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1. Introduction. The problem of interpolation by rational functions to an

analytic function defined by a line integral has been treated in great detail

by J. L. Walsh. The object of the present discussion is to obtain some results

in the corresponding problem in connection with certain functions defined by

surface integrals, namely, functions of class S2. By a function of class S2 we

mean a function f(z), which is analytic in the open interior K of the unit circle

\z\ =1, integrable together with its square on K, and (hence) capable of the

integral representation

(This can be verified by expanding (1 — zt)~2 and integrating term by term(x).)

Let a»,-, * = 1, 2, •••,«; n = \, 2, • • • , be a set of points pre-assigned on K

and subject to the conditions: (i) ani have no limit point on K; (ii) ani^Q

for all n and i; (iii) ani¿¿anj if i^j. None of these is essential to our results;

(i) serves merely to exclude trivial cases, whereas (ii) and (iii) will be removed

in the course of discussion.

The set fl„< will be called a normal set if, for each n, the n points o„¡ all

lie on a circular arc C„ which is orthogonal to the unit circle and passes

through a fixed point P on K.

For a given function f(z) of class S¡, let /„(z) denote the rational function

of the form

(1) £   7rjÍ^'¿_i   (1 — aniz)2

found by interpolation to f(z) at the points ani;

(2) /„(«„,) = f(ani), i = 1, 2, • • • , n.

Our results are as follows :

Presented to the Society, April 27, 1946; received by the editors August 7, 1944.

(') This class of functions has been discussed by J. L. Walsh in his book, Interpolation and

approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Pub-

lications, vol. 20, 1935. The present writer begs to offer apology for not being able to give any

quotation, because this book-has been inaccessible to him for many years, although it is from

this book that he got the impetus for the investigation.
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Theorem A. // we have

n

(A) lim«nU„,|2= 0,

then, for every function f(z) of class S2, the corresponding sequence fn(z) converges

to f(z) on K, uniformly on any closed point set on K.

Theorem B. If the set aH¡ is normal, then condition (A) in Theorem A can

be replaced by the condition

(B) lim  TJ I ani | = 0.

From Theorems A and B follows the theorem : Letf(z) be a function of class

S2 which vanishes on a set of points an, 0 < | an\ < 1. If these points satisfy con-

dition (A), or if they form a normal set and satisfy condition (B), then f(z) van-

ishes identically.

For conciseness, we shall write a,- instead of a„< when the consideration is

confined to a fixed w; and shall omit to indicate the region of integration of

surface integrals because that region is always K.

2. The remainder. Since the determinant

An =
(1 — aid,)2

of the systems of linear equations (2) is precisely the Gramian determinant^)

for the « linearly independent functions (1 — ä,-z)-2, and is therefore positive,

the function /„(z) is uniquely determined. Set

An+1(z; t) =

and set

rn(z; t) =

(a) See G. Kowalewski, Einführung in die Determinantentheorie, Berlin and Leipzig, 2d ed.,

1925, p. 224.
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Then the remainder Rn(z) =f(z) —fn(z) is given by

1

■K
(3) Rn(z) = — J j f(t)rn(z; F)dS, \ z | < 1.

On comparing this formula with a well known formula in the theory of or-

thogonal functions(3), we see that/„(z) is also the unique function of the form

(1) which minimizes the integral

//

I " A ■

<_i   (1 — &iZ)2

2

dS.

Thus our problem of integration is equivalent to one of approximation in the

sense of least squares.

In particular if we choose /(z) = (1 -z?)-2, where f, | f | < 1, is a constant,

the corresponding Rn(z) is precisely rn(z; f). Hence rn(z; f) is the unique func-

tion of the form

1 n A  ,

- z
(i - i%y    tí (i - âizY

whose norm on K :

(4) -^-/J |rn(z;f)|2áS = rn(f;f)

is least. This minimum property of rn(z; t) will be useful in the sequel.

Applying Schwarz's inequality to (3) and using (4), we find

(5) Rn(z) |2 á - JJ* | f(t) \2dS-rn(z; -z), \ z\ < 1.

Thus the study of Rn(z) is reduced to a study of rn(z; z).

3. The   form   of   rn(z;   t).   Let   Dn  denote   the   «-rowed   determinant

| (1 — a,-ö,-)-1|, and En denote the corresponding «-rowed permanent

1 — aiäj 1 — aiân  1 — a2âri 1 — anar¡

where the summation extends over all the «! permutations of the « numbers

1, 2, •• -, ». Then, by an identity due to Borchardt(4), the following relations

are valid :

(3) See G. Kowalewski, ibid. p. 229.

(4) C. W. Borchardt, Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeu-

genden Function, J. Reine Angew. Math. vol. 53 (1857) pp. 193-198. The identity is also found

in, for instance, R. F. Scott, The theory of determinants and their applications, Cambridge,

1904, pp. 159-161.
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A„ = DnEn;       An+i(z; t) = Dn+i(z; t)-En+i(z; t)

where Dn+i(z; t) (En+i(z; t)) is the (w + l)-rowed determinant (permanent)

obtained from D„ (E„) in the same manner as An+i(z; t) is from A„. Hence

Dn+i(z;t)   En+i(z;t)
rn(z; t) =

£>» E

This can be further simplified by observing that

(*m = n -f^f),
\ <=i     1  — OiZ/

Dn+i(z;t)       Bn(z)-Bn(t)

Dn 1 - z't

and by writing

(6) ^ —+ff.(,ö,
£„ 1 — zt

where

(7) Hn(z;t) = Z--~-—.        ¿«/-^
i,¡  (1 - ait)(l — cyz) En

En being the (« — l)-rowed permanent obtained from En by striking out the

îth row and the jth column. The result is

(8) (1 - zt)2-rn(z; t) = Bn(z) ̂ BjfJ {1 + (1 - zl)Hn(z; t)}.

It is easy to verify that equation (8) is invariant when z as well as

t, Oi, • • • , an are subjected to transformations of the form f = (z — e)/(l — cz),

\c\ <1, that is, to transformations which carry \z\ ¿¡1 into |f| sil 'so that

z = c corresponds to f = 0.

Finally, we have the following identity:

m ± ,    /»     , . ¿     >-l*l'
,-,y=i (1 — äiz)(z - a¡)        i_i   (1 — oíz)(2 — a,)

which can be verified by means of the relations :

1 <z, 1 1 1

(1 — ä<z)(2 — a,)       1 — &iäj   1 — äiZ       1 — ä<a3-   z — a¡

™ A ■ ■ n A ■ ■ F

>=i  1 — äiüj       ,„i 1 — äiüj      En

A particular case of (9) is

(10) H»(z; 8) = E ,\    '""..' 1*1-1.
,-_i     1 — a,-2
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4. Removal of the restriction on a¿. The results of §§2 and 3 do not de-

pend on the restriction a, 5^0; they depend only on the restriction that the

« points in question should be distinct. But those results remain valid in the

general case if we adopt the usual convention that, in case the «zth point an

(1 <m:§») coincides with k (k>0) points in the set oi, a2, ■ • • , am_i, then

(a) the function (1— ämz)~2 in (1) is replaced by

dah (1 - azY
and

(b) the condition in (2) which corresponds to am is replaced by f£\am)

=fik)(am)- In fact, formulas (3), (4), (5) still hold, except that the determi-

nants A„ and An+i(z; t) assume slightly different forms. But, when these are

simplified by the process set forth in §3, we get the same results (6)-(10).

5. Lemmas. We proceed to establish some lemmas.

Lemma 1. For any n fixed points oi, a2, • • • , an on K, we have

(H) Hn(t;t)ï±   -1.        _||> M*l,
¿_i   | 1 - <M|2

the equality sign being valid only in the following two cases :

(a) 111 = 1 (as has been shown by (10)) ;
(b) Oi=c2= • • • =a„ = 0.

(We note that the right-hand member of (11) :

•    1 -\ait\* _    1_(   «    1 + ají •    1 + aj\

i_!   | 1 — dit |2        2 I <_i   1 — dit        i_i   1 — ajj

is harmonic in (x, y), x+iy = t, for | /| g 1, and is therefore a harmonic major-

antofiJ„(í;f)on |/| gl.)
Assume that the « + 1 points Oi, a2, • • • , an, t (on K) are distinct, and sent

*«(«;*)--_Bn(z)-Bn(t),
1 — zt

which, when resolved into partial fractions, is

.    -.           z A      ÄiZ
sn(z; t) =- - 2

1 — zt       ,_i   1 — âiZ

where

1-laJ2    Bn(t) 1 - Hit
(12) At =-^-^- —^->        Bni(t) = Bn(t)-

/ — ai     Bni(ai) t — at
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By differentiation with respect to 2, we have

Bn(z) zB¿(z)\ 1 " Ii
(13)    5„'(z;i) = 5 '

I   Bn(z) zB¿(z)\ 1 "

} 1(1 - zt)2      1 - ztj       (1 - zt)2       ¿Í(1 - zt)2      1 - zij        (1 - zt)2       ~[ (1 - aiZ)2

Thus í„'(2; i) is of the same form as rn(z; Ï). It follows from the minimum

property of rn(z; t) that

(14) — f f I r„(z; I) |2¿5 ̂ — f f I *„' (z; Ï) |>dS.
IT   J   J IT   J   J

The value / of the first integral in (14) is, by (4) and (8),

I Bn(t)\2 (      1 )
(15) / = rn(t; t) =  '      "'   |-_j- + Hn(t; J) J .

To compute the value /of the second integral in (14), we multiply the middle

member of (13) by the conjugate of the last member of (13) and integrate.

The result can be easily written down :

I 5.(0 |*   ,   ~B¿(T)Bn'(t)t •    AiaiBn'(ai)

(1 - zt)2 1 - I i|2 ~[      1 - ait

When the last two terms are simplified by means of (12), we have

(16) J =
Bn(t)\2

1  -     / ll — Ul2     tí I 1 - a,-<|*/

Since 5.(0^0, inequality (11) follows from (15) and (16).

This result is sufficient to ensure the validity of (11) in general. But, in

order to single out the case (b), we add the following remarks.

(i) In the case where the n points öi, 02, • • ■ , a» are distinct from t but

not distinct among themselves, the above argument is obviously valid; and,

without integration, we see that the norms / and / are still given by (15)

and (16) respectively. Hence (11) still holds.

(ii) In the case where t coincides with k (Kk^n) of the points

a\, a-i, • • • , a„, our argument still remains valid if rn(z; t) and sn(z; t) are

interpreted as standing for

ka

of*

d k

and    —*»(«;£)
d{k r-»

respectively. The corresponding norms / and / can be obtained from (15)

and (16) by differentiation. The results again lead to (11).

It is easy now to complete the proof. If 01=02= • • • =o„ = 0, (11) ob-

viously reduces to an equality. Conversely, if (11) reduces to an equality,

then, in virtue of the uniqueness of r„(z; t), we have the identity in z:
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rn(z; t)=s,! (z; t). Since, in each case, rn(z; t) has exactly « + 1 roots, namely,

z = 0, ai, • ■ ■ , an, and since rn(z; t) vanishes at ai, a2, • ■ ■ , an, the identity

implies that each a,- is a multiple root of sn(z; t). For such a case to happen,

it is necessary and sufficient that sn(z; Ï) has « + 1 equal roots: Oj=a2= • • •

= an = 0. The proof is complete.

Lemma 2. If the » points a¿ are such that 0<ri^ |a,-| <1, i=l, 2, • • • , n,

then, on every circle \z\ =r, 0 <r <r1, there exists a point z„ such that

Hn(zn;zn)-\Bn(zn)Y<Hn(0;O)-il\ai\* < «-flUI2-
•=i »-i

Let

n       I   _  I  aiZ I 2

u(x, y) = X) T",-ri7'        "(*• y) = I J5»(z) I2 (z = x+ iy).
i=i  I 1 — a¡z|2

Then log u is superharmonic in |z[ <1, and log v is harmonic in lz| <n. It

follows that log uv = log «+log f^const. is superharmonic in |z| <ri, and

therefore its minimum in \z\ ^r occurs at a point z„ on \z\ =r. This fact,

together with Lemma 1, proves Lemma 2.

Lemma 3. Let the points o„¿ ¿>e uniformly bounded from zero: 0<r1<|o„,-|

<1, and be such that, for each n, the « points anl- all lie on a radius of the unit

circle which makes an angle 6 = d„ with the axis of reals ; then, for every r, 0 < r < 1,

the sequence of points z = — re<e" satisfies the condition

lim En(zn; z„) • | Bn(zn) \ = 0
B—»oo

provided that the set a„,- satisfies condition (B).

First of all, we have

i=i   1 + r | ani \

This last product, which we shall denote by l/pn, is known to approach zero

withIJ?,i|ani|. Next, by setting z = t = zn in (7) and z = / = 0 in (9), we find

Hn(zn; zn) < Hn(0; 0)< £ ^^ =  ¿ ^      ,      < — Ê (1 - | «n,| )•
i,j    I önj | j_i | ani I fl   ,_i

Since we have also

» .       ,.       1 + ff/ r + |ani| \       1 + r
E (1 - | ani | )<-E ( 1 -  .   ,     ■       ■ ) <-log p.,
i-i 1 — r <_i \        1 + r \ ani \/      1 — r

it follows from the above that
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i i        2   1 + r log p„
H„(zn; z„)- | Bn(zn) j <

ri  1 — r     pn

The last member approaches zero with \/pn. Lemma 3 is thus established.

6. Proof of Theorem A. We are now in a position to prove Theorem A.

Since/„(z) gives the best approximation to f(z) in the sense of least squares,

- f f | Rn(t) \*dS = — Cf\ f(t) - fn(t) \*dS£—ff\ f(t) \2dS = M.
IT   J   J IT   J   J IT   J   J

Hence, for \z\ ^p<l, we have

,     I i   r r    Rn(i)

1 r J J   (1 - zt)2

Ml>2

1-P

by Schwarz's inequality. It follows that the functions Rn(z) form a normal

family on K. From every sub-sequence of Rn(z) can be extracted a sub-se-

quence Rnk(z) which converges to an analytic function R(z) on K, uniformly

on any closed point set on K. To prove Theorem A, it is sufficient to prove

that, under condition (A), any such limit function is identically zero.

Since the points a„¿ are different from zero (a fact implied in (A)) and have

no limit point on K, there exists ri such that 0<ri<|a„,-| <1. Now suppose

that the limit function R(z) of the sub-sequence RRk(z) does not vanish identi-

cally. For the sake of simplicity, we shall take Rn(z) for R„k(z). Then there

exists r, 0<r<ri, such that R(z) has a positive minimum m on the circle

\z\ =r. Hence, for n sufficiently large, we have |i?„(2)| >m/2 on \z\ =r.

But, by (5), we have

\Rn(z)\2^ M-rn(z;z), \ z | = r.

Let zn be the point on | z\ =r given by Lemma 2 corresponding to the n points

a„¿. Then, by (8) and Lemma 2, we have

iRn{zn) i2 < (1 _ fl)1{ i B»(*-) h + (i - o « n i *., i2|.

The second term in the braces approaches zero by hypothesis, and the first

term therein is again dominated by l/pn (where pn has the same meaning as

in the proof of Lemma 3), and hence approaches zero with XX™— 11 am\ • Hence,

for m sufficiently large, we have |i?„(zn)| <m/2. The contradiction proves

Theorem A.

Remark. If the condition ani7¿0 is dropped, condition (A) should be inter-

preted as implying
n

lim nul a»,|2 = 0,
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where the set «„,- is obtained from the original set by omitting all those num-

bers which are zeros. Then Theorem A is true for the sequence f*(z) corre-

sponding to the set a*t. It follows from the minimum property of f„(z) that

Theorem A is also true for the sequence fn(z). The restriction a„i^0 is thus

removed.

7. Proof of Theorem B. Consider first the particular case where the nor-

mal set ani satisfies the hypothesis of Lemma 3. In this case the proof follows

the same line as that of Theorem A; Lemma 3 now plays the rôle of Lemma 2.

Next, consider the less particular case where the normal set an< is such

that, after a transformation of the form f = (z — c)/(l — cz), \c\ <1, it goes

into a set b„i satisfying the hypothesis of Lemma 3. In this case, the remainder

Rn(z), which was originally bounded by

M
I *•« I' = T<-Fl^i {1 + (1 - h \2)Hn(z; z)} | Bn(z) |2,

(1 - I z|2)2

is bounded by

M
I *"« I2 á T<—nZi i i +' (i - k l2)tfn(f ; ?)} I Bn(t) |2

(1 - I z|2)2

after the transformation. Hence our argument is still applicable, and the truth

of the theorem follows.

Finally, the case of an arbitrary normal set can be disposed of with ease.

The proof of the theorem is thus complete.

8. The case of simple sequence an. If we have a simple sequence an, the

function fn(z) of the form (1) found by interpolation to a function f(z) of

class S2 is the sum of the first « terms of the series

ci4>i(z) + c2<i>2(z) + • • • ,

where the set of functions <j>„(z) is obtained from the set (1— dtz)~2 by or-

thogonalization on the area K, and where the coefficients cn are determined

either by interpolation or by integration :

g» = —JJÂ') ^ÖÖ dS< n= 1,2,-

The following theorem, together with its corollary, is an obvious extension

of a theorem due to Walsh in connection with interpolation to functions de-

fined by line integrals.

For an arbitrary set an pre-assigned on K, and for a given function f(z) of

class S2, the sequence fn(z) converges on K, uniformly on any closed point set

on K, to an analytic function g(z), which is characterized by the fact that, among

all functions of class S2 which coincide withf(z) at the points ani, g(z) is the unique

one whose norm on K is the least.



1946] INTERPOLATION BY RATIONAL FUNCTIONS 21

As a corollary, we have :

Among all functions of class S2 which vanish at ai, a2, • • • , o„ and take on

the value unity at z = t, the function

(1 - \t\2)Bn(z)Gn(z;t) / ^ 1 \

(1 - zt)Bn(t)Gn(t; t) \ 1 - zt /

is the unique one whose norm on K is least.

In this corollary, it is tacitly assumed that t is distinct from au a2, • ■ ■ , an.

If t coincides with k of these points, the factor Bn(t) in the definition of yj/(z)

should be replaced by Bnw(t), the &th derivative of B„(z) at the point z = t.

With this understanding, we prove the following theorem.

Theorem. For any sequence of points an pre-assigned on K, we have

Hn+i(t; t) > Hn(t; t),        \ t\ g 1, n = 1, 2, • • ■ .

In view of inequality (10), we need to prove the theorem merely for

| f| <1. For this purpose, let \p(z) be defined as above,, and let

(l-\t\2)Bn(z)Gn-i(z;t)
Yl(z)  = -Z-Z— (« >   1).

(1 - zt)Bn(t)Gn-i(t; Î) '

Then ip(z) and ^1(2) both vanish at ai, a2, • • • , a„, and both take on the value

unity at z = t. Further, we have

1 -lil»
2dS =-if/Uw

Bn(t) \2Gn(t; t)

(1 -|.i|2)5n_1(z)GB_i(2;/)

(1 - zt)Bn(t)Gn-i(t; t)

1 -  Ul2

dS

I Bn(t) l^-ii«; Î)

The theorem then follows from the minimum property of yp(z).
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