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1. Introduction. A broad problem in differential geometry is that of char-

acterizing, by a set of geometrical properties, the family of curves which is

defined by a given system of differential equations, of a more or less special

form. The problem has been studied especially by Kasner and his students,

and characterizations have been obtained for various families of curves which

are of geometrical or physical importance^). However, the interesting prob-

lem of characterizing the family of trajectories of an electrified particle mov-

ing in a static magnetic field does not seem to have been considered

heretofore. The present paper gives the principal results of a study of this

problem.

Specifically, our chief problem is that of characterizing the five-parameter

family of trajectories of a particle moving according to one or the other of the

following systems of differential equations of motion:

(1) x = my — \f/z, y — 4>z — wx, z = \px — d>y;

d x

dt   [1 - c~2(x2+ y2+ i2)]1'2
= coy — \Pz,

d y
(2) -f-;— = 4>z — ux,

! dt   [I- c-2(*2+ y2 + z2)]1'2

d

dt   [1 - c~2(x2+ y2+ z2)]1'2
= \px — d>y.

Here x, y, and z are the rectangular coordinates of the particle with respect to

a fixed set of axes, the dots indicate differentiation with respect to the time /,

and c is a positive constant. d>, \p, and to are functions of x, y, and z. We assume

that these functions are of class C2 throughout a certain open region to which

our considerations are restricted, and that the functions do not all vanish

identically in any three-dimensional part of that region (2).

Presented to the Society, October 30, 1943; received by the editors November 5, 1945

(') We shall not have much occasion to refer to the literature. However, in order to indicate

the background of our problem, we list a few typical arcicles in the Bibliography at the end of

the paper. References to the entries in the Bibliography will be made by numbers in brackets.

(2) If <t>, \j/, and u were all zero throughout a three-dimensional region, the family of trajec-

tories in that region would be merely the four-parameter family of straight line segments trav-

ersing the region.
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The system of equations (1) can be regarded as the system of equations

of motion of an electrified particle moving, in accordance with the laws of

Newtonian dynamics, in a static magnetic field. If the equations are inter-

preted in this way, the functions <p, xp, and w are proportional to the compo-

nents of the magnetic induction parallel to the coordinate axes. The functions

are also proportional to the electric charge carried by the particle, and they

are inversely proportional to the mass of the particle.

Likewise, if c denotes the speed of light in vacuo, equations (2) can be re-

garded as the equations of motion of an electrified particle moving according

to the laws of special relativistic dynamics in a static magnetic field.

It will be shown in §4 that the families of trajectories resulting from the

systems of differential equations (1) and (2) are actually identical. For this

reason, most of our attention will be focused on the simple system of equations

(1) and its consequences.

The characterization of the five-parameter family of trajectories resulting

from equations (1) is given in §3. In other parts of the paper we define and

characterize certain other families of curves, which are related in various

ways to that family.

In §2 we define and characterize certain auxiliary families of plane curves,

called associated planar families.

In §4 we separate the five-parameter family of trajectories into oo x four-

parameter subfamilies, called natural families of trajectories, and we charac-

terize a natural family.

Finally, in §5 we give a brief discussion of the family of trajectories of a

particle moving in a fixed plane according to a system of differential equations

of motion which is, in a certain sense, the plane analogue of the system of

equations (1). It is only in quite special cases that this motion in a plane has

a realistic physical interpretation in terms of an electrified particle in a mag-

netic field; and the discussion is given here mainly for the sake of its purely

mathematical interest.

Before concluding this introductory section we shall subject our problem

to some final adjustments, and we shall then give the system of differential

equations which defines directly the family of trajectories resulting from the

equations of motion (1).

It is easily seen that.the system of equations (1) is invariant in form under

changes of the rectangular coordinate system, provided <p, \p, and w are trans-

formed as the components of a vector point function. In virtue of this in-

variance, and of what we have previously assumed about <j>, xp, and w, we can

assume that the coordinate axes are so oriented that to does not vanish identi-

cally in any three-dimensional part of the region under consideration. We

shall actually assume something more; namely, that the region is so restricted

that a> is never zero in it. Thus we shall be studying the family of trajectories

in the neighborhood of what we naturally call an ordinary point; and we shall
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not consider the properties of the family in the neighborhoods of points be-

longing to certain possible exceptional loci, of at most two dimensions.

The system of differential equations which defines the family of trajec-

tories of a particle moving according to the equations of motion (1) is ob-

tained by eliminating the time from the latter equations. The elimination is

straightforward, and the details need not be given here. The resulting system

of equations can be written in the form:

-co'+ci'z'-co'y'2+^'y'z'
-y"

— co+ciz' — coy'2+^y'z'

T        -3coy'+2^z' (4>+^y')(l-ç6y'-a>yy+iK2)-l „2

L-co+0z'-ioy'2+^y'z' (-co+c/.z'-coy'2+^y'z')2    S     '

\f/—(by'—uy'z'-\-\l/z'2

-co+0z'-coy'2+^y'z'   V '

where the primes indicate total differentiation with respect to x.

2. The associated planar families of curves and their characteristic prop-

erties. Consider an arbitrary plane II. Through each point of II there pass

oo2 trajectories, of the family defined by equations (3), which are tangent to

the plane at the point. We project the third order differential elements belong-

ing to these curves, at their points of tangency to II, orthogonally upon II.

Thus we get oo4 differential elements of the third order in the plane. This

aggregate of differential elements is defined, with reference to a coordinate

system in II, by a differential equation of the third order. This differential

equation defines a certain three-parameter family of plane curves, which we

call the associated planar family of curves ih the plane II. We are now going to

characterize the associated planar families of curves(3).

Obviously, the associated planar family of curves in a plane z= constant

is defined by the equation

(4) y =^hx+7yy\y +LrT7^+   «'(1 + /T > '
where the z which occurs in the functions d>, \p, u, du/dx, and du/dy is given

the appropriate constant value(4).

Equation (4) is a special case of the more general equation

(5) y'" = G(x, y, y')y" + H(x, y, y')y"\

Consequently, we know from Kasner's work that the family of curves defined

(s) More exactly, the associated planar families that satisfy a certain condition, which is

implicit in the discussion of §§1 and 2, and which will be explained explicitly in §3.

(*) It is convenient, for the time being, to consider the coordinate system as having been

transformed, so that the plane under consideration is represented by the equation 2 = 0.

(3)

z  =■
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by equation (4) possesses the following property(6).

Property A. //, for each of the oo1 curves passing through a given point

0:(x, y) in a given direction, we construct the parabola which osculates the curve

at 0, the locus, T, of the foci of these parabolas is a circle passing through 0.

It should be remarked that if the lineal element (x, y, y') is such that

G(x, y, y') is zero, the locus T is a straight line passing through 0. The above

statement of Property A is valid for this case, provided that we regard the

circle as having an infinite radius.

Conversely, it is known that if a three-parameter family of plane curves

has Property A, the family is defined by some differential equation of the

form (5).

For the sake of convenience in the statement and discussion of the further

properties, we introduce two new systems of rectangular coordinates in the

plane II. The one, the (£, rj) system, has its origin at the point 0, and the £

and 17 axes are parallel to the x and y axes, respectively. The other, the (u, v)

system, is obtained from the (£, 77) system by means of the rotation about O

such that the w-axis, which is the transform of the £-axis, is the common

tangent of the °°1 Curves considered above. Analytically, the two coordinate

systems are related by the equations

S + y'v = (1 + y'2Yt2u,      - y't + v = (l + y'2Y'2v.

Consider a family of curves defined by an equation of the form (5). It is

readily shown that the coordinates, in the (u, v) system, of the center of the

circle T, which corresponds in the manner described to the lineal element

(x, y, y'), are given by the formulae:

(6)    ue = 3(4G)-H1 + y'2)1'2, vc = (4G)-1[3y' - (1 + y'2)7/](l +y'2)1'2.

In our case we have

3o)(l + y'2)1'2 - (<p + i//y')(^ - cpy')

Uc "  4(o,. + wyy') ' Vc "  4a>(coI + wvy')(l + y'2)1'2 '

where wx=do)/dx, o)v=da}/dy. It follows that

VC <t>2 + V
— = -sin 2(8 — a),
uc 6o)2

where 8 = arc tan y', a = arc tan (ip/<p). Thus we have a second property of

the associated planar family of curves, which we can state as follows:

Property B. The circle T which corresponds, according to Property A, to

the lineal element (x, y, y') is so situated that the tangent, vc/uc, of the angle be-

C)-See[l].
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tween the line drawn from O to the center of F and the lineal element either is zero

for all values of y', or is proportional to the sine of twice the angle, 8—a, between

the lineal element and a direction An which is fixed for the point 0. In the latter

case the factor of proportionality is a function of the coordinates of 0.

When the lineal element (x, y, y') is such that G = 0, the locus V degener-

ates into the straight line

3m + [3y' - (1 + y'2)H]v = 0.

In this case we naturally interpret the line drawn from 0 to the center of T

as the line through O perpendicular to the straight line. It is easily verified

that the above statement of Property B, with this interpretation of the

phraseology, holds in this degenerate case.

We have vc/uc = 0 for all values of y' when, and only when, the point O is

a zero of both of the functions <j> and xp.

Now suppose, conversely, that a family of curves having Property A also

has Property B. By equations (6), we must have the relation

3y'        (ti + iiy'Mi - <t>iy')

' 1 + y'2      "       wi2(l + y'2)2

where <pi, xpi, and u>i axe functions of x and y.

The expression for uc can be written in the form

2 2 —1/2
uc = (3/4)01(0)! + o>„)       sec (8 — ß),

where

ß = arc tan (cov/(ax).

Hence, we have another property of the associated planar family, which we

can state in the following form.

Property C. Either the locus T corresponding to the lineal element (x, y, y')

degenerates into a straight line for all values of y', or there is associated with the

point O a certain point P, such that if we draw a line through P perpendicular

to OP, intersecting the u-axis in a point which we shall call Q, the center of the

circle r corresponding to (x, y, y') is on the line passing through Q perpendicular

to the u-axis.

We have the first situation described in the statement of the property

when, and only when, the point O is a zero of both of the functions cox and «„.

In this case we consider that the associated point P does not exist.

Conversely, it is easily seen that if a family of curves having Property A

also has Property C, the function G(x, y, y') in the defining differential equa-

tion is a linear function of y'.

Suppose that there exist lineal elements (x, y, y') for which the correspond-

ing loci r are not straight lines. Then there exists a point O for which the as-
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sociated point P exists, and all points in the neighborhood of O have  this

property.

Let £p and t\p denote the coordinates of the point P in the (£, 17) system of

coordinates. We readily find that

3                   ÍOx/íO 3 oj„/co

& = — -,-, ..   .    ,-T77' IP =
4    (cox/co)2 + (co,»2 4    (cox/co)2 + (Vco)2 '

and therefore

3 £p 3        7]p
"*/« = T Tí-:—ï-' w»/w = T

4    &. + V> 4    & + 1JÎ.

Since túx/w and wv/w are the partial derivatives of log w, we have the following

property.

Property D. When the initial point O is changed, the coordinates of the as-

sociated point P, if it exists, change in the manner described by the equation

d        £p d        i)p

dy  & + v2P       dx  &+r,p

As has been said above, if a family of curves having Property A has also

Property C, the function G in the defining differential equation is of the form

G = gi(x, y) + gi(x, y)y'.

If the functions gi and g2 are not both zero at the point 0: (x, y), the associated

point P exists, and we have the relations

3        l-p 3        r¡p
Si =

4    & + yp 4    3» + i,i>

Hence, if a family of curves having Properties A and C also has Property D,

we have the relation

dgi _ dg2

dy        dx

and we can write gi = o¡x/u, g2 = co„/co, where o) is some function of x and y. If

the point P associated with the point O does not exist, these formulae still hold,

it being understood that aix and uy are then both zero at the point 0.

We see, therefore, that if a three-parameter family of plane curves has

Properties A, B, C, and D, it is defined by a differential equation of the form

m =   lpo      to     1 f    3y' (<bi + fry'Xfr - <biy')l m

y      "cob*      dyy J Ll + y'2 coi2(l + y'2)2 Y

If we multiply the numerator and the denominator of the second term of the



1946] FAMILIES OF DYNAMICAL TRAJECTORIES 155

coefficient of y"2 by (w/wi)2, this differential equation assumes the form (4).

Therefore, the set of properties A, B, C, and D is completely characteristic

of families of curves defined by differentia] equations of the form (4).

3. The characteristic properties of the family of curves defined by equa-

tions (3). We are now ready to proceed with the solution of our main problem,

that is, the problem of characterizing the family of curves defined by (3).

One property of the family of curves can be inferred at once from equa-

tions (1). In fact, the differential equations of motion show that the accelera-

tion vector (*, y, z) is perpendicular to the velocity vector (x, y, z) and to the

vector (<p, xp, w). (Of course, this statement is vacuous for points at which

</>=i/' = w = 0. As we have explained previously, we assume that there are no

such points in the region under consideration.) Hence we have the following

property.

Property I. The principal normals (at 0) of the =o3 curves passing through

an arbitrary point 0 are all perpendicular to a certain direction A associated

with 0.

Conversely, let us consider a family of curves in three-dimensional space,

such that »1 curves pass through each point in each direction. The family is

defined by some system of differential equations of the form

(7) y'" = fi(x, y, z, y', z', y"),       z" = f2(x, y, z, y', z', y").

We shall impose Property I on the family of curves, and see what effect this

restriction has on the form of the differential equations.

The direction cosines of the principal normal of the typical curve at the

typical point 0 : (x, y, z) are proportional to

- (y'y" + z'z"),        (1 + z'2)y" - y'z'z",        (1 + y'2)z" - y'z'y".

If the family has Property I, we must have

- X(*. y, z)(y'y" + z'z") + ß(x, y, z)[(í + z'2)y" - y'z'z"]

+ v(x, y, z)[(l + y'2)z" - y'z'y"] = 0,

where X, u, and v are the direction cosines of the direction A(6). Therefore, the

function f2 in the second of equations (7) must be

a — \y' — vy'z' + llz'2

(8) h =     ,\,     „■   ,, y"-— v + Xz  — vy 2 + fiy z

This function is of the same form as the right-hand member of the second of

equations (3). Hence Property I is the geometrical meaning of the special

form of that equation.

Since, as has been pointed out in §1, the system of equations (1) is in-

(8) In our case X, p, and v are proportional to <f>, ̂, and u, respectively.
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variant in form under changes of the rectangular coordinate system, the as-

sociated planar family of curves that we have studied in §2 (that is, the family

in a plane z = constant, such that co does not vanish in the two-dimensional

part of the plane under consideration) is typical of the associated planar

family of curves in any plane II such that the component of the vector

(<b, \p, c*>) perpendicular to II does not vanish in the two-dimensional part of the

plane under consideration. Therefore we can state the following property.

Property II. Let Tl be a plane such that the direction A, which is associated

with a point O of the plane, according to Property I, is not contained in Tl for

any point O belonging to the two-dimensional part of Tí under consideration^).

Then the associated planar family of curves in Tl possesses Properties A, B, C, D.

Properties I and II are not sufficient to characterize completely the family

of curves defined by equations (3) ; we also need some properties which have

the effect of relating the associated planar families of curves in different

planes. Two simple properties of the kind, which are adequate for our pur-

pose, will now be stated.

Property III. The direction An, referred to in the statement of Property B,

is the orthogonal projection upon the plane Tl of the direction A, referred to in the

statement of Property I ; and the factor of proportionality, referred to in the state-

ment of Property B, is (l/6)(tan y)2, where y is the angle between A and the nor-

mal to the plane Tl.

In order to be able to give a concise statement of Property IV, we shall

first explain some matters of notation.

As in §2, we let x and y be rectangular coordinates in the plane II; also

we set up a rectangular, (£, r¡), coordinate system in the plane, with its origin

at the arbitrarily chosen point 0, and with the £ and -q axes parallel to the x

and y axes, respectively.

By Property C, there is associated, in general, with the point O a certain

point P, the coordinates of which are £p and rjp. Let Pi denote the inverse of

P with respect to the circle

£2 + „2 = 3/4,

and let ¿jp, and rjpi denote the coordinates of Pi.

Then we have the following property.

Property IV. If the point P exists, the coordinates £p, and wp! are the partial

logarithmic derivatives, with respect to x and y, respectively, of a function which

is the component perpendicular to the plane Tí of a vector which has the direction

A, and which, while it is dependent upon the point 0, is not dependent upon the

plane II.

(7) Henceforth we shall call such a plane an ordinary plane.
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These properties follow at once from the details of the work by which we

established Properties B and C in §2.

Now we shall consider a five-parameter family of curves having Property I

(and being defined, therefore, by a system of differential equations (7), with

the function f2 given by (8)); and we shall see how, by imposition of the vari-

ous properties contained in Properties II, III, and IV upon the family, the

defining system of differential equations is gradually specialized into the form

(3).
We shall make use of the following transformation of coordinates

x = X,        y = cY - sZ,        z = sY + cZ,
(9)

X = x, Y = cy + sz,        Z = — sy + cz,

where c = cos e, s = sin e, e being an arbitrary angle. Under this transforma-

tion of coordinates the functions X, p, and v are transformed as follows :

X = A, p. = cM — sN, v = sM + cN,

A = X,        M = cp. + sv, N = — sp + cv,

since they are the components of a unit vector. Here, of course, A, M, and N

are to be interpreted as functions of X, Y, and Z.

In terms of the new variables, the system of equations (7), with/2 given

by (8), has the form

cY'" - sZ'" = fi(X, cY - sZ, sY + cZ, cY' - sZ', sY' + cZ', cY" - sZ"),

(10) M - AY' - NY'Z' + MZ'2
- N + AZ' - NY'2 + MY'Z'      '

where the primes indicate differentiation with respect to X.

For the sake of brevity, let us write the second of equations (10) in the

form

Z" = K(X, Y,Z, Y',Z')Y".

Then we have

Z'" = (Kx + KyY' + KzZ')Y" + (Kt- + KKZ,)Y"2 + KY'",

where the subscripts indicate partial differentiation in the usual way. Con-

sequently, the first of equations (10) takes the form

(c - sK)Y'" = fi(X, cY - sZ, sY + cZ, cY' - sZ', sY' + cZ', (c - sK)Y")

+ s(Kx + KyY' + KzZ')Y" + s(KY. + KKZ.)Y"2.

We shall consider the associated planar family of curves in a plane

Z = constant, assuming that N does not vanish in the two-dimensional part

of the plane under consideration. This family is defined by the equation



158 L. A. MacCOLL [July

(c - sKo)Y'" = fi(X, cY - sZ, sY + cZ, cY', sY', (c - sK0)Y")

+ s(Kx + KYY')oY" + s(Kr> + KKz,)oY"2,

where the subscripts 0 indicate that the expressions to which they are ap-

pended are to be evaluated for Z' = 0.

Now we impose the condition that the family of curves defined by (11) shall

have Property A. Under this condition the function fi(X, ■ • ■ , (c — sK0) Y")

must be of the form

g(X, cY - sZ, sY + cZ, cY', sY')(c - sK0)Y"

+ h(X, cY - sZ, sY + cZ, cY', sZ')(c - sK0)2Y"2;

and hence the function fx(x, y, z, y', z', y") must be of the form

(12) fi(x, y, z, y', z', y") = g(x, y, z, y', z')y" + h(x, y, z, y', z')y"2.

(In fact, we can always write

h = gy" + hy"2 + /(*, y, z, y', z'/y', y");

and the function / must vanish when Z'= — sy'+cz' = 0. However, c and 5 are

arbitrary, subject to the one restriction c2+s2 = 1. Consequently, I must vanish

for all values of the argument z'/y'. Hence, / must be identically zero.)

Now equation (11) can be written in the form

Y"' = \g(X, cY - sZ, sY + cZ, cY', sY') +-(Kx + KYY')o~\ Y"
L c — sKo J

(13) + \(c - sKo)h(X, cY - sZ, sY + cZ, cY', sY')

+-— (Ky + KKz-)
C  —  SKn

o] Y"2

We next impose the condition that the family of curves defined by equa-

tions (7), with the functions/i and/2 given by equations (12) and (8), respec-

tively, shall be such that every associated planar family of curves in an ordi-

nary plane shall have Property B, and such that the five-parameter family of

curves shall have Property III.

It follows from this condition and equation (13), without any difficulty,

that the function

h(X, cY - sZ, sY + cZ, cY', sY')

is given by the equation

3Y' (A + MY')(M - AY')1      s(KY. + KKz.)o
(14)    h

1       T    3Y' (A + MY')(M - AF')1

' c- sKoli + F'2 iV2(l + F'2)2        J~iV2(l + F'2)2        J (c - sKo)2
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In the formula (14) we now transform the variables back to the (x, y, z)

system of coordinates, by means of equations (9) and (9'). Here we make use

of the relations

cY' = y',        sY' = z',

which follow from equations (9), and from the equation Z' = 0 which was used

in deriving equation (11). After some tedious, but entirely straightforward,

algebraic reduction, we obtain the result

2pz' - 3vy'
h(x, y, z, y', z')

— v + Xz' — vy'2 + py'z'

(15) (\+py')(p-\y'-vy'z' + pz'2) _

(- v+ Xz' - vy'2 + py'z')2

The function A given by (15) is of the same form as the coefficient of y"2

in the first of equations (3). Thus, we have determined the geometrical sig-

nificance of the special form of that coefficient.

We now consider a five-parameter family of curves such that every asso-

ciated planar family of curves in an ordinary plane possesses Properties A

and B, and such that the five-parameter family possesses Properties I and III.

We impose the condition that every associated planar family in an ordinary

plane shall have Properties C and D, and that the five-parameter family

shall have Property IV.

Its results from equation (13), and from the condition that we are impos-

ing, that the function g(X, cY—sZ, sY+cZ, cY', sY') is of the form

(16)
i too     an    "i 5

g = —\-+-Y'\-(Kx+ KYY')o.
Ü LdX      dY     J      c - sKo

By Property IV, fi is the component perpendicular to the plane Z = constant

of a "vector which has the direction cosines A, M, N.

In the formula (16) we now transform the variables back to the (x, y, z)

system of coordinates, in the manner that has been described above in con-

nection with the derivation of equation (15). After some lengthy, but ele-

mentary, reduction, we obtain the result

- o,' + <p'z' - o/y'2 + xh'y'z'
(17) g =-—--^— ■

— o, + <pz' — o>y'2 + -py'z'

Here, of course, </>, xp, and u are the components, in the (x, y, z) system of

coordinates, of the vector referred to in the statement of Property IV.

In (8) and (15) we can obviously replace X, p., and v by cp, xp, and w, re-

spectively. Hence, we have shown that if a five-parameter family of curves

possesses Properties I, II, III, and IV, it is defined by some system of differ-
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ential equations of the form (3). Thus, those properties are, together, com-

pletely characteristic of families of curves defined by systems of equations of

the form (3).

The concept of the associated planar families of curves is somewhat rec-

ondite, and it would certainly be desirable to have a characterization of the

family of curves defined by equations (3) which did not depend upon that

concept. So far we have no complete characterization of that kind. However,

we are able to state another property, not involving that concept, which,

together with Property I, goes part way toward characterizing the family of

curves.

Let us consider the »» curves, belonging to the family defined by equa-

tions (3), which pass through a given point 0:(x, y, z) in a given direction

(y', z'). By Property I, all of these curves have the same tangent, principal

normal, and binormal at the point 0. The different curves have different

osculating spheres at 0.

Let r¡ and f be rectangular coordinates in the common normal plane at 0,

r¡ and f being measured from 0 in the directions of the principal normal and

the binormal, respectively.

A straightforward, but somewhat lengthy, calculation leads to the result

that the locus of the centers of the °°1 osculating spheres is represented by

the equation

(18) (Ar, - f)(Ai + C) + (DV + E)v = 0,

where

A = (1 + y'2 + z'2)-1/2[(l + y'2)k - y'z'),

B = (kx+ kyy' + k,z')[(l + y'2 + z'2)(l + k2) - (y' + kz')2}1'2,

C = (1 + y'2 + z'2)3'2(^ + ¿M,

D = (1 + y'2 + z'2)-1'2^ + y'2 + z'2)(l + k2) - (y' + kz')2]3<2g,

E = [(1 + y'2 + z'2)(l + k2) - (y' + kz')2] [(1 + y'2 + z'2)h - 3(y' + kz')].

Here g, h, and k are the functions (of x, y, z, y', and z') occurring in the equa-

tions

(19) y'" = gy" + hy"2,        z" = ky",

defining the family of curves. The result is not dependent upon the special forms

of these functions which we have in the case of equations (3). Of course, the sub-

scripts in the symbols kx, ky, k„ ky>, and kz> indicate partial differentiation in

the usual way.

Equation (18) represents a hyperbola, which passes through the point O,

and has one of its asymptotes parallel to the f axis. We find that the distance,

tin. of the point O from that particular asymptote is given by the formula :
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(1 + y'2 + z'2)"2( V + **..)
(20)   770 = —

[(1 + y'2 + z'2)(l + k2) - (y' + ¿z')2]1/2(*x + kvy' + k,z')

It is worth remarking that since the direction of the common tangent to the

»1 curves is determined by y' and z', and since the direction of the common

binormal is determined by y', z', and k, the complicated right-hànd member

of equation (20) actually admits of a geometrical interpretation.

For the hyperbola to reduce to a pair of straight lines it is necessary that

C = 0, or that BE = CD. It is readily verified that neither of these conditions

is satisfied, in general, when equations (19) are specialized into equations (3).

(The first condition requires that k satisfy the equation kV'+kkt> =0; the sec-

ond condition requires that a special relation exists between g, h and k(s).)

We now see that any family of curves defined by a system of equations of

the form (19), and, in particular, the family of curves defined by the equations

(3), possesses the following property:

Property V. The locus of the centers of the osculating spheres (at O) of the

eo1 curves which pass through a fixed point O in a fixed direction is a hyperbola,

which :

(i) passes through 0;

(ii) has one of its asymptotes parallel to the common binormal of the oo1

curves at O;

(iii) is such that the distance, rjo, of O from that asymptote is given by the

formula (20).

Conversely, it is readily found that if a family of curves defined by a sys-

tem of equations of the form

y'" = /(*, y, z, y', *', y"),      *" = *(*, y, *, y', z')y"

(and therefore having the property that all of the curves passing through a

given point in a given direction have the same osculating plane at the point)

has Property V, the function / must be of the form

/ = i(x, y, z, y', z')y" + h(x, y, z, y', z')y"2.

Thus Properties I and V, together, characterize the five-parameter family

of curves to the extent of limiting the defining system of differential equations

to the form:

xp — Ay' — ojyV + xl/z'2
y'" = sy" + hy"\     z" =       , * „ , , ,, /'-

— o> + <pz — ojy 2 + py z

(8) Kasner and others have studied families of curves defined by systems of equations of

the form (19), where the functions k happened to satisfy the partial differential equation

ky>-\-kk,i = 0. (See, for instance, [2 and 10].) In any such case, of course, the locus of the centers

of the osculating spheres is a straight line.
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where <p, \p, and w are functions of x, y, and z, and g and h are functions of

x, y, z, y', and z'.

4. Natural families of trajectories. The differential equations of motion

(1) possess the integral

(21) x2 + y2 + z2 = 2EC.

Here Pc is a constant of integration, which is, aside from a constant multi-

plier, the kinetic energy of the particle. The subscript c is intended to distin-

guish this constant, in the classical or Newtonian theory, from an analogous

constant Er in the relativistic theory.

Consequently, the-five-parameter family of curves defined by equations

(3) breaks up into »l four-parameter subfamilies, the different subfamilies

corresponding to different values of Ec. We shall call each of these subfamilies

a natural family of trajectories.

In virtue of equation (21), the second and third of equations (1) are jointly

equivalent to the following pair of equations

y" = (2£c)-1'2(l + y'2 + z'2)1'2(- co + <f>z' - coy'2 + fy'z'),

z" = (2EC)-1'2(\ + y'2 + z'2)1'2^ - d,y' - œy'z' + ¿z'2),

where the primes denote differentiation with respect to x. This system of

differential equations defines the natural family of trajectories corresponding

to the energy constant Ec.

The relativistic equations of motion (2) likewise possess an integral such

as (21). However, in this case it is advantageous to write the integral in the

form

(23) c2[l - c~2(x2 + y2 + z2)]-1/2 = Er.

Thus the five-parameter family of trajectories of a particle moving according

to the equations (2) also breaks up into =° 1 four-parameter natural families

of trajectories.

It follows from equations (2) and (23) that the natural family of trajec-

tories corresponding to the energy constant Er is defined by the following

system of differential equations :

y" = c(E2 - c4)-"2(l + y'2 + z'2)1/2(- co + .¡is' - coy'2 + ipy'z'),

z" = c(E2 - c4)-"2(l + y'2 + z'2)1'2^ - <f>y' - coy'z' + d-z'2).

The equation 2Ec=(E¡ — ci)/c2 establishes a one-to-one correspondence

between the significant values of Ec and Er (Ec>0, Er>c2)(9). Comparing

the systems of equations (22) and (24), we see at once that the natural families

of trajectories in the Newtonian and relativistic cases, for corresponding values

(9) It is to be noted that corresponding values of Ec and E, correspond to different values of

the speed of the particle.
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of the energy constants Ec and Er, are identical.

From the last result we immediately infer the following: The five-parameter

family of trajectories of a particle moving according to equations (1) is identical

with the family of trajectories of a particle moving according to equations (2).

Hence Properties I, II, III, and IV are also characteristic of the family of

trajectories resulting from the equations of motion (2).

Of course, the identity of the families of trajectories in the Newtonian and

relativistic cases results from the fact that the forces exerted by the magnetic

field on the particle do no work, so that the speed of the particle, and conse-

quently also its mass in the relativistic case, remain constant. With other

types of forces, there may be great differences between the corresponding

families of trajectories in the Newtonian and relativistic cases(10).

Now we proceed to obtain a set of properties characterizing a natural

family of trajectories, say the family defined by equations (22).

One property follows immediately from Property I of §3. We can state

the property as follows.

Property In. The principal normals (at 0) of the °°2 curves passing through

an arbitrary point 0 are all perpendicular to a certain direction A associated

with O.

In a natural family of trajectories one curve passes through each point

in each direction. Such a family of curves is defined by some system of differ-

ential equations of the form

y" = fi(x, y, z, y\ z'),       z" = f2(x, y, z, y', z').

When we impose the requirement that the family of curves shall possess Prop-

erty I„, we find at once that the system of differential equations specializes

into the form :

y" = /(*, y, z, y', z')(- v + Xz' - vy'2 + py'z'),

z" = /(*, y, z, y', z')(p - \y' - vy'z' + pz'2).

Here, as before, X, p, and v denote the direction cosines of the direction A.

Let us consider a trajectory which passes through the point 0:(x, y, z)

in a direction making an angle 8 with the direction A associated with 0. We

find that the radius of curvature, p, of the trajectory at O is given by the

formula

p~2 = (2Ec)-1(<p2 + P2 + o>2)(sin 8)2.

Hence we have the following property.

(10) Compare, for instance, the results obtained by Kasner [l ] for a certain problem in the

Newtonian case with the results obtained by the present author [6] for the corresponding prob-

lem in the relativistic case.
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Property IIn. All trajectories (belonging to the natural family corresponding

to Ec) which pass through a point 0: (x, y, z) in directions making a fixed angle 6

with the direction A associated with 0 have the same curvature at 0. This curva-

ture is proportional to sin 6, the factor of proportionality depending upon 0.

Conversely, suppose that a four-parameter family of curves having Prop-

erty L also has Property IIn.

The family is defined by some system of differential equations of the form

(25). Consequently, the radius of curvature of the curve passing through the

point 0: (x, y, z) in a direction making an angle 6 with the direction A associ-

ated with O is given by the formula

1        [f(x, y,z, y',z')]2
— =-(sin 0)2.
p2 1 + y'2 + z'2

In virtue of Property IIn, the function f(x, y, z, y', z') must be of the form

/(*, y, z, y', z') = g(x, y, z)(l + y'2 + z'2)1'2.

Therefore, the defining system of differential equations (25) reduces to the

form

y" = g(x, y, z)(l + y'2 + z'2)>/2(- v + Xz' - vy'2 + ny'z'),

z" - g(x, y, z)(l + y'2 + z'2)1'2^ - Ay' - vy'z' + „z'2).

The system of equations (26) is of the same form as (22). Therefore, it

follows that Properties In and IIn are together completely characteristic of

natural families of trajectories.

5. The case of motion in a plane. So far we have been considering a par-

ticle moving in three-dimensional space. Now it is natural to ask what cor-

responds to the foregoing results in the case in which the particle moves in a

fixed plane. For sundry physical reasons, it is only under quite special condi-

tions that an electrified particle can move in a fixed plane in a static magnetic

field. However, if we ignore questions of physical realizability, we can set up

a system of differential equations of motion, analogous to the system (1),

for motion in a plane; and we can proceed to study the resulting family of

trajectories, simply for the sake of its mathematical interest. In this conclud-

ing section we give a brief account of the results obtained in this way.

As the plane analogue of the system of equations (1), we take the follow-

ing:

(27) * = co(s, y)y,        y = - co(z, y)x.

Here x and y are the rectangular coordinates of the particle, and w(x, y) is a

function of class C2 which we assume does not vanish in the region under

consideration.

Eliminating the time from equations (27), we obtain the following equa-
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tion defining the three-parameter family of trajectories of the particle :

(28) y'" --(«.+ o,,y')y" + -^f- y"2.
o> l + y

We shall first characterize the family of curves defined by this equation.

We see at once that one characteristic property is just Property A, stated

in §2. For the sake of uniformity in the notation, we shall refer to this prop-

erty, in the remainder of this discussion, as Property Ip.

Referring to equations (6), we see that in the present case we have vc=0.

Therefore, we have the following property.

Property IIp. The circle T, which corresponds in the manner described in

the statement of Property lp to the lineal element (x, y, y'), has its center on the

common tangent at 0 of the oo ' curves considered.

Conversely, if a family of curves having Property Ip also has Property IIP,

we have vc =0 and, therefore, the function H(x, y, y') in the defining differen-

tial equation is 3y'(l+y'2)-1.

The last two of the set of characteristic properties are essentially the same

as Properties C and D stated in §2. In the present connection we shall desig-

nate these Property III„ and Property IVP, respectively. In virtue of Prop-

erty IIP, Property IIIP can be stated more directly as follows:

Property IIIP. Associated with the point O there is a certain point P, such

that the center of the circle T lies on the line passing through P perpendicular to

OP.

If a family of curves having Property IP also has Properties IIIP and IVP,

the function G(x, y, y') in the defining differential equation has the form

1 f~do>     do>    ~\
G(x,y,y')=-\-+-y'\,

o> Ldx      ây    J

where co is some function of x and y. Hence the set of four properties we have

obtained is completely characteristic of a family of curves defined by a differ-

ential equation of the form (28).

The differential equations of motion (27) possess an integral which can be

written in the form

x2 + y2 = 2Ec,

where Ec is a constant of integration. Consequently, the three-parameter

family of curves defined by equation (28) consists of oo• two-parameter sub-

families, each particular one of which corresponds to a particular value of the

energy constant Ec. As before, we call each of these subfamilies a natural

family of trajectories.
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It is easily seen that the natural family of trajectories corresponding to

the constant Ec is defined by the differentia] equation

y"(l + y'2)-3'2 = - (2Ec)~1'2oi(x, y).

Hence, a natural family of trajectories is completely characterized by the

following single property:

All of the » * curves passing through a given point have the same curvature

at that point.

So far our considerations have been based upon the Newtonian equations

of motion (27). As would be expected in the light of the discussion given in §4,

we obtain the same sets of characteristic properties, both for the total three-

parameter family of trajectories and for the two-parameter natural families

of trajectories, if we start with the relativistic equations of motion

d x
-f-■-;— = <•>(*> y)y,
dt   [1 - c-2(x2+ y2)]1'2 ny

d y
-f--■,— = - <¿(x, y)x.
dt   [1 - c~2(x2+ y2)]1'2
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