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1. Introduction. The most important contribution to the question of find-

ing the minimum value of |/(x, y) | for integer values of x, y, where/ is a real

function of its arguments, is given by Minkowski's fundamental theorem in

the Geometry of Numbers which can be stated as follows:

Theorem. Letf(x, y) be a single-valued function of x and y which satisfies

the following conditions:

(I)/(0,0)=0.
(II) f(x, y)>0 unless x=y = 0.
(III) /(foe, ty)=tf(x, y), where t>0.

(IV) /(*i+*,, yi+y2) £f(xu yi)+/(x2, yt).
(V)f(-x, -y)=f(x,y).

Then there exists at least one set of integer values of x, y such that

(1) 0 < f(x, y) =g 2/J1'2,

where J is the area of the region f(x, y) ^ 1.

The result can be put in a slightly different form by writing

x = a£ + ßi),        y = 7Î + Sr¡

where A=ad—ßy>0, and making £, i\ run through all integer values. Then

x, y describes the points of a lattice L say, and a point of L now satisfies the

conditions

(2) 0 < f(x, y) g 2J-1'2A1i\

This in general is not the best possible result. When/is given and L varies

but with A fixed, Minkowski has considered the question of replacing the con-

stant 2J~in in (2) by the least possible value. He shows that this leads to

an extremal problem of the following type :

Problem. To find the minimum value of \ ad — bc\ when a, b, c, d satisfy the

equations

(3) f(a, b) = 1,       f(c, d) = 1,        f(a + c,b + d) = 1,

that is, to find a parallelogram of minimum area one of whose vertices is at the

origin O and whose other three vertices are on the boundary f(x, y) = 1.
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These problems, though simple enough in theory, often prove very diffi-

cult in practice.

The geometrical significance of Minkowski's conditions I-V is that the

region in (1) is bounded, convex and symmetrical with respect to the origin.

Apparently, he did not attempt to extend his results to non-convex or infinite

domains though he deduced a result for the product of linear forms by apply-

ing the inequality of the arithmetic and geometric means. Very recently

[3](x), however, I showed that such regions were amenable to treatment and

gave a number of best possible results, for example, for the regions

|^ + y3| ^ 1;   \xy(x + y)\ g 1;   | x* + y»\ £ 1, .33 ••• <p= 1;

| x* - y4| ^ 1,

by using methods of some generality.

Other proofs for the first two regions were found by Davenport [l] and

myself. The last two examples, however, are particular cases of a general

theorem for regions dt resembling those defined in these examples. My

method, which was very different from that of Minkowski, was to develop

a theory adequate in principle for the type of region dealt with, and then to

reduce the question to an ordinary maximum and minimum problem, really

an elementary extremal problem. The field of variation of a variable point P,

say, defining the problem is an appropriate small region abutting the given

region 3î. The next step is to show that Pean be restricted to an appropriate

small part of the boundary of 9Î. Then the problem takes the form : to find the

minimum value of the area of the parallelogram OPQR, where Q, R are points

on the boundary of 9Î or perhaps, and this is a simplification, on lines associ-

ated with 9Î. The geometrical configuration is often such as to suggest the

position of P for which the minimum value occurs, but the actual proof may

be troublesome and difficult.

Further, my methods are such as to suggest a method of attack for many

non-convex or infinite domains of a simple character. I also suggested the

generalization of the region typified by |a;3-r-y3| ál asa further problem.

Mahler [2] then took up the subject and showed that Minkowski's ideas

could be applied to very general types of non-convex regions, namely star-

domains, that is, those in which every radius vector from the origin meets the

boundary in just one point. The generality of his method means that concrete

applications may require the consideration of many sub-cases and attention

to a great many details, especially numerical ones, since the discussion in-

volves a number of extremal problems; for it is precisely the special properties

of the region 3Î which then become of paramount importance. This is ex-

emplified in the case |x6+y5| ^1 which he considered later in a manuscript

which I have read but which is not to be submitted for publication.

P) Numbers in brackets refer to the references cited at the end of the paper.



1946] GEOMETRY OF NUMBERS FOR NON-CONVEX REGIONS 191

The more general case

(4) | x" + y»\ á 1,    n > 1,

where n = p/q and p, q are both odd positive integers, had been in my thoughts

for some time. Here x" = sgn x|x| ", and so our region is

I sgn x|x|n + sgn y|y |n| ^ 1.

In this form, it has, as remarked by Dr. Mahler, a meaning for all real n;

and my discussion of (4) later on in this paper also applies to this.

I take now, however, the region |/(x, y)\ á 1, say dt, where/is such that 9Î

is very similar to the region (4), and develop a self-contained treatment which

requires no knowledge of previous work. In its course, the conditions imposed

upon/(x, y) are satisfied when/(x, y) =x"+yn, or for that matter sgn x|x| n

+sgn y|y| n. Shortly after I began, Dr. Mahler also commenced working in-

dependently upon this special case when «^4asa generalization of his work

on the case n = 5.

Before any results can be established, we must have some idea or picture

of a geometrical configuration defined by four simultaneous equations in four

unknowns given in (1) of §3. I am greatly indebted to Dr. Mahler for the

approximate solution of these equations in the case n = 5 above. I do not use

these numerical results, but they have been of the greatest value in picturing

the state of affairs, though of course our ideas and methods are entirely differ-

ent. I am also much indebted to him for some general inequalities^) which

he obtained in his work on (4) when «^4, and which enable me to finish off

my work very simply in the special case of (4), when w^4. He has also added

to my obligations by drawing several diagrams including the one given in this

paper. I am also indebted to Dr. Mahler, Mrs. Ollerenshaw, and Prof. Daven-

port for many valuable comments on my manuscript and for the removal of

many obscurities.

2. The function/(x, y) and the region |/(x, y)\ &l. We suppose/(x, y)

defined for all real x, y as a single-valued, symmetrical, continuous, real func-

tion of x, y, homogeneous (and, without loss of generality, of dimension one),

and we suppose also that/(x, y) = —/(—x, — y). We suppose that/(x, y) is

a non-decreasing function of x when y is constant. We take the units of x, y

so that the curve/(x, y) = 1 meets the axes of x, y at the points (1, 0), (0, 1),

and suppose that the curve crosses the tangents x = l, y = l at these points,

as occurs, for example, when they are points of inflexion. Let dt he the region

|/(x, y)| ¡gl. We suppose that the part of 9Î in the first quadrant is a convex

region, and that the part of the boundary of 3Î lying in the fourth quadrant

(2) He informs me that these inequalities had already enabled him to solve the minimal

problem (3) when f=x"+yn and »^4.
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above x+y = 0 is concave, so that except for its end points the straight line

joining any two points of this boundary lies outside the region 0 ^f(x, y) 5s¡ 1.

We suppose that the line x+y = 0 is an asymptote to f(x, y) = l, and that

every other line meets the curve in 1 or 3 points except that the points (1, 0),

(0, 1) may occur any number of times as intersections of the corresponding

tangents x = l, y = l. Clearly any line y = px from the origin except x+y = 0

meetsf(x, y) = l in exactly one point, sincef(x, px) =xf(l, p) = 1.

The equation f(x, y) = l defines y=g(x) as a single-valued, steadily de-

creasing, continuous function of x which we suppose twice differentiable for

— oo<3c<» except at x = l. Then g'(0)=0, g'(l)= — °°. Also if the line

x — y = 0 meets the curve at (xo, yo), then g'(xo)= — 1. From the convexity

and concavity conditions the following results are obvious:

for - a, g x = 0, - 1 g ¿(x) = 0;

for O^igio, 0 ^ g'(x) = - 1;

for xo = x g 1, —le g'(x) = — oo ;

for 1 ^ «^ », - » ^ g'(x) = — I.

Alsog(x)+x—»Oasx—> + oo ;and for¡c<0or#>l, 1 — x>g(x)> — x.

Also x=g(y).

A simple case of the functions typified hyf(x, y) is

fix, y) = (*■ + y")1'",

where n> 1 is a rational number of the form p/q, where p, q are both odd and

positive. It will suffice to prove that all lines other than x+y = 0, x=l, y = l

meet the curve f(x, y) = 1 in either one or three real points. Then in particular

the tangent at any point other than (1, 0), (0, 1) meets the curve in one other

real point.

For let the line be rx+sy=l, where we have excluded (r, s) = (l, 0),

(0, 1), (oo, oo), that is, x+y = 0. Then t = x/y is given by the equation(3)

E(t) m f" + 1 - (rt + s)n = 0.

Now
E'(t)/n = /"-1 - r(rt + s)n~\

and so the equation E'(t)=0 has two real roots if r>0 and none if r<0. If

r<0, E(oo) = -f-co,.E(— co) = — oo. Hence if r<0, and clearly also if r = 0 (or

if 5^0), there will be one real intersection since E(t) is a monotone function

of t. If r>0 (or if 5>0), the values of E(t) for real t form three monotone sets

and so clearly E(t) has either one or three real zeros.

3. A system of equations. We suppose that f(x, y) is as defined in §2 and

(') We use the notation E(t), E for various equations and expressions occurring throughout

the paper, not necessarily the same at different places.
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now consider the system of equations

(1) f(a, b) = 1,     f(c, d) = 1,     f(a +c,b + d) = 1,     f(c -a,d-b) = l.

Clearly, if (a, b, c, d) = (A, B, C, D) is one solution, then (a, b, c, d)

= (B, A, D, C) is also one, leading to two sets of solutions. We shall prove

that for those in one set, say the first set,

a > 1,       b < 0,       c < 0,        d > 1.

We shall then show that

a > d,       b < c.

Since then a+c>b+d, and f(b+d, b+d)<f(a + c, b+d) = l<f(a+c, a + c),
we have

(2) (b + d)f(l, 1) < 1,        (a + c)f(l, 1) > 1.

Hence if (x0, x0) or (y0, yo) is the point on/(x, y) = 1 with x =y,

b + d < yo,       a + c > yo.

We shall also give, in §(6) below, sufficient conditions for the existence of

a solution with b> —1/2, and we shall suppose from §4 onwards that such

a solution exists.

We deduce from (1), sincea=g(b), c=g(d), and so on, the two equations

(3) F(b, d) =- g(b) + g(d) - g(b + d) = 0,

(4) G(b, d) =. g(d) - g(b) - g(d -b)=0.

We now study the equation (3).

Lemma 1. // b, d are any real numbers satisfying F(b, d) =0, then bd<0.

Now

(5) dF(b, d)/db = g'(b) - g'(b + d).

Suppose first that b and d are both negative. Then dF(b, d)/db>0, since

the concavity condition means that g"(x) j^O for x<0, and so g'(x) decreases

when x<0 and decreases. Hence F(b, d) decreases when b^O and decreases.

Also F(0, d)=g(0) = l, F(-°o,d)=g(d)+d>0, and so F(b, d) cannot vanish

when ¿><0, d<0.

Suppose next that b and d are both positive or zero. Several cases now

arise according to the positions of b, d in the intervals (0, 1) or (1, =»).

Suppose first that Og&gl, Ogágl. Then from (3), since g(b)t0,

g(d)^0, g(b+d)^0 and so b+d^l. Now from (5), F(b, d) steadily increases

when b increases and 0 gô g 1 -d. Also F(0, d) = l, F(l -d, d)=g(l -d)+g(d)

>0. Hence F(b, d) cannot vanish for O^b^l—d.
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Suppose next that b>í, ¿èO. From (5), F(b, d) steadily decreases as b

increases since the concavity condition means that g'(x) increases when x> 1

increases. Also F(i, d)=g(d)-g(l+d)>0, F(oo, d)=g(d)+d>0. Hence we

cannot have b>\, d = 0.

Similarly we cannot have b^O, d>l. The three cases considered mean

that we have excluded b = 0, d = Q. Hence, as we have also excluded b = 0,

d^LO, we must have bd<0 and b, d cannot have the same sign, for example,

if 5<0, thend>0.

Lemma 2. Ifb<0,thend>l.

For suppose d — l. If b+d>0, then 0<g(b+d) <1, and so from (3), since

g(b)>l, F(b, d)>0. Hence we must have b+d<0. Now F(b, d) increases as b

decreases from —d to — <», since from (5), dF(b, d)/db<0 because g'ix) de-

creases as x decreases when x<0. Also Fi~d, d) =g(— d)+g(d) —1>0,

F(-«>, d)=g(d)+d>0. Hence F(b, d)^0 for b<0, d = l, and so if b<0,
then d>l.

Then from a=g(b) and so on, a>l, c<0. By symmetry, if d<0, then

b>l, and from a=g(b) and so on, a<0, c>l. Hence in (1), all the solutions

of the first set have b < 0(4).

We can now study the equation (4) subject to the restriction b<0, d>l,

and prove the following lemma.

Lemma 3. G(b, a) =0 defines d as a steadily increasing function of b, when

¿><0 and decreases. Also

Kd< g(b),       g(b) + g(l -b)<0,

or, since a=g(b), d<a. Also d<l—b.

Clearly  dG(b,   d)/db=-g'(b)+g'(d-b)<l-l=0.   Next  dGib,   d)/dd
= g'id)—g'id — b)<0, since g'ix) steadily increases when x>l and increases.

Since
dG(b,d) dd     dG(b,d)

dd      db db      "   '

dd/db <0, and so d increases as b decreases.

Next G(b, d) as a function of d steadily decreases as d increases and d = 1.

Also

(4) Professor Davenport gives the following simple proof that a>l, 6<0, c<0, d>\. At

least one of a, c must be positive. For if a á 0 and c â 0, then, by the concavity of f{x, y) = 1 for

jcSO, we would have f((a+c)/2, (b+d)/2)^\, contrary to (1). Similarly, at least one of b, d

must be positive. Also at least one of a, b must be negative. For if o&O, ¿>&0 then a+c^c,

b+d¡id whence f(a +c, b+d) >f(c, d) = 1, since the inequality must be strict in at least one case.

Similarly at least one of c, d must be negative. There are only two possibilities: a<0, i>0,

c>0, d <0 or a >0, b <0, d >0, c <0. Without loss of generality we can consider the latter, that

is,a>l,6<0,c<0,d>l.
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G(b, g(b)) = b - g(b) - g[g(b) - b]

< - E - g(E), say,

<0,

since E>1. Hence G(b, d) cannot vanish for d^g(b) and therefore d<g(b)

< 1 — b. Also, since d > 1,

G(b, 1) = - g(b) - g(i -b)>0.

Hence
Hb) = g(b) + g(l -b) <0.

Also
V(b) = ¿(b) - ¿(1 - b).

Since b<0,

0 > ¿(b) > - 1, -  00  < g'(l - b) < - 1.

Hence \p'(b)>0 and soip(b) decreases steadily when b<0 and decreases. Since

^(0) = 1, values of b must satisfy 0>&o>£», where bo is the solution of g(b)

+g(l-b) =0. Then also ba> -1/2 if g(- l/2)+g(3/2) <0, a condition which
is satisfied in our special case g(x) = (1 —xn)1/n since 3" —1 >2n+1 for n^3.

We return to the equation F(b, d)=0 and study d as a function of b when

¿><0 and 1 <d<l— b. We now impose a condition upon f(x, y), namely that

g'(—x)>g'(x) for 0<xgl. This condition is obviously satisfied if, for

Ogxgl, g(x) can be expanded in a series of positive ascending powers of x

all of whose coefficients, except possibly the constant term, are negative, for

example, when g(x) = (1 —x")1/n, where n>l. We then show that d decreases

steadily when b decreases from 0 to —1/2.

For from (5),

dF(b, d)/db = ¿(b) - ¿(b + d)> ¿(- b) - ¿(b + d).

But g'(x) decreases as x increases from x = 0 tox = l, and hence, if —b<b+d

or d+2b>0, a condition certainly satisfied if &> —1/2, then dF(b, d)/db>0.

Also
dF(b, d)/dd = ¿(d) - ¿(b + d).

Sinced>l, — <» <g'(d) < — 1, and since the point (b+d, a+c) has a vectorial

angle greater than 45°, 0>g'(b+d)> -1, and so dF(b, d)/dd<0. Hence

dd/db > 0 and the result.

Now G(b, d)=0 defines d as a steadily increasing function of b when ¿><0

and decreases; also when d — 1, b = bo, where bo is defined by g(bo)+g(l—bo)

= 0. But from F(b, d)=0,d>l when b = b0. Hence the equations G(b, d)=0,

F(b, d) =0 will have exactly one solution with —l/2<b<b0 iidi>d2, where

G(- 1/2, di) = 0,       F(- 1/2, d2) = 0,



196 L. J. MORDELL [March

and also by Lemma 3, 1 <du d2<g(b).

Lemma 4. A sufficient condition for this is now shown to be

(6) - 2g(- 1/2) - g(3/2) + g[- 1/2 + g(- 1/2)] > 0.

For, since

gib) + g(d2) - g(b + d2) = 0,

- g(di) = g(b) - g(b + d2) < g(b) - g[b + g(b)].

Also
g(di) - g(b) - g(di -b) = 0,

- g(di) = - g(b) - g(di - b) > - g(b) - g(l - b).

But di>d2 if -g(di) > -g(d2), that is, if

- g(b) - g(l - b) > g(b) - g[b + g(b)],

or

(7) - 2g(b) - g(l - b) + g[b + g(b)] > 0.

The result follows on putting b = —1/2.

If we have proved that b> —1/2 (and so also c> —1/2), the inequality

g(x)<l-x gives a=g(b)<l-b<3/2. Write

A = ad — be.
Then also

(8) A > 3/4.

We can also show that the equations (3), (4) cannot have more than one

solution for which £><0, b+d<y0. For on subtracting the equations (3), (4),

E m 2g(b) - g(b + d)+ g(d - b) = 0.

Now

dE/dd = - g'(b + d) + g'(d - b) < 1 - 1 = 0.

dE/db = 2g'(b) - g'(b + d)- g'(d - b)

= g'ib) - g'ib + d)+ g'ib) - g'id -b)>0.

Hence dd/db>0 and so d is a steadily decreasing function of b when b <0 and

decreases and of course b+d<y0. Since Gib, d)=0 defines d as a steadily

increasing function in the same circumstances, the equations E = 0, Gib, d)=0

cannot have more than one root.

4. The region |/(x, y)\ gl. The sets of values (a, b), (c, d), ia+c, b+d),

(c — a, d — b) whose existence has just been established define four points

Q, R, S, T respectively. These, with their images in the origin, say, Q', R',

S', T', form a parallelogram whose vertices S, T, S', T' and middle points
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of sides lie on the boundary of 9Î, that is, on |/(x, y)\ =1.

It will be convenient to use X, Y to denote coordinates referred to axes

OQ, OR, and so we can write

x = aX + cY,       y = bX + dY.

Then Q, R, S, T become the points

(X, Y) = (1, 0), (0, 1), (1, 1), (- 1, 1),

respectively; thus the line QS becomes X=l. It meets the curve/(x, y) = l

in one further point U.

We now make an important assumption about our geometrical configura-

tion. We suppose that U is either below OQ or at Q. A sufficient condition for

this is now shown to be

X = cfa + dfh g 0,

wherefa = df(a, b)/da,fb = df(a, b)/db.

Fig. 1.



198 L. J. MORDELL [March

For QS, that is, X = l, meets the curve/(x, y) = l where

E(Y) = f(a + cY,b + dY) - 1 = 0.

Now E( -1) = - 2, £(0) = 0, £(1) = 0. Since E( Y) = 0 has only three real roots,

the third root will be negative, that is, U will be below OQ ii E( Y) is decreas-

ing for small F^O. But E'(0)=cfa+djb, and the result follows, the equality

sign holding only when U is at Q.

Regardless, however, of the position of U,

¡x = afc + bfd < 0

wherefc = df(c, d)/dc,fd = df(c, d)/dd.
For TRS meets the curve/(x, y) = 1 where

Ei(X) m f(aX + c, bX + d) - 1 = 0.

Also£i(-l)=0, £i(0)=0, £i(l)=0, Ex(X)~Xf(a, b)->+ °o asX-»°°;and
so, since Ei(X) =0 has only three real roots, E{ (0) <0.

Lemma 5. A sufficient condition for this geometrical configuration, that is,

that U should be below OQ, is that 2g'(—1/2) +1 >0 and

g(i + y) + g(i -y)~ 2¿(y) < o

for 0èyè-l/2.

The condition is cfa+dfb<0, which, since a—g(b)=0, that is, fb/fa= —g'(b),

and as is shown in a moment/o>0, becomes c — dg'(b) <0. Since

c + a = g(d + b),        c-a = g(d-b),        2c = g(d + b) + g(d-b),

the condition is

g(d + b) + g(d -b)- 2dg'(b) < 0.

Consider now the function of the two independent variables

E = g(x+ y) + g(x - y) - 2xg'(y),

where x 2:1, and 0^y^ —1/2.

dE/dx = ¿(x +y) + ¿(x - y) - 2g'(y).

Now
0 ^ ¿(x + y) ^ - oo if   Oáí+yál,

- 1 è g'(x-fy) ^ - »o if    x+y^l,

— 1 ii ¿(x — y) è — °° since    x — y ^ 1,

¿(y) ^ ¿(~ 1/2) since   0 ^ y à - 1/2.

Hence dE/dx^ -1 —2g'( —1/2). We assume now that 2g'( —l/2) + l >0, a
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condition obviously satisfied when g(y) = (1— y")1/" since 1—2(l/2)n_1>0

when n > 2. Hence £ is a steadily decreasing function of x. Hence if E <0 when

x = 1, then E < 0 when x — l. Since we know that 0 > b = — 1 /2, the result fol-

lows. If we know that b satisfies the inequalities bi — b — bo, line 2 of Lemma 5

will have now 2g'(&) + l>0, and line 4, èièy^&o, instead of 2g'(-1/2) + 1>0

and 02ïy = —1/2 respectively.

We now prove some inequalities involving the partial derivatives fa,fb,fc,

fd, namely:

Lemma 6. /„> 1, fd> 1, 0 </», /, <2/3,/« </»,/„ </.,Afd-/«/.> 0.

From the concavity condition, the tangent at Q lies between the curve

f(x, y) = 1 and the line QS, that is, A = l, and hence makes intercepts on the

x, y axes greater than those made by QS. The line A = l is given by

dx — cy=ad — bc = A, and the tangent at Q by xfa+yfb — l. Hence

A/d < 1//. < 1,       A/- c < l/fb.

Since from (8) of §3, A>3/4, and d>0, -c>0, then /«>1, /¡,>0, and

/.< -c/A<(l/2)/(3/4) =2/3. Similarly from the tangent at R which makes

intercepts on the x, y axes greater than those made by RS,

A/a < Iff* < 1,        A/- b < l//c,

and the result follows.

Next, since d<a, the point (d, c) lies on the curve f(x, y) = l between

(1, 0) and (a, b). Hence from the concavity condition, the tangent at Q makes

smaller intercepts on the x, y axes than the tangent at (d, c), and has a greater

slope to the x axis than the tangent at (d, c). Hence first l/fa < l/fd, l/fb < l/fe,

and so fd </<,, /„ <fb- Next —fa/fc < —fa/ft or fbfd —/«/« > 0.
We now show that the tangent at Q meets RS produced at a point whose

distance from R is less than 2RS.

For the tangent at Q is xfa+yfb = 1, that is \Y+X— 1, where

X = cfa + dfb > cfa> - fa/2.

The intercept on Y = 1 is given by A = 1 — X > 1, since X < 0 from the hypothesis

that U lies below Q. Also

l/fa > (ad - be)/d = a - (bc/d) > 1 - (l/4á) > 3/4,

andso/0<4/3,X>-2/3, 1 -X<5/3 <2, as stated.

The tangent also meets the line y = 1 where x = (1 —fi)/fa, that is, 0 <x < 1.

Similarly the tangent at R(c, d) meets the line x = 1, where y = (1 —fi) If i,

that is, 0<y<l.

Denote now by Q( — b, —a) and so on, the image of Q(a, b) and so on,

in the asymptote ¡c+y = 0. Then Q' is the image of Q in the line x — y = 0. I

prove now that Q' lies between the points R(c, d) and T(c — a, d — b). The con-
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dition for this is that c — a<b<c which is obvious from previous results since

b>-l/2,a>l.
From the region 9Î we cut off a finite region © as follows. Let RT and

RT meet on the asymptote at the point For V, and so R'T' and R'T' meet

at V. Then © is the finite part of 9Í cut off by the lines VT, VT, V'T', V'T.

5. The main theorem. We can now state that the main object of this

paper is to find sufficient conditions for the truth of the following theorem.

Theorem. Let L be any lattice of determinant A = ad — bc. Then a point of

L other than 0 lies in ©. This may always be taken as an inner point of © except

when L is the critical lattice

x = aX + cY,       y = bX + dY,

where X, Y run through all integer values, or its image in the line x+y = 0,

namely
x = bX + dY,        y = aX + cY.

Then © contains on its boundary the points (a, b), (c, d), (a + c, b+d), (c — a,

d — b) of L and also their images in x+y = 0.

We find as sufficient a condition really of an extremal character, namely

the following:

Condition. The hyperbola through S whose asymptotes are the tangents at Q

and R does not intersect the curve f(x, y) = l in real points lying between S and

the point where the tangent at Q meets the curve f(x, y) = l again, or for that matter

the point x = 1, y = 0.

It is obvious from homogeneity considerations that the theorem implies

that any lattice of determinant less than A has one of its points other than

the origin O as an inner point of ©.

The question arises whether a critical lattice of © has points other than O

in the interior of SK, that is, do integers X, Y, not both zero exist such that

(1) | f(aX + cY, bX + dY)\< 1.

In some cases, /(x, y) may reduce to a polynomial in X, Y with rational

coefficients, and then the answer may be easy. Thus when f(x, y)=x3+y3,

on adding and subtracting the last two equations in (1) the condition becomes

| X3- XY2+ Y3\ < 1,

which is obviously impossible. But if /(x, y)=x"-r-yn, where n is a positive

odd integer greater than 3, (1) has algebraic numbers for its coefficients and

it is not an easy matter to answer the question. I have made no serious effort

to do so at present, but the question seems to be worth consideration.

6. Lattices. We gather together some elementary properties of lattices
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required later and these are stated as lemmas.

Lemma 7. Let p(xi, yi) and g(x2, y2) be two points of L such that the area

of the triangle Opq is A/2, that is, | Xiy2—x2Vi| =A. Then L can be generated by

vector addition from p and g, that is, every point of L can be represented in the

form pp+aq, with integers p, a.

Lemma 8. Let p(xi, y{) be a point of L other than 0 such that no point of L

is an inner point of Op. Let I be a line parallel to Op and at distance A/Op

from it, so that I has the equation xyi—yxi = + A. Then any segment of length Op

contains exactly one point of L except that it will contain two points of L when the

end points of the segment are points of L.

Lemma 9. Any parallelogram of area not less than4A and centre at 0 contains

a point of L other than 0.

Lemma 10. A parallelogram OA CB of area A cannot contain two points of L

other than 0 unless either they are collinear with 0, or one is at A and 4he other

on BC, or one is at B and the other on A C.

Lemma 11. If p(xi, yi) and g(x2, y2) are two points of L such that the area of

the triangle Opq is A, then the midpoint of either Op, or of Oq, or of pq is a point

ofL.

7. Reduction of the problem to two cases. The parallelogram STS'T' has

area 4A and so contains a point P of L other than 0. There are now several

alternatives possible :

(I) P is an inner point of dt and then obviously of ©;

(II) P is a boundary point of both the parallelogram and of 9t, that is,

P is at Q, R, S, T, U;
(III) P lies in the small curvilinear region QU, excluding the end points

Q, U allowed for in (II), say the region {QU] ;

(IV) P lies in the small curvilinear region RT, excluding the end points

R, T counted in (II), say the region {RT}.

If (I) holds there is nothing more to be proved. Suppose next that (II)

holds and let first P be at Q. Then by Lemma 8, either one point of L lies in RS

and is an inner point of 9Î and of ©, or R, S are both points of L which then

becomes the critical lattice x = aX+cY, y = bX+dY. A similar argument

holds for R, S, T on using the lines QS, Q'R, QR respectively. When P is

at U, a line through R parallel to O U obviously meets the boundary/(x, y) = 1

in a point to the right of QS and so gives a segment lying in 5R and © and

of length greater than OU and so contains a point of L which is an inner

point of ©.

We now deal with the cases (III) and (IV) and, by Lemma 10, these are

mutually incompatible. Then also from the same lemma, there cannot be
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more than one point of L in either region \QU\ or [RT] unless they are

collinear with O. Then we take P to be that point nearest the origin 0.

8. The first case. We prove now the following lemma.

Lemma 12. ^4 point of L cannot lie in the region [QU\ if the hyperbola

through S whose asymptotes are the tangents at Q and R does not intersect the

curve fix, y) = 1 in real points lying between S and the point where the tangent

at Q meets again the curve fix, y) = 1.

For let a point of L, say for convenience of notation Pi given by (A, Y)

= (Si,Hi) or by ix, y) = (£i, r¡i), lie in {QU]. The tangents at Q, Q' form with

the lines TS, T'S' a parallelogram of area 4A and this contains a point

Pix, y) = (£, t/), or (X, Y) = (S,H),of L other than 0. We may suppose that P

does not lie in 65', and P cannot lie in { TR] since cases III, IV are incompat-

ible. Hence there is no loss of generality in supposing that P lies in a region

abutting on and below RS produced, outside 6? and to the left of the tangent

at Q. Clearly, P lies above the line y = 0 from the concavity of the boundary

f(x, y) = 1 with y <Ö.
We have proved in §4 that the tangent at Q makes an intercept of length

less than 2RS measured from R on RS produced. We now prove that P, Pi

form a basis of A, that is, EEL— HSi= — 1.

For, since 0<H^1, 1^S<2, 0^Si<l, -KHi<0,

| SHi-HSi| <2+ 1;

and, since the left-hand side is a nonzero integer,

2 Hi - HEi = - 1    or    - 2.

We can exclude the —2, for when this holds Py(En, Hn) = (P — Pi)/2 is by

Lemma 11a point of L, and is also an inner point of 65; for clearly

0 < Su < 1,        0 < Hu < 1,

and so the result follows.

Now consider the point P2 = Pi — P. On using x, y; X, Y coordinates re-

spectively, we see that, since xi>\, x<l, Xi<l, X>\, then

& > 0,        E2 < 0.

Hence P2 lies in the angle whose vertex is at 0 and whose sides pass through

the points (x, y) = (0, —1), and R'. Now Pi, P2 both lie on the line xv — y£=A

since P, Pi form a basis of L, and Pi is the point of this line which is also the

point of L nearest Pi and to the left of Pi. This line meets each of the curves

f(x, y) — ± 1 hi only one real point. For the intersections are given by the

equations
/(*, (xr, - A)/0 ±1 = 0,

the left-hand sides of which are steadily increasing functions of x since £>0,
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r¡ >0. Hence any point on the line lying between the intersections is an inner

point of ©. I prove presently that the condition enunciated in the theorem

means that the line has an intercept between the tangents at Q and R' greater

than OP. Hence the intercept must contain at least one point of L. This point

cannot be Pi and so it can be taken as P2. Now £2>0, and since the tangent

at R' cuts/(x, y) = — 1 in a point to the left of x = 0, that is, the points of the

tangent between this point and R' are inner points of ©, then P2 is an inner

point of 9?.

Let the line ATI — VS = 1 meet the tangents at Q, R' at the points

(Xq, Yq), (Xr>, Yr'). It is sufficient to show that

Xq — Xjf > E.

Write, as in §4,

X = cfa + dfb,        p = afc + bfd,

so that X<0, p<0. The tangent at Q is \Y+X —1=0 and meets the line

-EF+rLY-1=0 where

(E + m)XQ = E + X.

The tangent at R' is Y+1 +pX = 0 and meets - E Y-1+YLX = 0 where

(mS + H)XR. = 1 - S.

Hence the condition Xq — Xr>> S becomes

E + X        1 - g-> E.
E + XH     mE + H

Now E+XH>0 since P lies to the left of the tangent at Q. Next ,uE+H>0

since P lies above the line through O parallel to the tangent at R'. For the

line meets x = l below y = 0 and P lies above y = 0. Hence the condition be-

comes

XmE + XH + „E2 + EH - (E - E2 + XH(1 - E)) > E(XH + E)(mE + H),

or since E>0,

XM + mS + H - 1 + E + XH > (XH + E)(mE + H),

or

XM > (XH + E)(mE + H) - (XH + E) - ("S + H) + 1,

or

(E + XH - 1)(H + mH - 1) < \p.

Considered as an inequality in E, H, this defines a region bounded by a
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hyperbola whose asymptotes are the tangents at Q, R and which passes

through the point S, (S, H) = (1, 1). Now P lies to the left of the tangent at Q

and below the tangent at R. Hence each of the left-hand factors of the inequal-

ity is negative and so the inequality means that P must lie between the

hyperbola and its asymptotes E+XH — 1 =0, H+pE— 1 =0, and is to the left

of the first asymptote and below the second. But by the hypothesis, the curve

f(x> y)= 1 and this hyperbola have no intersection between S and the point

where the tangent at Q meets the curve f(x, y) = 1 again, that is, the arc of

the hyperbola between 5 and the line y = 0 lies entirely in 65. Hence the result.

We assume now that the first case has been disposed of, that is, that the

condition of §5 is satisfied.

9. The second case. We have proved now that a point P of L must lie

in the region [RT] , and we take P so that no point of L other than O or P

lies in OP.
If, however, we had argued with the parallelogram STS'T', the image of

STS'T' in jc-f-y = 0, we should again have had four cases to consider. The

first three are dealt with exactly as before, and, by symmetry, the hypothesis

is such as to rule out the possibility of P lying in the region {Q'U'}. Hence P

lies in that part of \RT} not included in {Q'U'}. Also by symmetry a point

of L, say Pi, lies in that part of {RT} not included in \Q'U'\.

We have another parallelogram of area 4A whose sides açe the tangents

at R, R' and the lines ST', S'T. Hence there is a point P2 of A in a region

exterior to the part of $R included between the points R, S, but included be-

tween the line QS produced and the tangent at R. By symmetry there is a

point Pi of L in the region which is the image of the preceding one in the

line x— y = 0. I prove first that P2 = Ps. Now the tangent at R cuts the line

x = l at a point (1, y) where y = (l—fi)/fd, that is, from Lemma 6, 0<y<l.

Hence the points P2, P3 lie in the square 0^*<1, 0^y<l.

Define the point Pi(xit yi)=P2—Pi. Then \xí\ <1, |y4| <1. Hence either

Pi is in the second or fourth quadrant parts of the square |x| <1, |y|<l,

and is then an inner point of $R and 65, or Pi lies in the first quadrant or third

quadrant of the square.

Suppose first that P4 lies in 0^x<l, O^y <1. Then x2^xs, y2~^yi- Hence

a+c^x2^x3^b+d. Since b+d>l/2 and x2<l, then 2x%>x2 and so P4 is

distinct from P3. Further yz^b+d, since P2 is below the tangent at R, above

RS and to the left of QS, and P3 is to the left of the tangent at R' and to the

right of S'R'. Hence

y i = y2 — ys á 1 — b — d,       Xi^a + c — b — d.

Now b+d>l/2 and so yt<b+d, Xi<a + c, and so P4 is an inner point of 3t

and so must be at 0.

Suppose next that P4 lies in the third quadrant. Then Xi^x2, y¡^.y2 and

so
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a + c ^ ys ^ y2 ^ b + d,        x2 § b + d,

— Xi = x3 — Xi á 1 — b — d,'       — yiú a + c — b — d,

and so —Pa is an inner point of 9î and ©. Clearly P\ is distinct from — Pt.

Hence P2, P$ coincide and so P2 must lie in a small curvilinear triangle two

of whose sides are QS produced and Q'S' produced and whose curved side is

the boundary of 9Î or © included between the points (x, y) = (a+c, b+d) and

(b+d, a+c).
There is a point Pi of L in the region ¡AT) such that no point of L is un

inner point of O-Pi. Clearly Pi, P form a basis of L since the triangle OPPi

can contain no points of L other than 0, P, P\. Next Pi, P2 form a basis of L

since the line PiP2 lies beneath the line joining T and S' and P lies above the

line TS', and so the triangle OPiPi contains no points of L other than O, P2, Px.

Hence since P and P2 are on the same side of O-Pi, the line PP2 is parallel to

OPi and P2P = kOPi, where k is an integer greater than 0, and so x2—x= — kxi.

But, since the x, y coordinates of the lowest boundary point of {RT} are

— d, —c, clearly — Xi>cf, and so

kd < x2 — x < a + c — c + a = 2a.

But from §3, a<3/2, d>l, and so k<3. Next k^2, for if P-P2 = 2PU

2yi = y — y,,        2xi = x — x2.

Hence 2yi<d — b— d — b, that is, yi<— b. Also yi>0, since y>l and y2<l.

Next 2xi>c — a — c — a, that is, Xi>— a. Also xi<— 1, since Pi is not in ©.

Hence Pi is restricted to the small area external to f(x, y) = — 1, above y = 0

and to the right of x= — a, that is, also bounded by the line drawn from

( — a, —b) perpendicular to the y axis. But Pi is the midpoint of the line join-

ing P and —P2. But this is impossible since P and —P2 are on one sjde of the

line TS' and Px is on the other side. Hence k = l and Pi = P — P2. Using X, Y

coordinates, Fi= Y— F2<0, since P is below and P2 is above the line TRS.

Now consider the point

P„ = P+ Pi.

Clearly F6 = Y+ Yi < Y< 1 and so Pt lies strictly below the line RT. By sym-

metry P6 also lies strictly to the right of the line RT. Hence P6 is an inner

point of © since it is different from P and Pi.

10. The extremal problem arising in the first case. The extremal problem

now reduces to finding conditions for the equations

r(x, y) = 1,        (*/. + yfb - \)(xfc + yfd - 1) - X/i = 0,

where

X = (a + c)fa +(b + d)fb - 1 = cf. + dfb g 0,

ß = (a + c)fc + (b + d)fd - 1 - of. + bfd < 0,
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to have no solutions with 0<y<b+d.

On substituting x=g(y) in the second equation, we have

0 = E(y)  =  l-(fb + fd)y + fbfdy* +   [(fafd + fbfc)y - /. - f.]g(y)

+ f*fc[g(y)]2 - X/*,

and wish to find conditions that E(y) <0 for 0^y<b+d, and we know that

E(b+d) =0. For this purpose, we shall use the following lemma.

Lemma 13. Suppose that a twice differentiable function E(y) is defined for

Oúyúq, that E(0)<0, E(q)=0, E"(y)>0 for 0^y^p<q, E'(y)>0 for
p^y^q. ThenE(y)<0for0^y<q.

Since E'(y)>0 for p^y¿q, E(y) must increase from y=p to y = q and

hence E(y)<0 for p^y<q. The same holds for 0^y<p, for if not suppose

that E(y)^0 somewhere in this interval. Then by the mean value theorem

there exists yi with 0<yi.<y for which E'(yi)>0, and also y2 with y<y2<p

for which E'iy2) <0. This contradicts the hypothesis that E'iy) is increasing

for o-èyèp-
We shall apply this lemma later with p = 1/2, q = b+d.

It will be convenient to deal now with some inequalities involving the

function fix, y). Some of these follow from the definition oí fix, y), while

some others will now be postulated as satisfied hy fix, y).

Let (yo, Jo) be the point on the curve fix, y) — l or x=g(y) for which

x = y so that yo=giyo), g'iyi) = — 1. Then we prove

i à yg'(y) + g(y) ä o

forO^ygyo. Forg(0) = l,g'(0) =0, and

- bg'iy) + g(y)] = yg"iy) + ig'iy) á o
dy

for Ogygyo, since g'(y) ^0, g"(y) á0.

Next we postulate that

y + g(y)g'(y) = o

for Ogy^yo-    This holds when g(y) = (1— y")1'" and y¡J = l/2, since g'iy)

= —yn_1(l -y")""-1, and so the inequality becomes

y|l--—-   ^ 0,    that is,    1 - 2y" à 0.
L     (i - yy-*»] y

Now we postulate that, for 0^y^l/2,

Eiiy) = I + giy)g"iy) è 0.

When giy) = (1 -y»)1'», g"(y) = - (n- l)y-*(l -y»)»/-»,
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Ei(y) = I - (n- l)y"-2/(l - y»)*-V»,

andso£i(y)^0if (l-y")2-2/"^(«-l)y"-2for0^y^l/2.

Clearly it suffices if

(1 - 2-")2-2/n £ (n - l)/2"-2,

or

(1 - 2-")2 â (n - l)/2"-2,

or

1 ^ 1/2"-1 + (n - l)/2"-2,

that is,
2"-1 à 2» - 1.

This obviously holds when »^4.

Next we postulate that for 0<y^y0,

(i) t(y) = yj'fo) + g(y) - ¿(y) - i > o.
Since ^(0) =0, ip(yo) =0, a sufficient condition when g(y) — (1 — y)1/» ¡s that

*'(?) = (y- W(y) + 2¿(y)

should have only one zero yi in 0<y<y0. For \i,'(y)>0 for small y>0 from

the convexity condition, and so \¡/(y) increases in 0<y<y! and decreases in

yi<y<yo.

We can now deal with the conditions for E(y) <0 for 0^y^b+d. First

E(0) = (l-/a)(l-/.) -\p<0,

since/a>l,0</c<l,XgO,M<0. Next

E'(y) = -fb-fd + 2fhfdy + (fafd + fbfc) [y¿(y) + g(y)]

- (fa + fc)g'(y) + 2fafcg(y)g'(y).

One part of -E'(y) is

2f>fäy + 2fafcg(y)g'(y) = (2/>/d - 2fafc)y + 2/0/c[y + g(y)g'(y)]

^ 2(fbfd - fafc)y.

Another part of E'(y) is

(Ufa + f„fc)(yg'(y) + g(y)) - (fa + fc)g'(y) - fd.

Since fa>fd> 1, fb>0, fc>0, and g'(y) <0, this part is greater than

fä(yg'(y) + g(y) - ¿(y) - l) = ftf(y) à 0

for Oáyáyo- Hence

E'(y) â UKy) + 2(fbfd - fafc)y -h> t(y) - h,

since fbfd—fafc>0 from §4.



208 L. J. MORDELL [March

By hypothesis, p(y) has only one turning point y=yx in the interval

O^y^yo, and p(0) =p(y0) =0. Hence for 1/2^y^b+d,

P(y)^min [p(l/2),P(b + d)l

and so E'(y)^0 for l/2-ZyZb+d if

«(1/2) - g'(l/2)/2 - 1 - /» ¡> 0,

g(b + d) + (b + d- l)g'(b 4- d) - 1 - /. è 0.

The second condition can be dispensed with if £>+á^yi.

Finally

E"(y) = 2fbfd + (fafd + fbfi)(yg"(y) + 2g'(y))

- (fa + fi)g"(y) + 2fafc(g(y)g"(y) + g'(y)')

= M + N,

say, where

M = 2fbfd + 2fafe(g(y)g"(y) + g'(y)*),

and since from §4,/ö/d>/o/c>0,

M > 2fafc(l + g(y)g"(y) + g'(yY) > 0,

by hypothesis. Next

N = (fafd + fbfi)(yg"(y) + 2g'(y)) - (fa + fc)g"(y).

Now£"(y)>0if A^O. Since g"(y)<0 for 0<y<l, A = 0 if

(fafd + fbfi)(- y - 2g'(y)/g"(y)) +fa + fc^0

for0<y<l/2.
We postulate that for 0<y<l/2,

.     2g'(y) fa+fc
y + -- < —-,

g"(y) fafd+fbfc'

a condition easily investigated if the left-hand side steadily increases for

0gy^l/2, for then it becomes

1   .W/2)        /.+/.

2     '     g"(l/2) fafd + fbfc

This from Lemma 6 is certainly satisfied if

K(fa*+fb*)   ̂    L

11. The case/(a:, y)=a:n-|-yn, «^3. I discuss now the application to this

case of the system of equations considered in §3. Now g(y) = (1 — y*)1'", and

on writing b= —ß, the inequality (7) at the end of §3 becomes
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E(ß) m [(i + p)»- i]i/n_ 2(l + 0»)i/»+ {1+ [0- (l+0»)i/»]»}u»>O.

The result proved there was that if E(ß) >0 for 0 g0! ^0 < 1, then the system

of equations has exactly one solution ß=ßo, with O<0o<0i.

By differentiation it is easily seen that

[(1 + 0)» - l]1'» - (1 + 0")1'",       0 - (1 + 0")1'»

are increasing functions of 0 for 0 > 0.

We prove first that E(ß)>0 if ft = 3/4, that is, 3/4^0^1. Clearly

E(ß) > [(7/4)" - l]1'" - [1 + (3/4)"]*/» - (1 + l)1/n

+ [1 - {(1 + (3/4)»)1'» - 3/4}»]«".

Now [(7/4)"-l]1/" = (7/4)[l-(4/7)"]1'"and - [l + (3/4)»]«» are obviously

increasing functions of n for «_1, and [l + (3/4)"]1/»<l + (l/w)(3/4)".

Hence

E(ß) è [(7/4)3 - l]1'3 - [1 + 27/64]1'3 - 21'3

+ {1 - [1/4+ (l/»)(3/4)»]"}w».

Since the last term steadily increases as n increases from n = l,

E(ß) = (279/64)1'3 - (91/64)1'3 - 21'3 + [l - (25/64)3]1'3

> 1.633 - 1.125 - 1.260+ [l - (.390625)3]1'3

> 1.633 - 2.385 + (.94039)1'3

> - .8+ .9 > 0.

Suppose next that 1/2 ^0^3/4. Then clearly

£(0) = [(3/2)3 - l]1'3 - (1 + 1/23)1'3 - (1 + 27/64)1"

+ {1- [1/2 +• (l/3)(l/23)]3}i/*

> (19/8)1'3 - (9/8)1'3 - (91/64)1'3 + [l - (13/24)3]1'3

> 1.334 - 1.041 - 1.125 + [1 - (.5542)3]1"

> 1.334 - 2.166+ (.8410)1'3

> - .832+ .943 > 0.

Suppose next that 2/5^0^1/2. Then

£(0) > [(7/5)3 - l]1'3 - [1 + (2/5)3]1'3 - (1 + 1/8)"'

+ {1- [l-2/5+(l/3)(2/5))3]3}'/3

> (218/125)1'3 - (133/125)1'3 - (9/8)1'3 + [l - (233/375)3]1'»

> 1.203 • • • - 1.021 ■ • • - 1.041 • • • + .9 • • • > 0.
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Hence b>—2/5. It is also easily shown that if w^4, then 6>—.3. For if

•3gj3á2/5,

E(ß) > [(1.3)« - l]1'" - 1 - (l/4)(.3)« - 1 - (l/4)(.4)*

+ {1- [.7 + (1/4X.3)*]*}1'*

> 1.166 - 2 - .0021 - .0064 + .93 > 0.

We have to show now that the geometrical configuration is of the type dis-

cussed, that is,
ca"-1 + db"-1 g 0.

When w = 3, it is easily seen on adding the last two equations in (1) of §3 that

this holds with the equality sign. I suggest the following conjecture.

Conjecture. For n = p/q>3, p and q odd positive integers,

can~1 + db"'1 < 0.

We can prove this directly for n = 5, 7. When n = 5, from

(a + c)s +(b + dy = 1,     (- a + cy + (- b + dy = 1,

by addition, since cs+ds = l,

a*c + b*d + 2(a2c* + b2d3) = 0.

Hence we have to show that

E = aV + bW > 0.

Now

E > aW + b\

E/b2 > 1 + b(l - ¿6)2'5 > 1 - (1/2)(1 + 1/32)2'8 > 0.

When n = 7, from the addition of similar equations,

atc + J,»d +  5(fl4c» _|_ ¿4¿í)  + 3(a2c6 + J2¿5)   =   Q.

Hence we have to show that

E' = S(a*c3 + b*d3) + 3(a2à + b*d*) > 0.

Now

E' = 5¿<d» + 3a2c» + 362d5 + 5a4c8 > b*(S + 3a2b) + b2(3 + 5a*b).

Also

5 + 3a2ô = 5 + 3(1 - b'yi'b > 5 - (3/2)(1 + 1/128)2'7 > 0,

3 + 5a*b = 3 + 5(1 - Vy"b > 3 - (5/2)(1 + 1/128)4'7 > 0.

Hence £'>0.
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We now prove the conjecture for n^4 by using Lemma 5. Writing —y for

y, we have to show that

[(1 + y)" - i]V" - [1 - (1 - y)-]W- - 2ynl > 0,

(1 + y")^"-1)/»

where y runs through the range of values now possible from the end of §11 for

-b, that is, (y+l)"-y">2, 0<y<2/5. It suffices to show that

E =  [(1 + y)» - I]«» - [1 - (1 - y)"]1'» - 2y"~1 > 0.

Suppose first that ny^l. Since (1 — l/n)n increases with n, and (y+1)"

>2,

£ = 1 - [1 - (1 - l/re)"]1'" - 2/«"-1 > 1 - [1 - (3/4)4]1'" - 2/»"-1

> (l/«)(3/4)4 - 2/«"-1 > 0

since (3/4)4>2/42.

Suppose next that ny > 1, y < 1 /3. Then

£ > [(1 + 1/w)" - l]1'" - [1 - (2/3)"]1'» - 2/3"-1

> (ei-i/2» _ i)i/« _ i _ 2/3"-1      (since   log (1 + 1/w) > 1/w - 1/2»2)

> (e - 1 - e/2n)lln - 1 - 2/3"-1 (since    <r' > 1 - x for x > 0)

> (1.71 - 1.36/«)1'" - 1 - 2/3"-1

> (1.37)1'" - 1 - 2/3"-1 (since   » £ 4)

> (1/m) log 1.37 - 2/3"-1

> .31/« - 2/3"-1 > 0.

Suppose finally that l/3gy<2/5. Then

£ > [(4/3)" - l]1'" - 1 + (l/«)(3/5)" - 2(2/5)"-!.

The first term increases with n, as is clear on writing it as (4/3) (1 — (3/4)")1/B.

Hence

£ > (175/81)1'4 - 1 - 2(2/5)» > 1.21 - 1 - .128 > 0.

We come now to the conditions assumed to hold for the extremal problem.

In §10 we defined

i(y) = y¿(y) + g(y) - ¿(y) - L

which, since g(y) = (1 — y»)1'», becomes

— -y»-i(-y — 1) 1 _ 2-y" + v»_l

T^-" (J   _  yn)(n-l)/n V >   ' (J   _   y») (»-!)/»
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We have to verify first that p(y) has only one turning point in 0 <y <l/21/n.

Since
P'(y) = (y- l)g"(y) + 2g'(y),

p'(y) = Ogives

(y - i)g"(y)/g'(y) + 2 = 0.

Since

g"(y)      « - 1      (w — l)yn~l n — 1

g'(y) = - y-V(l - y)<-»/-, ^f =-+    1 = —--•
g(y)        y l - y"        y(l - y")

Hence

(» - 1)(1 - y)/y(l - y«) = 2,

or
1 — yn      w — 1

The left-hand side is monotone increasing in y for 0<y<l. The equation will

have a root with y < (l/2)1/n if

(1/2)»« >(n - 1)(1 - (l/2)Wn),

that is, if
(2)i/- < i + i/(M _ i).

This is obvious since (2)1/n < 1 + 1/n < 1 + l/(n-1).

We have now to verify the two inequalities (2) of §11

*(l/2) è fb,       P(b + d)^ fb.

The first inequality becomes

(1 - l/2»)-<»-i>"\- 1 > b»-\

For this it suffices if

*-i< {(»-«/»}{1/2«},

or, since ¿»> —.3, if

(.6)»-1 < 1/2 - 1/2».

This is clearly true for w>4 since .216 + .125<.5.

The second inequality follows from one due to Dr. Mahler, namely

(b + d)» < (3 - (5)1'2)/2

if w^4.1 give later, in Lemma 14, a proof very different from his. The condi-

tion p(b+d) ^/j becomes
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1 - 2(b + d)» + (b + d)»-1
Ei =-¡-^--■-J-i"-1 - 1 > 0.

[1 - (b + d)"]1-»-1»»

Write Jfe = ((5)1'2-l)/2 = .618 • • • , and so k2+k = l. Since

(b + d)n < k2 < 1/21'",

and Tp(y) has only one turning point, it suffices to assume that we have to

prove that

1-3 + (5)l/2+ *<»*-»/•

£ =-b"-1 - 1 > 0.
¿(n-D/n

Since (-2 + (5)«2)/¿ = (-4 + 2(5)«2)/((5)«2-l) = (3-(5)^)/2=¿2,

E = k2+lln + k1-1'" - ¿"-1 - 1.

Now e-t è 1 — t for all /. On putting log k= —nt, we have

¥'n > 1 + (1/n) log k,

and also
¿-1/n  >   J   _   (!/„)  log  L

Hence

£ è k2(l + (1/n) log k) + k(l - (1/n) log k) - 1 - b"'1

> (l/n)(k2 - k) log k - ¿"-1

> (l/»)(.236) log 1.618 ••• - i"-1

> .113/« - è"-1

> .113/« - (.3)»-1 (if » ^ 4),

»£ > .113 - «(.3)»-1,

and since «(.3)"-1 decreases steadily for n>l/Iog(10/3),

«£ > .113 - 4(.027) = .113 - .108 > 0.

We now prove Mahler's inequalities:

LEMMAl4.7/«^3,(a+c)">(l/2)(-l + (5)l'2),(¿.+d)"<(l/2)(3-(5)1'2).

It suffices to prove the first since (a + c)" + (b+d)n = l.

Put (a+cY = P, (b+d)" = Q. Then

(c2 - a2)"      (d2 - 62)"

£ + 0=1, n     +-—r-^--t.p Q

Write r=(c2-a2)n, s = (d2-b2)n. Since d<a and c2<b2, r<0, then r+s<0,

s-r>0.
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We prove first that s — r^2, that is, on putting b = —ß, c= —y, we have

E = [(1 + ßn)2'n - y2]n + [(1 + 7n)2/n - /32]" á 2    for   0 á ft 7 á 1/2.

Since £ is symmetrical in ß, y, it obviously suffices to show that £ as a func-

tion of ß decreases steadily for 0 ^ß ^ 1/2. Now

1    dE
-= /3"-2(l + /3n)2/"-1[(l + ßn)2ln - y2]"'1 - (d2 - ß2)"'1
2nß  dß

< ßn~2(l + ß") - (1 - ß2)"'1 (since d> 1)

<-L(, + ±) _(!)-'.
2»-2\        2»/      \4/

Hence
2--1  dE 1 /3\»-1
-<2H-( —)      :S 0 (for » è 3)
2nß   dß 2»-1      \2/

since l/2n_1 decreases and (3/2)"-1 increases with n. Since b<0, clearly

s — r<2. Next from

r/P + s/(l - P) = 1,     r(l - P) + sP = P - P2,

and so

P2 -f- P(s - r - 1) + r = 0.

Hence as r<0 and P>0, P is the greater root of this quadratic and so

2P = I - s + r+ [(s - r - I)2 - er]1'2

= 1 - s + r + [(s - r)2 - 2r - 2s + l]1'2

> 1 - s + r+ [(s - r)2+ l]1'2

since r+5<0. The right-hand side is a decreasing function of s — r since

d(l-x + (xt+l)1i2)/dx=-l+x/(x2 + l)1'2<0, andass-r<2,

2P > - 1 + 51'2.

We come now to the final condition of §10, namely,

[1/2 + 2g'(l/2)/g"(l/2)](fa2 + /»*) á L

But

g(y) = d - yn)Un,     g'(y) = - y*"x(l - y)1/n_1.

g"iy) = - (» - i)y~2(i - y)1"-*.     ¿iyVit'iy) = y(i - y")/(» - D-

Hence the condition above is certainly satisfied if

E = (1/2 4- l/(» - l))(a2"-2 + Ô2»-2) -1^0.
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Now

»+1 «+1
E <-a2' - 1 +-b2n~2

2(» - 1) 2(n - 1)

« + i  /      i V « + i /1V»-2   / ,   ,     i \
<-(l + —1-1 + --( —) (since    \b   < — )

2(«- 1)\       2»/ 2(n- 1)\2/ V '   '      2/

5/ 1\2 5    1
<—(l + —J-1 +- (if«>4)

6 \        16/ 6   64

< .95 - 1 + .02 < 0.

This finishes the application to/(x, y) =x"+y". Hence the main theorem

in §5 holds for w>4. I conjecture that it holds for «^3. It would not be diffi-

cult to reduce 4 to a somewhat smaller number.
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