

maining terms in terms of dH'/dx and V2H', we can interpret them as deflec-

tions due to a concentrated moment and a quadrupole of forces or a circularly

distributed bending moment at z = a2/b.

Application of (4.2) to (6.23) yields the following solution of (1.1), (1.2)

for the circular region r <a (see Fig. 2)

{[cos (9 - di) + (b/a2) cos Bi]aid)/ri\dd
o

(6.24)

+ [ia2 - r2)/4w] f  T ßid)d6;
J o

here Hp is the value at P of the biharmonic function which satisfies the bound-

ary conditions

(6.25) H = aid),       âH/dr = 0(0)

along r=a.

Fig. 2.

Equation (6.25) applies as well to the exterior of the circle r = a, provided,

however, that the boundary conditions are (1.2) and not (6.25), and provided

that H is properly restricted at infinity so that no additional terms in (4.2)

arise from the boundary at infinity when Green's theorem is applied.

An alternative treatment of the boundary conditions (1.2), say for the

inside of the circle r = a, is to use the form (6.2) directly. There results in place

of (5.27)

(6.26) F = a,       dF/dr + 2aG = ß       for r = a.
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The determination of F leads to a Dirichlet problem. After F has been found

and from the first equation the boundary value of dF/dr determined, Gis

likewise obtained as the solution of a further Dirichlet problem.

A further well known treatment of the problem for the interior of a circle

is by resolving a and ß in Fourier series in 6 and using power series in z for

/ and g.
7. Airy's functions for a circular region. Turning to Airy's functions for a

circular disc corresponding to applied tractions over its boundary, we recall

from §1 that this may be reduced to the boundary conditions (1.2); hence

the results of the preceding section may be applied to the determination of

this Airy's function. The following solution in terms of X, Y, the resultant

tractions (from a fixed point on the boundary to any point on it), is somewhat

more convenient, however.

Recalling (3.25) (and using the form (2.10) for H) one obtains over r = a

(7.1) /'(«) + zg'(z) + gjz)= -iX-Y.

To treat this boundary condition it will be noted that it is in general impos-

sible to assign boundary values of an analytic function over the boundary of

a closed region. Thus no function y(z), analytic in \z\ <a, need exist which

takes on assigned boundary values 7(0) over \z\ =a. However, it is always

possible to find two functions, 7i(z), y2(z), each analytic in z for \z\ <a, and

such that

(7.2) [7i(z) + y2(z) ] = y(8) for | z | = a.

The two functions 71, 72 are essentially unique, any two different determina-

tions differing from each other at most by constants. The proof of these

statements follows readily by starting with the Fourier series resolution of

7(0):

(7.3) T(9) = Iwni'

and putting

,„    N 7i(») = E 7n(z/a)" + C, y2(z) = ¿ 7-n(z/a)" + C,
(7.4) „_i „_i

C + C = «0.

Applying the above to the right-hand member of (7.1) let —iX—Y be

represented as the sum of the boundary values of 71 (z), 7¡¡(z):

(7.5) vi(z) + y2(z) = - iX - Y = y(6)

along the boundary r = a, where 71, 72 are analytic in their respective argu-

ments in the circle r<a. It will be assumed that
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(7.6) 7[72'(0)]=0.

This is a natural restriction which is equivalent to the vanishing of the mo-

ment about the origin of the applied tractions ; the vanishing of their resultant

follows automatically from the fact that X, Y, assumed single-valued on

r = a, return to their initial values as 0 increases by 27T. The boundary condition

(7.1) will be written in the form

(7.7) f'iz) + ia2/z)[g'iz) - g'(0)] + [zg'iO) + Hz)] = 7l(s) + y&),

thus avoiding the singularity at z = o°. To solve this equate respective func-

tions of z, z on both sides:

(7.8) zg'(O) + g(z) = 72(z),

(7.9) f'iz) +.ia2/z) [g'iz) - g'iO)] = ti(z).

Equation (7.8) would involve a contradiction were it not for (7.6). When

the latter is satisfied we solve (7.8) by putting

(7.10) giz) = y2iz) - tTWz/2.

Equation (7.9) is then used to yield f'iz), and by integration,/(z).

As an example we shall obtain the Airy's function for a circular disk r <a

subject to several concentrated loads over its boundary. To this end let (7.1),

(7.5) hold with

(7.11) 7i(z) = (1/2*) ¿ C\ In (z - zi),      72(z) = - (1/2tt) 22 C* In (z - zi),
i-l

where Zi, z2, • • • , z„ are n points lying on z = a and C» are n (possibly com-

plex) constants satisfying the relations

(7.12) 22Ci = 0,     i(22c<zl\ = o.

Equation (7.1) now reduces to

(7.13) - iX - Y = ii/ii) 22 Cidi
i

where 0, are the respective arguments or angles of z—Zi. It is readily shown

that in view of (7.12) the right-hand member of (7.13) is constant over each

arc segment r = a, between adjacent points z,-, thus corresponding to no ap-

plied tractions over the internal points of these arc segments. Upon crossing

Zj in direction of increasing 8 and without getting out of r¿a the right-hand

member of (7.13) increases by —C¡i; hence X — i Y increases by an amount Cj.

Thus (7.11) corresponds to the "complex" forces Ci, Ct, ■ ■ ■ applied at

Zi, Zi, ■ ■ ■ , that is, to forces whose components in the x, y-directions are
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equal respectively to the real and imaginary parts of Ci, d, • • • . Equa-

tions (7.12) correspond to the conditions of equilibrium for these applied

forces (zero resultant and zero moment).

Applying (7.9), (7.10) to (7.11) we obtain

(7 14) Si¿) = " {1/2W) ̂  Ci[ln (Z " Zi) ~ Z/2Zi]'

/(z) = (1/2t) E In (* - *0 [Ci(z - z<) - CiZi]

and hence

H = R{'£ln(z- Zi) [(¿Ci - zd) - (ziVi - z.d) - («2/2) E Ci/u)

' (1/t) E 9il[C((z -z,)]- (r2/4T) E P^/z,).

The Airy's function corresponding to distributed tractions is easily written

down by replacing the above summations by integrations.

For the region external to the circle r = aa similar treatment can be*given.

However, X, F need no longer be single-valued along r = a since the applied

tractions now may possess a nonvanishing resultant or moment, this being

kept in equilibrium by a proper stress distribution at infinity. Moreover, the

displacement components must be single-valued for r >a. The Airy's function

(7.15) is disqualified on both of these accounts.

We now consider a single point force (Fx, Fy) applied over the boundary

r = a>0. Corresponding to it we write the boundary condition (7.1) as

(7.16) f'(z) + zg'(z) + gjz) = 2iC(6i - 6/2) + constant

where di, 6 are the arguments of z — a, z and the complex constant C is given by

(7.17) 2iriC = - iFx-Fy.

Indeed, over \z\ =a, dd = 2d6i, and the right-hand member of (7.16) reduces

to a constant except at z = a, and when z describes a semi-circle about z = a

while staying in r>a, di increases by t. Now note that

6 = /(In z) = (In z - In z)/2i,
(7 18)

0i = /[(ln)(z - a)] = [In (z - a) - In (z - a)]/2i

and replace the right-hand member of (7.16) by

(7.19)    C[ln (z - a) - In (I - a)] - (C/2)(ln z - In z) + K(ln z + In z)

where theX-terms reduce to a constant over \z\ =a. Replacing z by a2/z in

the left-hand member of (7.16) and equating the analytic functions of z and z

on both sides one obtains first g, then/':

(7 20)   g(z) = ~ C ln (Z " a) + ( Z + Ü/2) ln 2'

f'(z) = C ln (z - a) + (K - C/2) In z + C/z(z - a) - (K + C/2)/z2.
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The displacements (u, v) are determined by (5.2). Their multiple-valuedness

in r>a is correctly represented by

(7.21) 2G(u - iv) = - (K + C/2) In z - v(K + 3C/2) In z + • • •

where the terms explicitly indicated are obtained by replacing ln(z — a) by In z

and the terms not explicitly shown are single-valued. The displacements are

single-valued provided

(7.22) (K + C/2) = v( K + 3C/2) ;

by expressing K in the form Ki+iK2, recalling (7.17) and equating real and

imaginary parts one determines K.

8. Regions with multiple boundaries. We shall now consider briefly re-

gions whose boundary consists of several portions each of which is represented

by a different analytic equation in the coordinates x, y or z, z. Simple examples

of these regions are given by the infinite strip

(8.1) - a/2 ¿ x¿ a/2,

the region between two concentric circles

(8.2) a¿r¿c,

the angular region

(8.3) - a/2 ¿ 0 ¿ a/2,

and so forth. While detailed expressions for the Green's functions or treat-

ments of boundary value problems for these regions are outside the scope of

this paper, the following comments are of interest from the point of view of

analytic function theory.

Application of the method of alternate "reflections" in the sense explained

in §§3, 4, across each boundary x= —a/2, x = a/2 oí the strip (8.1), to the

function

(8.4) Ho = r0 In r0,       r0 = \z — b\,       ¿»real

which has the singularity of the Green's function at (x, y) = (£>, 0) leads to the

series

(8.5) H = Ho+ (27-1 +ffi) + (H-i + Hi) + ■■ ■

where for any n > 0

(8.6) iL_n = L(Hn-i), Hn = M(Hl_n),

and where the linear operators L, M are defined by

(8.7) L(H) = {- 1 + 2[x+ (a/2)]d/dx - (x + a/2)2V2]H |„(__.„

(8.8) M(H) = {- 1 4- 2[x- (a/2)]d/dx - (x - a/2)2V2]H|„(a_„.
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The series (8.5) gives the correct singularities of the analytic continuation

of r—these singularities are located only at

(8.9) zn = (- l)"b + na,

this point being singular for Hn only—and formally satisfies the conditions

(1.4) along x = a/2, x= —a/2. The calculation of its successive terms gets very

irksome and the question of its convergence is still an open one.

Similar remarks apply to the regions (8.2), (8.3), where for (8.2) opera-

tors L, H are replaced by reflections across the circular boundaries of (8.2)

in the sense of §6, while for (8.3) the reflections are across the intersecting

lines bounding (8.3).

Application of (2.24) to H expressed in the form (2.10) leads to

(8.10) f'(z) +gjz)+ zg'(z) = f'(z) + |(8) + zg'(z) = 0

along both x= —a/2, x=a/2. Now along x= — a/2

(8.11) (z + z)/2 = - a/2,        z=-z-a

and (8.10) becomes

(8.12) f'(z) + g(-z-a) + (-z- a)g'(z) = 0.

Since this holds for all the points of x= —a/2, it holds for all z. Similarly

along x = a/2

(8.13) (z + z)/2 = a/2,       z = - z - a

and (8.10) yields for all s

(8.14) f'(z) + |(o -z) + (a- z)g'(z) = 0.

Elimination of f'(z) from (8.12), (8.14) leads to

(8.15) 2ag'(z) + g(a - z) - g(- a - z) = 0.

The last equation applies even when H is represented in the form (2.16) since,

as shown in (2.19), the functions g(z) for the forms (2.10), (2.16) differ from

each other only by a factor 2.

In the functional equation (8.15), the terms g(a — z), g(—a—z) involve the

values of g at the reflection of z in the lines x = a/2, x= —a/2 respectively.

This equation is to be compared with the simple periodicity equation which

results for a harmonic function vanishing over the boundaries of strip (8.1).

Special simple solutions of (8.15) are given by

(8.16) g(z) = eXl- e~l°

provided X is a root of

(8.17) sinh\ + Xa = 0,
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and by

(8.18) g(z) = ex' + r*«

where X is a root of

(8.19) sinh Xa - \a = 0.

Corresponding functions/(z) may now be found from (8.12) or (8.14).

Another way of arriving at essentially the same solutions is by using bi-

harmonic functions of the product from (5.31). The boundary conditions (1.4)

reduce to A = A'=0 for x= ±a/2. By choosing a linear combination of the

functions (5.33) which is even and odd in x one is led to (8.17), (8.19) respec-

tively.

It is planned to discuss the expansion of the Green's function in terms of

these characteristic functions in a future paper.

The strip (8.1) with prescribed values of H, dH/dx over the boundaries

can be treated by means of the Fourier integral. As an example of the Fourier

integral method see Filon's treatment of Airy's function for the case of equal

and opposite forces at the opposite points of the strip boundary (20).

For the ring (8.2) a similar application of (8.10) to the two boundaries

leads upon elimination of/' to the functional equation

(8.20) (c2 - a^z-^iz) + g(c2/z) - g(a2/z) = 0.

Solutions of this are available of the form

(8.21) g(z) = z"+1 + CV-*

where p satisfied the equation

(8.22) (c2 - a2)n ± [(1/c2)" - (1/a2)"] = 0.

An alternative way of arriving at the same solutions is by means of the

product solutions of (1.1):

(8.23) H = e**R(r)

where R is a linear combination of

(8.24) r-", r-"+2, r", r»+*.

The functions (8.21), (8.23) are not single-valued over the ring (8.2).

Single-valued biharmonic functions are furnished by (8.23), (8.24) with posi-

tive integer p^l, and by

(8.25) 1, In r, r2, r2 In r,

(8.26) ei0[r~\ r, r\ r In r]

(") L. N. Filon, Philos. Trans. Roy. Soc. London Ser. A vol. 201 (1903) pp. 63-155.
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for ¡j. = 0, 1. By means of Fourier series the Green's function can be expressed

in terms of these functions and the general solutions of the (1.1), (1.2) for

the ring (8.2) obtained.

Turning to the angular wedge (8.3) we express its boundaries in the form

(8.27) z = e~iaz,       z = eiaz.

Application of (8.10) leads to

(8.28) f'(z) + e-<»zg'(z) + K«~ia2) = 0,    /'(z) + e*°zg'(z) + g(e*"z) = 0

and hence to

(8.29) 2i sin azg'(z) + g(eiaz) - g(e-<az) = 0.

It can be shown that with the exception of g = 0 any solution of this functional

equation must be singular at z = 0. Indeed, if a solution of (8.29) analytic at

z = 0 did exist, then expanding in integral powers of z:

(8.30) g=EgnZ"

it will be found that each term has to satisfy (8.29) separately and hence

(8.31) gn[2ni sin a] + gn[2ni sin not] = 0.

This leads to gn = 0 even for a = ir/2.

This last conclusion is quite at variance with the analogous result for

harmonic functions F where the condition F = 0 over edges of a right angle

leads upon reflection across the edges to F = R(f), where / is a single-valued

analytic function at the corner point.

Proper product solutions for the wedge are furnished by

Tsin sin_
(8.32) f" »0 + const.        n — 2 0

Leos cos

9. Inversion. General conformai mapping. Under a conformai transforma-

tion

(9.1) z = z(w),        w = u + iv

solutions of (1.1) do not transform into solutions of the same equation in the

coordinates u, v. Indeed, under (9.1), the general function (2.10) becomes

(9.2) H = R[f(w) + zjw)g(w)]

where, properly speaking, f(w)=f[z(w)\, g(w) = g[z(w)]. One recognizes the

obvious difference between this and the general biharmonic function in the

(u, v) coordinates:

(9.3) H = R[f(w)+wg(w)].

■
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Even though (9.2) still involves two analytic functions, one cannot use con-

formal mapping for the biharmonic problem in a manner similar to the har-

monic one.

While the above statement is true of general conformai mapping, there is

one outstanding difference, namely inversion in a circle. Using the form (2.15)

for if:

(9.4) H=F + r2G

one obtains after inversion in r = a

(9.5) H* = F* + (a*/r2)G*

whence follows that

(9.6) r2H* = r2F* + a*G*

is of the same form as the right-hand member of (9.4) and thus biharmonic.

Thus while inversion does not transform solutions of (1.1) into other solutions

of this equation, inversion followed by multiplication by r2 does(21).

Moreover, if H satisfies (1.4) along a particular curve or boundary C,

then r2Hvfill also satisfy the same boundary conditions along C*, the inverse

image of C. For the Airy's function this corresponds to the condition of a free

boundary. More generally the conditions

(9.7) II = P,       dH/dn = dP/dn,       P = C0 + dx + C2y

may hold along any portion of C free from stress. This is transformed into

(9.8) r2H* = C0r2 + Cia2x + C2a2y = r2P*,    d(r2H*)/dn = d(r2P*)/dn.

The term Cor2 in Airy's function corresponds to a state of constant tension

or pressure. By subtracting this term a free boundary portion still results.

Both Green's functions of §§4, 6 can be obtained by proper inversion of

the Green's function of a circular region with pole at the center. Likewise

the Airy's function (5.25), corresponding to a concentrated lead at a point P

of the rectilinear boundary of a half-plane, can be made to yield by inversion

and subtraction of a constant pressure term the solution for a disk subject to

two equal and opposite forces, one at P, the image of the other at the image

of the point at infinity.

For general conformai transformations (9.1) the boundary condition

(2.24) becomes transformed into

(9.9) 0 = 23ff/c>w

and hence (2.9), (9.2) yield

(") This result is due to Mitchell, Proc. London Math. Soc. vol. 34 (1902) p. 134; see also

Love, p. 154.
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(9.10) 0 = f'(w) + z(w)g'(w) + z'(w)g(w),

while the boundary condition (2.22) is transformed into

2dH/dw = f'(w) + z(w)g'(w) + z'(w)g(w)

= (y — io)dz/dw = (y — ib)z'(w).

A more thorough discussion of these boundary conditions and of the func-

tional equations resulting therefrom will be postponed for a future occasion.

For the present we close with an illustration of the use of (9.10) for the de-

termination of the Airy's function for a tension member with an elliptical hole.

The mapping function

(9.12) z/c = w+ 1/w,        c > 0,

maps the outside of \w\ =a on the outside of the ellipse of semi-axes

c(a + l/a), c(a — l/a) in the z-plane. Equation (9.10) now takes on the form

(9.13) f'(w) + c[(a2/w) + (w/a2)]g'(w) + e(l - l/w2)g(a2/w) = 0.

At infinity the behavior of the Airy's function is described by (see (6.17))

(9.14) H = x2/2 = R(zi/4 + zz/4) = R(w2/4 + zw/4)

thus making

(9.15) f'(w) = w/2,       g(w) = w/4

for large | w\. It turns out that (9.13) can be satisfied by putting

(9.16) f'(w) = w/2 + A/w + B/w3,.      g(w) = w/4 + C/w

where A, B, C are real constants, thus adding to/', g in (9.14) polynomials

in 1/w. Indeed, (9.13) yields upon equation of net coefficients of w, 1/w, 1/w3

to zero,

1/2 + c/4a2 + Cc/a2 = 0,        A + ca2/2 + 2Cc/a2 = 0,

B - Cca2 - a2c/4 = 0,

and these determine the values C, A, and B in turn.
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