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1. Introduction. The present paper is a study of the projective differential

geometry of surfaces in ordinary space by means of a system of linear homo-

geneous differential equations of the first order. The use of a tensor notation

with intrinsic differentiation (a generalized covariant differentiation intro-

duced in §2) enables us to express general results with great formal simplicity.

Simple forms of the analytic conditions for fixity of points, lines, planes

and algebraic surfaces (obtained in §§2 and 3) make possible a remarkably

compact formulation of the theory of envelopes. Applications of a particular

aspect of this theory yield the characteristics of significant families of planes,

thereby providing (i) basic elements for the geometric characterizations of

the differential invariants introduced in §§6 and 10, and (ii) means of deter-

mining (in §12) dual systems of hypergeodesics.

The conditions that a given net of an arbitrarily selected surface S be

a conjugate net or the asymptotic net, respectively, are expressed in new ways

(in §4) by means of simple relations among the local coordinates of a generic

point of S and their first and second intrinsic derivatives. Each of these con-

ditions assumes its simplest form if the given net is the parametric net.

§5 is devoted to a study of the effects on the coefficients of the differential

equations of the most general transformations of independent and dependent

variables which leave the surface unchanged. These effects, expressed by the

law of transformation of the connection, are first interpreted in terms of local

point coordinates of a generic point of the surface and then in terms of local

plane coordinates of a general tangent plane to the surface. These interpreta-

tions lead to the introduction and geometric characterization (in §6) of a new

quadratic differential invariant ñ of a general pair of analytic surfaces S, S'.

An invariant quadratic differential form which plays a basic role in a

former paper by the author^) will be shown in the present paper to be a

projective generalization of the Euclidean second fundamental form of S. We

shall denote this form by <j>2 and its discriminant by d. It is shown (in §7)

that the form d>x defined by the relation
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fa = Sld/h,

in which we denote by h the discriminant of ß, becomes the Euclidean first

fundamental form when the surface S' is selected to be the locus of the center

of mean curvature of S. The form <pi for the general pair of surfaces S, S'

will therefore be called the projective first fundamental form of S relative to S''.

We define the protective normal curvature nn of S relative to S', for a given

direction at a point x, by the ratio of the projective fundamental forms

Kn = faifa'

The sum and product of the extremal values of k„ at x are projective invari-

ants which we denote by Km and K and which we call the projective mean

curvature and the projective total curvature, respectively, of S relative to S'. The

class of i?-associate surfaces of S is geometrically characterized and the invari-

ants Km and K of S relative to a general member of this class are then de-

termined.

In §8 a geometric characterization for fa is obtained and a geometric rela-

tion among the forms fa112, fa and the form for the projective linear element

is established. In §9 a system of projective geodesies of S is defined in asso-

ciation with a general i?-conjugate congruence. A projective theorem con-

cerning the cusp-axis of this system is proved, and a metric analogue of this

theorem is established.

Differential invariants of a general tetrad of surfaces are defined and geo-

metrically characterized (in §10), special cases of which are shown (in §11)

to be the classical projective linear element of a surface, the elementary forms

of Bompiani, and Fubini's quadratic normal form. A principle of duality is

outlined (in §12) and used to characterize dual systems of hypergeodesics of

which union-curves of a congruence V, the p- and a-tangeodesics, and the duals

of these are special cases. Certain properties of the p- and a- tan geodesies

serve to characterize the first canonical pencil.

2. The fundamental differential equations. Consider in ordinary projec-

jective space four analytic surfaces S,-, î = 0, 1, 2, 3, whose corresponding

generic points Xi are linearly independent. The projective homogeneous co-

ordinates of Xi form a square matrix of rank and order four whose elements

are analytic functions #¿(p) of two independent variables u1, u2. The general

coordinates of any point in space may consequently be expressed as a linear

combination of the corresponding coordinates of the points Xi. It follows that

a set of functions rA<„ of u1, u2, which we call the connection of the surfaces Si,

can be uniquely determined such that the functions Xi(p) are solutions of the

system of differential equations

(2.1) -r*<«*» » 0, * = 0, 1,2, 3; a = 1, 2,
dua
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in which h denotes a dummy index. Throughout the present paper, except

when otherwise specified, Latin indices have the range 0, 1, 2, 3 whereas

Greek indices have the range 1, 2; repeated indices in upper and lower posi-

tions of adjoining symbols indicate summing over their respective ranges.

The most general sets of solutions of (2.1) are the sets of coordinates of the

points Xi which correspond to the points #,• by a general projective trans-

formation

V -P  =   f.Pr ■/

Thus the equations (2.1) determine the projective differential properties common

to all projective transforms of the tetrad of surfaces Si.

For the sake of typographical simplicity, where no confusion can arise we

shall denote the partial derivative of a quantity with respect to W by the

symbol for the quantity with the subscript a adjoined. Thus

dXi dT'ia d2x<
Xia  =-> T'iaß  =  -— I Xxaß

du" duß dWduf

Pliickerian line coordinates co,,PÎ of the line ua joining the points Xi, x¡

are defined by the formula

0>ijM =   XipXjq —  XfXi".

By making use of (2.1) in an obvious manner we find that the coordinates

Uijpq are solutions of the system of equations

(2.2) o>ija - co«r\a - wh]Yhia = 0.

Let |it| denote the determinant whose elements are the functions Xip and

let £',• denote the normalized cofactor of x,* in \x\, defined by the relations

(2.3) £W = 5rA,

in which the right member represents the Kronecker deltas. The functions £r,-,

i = 0, 1, 2,-3, form a set of general homogeneous plane coordinates of the plane ■

determined by the three points Xh wherein h^r. Performing partial differen-

tiation with respect to W of (2.3) and making use of (2.1) yields

Xh%ria + T'h« = 0.

Forming the inner product of the left member of this equation with £** we

find that the plane coordinates £r< are solutions of the system of equations

(2.4) £'„ + t»T\a = 0.

The left members of (2.1), (2.2), and (2.4) will be called the intrinsic

derivatives of Xi, w<,-, and £r, respectively, and will be denoted simply by

Xi,a, w¡i,«, and £r,a. We define, similarly, the intrinsic derivatives of aggregates

o", an, ai,,-2.. .iT, ail<2' ' •*» by the respective equations
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a'\a = a«« + aihT'ha + ah>T\a,

aiyta   ==   aija ö»Al    ja anjL    ia,

V

(2.5) oijij. ■ .¡p,o   =   G*iif ■ -ipa 2-1 a»l«2' ■ •»r-l*»'r+l • - ■'p'-    >'ra>
r-1

P

aili2- --ip^   =   ailii---ipa-i-   2~^  ((««■■•ir-l*iT+l-"¡prVja,

It is evident from the forms of these equations that intrinsic differentiation of

sums and of outer and inner products of aggregates of the types here considered

obeys the same rules as ordinary differentiation.

If we put ua = u"(t), a = 1, 2, a point x whose general coordinates are func-

tions of u1, u2 describes a curve C as t varies. The aggregates

du" du"
-> a"'---!,a-

dt dt
«</...!,« — ««•••«

will be called the intrinsic derivatives along the curve C of the corresponding

aggregates a</...(, a*'"'1. Clearly these aggregates reduce to the ordinary

intrinsic derivatives

a,y...i,a,        a'*'-',,,

when the curve C is the parametric W curve.

The integrability conditions of the system (2.1) may be obtained by de-

manding that the order of differentiation of Xi be immaterial, that is

Xiaß  =   Xißa.

Making use of (2.1) to express the members of this equation as linear combina-

tions of xk we obtain

Tkia,ßXk = Tkiß,axk.

Since the points xk are linearly independent, we obtain the following form for

the conditions of integrability

r*.   » — vk„
t    ia.ß  —   -1    tí,a,

wherein intrinsic differentiation is with respect to the index k. It may be

easily demonstrated that these integrability conditions, which insure the ex-

istence of integral surfaces of a system of equations (2.1), may also be geo-

metrically interpreted as follows. Let S? denote a general transversal surface

of the congruence of W tangents to S,-, generated by the point p" whose gen-

eral homogeneous coordinates are given by

P" = xia + a"Xi,

wherein a" is a function of u1, u2. In correspondence with an arbitrarily se-
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lected surface Sf there exist infinitely many surfaces Sf with the property

that the w^-tangent to S" at p" intersects the «"-tangent to Sf at pß if, and

only if, the integrability conditions are satisfied. The points p" are defined by

the above equation wherein a& satisfies the condition

aßa = aaß, a 7e ß.

3. Conditions for fixity of points, lines and algebraic surfaces. The linearly

independent points xt, i — 0, 1, 2, 3, serve as vertices of a moving reference

frame for local point coordinates. If we define the general coordinates of the

unit point by the vector relation

U = x0 + xi + x2 + X3,

a point X whose general coordinates are given by

X = xkxh

has the functions xh as its local coordinates.

A point X is fixed as t varies if, and only if, the general coordinates of X

satisfy a relation of the form

dX
-= XX,
dt

wherein X is a function of t. If we substitute in this relation the right member

of (3.1) and make use of (2.1), we obtain, on equating coefficients of xk, the

relations

du"
Xh,a -  =   XX*,

dt

where X is a function of /, which are necessary and sufficient that the point X

be fixed as t varies.

Local line coordinates of the line joining two points X, Y are defined by

co"' = x{y' — x'yi, i < j,

in which x*, yi are the local coordinates of X, Y. We prove the following theo-

rem.

Theorem 3.1. Necessary and sufficient conditions that the line w be fixed as t

varies are that the local line coordinates u''satisfy a system of equations of the form

du"
(3.1) «",«— = r/co»,

dt

in which r¡ is an arbitrary function oft.
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The line co is fixed as I varies if, and only if, the general coordinates X, Y

satisfy a system of equations of the form

dX dY
-= tuX + a2F,       -— = biX + b2Y,
dt dt

in which the coefficients are functions of t. If we substitute for X and Y the

respective expressions xhx\ and yhXh in these equations and make use of (2.1)

we find the systems of equations

du" du"
(3.2) xh,a-= axxh + a2yh,        yh,a-= biXk + b2yh,

dt dt

which are necessary and sufficient that the line co joining the points X, Y be fixed

as t varies.

If we differentiate the functions u1' intrinsically we find

dua du"
co4',«-= (xiy\a + y'x\a — x'y\a — y'x',,,)-•

dt dt

Making use of equations (3.2) in the right member of this equation we obtain

(3.1) in which rj=ai+b2. Hence equations (3.1) are necessary conditions. To

prove them sufficient let the (i, j)-l'xne coordinate of the line joining a general

pair of points z, w be denoted by (z, w). Thus

(z, w) = zlw' — w'z'.

Equations (3.1) may consequently be written in the determinantal form

\(x, y.a) + (x,a, y) \ —- + ri(y, x) = 0.
at

Combining the first and third determinants we have

/ du" \ dua

{*• >~ -dT-vy) = (y' *'*> ~dT "

Therefore x,a dua/dt and y,a dw/dt must be defined by equations of the form

(3.1). This completes the proof.

Similar arguments may be applied to prove the following theorem.

Theorem 3.2. A point X and a line co are fixed as ul, u2 vary independently

if and only if their local coordinates satisfy respective systems of equations

X ,a   =   AaX ,

o".« = Tjaco", », j = 0, 1, 2, 3; a = 1, 2,

in which X ana* r¡ are arbitrary solutions of the equations

Oaß   =  dßa-
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It may be easily verified that these equations may be reduced to normal

forms

x\a = 0, Û^'.a = 0

by making the substitutions

xi = rx*,       w'> = su*'

where r, s satisfy the respective relations

log r = X,        log s = rj.

If the equation of a system of surfaces is expressed in terms of local point

coordinates, the usual theory of envelopes may be applied to the system,

providing the derivatives of local point coordinates are calculated by means

of the conditions of fixity of a point(2). An equation of the form

/(*», x\ x2, x\ u\u2) = 0

which is homogeneous in the variables xi represents a two-parameter family

of surfaces. The characteristic points of the family corresponding to the pa-

rameter values u1, u2 have local coordinates which are solutions of the three

equations

/ = 0,       fa - xT'n« — = 0.
dxl

The locus of the characteristic points is the envelope of the family.

If we put ua=ua(t), a = l, 2, the equation/ = 0 represents a one-parameter

family of surfaces. The equations of the characteristics are found to be

/ df\ dua
/=o,        /«-^rv--)-- = 0.

\ dxV  dt

The focal points of the characteristics are defined by these equations together

with a third equation obtained by differentiating the second equation and

making use of the fixed point conditions.

It follows that the edge of regression of a one-parameter family of planes

¡-iXi = 0, in which the local coordinates £; are functions of u"(t), is the locus of

focal points whose coordinates satisfy the equations

dua /       d2ua du" duP\
(3.3)   x% = 0,    x%,a—- = 0,    xi[ti,a-— + ti,a,ß — —-) = 0.

dt \        dt2 dt    dt /

The first two of these equations define the characteristics.

Let o,-! • • •«•„ denote an aggregate of functions of u"(t). The characteristics

of the one-parameter family of algebraic surfaces

(2) E. P. Lane [l, p. 207].
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au...v*'1'"'** = 0, ii, it, ■ ■ ■ , ip = 0, 1, 2, 3,

are readily found to be defined by the equations

du"
a.i---i,*'1 ■ ■ ■ x'p = 0,    «<,•••<,.«-xil ■ ■ ■ xip = 0.

dt

In virtue of the form of the second of these equations we have

Theorem 3.3. The algebraic surface whose equation in local point coordi-

nates is

o<i-. •<,**' ■ ■ ■ xip = 0

is fixed as t varies if, and only if,

du"
aii...ip,a   ~    — paix.• 'ip

dt

in which p is a function of t.

Corollary. The surface a,-,.. -ipxil • • ■ xip = 0 is fixed as u1, u2 vary inde-

pendently if, and only if,

Oil ■ ■ -ip,a   =  PaOix ■ ■ -ip,

where pa are functions of u1, u2.

Necessary and sufficient conditions that a plane whose local coordinates are

£,• be fixed as ul, u2 vary independently are, consequently,

%i,a  = Pati

where pa are functions of t.

4. Conjugate nets of a general surface. The general coordinates of a ge-

neric point X of a general analytic surface S are given by a vector relation

of the form

X = x'xi.

The analytic condition that two directions du2/du1, hu2/ou1 be conjugate with

respect to S at X is that they satisfy the determinantal equation

/      dX    dX \
(X, -, -,   XaßdWou*) = 0.
V      du1    du2 )

In view of the vector relations

dX = XiX\adua,       ôX = XiX\ß8uß,       doX = XiX\ß,ahußdua,

which follow from (2.1), this determinantal equation may be expressed in

terms of local coordinates of X as follows
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(x<, x\i, x\2, x'.ß.a&uOdu") = 0.

Since an asymptotic direction of S at X is a self-conjugate direction, the

differential equation of the net of asymptotic curves of S is

(x\ x\i, x\2, x\ß,aduadtiF) = 0.

It follows that the parametric net of S is (a) a conjugate net if, and only if,

(x\ x\i, x\2, x\!,i) = 0,

(b) the asymptotic net of S if, and only if

(*', x\i, x\2, x\a,a) =0, a = 1, 2.

Consequent to these relations we have the following theorems.

Theorem 4.1. Necessary and sufficient conditions that the parametric net

of S be a conjugate net are that the local coordinates x* of X be solutions of a

system of differential equations of the form

x\i,2 + bx{ -f a"xi,a — 0,

in which b, a" are functions of u1, u2.

Theorem 4.2. Necessary and sufficient conditions that the parametric net of S

be the asymptotic net of S are that the coordinates x ' satisfy a system of equations

of the form

*\0,0 + CßXi + dßXi,a =  0.

If S is the surface So of the reference tetrad, the curvilinear differential

equations defining a conjugate net of So are found to be

(r*'oi, r<02, T'oa.ßdWOu^) = 0,        oV/oV = X(w\ u2), i = 1,2, 3.

The differential equation of the asymptotic net of S0 is, therefore,

(r'oi, r<02, T'oa.ßdWduf) = 0.

If we assume that the tangent plane to So at x0 is the plane xz = 0, we have

*oa = ThoaXh,        r30a = 0, a = 1, 2.

It follows that, in this case, o conjugate net of So is defined by a pair of equa-

tions of the form

T'ouT^ßdWoufi = 0,        tfV/oV = X(u\ u2),

and the asymptotic net of So is defined by the equation

T'oaT^ßdWdu^ = 0.

Furthermore, if ri'o2r3,i = r/0ir3;-2 = 0, the parametric curves of So form a con-
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jugate net. Similarly, if T'oiF3,! = r>'o2T3j2 — 0, the parametric curves of So form

the asymptotic net of So.

The condition that the directions du2/du1, Su2/ou1 be conjugate to So at xo

assumes its simplest form

TKßdWouf = 0

if the vertices xa, a = l, 2, lie on the corresponding tangents to the u" curves

of So at Xo, for in this case we have Tßoa=0, a^ß, a, ß = i, 2. If we define

differential forms c6'¿ by the relations

4>U = TUßSu»,

the direction du2¡du1 conjugate to ôu2/ôul is given by the relation

du2/dul = - <j>\/4>\.

5. Transformation of the connection. A general analytic surface S' is un-

disturbed by the general transformations: (i) of independent variables

(5.1) W = ««(«', £2), J(u, u) 9¿ 0;

(ii) of dependent variables of the form

(5.2) Xi = hhxh,

in which Xih are functions of m1, u2; (iii) of proportionality factor

(5.3) X = XX

in which X and X denote general homogeneous projective coordinates of a

generic point of S' defined by the vector forms

X = x*Xi,        X = x*&i,

and X is a function of m1, m2.

In view of the linear independency of the points xn the set of functions

r*,„ exists for which

— = r\„**.
dû"

Equating the right member of this equation to the derivative of the right

member of (5.2) and making use of (2.1) yields

„ du»       d\i>
(5.4) F^XV'sy = XiT'wXj-\-xj.

dû"       dû"

From (5.2) and (5.3) it follows that

(5.5) xh = x%h%,

and therefore



32 P. O. BELL [July

dxh
(5.6) -= aa,\

dx*

On equating corresponding coefficients of x¡ in (5.4), multiplying by A and

making use of (5.5), we obtain the law of transformation of the connection TUa

under the most general transformation which leaves the surface S' undisturbed^)

_      dx1 du? dxh d2X> 3(log A)   dx>
(5.7) T\a—- = T'hß-r +-J- — •

dxh du" dx'       duadxl dû"      dx*

Writing (5.5) in the form

dx1'
x> = &-,

dx1

we find, on differentiating with respect to W,

d2X> dx1' du?       dx*  dx1
*'-

âû'-dx'      du? dû"      dû" dx*

On substituting the right member of this relation in the equation obtained by

forming the inner products of the members of (5.7) with **, we obtain the

law of transformation of intrinsic derivatives of local point coordinates

dû" dx1' d(log a)
(5.8) x'j, = *',.-+ *'-^—L>

du» dx* du?

in which x',ß and **,„ denote the intrinsic derivatives of x1 and ** with respect

to uß and ü", respectively.

Let £' and |* denote the faces of the tetrahedra (xo, Xi, x2, x3) and

(x0, xi, x2, x3), respectively, which are opposite the corresponding vertices Xi

and Xi. General homogeneous projective plane coordinates of these faces may

be defined by the functions £ '* and f 'a, h = 0, 1, 2, 3, which are solutions of the

systems of equations

(5.9) ?**/ = !***/* = S*,:

According as the old or new local reference tetrahedron is employed, the

general homogeneous projective plane coordinates of a generic tangent plane

of a surface S are given by the vector forms

(5.10) 7T = ^, #-!*!<

in which the local coordinates £,• and li are functions of w1, u2 and ü\ ü2, re-

(') For i, j = 1, 2 this becomes the law of transformation of an affine connection if we impose

the conditions that dxh/dx' = 0, Zt = 0, 3, dx'/dx'^Xdu'/dtl', in which X is a constant.
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spectively. In order that the forms of (5.10) represent a common plane they

must be related by a transformation of proportionality factor

(5.11) t = pit.

In view of equations (5.9) the general transformation (5.2) may be ex-

pressed in terms of general homogeneous projective plane coordinates as

(5.12) S4-/*'*{*,

in which the coefficients p'h are the functions of m1, «2 defined by the equations

AX/ = S*j.

On substituting the right member of (5.12) for |* in (5.11) and equating corre-

sponding coefficients of £*, we obtain the following relations connecting local

plane coordinates

(5.13) h = ßß'hh.

In virtue of these relations and (5.5), we find that

dÇk dxh
(5.14) —-= ßU'j.

d£i dx>'

If now we differentiate the members of (5.11) with respect to W and equate

corresponding coefficients of £', we readily obtain the law of transformation of

intrinsic derivatives of local plane coordinates

.   du* d£¡       a(iog/i)
(5.15) í/ia.| ^ + {/_^L*>.

du"   d£i du"

The law of transformation of the connection r'<„ may be written in the

form

_•             ,   du»    dXV    a(iogX),
r\axv = r W — +-^—y xv.

dû"       dû" dû"

Compounding the members of this equation with pf yields

Tkia =- + \ihT'hß )p"i-
\ du? )      du"

If we denote by X,-' the functions of u1, u2 defined by the identities

•Kii(u\ u2) = X7(o\ ms)

we have for the determination of the functions r**<a the forms

(5.16) T*ia = h'j&i->
dû"



34 P. O. BELL [July

in which intrinsic differentiation is with respect to the upper index.

6. A differential invariant of a general pair of surfaces. If the point X

of a surface S' does not lie in the plane w of a surface S, a relation free from

p and X may be obtained by making use of relations (5.5), (5.8), (5.13) and

(5.15). Such a relation is the tensor equation

du" du9
dyt = aaß-

â«T dû"

in which the quantities aaß are the functions of u1, u2 defined by

aaß = (*'{&,«*',* - x%x\atj,ß)/(x%)2,

and the quantities öTs are the corresponding barred functions of ü1, ü2. The

quadratic differential form fi defined by

(6.1) Q = aaßdu"duß

is, therefore, an absolute invariant of the pair of surfaces S, S'.

Let Xi and 7Ti denote the point of S' and the plane of S, respectively,

which correspond to the parameter values ul-\-dul, u2+du2. A geometric char-

acterization of the invariant (6.1) will now be derived.

The general point coordinates of Xi are given by the development

dX ■
X(rf + du1, u2 + du2) = X H-du" + (i)

du"

in which (2) denotes terms of order at least two. In view of (2.1) we may write

dX
' =   X taXi.
du"

Hence, to terms of order one, the local point coordinates of Xi are given by

Similarly, we find that the local plane coordinates of iri are, to terms of order

one, given by

& + ki.JW.

Let 000, o«, ^k>> 0n denote the forms which are defined by the relations

000 = x%,        001 = x%¡adu",        010 = iiXi,adua,        0n = xi,a^i,ßduaduß.

Let Y, Yi denote the respective points of intersection of the planes it, wi with

the line joining X, X\. The local coordinates of any point collinear with X, Xi

are expressible in the form

z* = px* + x\adua.
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The values of p with which the points X, Xi are associated are », 1, respec-

tively. The point z lies in the plane ir or in the plane 7Ti according as p is the

root of the first or of the second of the equations

(pix* + xi,adu")i,i = 0,        (p2x* + x\adw)(k + Ci,ßduß) = 0

The values of p with which Y, Yi are associated are, therefore,

Pi =   — 01o/0OO, P2 =  — (010 + 0n)/(0oo + 0oi),

respectively. The cross-ratio of the four points X, Y, Xi, Yi is the cross-ratio

of the four corresponding values of p

(CO, Ml, 1, Pi)  = (001010 - 0oo0n)/(0oo + 0oi)(0oo + 0io).

Hence, we find that the quadratic differential invariant (6.1) is the principal

part of the cross-ratio

(X, Y, Xi, Yi).

Since the form (6.1) is symmetric in £¿, x\ the above characterization

may be dualized as follows: A plane it of S and a neighboring plane iri, corre-

sponding to the increments du1, du2 (except for infinitesimals of order at least

two), intersect in the characteristic of it for the direction du2¡du1. Let %x, t^xx

denote the planes which pass through the respective points X, Xi and contain

the characteristic of tt. The principal part of the cross-ratio

(tx,  T, 5TXi, 7Tl)

is the differential invariant (6.1).

The dual characterizations just described apply to pairs of surfaces S', S

generated by point X and plane tt, respectively, such that X does not lie in x.

Let us consider, briefly, the case of surfaces S', S for which the generic point

X of S' lies in the plane ir of S. For this case we have

(6.2) ta* = 0,        (x%,a + *',«&)(/«■ = 0,

in which the second equation is satisfied identically in du", that is, for every

direction. If we assume that the point X lies on the characteristic of the plane

ir for a direction du21 du1, the point X is fixed, except for variations involving

infinitesimals of order at least two, as u1, u2 vary in this direction. The con-

dition for this is that the local coordinates of X satisfy the relations

x',adua = \x*dt, (W = ua(t)).

Forming the inner products of the members of this equation with £,-, we find,

in view of equations (6.2),

(6.3) eoo = 0io = 0oi = O.
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Since the sets of equations (6.2) and (6.3) are symmetric in £,• and x', we may

state our results in the following theorem.

Theorem 6.1. If at a point X of S' the tangent line to S' in a direction

du2/du1 lies in the plane t of S, the characteristic of tt for this direction passes

through the point X. This condition is fulfilled if and only if the local coordinates

x* and £< of X and ir satisfy the equations

000  = ^10  =  001  =  0.

It follows that the equations (6.3) are satisfied independently of direction if

the plane -k of S is tangent to S' at X. If the surface S enveloped by ir is identical

with S' and the generic point X is the contact point of ir with S, these equations

are identities in u1, u2.

7. Projective fundamental forms of a surface and associated curvatures.

Let the surface So be referred to asymptotic parameters with Grove's normal

coordinates(4) for the point xo. This choice allows us to select as an edge of

the local tetrahedron, with equal formal simplicity, the line through xo of

any R-conjugate congruence. Let the point x¡ lie on the given i?-conjugate

line passing through x0, and let the points xi, x2 be defined by the relations

Xa = Xoa, u1 = u, u2 = v,

so that the coordinates of the points Xi satisfy the system of linear equations

(7.1) Xia   =   ThiaXh

whose coefficients are related to those of Grove's canonical system by the

equations

3*a,       r°H = p, T"aa - 9«, r2n = fi,

0, r°22 - q, B - log R,       T1», = 7,

0,       r3l2 = r32,,      r33a = (ea - (log r3i2)«)/r3i2,

(012 + ßy - t\2)/t\2,  r"3a = (T\a + (Y*aa)ß + r"aar"aa)/r3i2,

in which a repeated index does not indicate summation, and a^ß.

The multiplier of x¡ may be so selected that the functions r33a vanish.

This selection, which is defined by the condition r3i2=i?, does not restrict the

location of the point x3. We readily find that the form ñ for So, S3 in which

So, S3 play the roles of S, S' respectively is given by the equation

(7.3) 0 = xtdtt1)2 + 2(k - rOiOtfttW + x(du2)2,

in which iv = p-\-ß2-\-ß62,x=a-\-yx+yBx,K=ßy-\-Bi2.

Grove (6) has defined analytically the projective curvature tensor of the

(4) We signify by "Grove's normal coordinates" a set of solutions of Grove's canonical sys-

tem of differential equations. V. G. Grove [l, p. 582].

(5) V. G. Grove [2, pp. 121-122].

(7.2)

■l    0a   —

x    au

r°i2 =

Ta3a  =
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surface S relative to the i?-conjugate line xy and the point y, and he has

given the analytic basis for the introduction of an associated metric on the

surface. It is a remarkable fact, which can be easily verified, that the form ß

for So, S3 is characterized by the relation

0 = Kds2

in which K is the projective curvature of So relative to the R-conjugate line and

the point X3, and ds2 is the associated metric of So. The curves defined by 0 = 0

will be called the projective minimal curves of S0 relative to S3. We shall hereafter

refer to K as the projective total curvature of S0 relative to S3.

Let a quadratic differential invariant of the form

(7.4) fa = 2Rdu1du2

serve as the projective second fundamental form of So relative to the .R-con-

jugate congruence, and let h, g and d denote the discriminants of fí, ds2 and fa,

respectively. The projective total curvature K may be defined by the formula

K = dig.

Since h=K2g, it follows that

K-H/d- [(« - r»i2)2 - xX]/i?2.

Introducing fa by the relation fa = Í2/ÜT, we now define by the relation

Kn   =  faifa

the projective normal curvature k„ of So relative to S3 for the direction du2 ¡du1

at #o. The maximum and minimum values of k„ at a point Xo, which are the

roots of the equation

Rk\ - 2(k - T\i)Kn + KR-Q,

will be called the projective principal normal curvatures of So at x0 relative to S3.

The directions of So at xo which correspond to these curvatures will be called

the projective principal directions of So at xo relative to S3. The curves of So

having these directions at each point xo will be called the projective lines of

curvature of So relative to S3. Their curvilinear differential equation may be

readily found to be

t(öV)2 - x(du2)2 = 0

in which ir=p+ßi+ßd2, x=2+7i+7^i> 0 = log R. The sum of the projective

principal normal curvatures of So at x0 serves to define the projective mean

curvature Km of So at x0 relative to S3. Hence,

Km = 2(K- T°i2)/R,

in which k=^7+0i2, 0=log R.
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Homogeneous cartesian coordinates x*, i = 0, 1, 2, 3, of the point xo of So

may be obtained by adjoining to ordinary rectangular coordinates of xo a

fourth coordinate x3= 1. The point z at infinity on the normal to So at x0 has

homogeneous cartesian coordinates z°, z1, z2, 0, the first three of which may

be taken as the direction cosines of the normal to So at Xo. If the generic point

x3 of S3 is defined by the vector relation

x3 = z + KmXo

in which Km denotes the mean curvature of So, and if <p2 is the second fundamental

form of So, the associated entities ds2, K, k„, Km defined, as above, relative to S3

are the Euclidean first fundamental form, Gaussian curvature, normal curvature

for a given direction, and mean curvature, respectively, of S0(6).

Let us now specialize in projective manners the results of this section.

The harmonic invariant of the differential forms Ü and <p2 vanishes if, and only

if, r°i2 = k. This is a necessary and sufficient condition that the projective minimal

curves of S0 relative to S3 form a conjugate net. The surface S3 thus selected is,

moreover, such that the projective mean curvature of So relative to S3 vanishes.

This surface S3 will be called the R-associate of So. The following additional

geometric characterization of the it-associate of So may be readily verified.

The harmonic conjugate of the point xx2 with respect to the points in which the

R-conjugate line through xo intersects the quadric of Lie at xo is the point x3 which

generates the R-associate of S0 as Xo varies over So. The conjugate net charac-

terized above as the projective minimal net of So relative to the R-associate of So

is the mean conjugate net of So when the R-conjugate congruence is the congruence

of metric normals of So(7).

Let F«,, Po, Px, x3 denote the points on the Fubini-Green projective nor-

mal to So at xo whose general homogeneous coordinates are given by the forms

x0= x,        z = [xu - 2_1(0i2 + 2/37)ac]/j37,        z + x,        z + kx,

respectively. The point Pi is the intersection of the projective normal to So

at Xo with the quadric of Wilczynski at Xo, and the point P0 is the harmonic

conjugate of Pi with respect to the points in which the projective normal in-

tersects the quadric of Lie. The point #3 is, therefore, geometrically charac-

terized by the cross-ratio equation

(Poo, Po, Pi, S3) = *.

A convenient way to complete the geometric characterization of x3 is to

let the function k be the projective mean curvature Km of So relative to S3.

The imposition of this condition results in the characterization of Km by the

relation

_ Km = - 612/ßy

(•) See P. O. Bell [2, pp. 567-569].
C) P. O. Bell [2, Theorem 5].
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and of the point x3 by the vector form

x3 = [*« - 2-1(3012 + 207)x]/0y.

The form of the coordinates of x3 reveals that P0 and x3 are harmonic con-

jugates with respect to x0 and the point of the i?-associate of So, where R=ßy,

which lies on the Fubini-Green projective normal of S0 at xo. We shall call

this point x3 the center of mean projective curvature of So at x0 relative to the

points Fo, Pi on the projective normal to So at x0. The associated projective

total curvature of S0 and the metric of S0 are defined by the equations

K = (0212 - 47tx)/4(3V,        Kds2 = t^m1)2 - QiiduHu2 - X(du2)2,

respectively.

8. Projective analogues of the second fundamental form and the projec-

tive linear element of a surface. Let us again suppose that the surface So

is referred to asymptotic parameters. Again, let r3i2 = r321=i?, and let the

points xa, a = l, 2, be the points defined by xa=Xoa- We need not restrict x3

to lie on the i?-conjugate line which passes through x0, but we shall assume

that the form fa defined by

fa = 2Rdu1du2

is a projective invariant of So and that the vertices of the local reference tetra-

hedron and the point x3-\-x0 are covariantly determined points. We shall show

that the form fa is a projective analog of the second fundamental form of So.

Let ir denote the tangent plane to So at Xo and let r¡ denote the plane de-

termined by the points x\, Xi, x3-{-Xo. The local equations for it and 77 are

3c3 = 0 and x%—x" =¡0, respectively.

Let dp denote the differential defined by the relation

dp = fa112,

and let C\ denote a curve of So whose direction at each of its points is defined

by

du2/du1 = \(u\ u2).

Along this curve we have, therefore,

dp /du1 = (2RX)1'2.

Let us regard p as independent variable (8) for points of C\, where p is defined

by the integral

p =   f    (2R\yi2du1.

(8) For the geometric interpretation of the intrinsic parameter p see P. O. Bell [l, pp. 532-

534].
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The general coordinates xo(dp) of a point X0 of C\ "near" to x0 are given by

the expansion

x0(dp) = xo + x'dp + x"dp2/2 + x"'dp*/3 ! + • • • ,

in which accents indicate differentiation with respect to p. Let P and Q de-

note the intersections of the line joining the points Xo, x3 with the planes ir

and 77, respectively. The general coordinates of P, Q may be found to be given

by the forms

P = Xo(dp) + pix3,        Q = x0(dp) + p2x3,

in which px, M2 are defined by

Px = - (3c62 + c63)/3! + ■ • • ,     p2 - 1 + (2),

in which we denote by <p3 the cubic differential form R(y(du2)3+ß(du1)3) and

by (2) terms of order (dp)2 at least. The cross-ratio equations

(P, x3, Xo, Q) = (mi, », 0, p2) = (3<*>2 + 03)/3! + (4),

in which (4) denotes terms of order (dp)* at least, may now be readily ob-

tained. Let us call the cross-ratio (P, x3, X0, Q) the projective distance D*x0

from ir to Xo with respect to x3. We observe that the difference between this

projective distance and its principal part is equal to $3/3 ! plus terms of order

(dp)* at least. Since the curves of Darboux are integral curves of the differ-

ential equation <f>3 = 0, we may state our results in the following theorem.

Theorem 8.1. The invariant form <p2 is equal to twice the principal part of

the projective distance from ir to Xo with respect to x3. The difference between

this projective distance and its principal part is equal to <¡>¡/3 ! plus terms of order

at least (dp)*. This difference consists of terms of order at least (dpY if the points

Xo, Xo lie on a curve defined by R=0 or on a curve of Darboux. The ratio <p3/<p2

is independent of R and is equal to the projective linear element of So.

Let x°, x1, x2, 1 again represent homogeneous cartesian coordinates of the

point Xo of So and let the coordinates of the point #3 at infinity on the normal

to So at xo be represented by the three direction cosines z°, z1, z2 of the nor-

mal and z3 = 0. Let a local reference tetrahedron (x0, xx, x2, x3) with equal units

on the three axes through xa be established with xi and x2 the intersections of

the ideal line (line at infinity) in the plane ir with the asymptotic u1, u2 tan-

gents to So at Xo. The form <p2 and the corresponding projective distance Drxa

associated with the plane t] determined by the ideal line xxx2 and the unit point

*o+*3 are the second fundamental form of So and associated metric distance from

ir to ^0, respectively.

9. A theorem on projective geodesies and an application to metric ge-

ometry. The projective first fundamental form of So relative to the i?-associ-
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ate of So and the associated projective total curvature of So (characterized

in §7) are defined analytically by the equations

Kds2 = ^(du1)2 + x(du2)2,       K = - ttx/R2.

We may, therefore, write

(9.1) ds2 = giitfu1)2 + gn(du2)2

in which gn = —R2/x, g22 = —R2/t. We shall call the extremals of the integral

invariant

/.
(gu + ga\2)ll2du\

in which X =du2/du1, the projective geodesies of So relative to the Fc-associate

of So. Since the above integral invariant is of the form

J*<¡>(u, v, v')du,        v' = dv/du,

and Euler's equation for the extremals of this integral is known to be

4>V'V'V      =  <l>v  —  <t>vv'  —  <f>vv'V ,

the equation for these projective geodesies may be found to be

2d2u2/(du1)2 = (gn)i/g22 + (log gu/(gii)2)idu2/du1

+ (log (giiY/gnHdut/du1)2 - [(giOi/gn^du'/du1)*.

The cusp-axis at xo of a system of hypergeodesics defined by an equation of

the form

v" = A + Bv' + Cv'2 + Dv'\ where   u1 = u, u2 = v,

is known(9) to be a line I' which passes through the points Xo, xu — axi — bx2

where o = (02 + C)/2, 6 = (0i — B)/2. The cusp-axis at xo of the projective geo-

desies (9.2) is therefore the line I' for which

a = (log FVx2)2/4,       b = (log *Vtt2)i/4.

Since the condition Z>2=0] may be expressed in the present case as

(logx/x)i2 = 0

we have the following theorem.

Theorem 9.1. If the V curves of the cusp-axis congruence of the projective

geodesies of So relative to the R-associate of So form a conjugate net, or coincide

with an asymptotic family, or are indeterminate, the associated projective lines

of curvature form an isothermally conjugate net, and conversely.

(») Cf. E. P. Lane [l, p. 193].
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Since a distinct form (9.1) is associated uniquely with each i?-conjugate

congruence, the above theorem describes a representative result which is

characteristic of every member of the class of conjugate congruences.

An analogous Euclidean geometric theorem may be derived as follows.

Let us consider a surface So having the property that its asymptotic net is

orthogonal. Let x°, x1, x2, 1 and z°, z1, z2, 0 denote homogeneous rectangular

coordinates of a generic point Xo of So and the point x3 at infinity on the nor-

mal to So at xo, respectively, in which z°, z1, z2 denote direction cosines of the

normal at xo. Let points xa, a = l, 2, be defined by the relations xa=xoa. It

follows that the homogeneous coordinates of the points x,-, j = 0, 1, 2, 3, satisfy

a system of equations of the form x,a = ThjaXh, in which Thjk, j, a, h = 1, 2, are

the Christoffel symbols of the second kind for the first fundamental form of So.

According to the hypotheses we have

in = o,     r3u = r322 = o,     r3i2 * o.

The geodesies are the extremals of the arc length integral

f " («a + «itX*)1'««1

whose cusp-axis at x0 is the normal to So. The V curves of the congruence of

normals (known as the lines of curvature) form a conjugate net if and only if

(9.3) g„ * 0,       g22 * 0,        (log gxx/g22)x2 = 0,

and conversely. The equation for the lines of curvature then assumes the form

g„(dV)2 - g22(du2)2 = 0.

Fulfillment of conditions (9.3) isassured by the two Codazzi equations. Equa-

tions (9.3) are necessary and sufficient conditions that the lines of curvature

form an isothermally conjugate net(10); moreover (9.3) with the added condi-

tion gi2 = 0 are the conditions that the parametric net be isothermally or-

thogonal^1). Hence we have the following theorem.

Theorem 9.2. If the asymptotic curves of So form an orthogonal net, it is

isothermally orthogonal and the lines of curvature of So form an isothermally

conjugate net.

10. Intrinsic geometry of a tetrad of surfaces. The surfaces S¿ of a tetrad

are undisturbed by the general transformation (5.1) of independent variables.

The generic points of S< are maintained as the vertices Xi of the local moving

reference tetrahedron by a transformation of dependent variables of the form

(I0) For the geometric significance of isothermal conjugacy see E. J. Wilczynski [l, pp. 211-

221].
(") See, for example, E. P. Lane [2, p. 236].
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(10.1) xh = XV*y,

in which

XV = 0,        h 9* j,

XV ̂ 0,        h= j.

Corresponding to this transformation of dependent variables we have that the

normalized cofactors p:A; of XV in J X¿A| are defined by the relations

Phi =0, h* j,

Phi = l/\h\        h = j,

where X\ denotes the function XV for h =j.

The law of transformation of the connection T'ha under the general trans-

formation combining (5.1), (5.2) and (5.3) is given by (5.16) with XV, ph,-

satisfying the above relations. Incorporating these relations in the law (5.16)

we find

I\„ = 5''*d(log \k)/dü" + HtfWdvP/dü')/*,

in which h and j are not summed. It follows that the linear forms 4>'k defined

by

(10.2) fa\ = T'hadW

are relative invariants of the general transformation combining (5.1) and

(10.1). Hence the directions defined by

fah = 0,. h^j,

possess intrinsic geometric significance with respect to the tetrad of surfaces

Si. On comparing the right member of (10.2) with the forms for the relative

invariants 0Oi, 0io of the vertex xk and face x' = 0, we find that the direction

defined by </>'& = 0 is that for which these forms vanish. The geometric sig-

nificance of the vanishing of these forms has already been given in theo-

rem (6.1).

In the remainder of this section we denote a chosen permutation of

(0, 1, 2, 3) by (i, j, k, I). An index to be summed through i, j, I will be repre-

sented by 5 and an index to be summed through j, I will be denoted by r. The

form F*; defined by the formula

F*< = - 4>WV>\-

is a linear differential invariant. To obtain a geometric characterization of

this form consider the point X¡ whose general homogeneous coordinates Xip

are given by the vector form

Xi = x^u1 + du1, u2 + du2),
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and the point P< determined by the projection of Xi upon the plane ¿c* = 0

from the point Xk. The general homogeneous coordinates of P< may be repre-

sented by the vector form

Pi  =   Xi +  ViaX.dW.

The line joining the points Xi and P, intersects the line joining the points x,-

and x¡ in the point Q whose general coordinates Qp are given by the form

Q = Tri«Xrdua.

Since the characteristic of the plane xk = 0 corresponding to the direction

du2/du1 is defined by the equations

xk = 0,        xrYkradu" = 0,

the intersection of the line joining the points Xi and P< with this characteristic

is the point R whose general coordinates are defined by

R=   Xi- <t>k^riXr/<Pri^r.

Let Ph denote the intersection of the characteristic of the plane xk = 0, for

the direction du2/du1=\, with the plane ^ = 0. The local point coordinates

of Pki satisfy the equations

(10.3) xk = 0,        x* = 0,        xr<pkr = 0.

The proof of the following theorem may now be easily supplied by the reader.

Theorem 10.1. The form Fki is the principal part of the invariant cross-

ratio (xí, Q, Pi, R). The point P*. lies in the plane determined by the line joining

the points Xi and Xk and the tangent to S¿ at Xi in the direction X if, and only if,

X is a root of the differential equation Fki = 0.

The linear differential invariants which we shall call the projective linear

elements ElU we define by the relations

B»i = Fh + FU.

These elements may be geometrically characterized in the following simple

manner. Let 0 denote the intersection of the line joining x¡ and P¿ with the

line joining Pik and P¡k. The validity of the following characterization may be

verified by simple calculations.

Theorem 10.2. The principal part of the cross-ratio (xit Q, Pit O) is the

projective linear element ElU-

The points Pjk and P*, for a given direction X are clearly collinear with

the points xi and ¡c,-. The curves which correspond to the developables of the

congruence of lines joining corresponding points of Si and Si are the curves

whose directions are characterized by the property that the points x{, x¡,
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faiXr, <t>rtxr are coplanar. This condition may clearly be expressed by the differ-

ential equation <p1i<t>ki = fai(t>ki. This condition is also seen to be the condition

that a direction be such that the points P¡k and Pk¡ coincide. Hence we have

the following theorem.

Theorem 10.3. The directions for which the relative invariants

fa\<t>ki

are symmetric in the indices j, k are the directions which correspond to the de-

velopables of the congruence of lines joining corresponding points of S¡ omo* S,-.

Moreover, for only these directions do the points Pu and Pu coincide.

For a given invariant direction the cross-ratio (xi, Xi, Pjk, Pki) is an ab-

solute invariant which we denote by Rlku. By a simple calculation we find that

Riku = 4>''i4>ki/fa'i<i>ki.

Corresponding to a given invariant Rlku there are two invariant directions

defined by this equation. In particular if i?3'*« = —1, the points Pjk, Pk¡ are

harmonic conjugates with respect to the points x¡, Xi, and in view of the form

of (10.3) we have the following theorem.

Theorem 10.4. The directions for which Pjk, Pk¡ are harmonic conjugates

with respect to the points x¡, Xi are the two directions for which the form

fai<t>ki

is skew-symmetric in j, k.

11. The projective linear element and Fubini's element of projective arc

length. Let (x0, Xi, x2, x3) denote a moving reference tetrahedron intrinsically

connected with the surface So at x0 in such a manner that the vertices xi, x2

are located on the tangents at x0 to the u1, u2 curves, respectively, of So. The

general homogeneous coordinates of xa are therefore defined by the forms

a:o«=*a + rooa*o. The special cases F'0, F^o of the corresponding invariant

forms F*i are, consequently, given by

F\ = - (r'udwW + T^Xdu^/du1, F\ = - (r212oV<¿«2 + Th^du^/du3,

and the special projective linear element £120 is given by

£i20 = _ (r^d«2)3 + T^du^du1 + Thidu^du1)2 + YS^du^/d^du2.

The classical projective linear element of a surface So may now be identified

as the special case of E120for which the points Xi, Xi, x3 are the points xu, xv, xuv

whose general coordinates are expressed in Fubini's normal coordinates. How-

ever, if these points be replaced by the similarly defined points whose general

coordinates are normal with respect to an arbitrarily selected canonical form of

Grove, the associated invariant form E21o is again found to be the classical pro-
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jective linear element of the surface So, and the invariants F1o, F2o are the elemen-

tary linear differential forms of Bompiani(12). Under the present restrictions

the forms F1o, F2o, £12o are given by the simple expressions

F\ = - rl22(¿M2)2/rfw\       F2o = - Y\x(du1)2/du2,       £12o = F\ + F2o.

The product

F1oF2o = YhiYhxduHu2

is Fubini's normal form for the square of his element of projective arc length(13).

12. Dual characteristics. Systems of hypergeodesics and the first canoni-

cal pencil. Let us establish a one-to-one correspondence between the points

of a surface S' and the planes of a surface S by defining the local coordinates

xi and £, of a generic point X of S' and the corresponding tangent plane ir of S,

respectively, to be single-valued functions of u1, u2. The following geometric

elements of S' and S are placed in one-to-one correspondence: (i) the points

of a curve Cx of S' and the tangent planes of a developable surface D\ of S,

(ii) the tangent to Cx at a generic point X and the characteristic line of D\

in the plane ir which corresponds to X, and (iii) the osculating plane of C\

at X and the ray-point of D\ in ir. These elements of S' and S thus attached to

Cx and D\ will be called the characteristics of Cx and D\ respectively. We shall

refer to these characteristics as dual characteristics with respect to the corre-

spondence between the points of S' and the planes of S.

To define a developable surface D\ of S and a corresponding curve C\

of S' we let u" be functions of an independent parameter t so that local co-

ordinates £¿, x* of a generic plane w of S and the corresponding point X of S'

become functions of /. The characteristics of D\ described in (i), (ii), and (iii)

above are defined analytically by

tix' = 0,

(12.1) ttx* = 0,        x%,adua/dt = 0,

&X* - 0,   x%,adua/dt = 0,   x{(!ii,ad2W/dt2 + $i,a,ßdu<*dui>/dt2) = 0,

respectively, in which £,- are functions of t. The equations in local plane co-

ordinates £,• for the corresponding characteristics of Cx at X may be written

by simply interchanging the roles of £¿ and x* in the above equations. They

are, therefore,
x% = 0,

(12.2) x% = 0,       iiX\adua/dt = 0,

x% = 0,  i.iX\J,u"/dt = 0,  ti(x\ad2u"/dt2 + x^ajdWduP/dt2) = 0

in which a;* are functions of t.

(12) E. Bompiani [l, pp. 167-173].

(13) G. Fubini and E. Cech [l, pp. 64-69].
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Let p and Y denote the tangent plane to S' at X and the point of contact

of the plane ir with S, respectively, and let the local plane coordinates of p

and the local point coordinates of Y be denoted by rn and yi respectively.

As X varies over S the line joining X Y generates a congruence which we de-

note by Txy. A curve Cx of S' having the property that its osculating plane

at a general one of its points X contains the line XFis called a union-curve(u)

of the congruence Txy- The differential equation of the union-curves of a gen-

eral congruence Txy may be obtained by imposing the condition that the

plane determined by the third line of equations (12.2) contain the point Y,

This condition is clearly given by the determinantal relation

(12.3) (y\ x\ x\adua/dt, x\ad2u"/dt2 + x\a,0duaduf/dt2) = 0.

The dual of the line X Y is the line irp determined by the planes ir and p.

The dual of a union-curve of a congruence Txy is a developable of S having

the property that the ray-point of the generic plane ir lies in the plane p.

Such a developable will be called a union-developable of the congruence TTp.

The curve of S generated by the contact point of ir with S as ir varies over

a union-developable of the congruence r,p will be called an adjoint union-

curve(u) of the congruence Tlp. The differential equation of the adjoint union-

curves of the congruence Trp is found, by replacing y ' by r¡i and x* by £,-, to be

(12.4) (tk, Íí, i,i,adua/dt, UadW/dt2 + Ua.ßdu^du»/dt2) = 0.

As X varies along a union-curve of the congruence Txy the point Y de-

scribes a curve of S which we call an S'-tangeodesic of S, and as ir varies over

a union-developable of the congruence rip the point X describes a curve of

S' which we call an adjoint S-tangeodesic of S'.

The author has defined in a different manner(16) the systems of p- and

a-tangeodesics of S. We shall show that the above definition of the S'-tangeo-

desics of S is equivalent to a generalization of the definition of either of these

systems of tangeodesics. Let R\ denote the ruled surface generated by the

line XY as X, Y describe corresponding curves Cx of S' and S, respectively.

If the curve Cx of S' is a union-curve of the congruence Txy, the osculating

plane of Cx at X coincides with the tangent plane to the ruled surface R\;

the curve Cx is, therefore, an asymptotic curve of R\. Conversely, if the curve

Cx of S' is an asymptotic curve of R\, it is a union-curve of the congruence

Txy- It follows that the following generalization of the definition of the p-tan-

geodesics of S serves to characterize the S'-tangeodesics of S: An S'-tangeo-

desic of Sis a curve C\ of S whose associated ruled surface R\ (of the congruence,

Txy) intersects the surface S' in an asymptotic curve of R\.

(u) Union-curves were introduced by P. Sperry [l, p. 214].

(16) This is a generalization of the definition of adjoint-union curves (or dual-union curves)

due to G. M. Green [l, p. 140] and P. Sperry [l, p. 222].

(16) P.O. Bell [2, p. 575].
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If we let S' and S be surfaces S» and Sk of the fundamental tetrad, respec-

tively, the local coordinates of X and Y become the Kronecker deltas 0**

and S*k respectively. Substituting these deltas for x' and y\ respectively, in

(12.3) and expanding the determinant yields the following curvilinear differ-

ential equation which defines on S* the S»-tangeodesics and on S* the union-

curves of the congruence generated by the line XhXk:

du"-d2uß
(TmhaTnkß - TnhaTmhß)-—

dt3

(12.5)
duadußdui

= (TnhaTmhß,y - TmhaTnhß,y)-;

dt3

in which intrinsic differentiation is with respect to upper indices and (hmnk)

represents a permutation of (0123).

The equation of the adjoint union-curves of the congruence TTp generated

by the line of intersection of the planes ir and p defined by xh = 0 and xk = 0,

respectively, may be written by interchanging the upper and lower left index in

each of the symbols involving r'*a, T^ß, j = m, n, in (12.5). The equation is

duad2u?
(ThmaTknß - ThnaThmß)-—-

dt3

(12.6)
duadwdu"<

= (r nar mß,y    r mar nß,y)      —     >
dt3

in which each intrinsic differentiation is with respect to the lower left index.

Let us determine the equation of the S3-tan geodesies of So for the special

case in which the surface S3 is the i?-associate of So. This surface S3, which

has been geometrically characterized in §7, is generated by the point x3 whose

general homogeneous coordinates are given by the form

Rx3 = xu — (ßy + 6n)x

in which x denotes Grove's normal coordinates for xo and u1, u2 are asymptotic

parameters. We find now that equation (12.5) for h =3, k = 0 can be written

in the form

dX/du1 = A+B\ + C\2 + D\3,   where   X = du2/du\

a = - r'si.i/r^,     B = r23i,i/r23l - (r^.i + r1,i,«)/rI

c = (r23i,2 + rvo/r^x - rVs/r1,,,     d = rwr^i,

7132,

in which intrinsic differentiation is with respect to the upper index. In virtue

of the relations (7.2) and the condition r3i2=i? we find, on evaluating the

coefficients B, C in terms of the coefficients of Grove's canonical form,

B = (log x/RX)i - yir/x,        C = (log rrR/x)i + ßx/r.
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The cusp-axis of these tan geodesies at xo is the line F which passes through

the point x0 and the point z whose normal coordinates are given by

z=Xi2—axi — bx2 in which a and b are defined by

a = ((log -kR2/x)í + ßxM/2,        b = ((log XR2Mi + 7tt/x)/2.

The proof of the following theorem may now be readily supplied by the reader.

Theorem 12.1. If the T' curves of the congruence generated by this cusp-

axis form a conjugate net, or coincide with an asymptotic family of So, or are

indeterminate, then

2(log x/x)u + (Wx)i - (ßx/r)i = 0,

and conversely. If the axis curves of the net of projective lines of curvature of So

relative to S3 form a conjugate net, or coincide with an asymptotic family of So,

or are indeterminate, then

(log tt/x)i2 + 03xA)i - (yir/x)i = 0,

and conversely. The projective lines of curvature of So relative to S3 form an iso-

thermally conjugate net if, and only if,

(log7r/x)i2 = 0.

The net of R\-derived curves of So, where X is a projective principal direction of

So relative to S3, belongs to class S if, and only if,

(ßxMi - (7x/x)2 = Oí17)-

If any two of these four conditions are fulfilled the other two are also fulfilled.

In conclusion we consider briefly the systems of p- and <r-tangeodesics

of So for which p and <r are points on the asymptotic w1- and «2-tangehts to So

at xo whose general coordinates are given by

p = Xi — bxo,        a = Xi — axo, where xoa = xa.

The joint-edge at xo of the systems of p- and á-tangeodesics of So was found(18)

to be the line which passes through the points xo and z whose general coordi-

nates in Fubini's normal coordinates satisfy the relation z=xu — âxi — hx2 in

which ö= —0+^/2, 5= —b-\-(f>/2. Let ¿denote the reciprocal with respect to

So at ¡c0 of the joint-edge of the p- and er-tangeodesics of So at x0, let / denote

the line joining pa, and let t denote the first canonical tangent to So at xo-

Since d, I are given by the formulas

ä = £i^,        5i = k<j>

where fei = (l— 2^)/2, if we put

(") P. O. Bell [3, p. 398].
(") P. O. Bell [2, p. 576].
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a = hp,        b = kd>,

we have, as a consequence, the following theorem.

Theorem 12.2. If the line I joining pa is a canonical line h, the reciprocal I

of the joint-edge of the p- and a-tangeodesics of So at Xo is the canonical line hi

for which ki - (1 -2Jfe)/2.
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