CONCERNING SIMPLE PLANE WEBS

BY
R. H. BING

A compact continuum W is said [1](*) to be a simple web if there exists
an upper semi-continuous collection G of mutually exclusive continua filling
up W and another such collection H also filling up W such that (1) Gis a
dendron with respect to its elements and so is H and (2) if g and % are elements
of G and H, respectively, the common part of g and % exists and is totally
disconnected. Hence, a simple web is a web(?).

Examples of simple plane webs. Although a simple web is not necessarily
a subset of the plane, this paper will deal only with those of this type. A
square plus its interior is a simple web. We may consider the elements of G
to be intervals parallel to one pair of sides of the square and the elements
of H to be intervals parallel to the other pair of sides. We see from Theorem 1

of this paper that if C;, C;, - - - are circles no two of which intersect each
other and such that C; incloses C; (=2, 3, - - - ), then C; plus its interior
minus the sum of the interiors of Cz, C;, + - - is a simple web.

A square plus its interior plus an interval intersecting both the interior
and the exterior of the square is not a simple web. Hence, a plane web is not
necessarily a simple web. By the use of Theorem 1 of this paper, we find that
the continuous curve described on page 273 of [7] which is left connected
but not locally connected on the omission of some countable subset is not a
simple web.

This paper gives necessary and sufficient conditions that a compact plane
continuum be a simple plane web. Professor R. L. Moore suggested the prob-
lem of finding such conditions. Much credit is due him for the development
of this paper. '

It has been shown [6] that every simple plane web is a continuous curve.
In the present paper, the following theorem will be established.

THEOREM 1. In order that a compact plane continuous curve be a simple
plane web, it is necessary and sufficient that it remain connected and locally con-
nected on the omission of any countable subset.

Presented to the Socidty, September 17, 1945; received by the editors May 12, 1945 and,
in revised form, December 24, 1945.

(1) Numbers in brackets refer to the references cited at the end of the paper.

() A web has been defined by Moore [3] to be a compact continuum M for which “there
exist two upper semicontinuous collections H; and H; of mutually exclusive continua such that
(1) each of these collections fills up M, (2) each of them is a dendron with respect to its elements,
and (3) there exists an uncountable subcollection W of the collection H; such that no element
of W is a subset of any element of H,.”
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Proof of necessity. The following argument is similar to that found in the
proof of Theorem 1 of [1]. Suppose that G and H are collections satisfying
with respect to the simple plane web W all(?®) of the conditions described in
the preceding definition. Suppose that K is a countable subset of W. If Wy
(Z =G, H) denotes the sum of all of the continua of the collection Z that do
not intersect K, then any two points of Wg+ Wy lie on a continuum which is
the sum of three continua of the collection G+H that do not intersect K.
As W+ Wy is dense in W, W—K is connected.

If W—K is not locally connected at P, there exist a domain(*) d containing
P and a sequence of points of W —K converging to P such that each belongs
to a different component of (W —K)-d. Let C;, C,, C; denote three circles such
that C; incloses P, C, incloses Cj, C; incloses C; but no element of G or H
and C; plus its interior is a subset of d. Now C; incloses a sequence of points
Py, Py, - - of Wg no two of which belong to the same component of
(W—K)-d such that if g; is the component containing P; of the common
part of d and the element of G containing P;, then gy, g2, + -+ + has a sequential
limiting set F. There exists a sequence Qi, Qs + + + in Wy converging to a
point of C; such that Q, is a point of a subcontinuum of g. (m 2n) irreducible
from Ci to Cs. If k; denotes the component containing Q; of the common part
of d and the element of H containing Q;, then some nondegenerate subcon-
tinuum of F belongs (see [6, Theorem 2]) to the limiting set of ki, ks, - -
However, as G and H are upper semi-continuous collections, this nondegener-
ate continuum is both a subset of an element of G and a subset of an element
of H. This is contrary to the hypothesis that the common part of an element
of G and an element of H is totally disconnected.

This establishes the necessity of the condition of Theorem 1. A number
of preliminary theorems will be proved before the establishment of its suffi-
ciency. When the term “simple plane web” is used in the following theorems,
it is to be understood that we refer to a compact plane continuum that re-
mains connected and locally connected on the omission of any countable sub-
set.

THEOREM 2. Each complementary domain of a simple plane web is bounded
by a simple closed curve but no two boundaries of its individual complementary
domains have more than one point in common.

Proof. The outer boundary of a bounded complementary domain of a
continuous curve is a simple closed curve [4]. As a simple plane web has no
cut points, the boundary of one of its complementary domains is also the
outer boundary of this domain. If the boundaries of two such complementary

(®) However, in the argument no use is made of the condition that G and H are dendrons

with respect to their elements.
(*) A domain is an open set not necessarily connected. However, a complementary domain

is connected [7, pp. 11 and 153].
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domains intersected in a pair of points, this pair of points would separate the
simple plane web. )

THEOREM 3. If the connected set x is the sum of a countable number of points
and complementary domains of the simple plane web W, then each point of W- %
is a limit point of W—W - .

Proof. Suppose that d is a domain containing a point P of W-% As
W—W.x is a connected and locally connected inner limiting set, the com-
mon part of it and d contains [8] an arc AQB. There exists in W an arc ACB
containing no point of the countable point set W-x+(Q. The point set
AQB+ACB contains a simple closed curve J which contains an interval
A’QB’ of AQB. There exists in W an arc « from Q to J—A’QB’ which con-
tains no point of W-x+A4’4B’. The arc a contains an arc Q’OL having in
common with J only its end points Q' and L which belong to A’QB’ and
J—A’'QB’ respectively. Let Q’A’L and Q’B’L be arcs lying on J with points
as indicated. Then Q’A’L+Q’B’L+Q’OL divides space into three mutually
exclusive domains only one of which contains the connected set x. Now one
of the segments(’) (Q’A’L), (Q’B’L) and {Q'OL) contains no point of % and
each of them contains a point of d. Therefore d contains a point of W—W - z.
Since any domain containing a point of W-% contains a point of W—W-z,
then each point of W-% is a limit point of W—W- .

THEOREM 4. Under the hypotheses of Theorem 3, the closure of x does not
separate W.

Proof. If P is a point of the plane S, then S—(x+P) is a connected and
locally connected inner limiting set. Hence [8] it is arcwise connected. Fur-
thermore [2, Theorem 12], S—Z% is connected.

Suppose that W— W% is the sum of two mutually separated sets S; and
S,. There exists in S—% an arc 4B from a point 4 of S; to a point B-of S..
Let P denote the last point of the closed point set S;-AB in the order from
4 to B on AB. There is a point Q following P on 4B such that the interval
PQ of AB contains no point of S,. Let P’ denote the first point in the order
from Q to B that the interval QB of 4B has in common with 3, the boundary
of d, the complementary domain of W that contains Q. Since the closure of
x+d does not separate .S, one arc of 8 from P to P’ contains no point of .
But P belongs to .Sy and P’ belongs to S,. Thus, the supposition that W—W- &
is not connected leads to a contradiction.

THEOREM 5. If R is a connected point set consisting of a plane domain plus
a totally disconnected point set and the complement of R is a locally connected
inner limiting set, then R is a continuous curve.

Proof. If R is not locally connected, there exist a domain d, a sequence

(*) By (a) is meant the arc « minus its end points.
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of components ¢, ¢z, - « - of d- R, and a sequence of arcs oy, s, - + + such that
(1) for each positive integer j, a; is a subset of d—d- R; (2) if %, , j are posi-
tive integers such that % <7 <j, then «; separates ¢; from ¢; in d and ¢; sepa-
rates o from «; in d; (3) d intersects ¢, the sequential limiting set of
¢, e, * + + . The sequence ay, as, - - - converges to c.

As no point of ¢ is a point of a domain lying in R and some nondegenerate
subcontinuum ¢’ of cis a subset of d, the complement of R contains two points
P, and P; of ¢’. There exist domains d, and d, containing P; and P, respec-
tively such that d; and d, are mutually exclusive subsets of d. As the comple-
ment of R is locally arcwise connected at P; and Py, there exists a positive
integer j such that each of the point sets di—d;-R and d:—d,- R contains
an arc intersecting both «; and a ;5. Therefore, there is a simple closed curve J
lying in d—d- R and intersecting a; and a ;2. As R is connected and contains
no point of J, it does not intersect both the interior and the exterior of J.
Therefore, no component of d- R separates ; from a;ys in d and R is locally
connected.

THEOREM 6. Under the hypotheses of Theorem 3, % is a continuous curve each
of whose degenerate cyclic elements is a point of W in x and each of whose non-
degenerate cyclic elements is the closure of a complementary domain of W in x.

Proof. As the complement of x is a locally connected inner limiting set, it
follows from Theorem 5 that # is a continuous curve. If P is a cut point of %,
it is a cut point of x and therefore must be a point of W in x.

If J is a simple closed curve in %, we shall show that it is a subset of the
closure of a complementary domain of W in x. Since £ does not separate space
(see Theorem 4), one of the complementary domains of J is a subset of .
By Theorem 3, we have that J separates no two points of £—x from each
other. Therefore, one of the complementary domains of J is a subset of x
and is therefore a subset of a complementary domain of W in «.

THEOREM 7. Suppose W is a simple plane web, B is its outer boundary and
X 1is the collection of all nondegenerate continua x such that x is maximal with
respect to being the closure of a connected set which is the sum of a countable
number of points and bounded complementary domains of W. If A and B are
boints of W, there is an arc AB in W such that A B minus its end points contains
no point of either 8 or any element of X.

Proof. Suppose that 4 belongs to x4 of X and that B belongs to neither 8
nor any element of X. As W—W-x4+4 is connected, 4 is accessible [10,
Theorem 1] from W—W-x4. Since the continua of the collection X are mu-
tually exclusive and no one of them separates the plane, then x4 plus the com-
plement of the sum of the elements of X is a connected and locally connected
inner limiting set which if regarded as space satisfies Axioms 1-5 of [7]. In
this space, there exists an arc 4B having no point except 4 in common with
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%4+B. The arc AB is a subset of W.

THEOREM 8. Under the hypotheses of Theorem 7, if P is a point belonging to
both B and an element xp of X, Q is another point of B and c is a component of
xp—P, then there exists in W a simple closed curve J inclosing ¢ but no point
of xp—c and containing P and Q but no other point either of B or of an element
of X.

Proof. Let X’ denote the set of all continua of the collection X except xp
and x¢ where xq¢ denotes the element of X containing Q if there is one but de-
notes Q if there is not. Let Z denote the collection whose elements are the
continua of X’ and the points of the plane that belong to no element of X’.
The collection Z is upper semi-continuous and no one of its elements sepa-
rates the plane. It follows [5] that the space =; whose “points” are elements
of Z is topologically equivalent to the plane. If 2, denotes the space whose
“points” are the “points” of 2, other than the elements of X’ not intersect-
ing B, then it is topologically equivalent to a plane minus a countable number
of points. If B’ denotes the “point” set whose points are the points of 8 that
belong to no element of X’ and the continua of X’ that intersect 8, then in
the space Zs, B’ is a simple closed curve and xp and xq are continuous curves
each lying except for one point wholly in the interior of 8’. In this space, there
exists an arc EQ from a point E of ¢ to Q such that xp-+xe+8’ intersects EQ
only at E+Q. Furthermore [7, Theorem 12, p. 217], there exists a simple
closed curve intersecting xp+x¢+f8’ only at P4 Q and inclosing ¢c+EQ—Q
but no point of xp—c.

Description of dendrons G and F. In this section, W will designate a
compact plane continuous curve which is left connected and locally connected
on the omission of any countable point set. Also, X will denote the set of all
nondegenerate continua x such that x is maximal with respect to being the
closure of a connected set which is the sum of a countable number of points
and bounded complementary domains of W.

As a step toward proving the sufficiency of Theorem 1, we shall describe
an upper semi-continuous collection G of mutually exclusive continua filling
up W such that G is a dendron with respect to its elements. At the same time,
we shall describe a dendron F in W such that each element of G intersects F
in only one point.

As the description of G is somewhat complicated, we shall describe it by
steps. First, we consider a transformation T throwing a square plus a subset
of its interior into W. Next, we describe an upper semi-continuous collection
of mutually exclusive continua which is an arc with respect to its elements
and which covers a part of the inverse of W under transformation 7. We cover
more of this inverse by another upper semi-continuous collection of mutually
exclusive continua. The process is continued until we have an upper semi-
continuous collection of mutually exclusive continua filling up the inverse
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of W under T such that this collection is a dendron with respect to its ele-
ments. The image of the elements of this collection with respect to T gives
the elements of G.

Transformation 7. Let P,P;P; and P, P,P; be two arcs whose sum is the
boundary 8 of the unbounded complementary domain of W and whose ends
are not points of X*(¢). There exist in W arcs P1PsP; and P;PeP; which
except for their end points are mutually exclusive and contain no point of
X*4-B. Let R be the interior of a square with diagonals V;V; and V.V, and
let Vs, Vg be the midpoints of V1 V,, V,V; respectively.

There exists a continuous transformation T of R into W+ X* such that
T(V1V5) = T(V4V5) = P1P5, T(VzVe) = T(VaVG) = .PaPe, T(VsVz) = PsPa,
T(V4Vs) =P, Ps and each point of W+ X* — P1Ps— P¢P; is the image of only
one point of R— V1V Vi— V,VsV; under the transformation 7.

Let M denote the set of all points P of R such that the image of P under
T is a point of W. We note that M is a compact continuous curve which is
left connected and locally connected on the omission of any countable subset.
Let Y be the collection of all continua y such that y is the inverse under T
of an element of X. We note that y is maximal with respect to being the clos-
ure of a connected set which is the sum of a countable number of points and
bounded complementary domains of M.

The elements of Y are ordered y1, ¥, - - - . By Theorem 7 and the fact
that M is separable, there exists a countable point set 2, 2, - - - dense in M
and such that for each positive integer %, z; belongs to M but not to ¥* or
the boundary of R. The bounded complementary domains of M are ordered
d, ds, -

We shall describe an upper semi-continuous collection G’ of mutually ex-
clusive continua filling up M such that (1) G’ is a dendron with respect to
its elements, (2) no element of G’ contains more than two points of Y*,
(3) each element of G’ intersects VsV, and ViVs, and (4) each element of
G’ is a continuum of condensation of M. Also, we shall describe a dendron
F’ in M such that each element of G’ intersects F’ in only one point.

First step. If some element of Y has a point P in common with V1V, or
V4V; and P is nearer the midpoint than either end point of the one of V115,
V4Vs on which it lies, let ¢ be the least positive integer #» such that y., is such
an element of V¥ and let P be the point that y; has in common with
ViVe+ V,Vs. If there is no such 4, let P be the midpoint of V;V,. Let P,
and P, be the projections of P on V1V, and V,V; respectively. Let & be the
least positive integer #, if there is one, such that y, has no point in common
with the boundary of R. There are two arcs P14 P, and P,DP, lying in M,
intersecting Y* plus the boundary of R only at P; and P, and forming a
simple closed curve J such that (1) J incloses z; and yy, (2) the interior of J
together with P; and P, contains each element of Y (if any) that contains

(®) By X* is meant the set of all points P such that P is a point of an element of X.
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P, or P,, and (3) P4 P, separates (P1DP,) from V;V,in M.

We shall consider the case in which P; and P; belong to elements y(P;)
and y(P:) of Y respectively. Let {(P,BP,) and (P,CP;) be mutually exclusive
open arcs in M which are inclosed by J, which contain no point of ¥*, and
which are such that P,BP, separates (P;CP;) from ViV, in M, the simple
closed curve formed by P14 P+ P.BP; incloses y(P;) — P;, the simple closed
curve formed by P,BP.;+ P,CP; incloses y(P;) — P, and P,C of P,CP, inter-
sects Vs Vs.

If y(P,) — P, is not connected, let ¢, ¢z, - - - denote its components. Let
1, j be the least positive integers m, n respectively such that zm, y. are in-
closed by P14 P;+P,BP,. There is a simple closed curve J; in M containing
P, and P, and inclosing ¢1, 2;, ¥; but no point of y(P;) —¢; which is such that
J1— P, — P, contains no point of ¥* and is inclosed by P14 P;+ P,BP;. Let O
represent the simple closed curve which is a subset of P,4 P,+ P,BP,+J, and
which incloses ¢; but no point of J;. Let 7, j be the least positive integers m, n
such that 2m, ¥. are inclosed by O. There is a simple closed curve J; in M
containing P; and P, and inclosing ¢, 2;, ¥; but no point of ¥(P;)—c, which
is such that J;—P;— P, contains no point of ¥* and is inclosed by O. This
process is continued until for each ¢; there is a unique J; inclosing it.

The interior of P14 P,+ P;BP; is topologically equivalent to the bounded
complementary domain of P,BP;+P;C+P,DP,. Treating P;BP,+P,DP, as
PAP, and P,C+CP; as P,BP,, we consider curves J{, J¢, - - - inclosing
the components of y(P;) — P, in a manner similar to that in which we consid-
ered simple closed curves inclosing the components of y(P;) — P;.

Let g/ denote the closure of J+P,BP;+P,C+ 1 +Jo+ - - - +J{ +J¢
+ - - - . The continuum g{ is a subset of ari element of G’. It is to be noted
that g/ is a continuum of condensation of M intersecting both VgV: and
V4Vsand if Cis the common part of M and a bounded complementary domain
of g{, then (1) C intersects the interiors of triangles V1V, Vs and V,V3Vs,
(2) T is a simple plane web, and (3) no two elements of ¥ intersect both C
and the boundary of C with respect to M.

Second step. Let 1 be the least positive integer # such that y, intersects
one of the intervals ViP; and V,P, in a point P nearer the midpoint than
either end point of that interval. If there is no such ¢, let P be the midpoint
of V1P:. Let P;, P4 be the projections of P on ViP; and V,P; respectively.
By treating ViPy+P1AP;+P;Vy+ ViV; as the boundary of R and following
a procedure similar to that used in finding g/, we obtain gf/. By treating
P Vo+ Vo Vi+ VaPy+P.DP, as the boundary of R, we get gf. This process
is continued until every point of M belongs to either the closure of the sum
of all the g/’s or to a bounded complementary domain of one of them.

If Uis a component of M minus the common part of M and the sum of
the g, 's together with their bounded complementary domains and U is closed,
U will have a point in common with V1V, and a point in common with V, Vs
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and is to be considered as a g’. If U is not closed, it will not have a point in
common with either V;V: or V,V; and, as every two g. ’s are separated in M
by a third g., there is only one g, which contains a limit point of U. If there
are such U's, g/ plus all U’s which have a point of g,/ as a limit point is a g’.
Each g’ described is a subset of an element of G’.

If G{ is the set of maximal g”’s thus described, G{ is an arc with respect
to its elements, each point of G{* is a limit point of M’—G{*, no element of
G! has two points in common with an element of ¥ and each element of G{
has both a point in common with V1V, and a point in common with V,V5.
There exists a dendron F{ in M such that F{ -G{*is V4 V3, F{ — V,V; inter-
sects neither V; Vs nor any element of Y and if C is a component of M —G{¥,
then FY -C is an arc minus an end point of diameter less than the diameter
of V1V, and if K is a connected subset of C that intersects both this arc and
an element of Y that intersects the boundary of C with respect to M, then K
intersects both VgV, and V,Vs. Let D; be a domain containing F{ — V, V3 such
that each point of D, is nearer F{ than G{*+ ViV, Then D, intersects G{*
only in V, V5.

Third step. If C is a component of M —G{*, C is the common part of M
and a bounded complementary domain of some element of G/. We now con-
sider the breaking up of C into elements of G’. We note that C intersects the
interiors of the triangles V1V, V5 and V,V;3Vs. If B denotes the boundary of C
with respect to M, then C+8 is a simple plane web and no more than one ele-
ment of Y intersects both C and 8.

Let v, be such an element of Y intersecting 8 at P, and let ¢ denote the
closure of the common part of y, and C. Let Q,Q; be an arc such that Q:Q.—Qx
is FY - C. Let 1 be the least positive integer # such that d, is a subset of ¢. There
is a point P; of the boundary of d; such that ¢+ — P, is connected. There is a
subcontinuum w of ¢ such that (1) w contains P; and P,, (2) if a point of a
complementary domain of M belongs to w, the complementary domain is a
subset of w, and (3) no subcontinuum of w has properties (1) and (2). There
is an upper semi-continuous collection E of mutually exclusive continua filling
up w such that E is an arc from P, to P; with respect to its elements and such
that every element of E is either a point or an arc which has only its end
points in common with the boundary of ¢. Designate the arc of elements of E
by £(P.P;). Each connected subset of C that intersects £(P1P2) and Q1Q: also
intersects VsV, and V,Vs. To adjust the argument to the case where no ele-
ment of ¥ has a point in common with both C and B, let {(P1P,) be an arc
in C+P; from a point P; of 8 to a point P, of C such that £(P,P,) contains
no point of Y* and any connected subset of C intersecting both £(P,P;) and
Q1Q: also intersects both V3V, and V, V.

Let j, k be the least positive integers m, n respectively such that zm, ¥
are subsets of C. There is a simple closed curve J lying in C, inclosing yg,
intersecting £(P1Pg) + Q1Q: only at P+ Q. and such that Q,Q»+J contains z;.
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We note that J plus the common part of M and the interior of J is a simple
plane web intersecting both VsV, and V,Vs.

A breaking up of the portion of C not in the interior of J into elements
of G’ will now be considered. Considering the elements of £(PyP;) as points,
E(Plpz) as Vl Vz, ﬁ as V1 V4, f(Plpz) as V4 Vs, J as Vz Vs, and Qle as Vs Vo, we
divide the portion of C not in the interior of J in a manner somewhat analo-
gous to that described in the second step. We divide the portion of C corre-
sponding to V1V,VeVs in the manner in which V1V, V3V, was divided in the
second step and we divide the portion of C corresponding to VsVsV3V, in
the same fashion, care being taken that each pair of g’’s thus defined that
intersect on Q;Q; also intersect the same elements of £(PP;).

The closures of all components of M —G{* are broken up just as was C.
If a g’ as defined in this step intersects another g’ defined in either this or
the second step, the sum of the two is a g’. Let Gf denote the set of maximal
g’'s defined. We note that the boundary of d; of ¥, is a subset of G;*. Also,
each element of G{ intersects VsV; and V Vs and so does each component
of M—GJ*.

There exists a dendron F{ in M such that F{-G{*is F/, F{ —F{ is a
subset of D,, F{ — F{ intersects no element of ¥, and if C is a component of
M —G3$*, then Fj - Cis an arc minus one end point of diameter less than one-
half the diameter of V;V,. Let D; be a domain containing F{ — F{ such that
each point of D, is nearer F/ than G#* D, and is a subset of D+ F{.

Fourth step. We shall now describe the breaking up of a component C of
M —G7*. The boundary of C with respect to M is a simple closed curve J.
If an element of Y intersects both C and J, break up C as described in the
third step. Otherwise, let j be the least integer equal to # such that v, is in-
closed by J. Let P be a point of y; such that y;— P is connected. Let Q1Q: — Q1
be the common part of F{ and the interior of J. There is an arc ;P in M
which except for its end points intersects neither J+ Q,Q; nor any element of
Y and which is such that any connected subset of the interior of J intersecting
(10: and y; but not QP intersects both VsV; and V4Vs. Treating Q.P+J,
10z, and y; as B, Q1Q:, and ¢ respectively were treated in the third step, we
break up the common part of M and the interior of J in a manner analogous
to that in which C was broken up as considered in the third step.

Let G{ be the set of all g”’s considered after all components of M —GJ*
are broken up as described above. We define a dendron F{ in D, containing
F; and satisfying conditions analogous to those satisfied by F;. In like man-
ner, we consider G{, G{, - - + and F/, F{, - - - . It s to be noted that (1) for
each positive integer j, there is an # such that z; and the boundary of d; be-
longs to G./*, (2) for no n do three points of ¥* belong to the same element
of G4, (3) each element of G, intersects V5V2 and V,Vs, and (4) each compo-
nent of M —G.* intersects VsV, and V,Vs.

Definition of dendron G. Let G’ be the set of all continua such that g’
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is an element of G’ only if either (1) for some positive integer #, g’ belongs to
G! and Gy, or (2) g’ is a component of M—(G{*+G{*+ - - - ). With re-
spect to its elements, G’ is a dendron. Each element of G’ is a continuum
intersecting both ViV, and V,Vs. Each element of G’ is a continuum of con-
densation of M. No element of G’ intersects an element of ¥ in more than
two points.

We define G to be the collection of all point sets g such that g is the image
of an element of G’ under T. We note that G is an upper semi-continuous
collection of mutually exclusive continua filling up W such that G is a dendron
with. respect to its elements.

Definition of dendron F. We define F’ to be the limiting set of
F{, F{, - - - . We note that it is a dendron that intersects each element of G’
in only one point. We define F to be the image of F’ under transformation 7.
We note that F is a dendron that intersects each element of G in only one
point and the outer boundary of W in only an arc.

Description of arc H. We shall describe an upper semi-continuous collec-
tion H of mutually exclusive continua filling up W such that H is an arc
with respect to its elements and such that if g and % are elements of G and H
respectively, then g-% is totally disconnected. First, we shall establish four
additional theorems.

THEOREM 9. If R is the interior of a square and E is a collection of point
sets covering R such that for each point P and each domain D there is a point P’
of D which belongs to no element of E that contains P, then for any positive e and
any two points A and B of R there is in R+A+B an arc ACB such that (1) for
any two points Q1 and Q, of ACB("), cos ((1Q:, AB) >1—e and (2) no element of
E contains a subarc of ACB.

Proof. There is a point P; such that(8) d(4, P,) =d(P,, B), the intervals
AP; and P,B are subsets of R+A-+B, and cos (AP,, AB)>1—¢. There
exists a quadrilateral Q lying in R+4 4 B and inclosing A P,+P,B — (4 +B).
Within Q there exist (1) a point P, not belonging to any element of E that
contains A and such that max [d(4, P;); d(P;, P1)]<(2/3)d(4, P)),
cos (AP;, AB)>1—e¢and cos (P.P;, AB) >1—eand (2) a point P; not belong-
ing to any element of E that contains P; and such that max [d(P, Ps);d(Ps, B) ]
<(2/3)d(Py, B), cos (P1P3, AB) >1—e and cos (P3B, AB) >1—e. Likewise we
get within Q a point P, not belonging to any element of E containing 4 and
such that max [d(4, Py);d(Ps, P;)] <(2/3)d(A4, P;) and cos (APy, AB)>1—¢
and cos (P4P;, AB) >1—e. This process is continued.

Let L denote the closure of the sum of all such P,’s. Since L is closed and
compact and as its projection on the line 4 B is the interval 4B and each line

(") By cos (4B, CD) is meant the cosine of the smaller angle between the lines A Band CD.
If AB and CD are coincident or parallel, cos (4B, CD)=1.
(®) By d(4, B) is meant the distance between 4 and B.
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perpendicular to this interval contains only one point of L, then L is an arc
from A4 to B.

As each of the numbers cos (PyP1, AB) and cos (P.Ps;, AB) is greater
than 1—e and as the projection of P, on AB is between the projections of
P, and P, it follows that cos (P.P;, AB)>1—e. By induction, we get for
different integers j and % that cos (P;Px, AB)>1—e. Hence if Q; and Q, are
points of the continuum L, cos (Q1Q, AB) >1—e.

Each subarc of L contains a P; and a Pj such that P; does not belong to
any element of E containing P;. Hence, no subarc of L is a subset of an ele-
ment of E.

THEOREM 10. Let R be the interior of a square with diagonals Vi V3 and
V2 Vs; let E be a collection of mutually exclusive point sets filling up R such that
(1) no element of E contains a nondegenerate connected subset of ViVi+ V,Vs
and (2) no element of E is dense in a domain; then there exists an upper semi-
continuous collection H of mutually exclusive arcs filling up R such that H is an
arc with respect to its elements, each element of H has one end point on V1V,
and one on V, Vs, each point of ViVe+ ViVsisan end point of an element of H,
and no element of E contains a subarc of an element of H.

Proof. With the help of the preceding theorem, it will be shown that
there exists a set of mutually exclusive arcs @, az, - - + such that (1) each of
them has one end point on V,V; and the other on V,V; and has no arc in com-
mon with an element of E and (2) the components of R— (cu+as+ - - - ) are
arcs having one end point on V;V; and one on V,V; and, furthermore, no such
component has an arc in common with an element of E.

We shall assume that R—R is a unit square. Consider points Qi, Qz, Qs,
Q4, QS; Qs in the orders V],Q],QzQs V4 and V2Q4Q§QG Vs and such that Q1, Qz, Qs
and Qi, Qs, Qs divide V1V, and V. V; respectively into four equal parts. Choose
a positive number e less than 1. Let Py be the midpoint of V1V, and P,, P,
be points of V,V, at a distance from P, equal to ¢/6 and in the order
ViP\P,P,V,. Let P; and P, denote points on V1V, at a distance from P,
equal to 2¢/6 and in the order Vi P3;P.P,V,. Similarly, consider points
Ps, Pg, - - -, Py, Py where P,;; and P,; are at a distance from P, equal
to je/6 and from V; and V, respectively of not more than €/6 and are in the
order ViPy; 1PoP»;V,. Let Psjyy be the midpoint of ViP,;; and in general
let Psjiok1 be the midpoint of ViPsjier for all positive integers k. Also
Pyiionys is the midpoint of PyjyerV,. Let Py, Pig, Pis, Pis be the projections
of P; on Q1Qs, 0205, Q:Qs, ViV; respectively.

It is assumed that each of the following arcs has the properties that
(1) no subarc of it is a subset of E and (2) if A and B are two points of it,
cos (AB, V1V >1/(1+€?)'2 There exist in Py+P;+ R mutually exclusive
arcs PoPy; and P,P,, satisfying the above two conditions and such that no
arc from .Pon to Po,1P2,1 in Pon-l-Po,le,l plus the interior of P0P2+P2P2,1
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+P; . Po1+Po,1Po is a subset of an element of E. In the case where the ele-
ments of E contain arcs, this may be seen by constructing PoPy,; and P;P;; so
that two elements of E contain arcs from PyPy,; to P.P,;, in PPy 1+ PyPs 1
plus the interior of P0P2+P2P2,1+P2,1Po,1+Po,1Po. AlSO, there exist in R
mutually exclusive arcs Py 2Py,3 and P, 2P 3 which satisfy the above two con-
ditions and such that no arc from .Po_sz,z to .Po,st,a in Po.ng,z-i-Po,aPz,a
plus the interior of Po,2P3 2+ P2 2Ps 3+ P2 3Pos+PosPo,s is a subset of an ele-
ment of E. Furthermore, there are mutually exclusive arcs Py1Py. and
PPz in R satisfying the above two conditions and such that no arc from
P1,1Po,1 to Pl,zPo,z in P1,1Po'1 +P1,2Po,2 plus the interior of P1,1Po_1+Po,1Po,z
+ Py 2P o+ P; 2Py is a subset of an element of E. Arcs satisfying correspond-
ing conditions join Py 3, Po s to P14, Po 4 respectively. Furthermore, arcs which
intersect no arc previously described and which satisfy conditions analogous
to those given join P;3, Py to Ps,, Pi1; P32, P1g to Py, Py1g; Py, Psy to
Py, Pyg; P, Py to Poy, Py Py, Psyto Psg, Pse; - - - in such a manner
that if «; designates P;P;1+P;1Pio+PioPis+P;3Piy4, then ViV, VoVs
are the sequential limiting sets of aq, a3, + - -+ and aq, ag, - - - respectively.

Let H; be the set consisting of V1V, VoVs, a0, a1, - - - . If by and b, are
elements of H; which are not separated from each other in R by any element
of H, and C is set of all points of R between %; and k;, no arc from Q.Qs to
ViVe+ VaVs in Q:Qs+ V1 Ve+ V.V plus the bounded complementary domain
of ViVa+ V4Vs+hi+hs is a subset of an element of E.

Designate V1 V;-C and V,V;-C by U, U, and U, Us respectively, where the
points Uy, U, Us, U, are in the orders ViU U:V; and V,U,U;Vs. Treating
U U; and U,U; as V1V, and V,V; were treated, we break up C in a manner
somewhat analogous to that in which R was divided except that instead of
three lines Q1Qs, 0205, QsQs, we use seven lines parallel to U, U, that divide a
segment from U, U, to U,Us into eight equal parts. The division of all such
C’s gives us H,. This division of C is possible, for no use was made above of
the fact that V;V,; and V,V; were straight lines. In fact; it can be shown
that if (1) PyP; and P{ P are parallel intervals, (2) P.P{ and P,PJ are mu-
tually exclusive arcs such that if 4 and B are either two points of P.P{ or
two points of PPy, then sin (4B, PyPy)>1/(1+€)'2, (3) Q, Q;, Qf, Q7 are
points in the orders PiQ:Q:P: and P{Q{Q/P{ and min [sin (Q:Q/, PiPy);
sin (Q:Q{, Ple)]>1 /(14€2)1/2, and (4) E is a collection of mutually exclu-
sive point sets filling up P1P;+P:P{ +P{ P{ + P{ P plus its interior and such
that no element of E is dense in a domain, then there exist in its interior plus
the points Qy, Qs, Qf and Q; two mutually exclusive arcs Q1Q/ and Q:Q; such
that no arc from Q:Q; to Qf Q7 in Q:Q:+Q.Q4 + Q7 Qf + Q! Q1 plus its interior
is a subset of an element of E and such that if C and D are two points of-Q1Q{
or two points of Q:Q7, then sin (CD, P1Py)>1/(1+¢€*)'/2

No element of E contains an arc in R— (H¥+H;*) whose projection of
V1V is of length 3/8. With the use of fifteen lines parallel to V1V;, H; is de-
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fined in such a way that no element of E contains an arcin R — (H*+ Hz*+ H3¥)
whose projection on V.V, is of length 3/16. If a suitable pattern is used in
defining Hy, Hy, - - - and H is the set such that & is an element of H only if
it is an element of some H, or a component of R — (H¥+H#*+ - - - ), then H
satisfies the conditions of our theorem.

Our method actually gives the following result.

THEOREM 11. Let R be the interior of a square with diagonals V,1V; and
ViVy; let E be a collection of point sets covering R such that no element of E con-
tains o nondegenerate connected subset of ViVa+ Vo Vs and if D, and D, are two
domains, there exist nondegenerate connected subsets fi and f» of Dy and D, re-
spectively such that no element of E intersects both fi and fs. Then there exists an
upper semi-continuous collection H of mutually exclusive arcs filling up R such
that H is an arc with respect to its elements, each element of H has one end point
on V1Vy and one on ViV, each point of ViVe+ ViVs is an end point of an ele-
ment of H and no element of E contains a subarc of an element of H.

THEOREM 12. Let R be the interior of a square with diagonals V1V and V,Vy;
let F be a dendron in R intersecting the boundary of R only in ViVs; let E bea
collection of point sets covering R such that no element of E contains a nondegen-
erate connected subset of ViVi+ Vo Vs and if D, and D, are two domains, there
exist nondegenerate connected subsets fi and f, in Dy and D, respectively such that
no element of E intersects both f; and f.. There exists an upper semi-continuous
collection H of mutually exclusive continua filling up R such that H is a dendron
with respect to its elements, V1V, is a subset of an element of H and so is V, Vs,
no element of E contains a nondegenerate subcontinuum of an element of H and
each element of H intersects F in only one point and V1V in only a totally discon-
nected point set.

Indication of proof. We construct dendron H so that each element of
H intersects F in only one point in a manner analogous to that in which we
constructed G’ so that it intersected F’ in only one point. We use the methods
of Theorem 10 to insure that no element of H intersects an element of E
in a nondegenerate continuum.

Definition of arc H. We shall now define an upper semi-continuous collec-
tion H of mutually exclusive continua filling up W such that H is an arc
with respect to its elements, each element of H intersects each element of G,
and the intersection of an element of G and an element of H is a totally dis-
connected point set.

As the points of M — M- Y* and the elements of ¥ form an upper semi-
continuous collection of mutually exclusive continua filling up R, it follows
[5] that there is a continuous transformation 7" carrying M+ ¥* into R such
that (1) T carries each point of ViV,+ V, Vs plus the portion of the boundary
of R not belonging to Y* into itself, (2) T’ carries each point of M — M- Y*
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into a point, (3) T’ carries each element of Y into a point, and (4) each point
of R is either the image of only one point of M — M- Y* or the image of only
one element of V. If G'’ is the set of all T'(g’)’s where g’ is an element of G’
the elements of G’/ intersect VsV, and V,Vs. By the methods of Theorem 11’
it can be shown that there is an upper semi-continuous collection H’’ oE
mutually exclusive continua filling up R such that (1) H’’ is with respect to
its elements an arc with ends at Vi and V3, (2) every element of H’/ other
than V; and V;is an arc having only one point on V;V.+ V,V; and only one
point on V;Vi+ V, V3, these points being its end points, (3) if g’/ is an element
of G’ intersecting an element &’/ of H'’, g’’-h'’ is totally disconnected, and
(4) one element of H'' contains Vs+ V; and another contains V,+ Vs and
each of these elements lies except for its end points on the interior of the
parallelogram V5 V2 VsV,

If H' is a set such that &’ is an element of H’ only if it is a subcontinuum
of M which is maximal with respect to T7(%’) being an element of H'’, then
H'’ is a collection of mutually exclusive continua filling up M. Furthermore
itis an arc with respect to its elements. As no element of G’ has more than two’
points in common with the boundary of an element of Y, if g’ is an element of
G’ having a point in common with an element 2’ of H', g’-}k’ is totally dis-
connected.

Let H be a set such that % is an element of H only if it is a continuum
which is maximal with respect to being the image under T of the sum of two
or three elements of H’. Then H is the required collection of mutually exclu-
sive continua filling up W. The sufficiency of Theorem 1 is demonstrated.

Theorem 1 may also be stated as follows:

THEOREM 1. A necessary and sufficient condition that a compact plane con-
tinuum W remain connected and locally connected on the omission of any count-
able subset is that there exist two continuous monotone transformations Ty and
T, such that both T1(W) and T.(W) are nondegenerate dendrons and if a and b
are elements of T1(W) and To(W) respectively, then T1(a)- T3 (b) exists and is
totally disconnected(®). '

Alternate definition of a simple plane web. Actually, we have shown
that the following is an equivalent definition to that previously given.

Definition. A compact plane continuum W is a simple plane web pro-
vided there exist an upper semi-continuous collection G of mutually exclu-
sive continua filling up W and another such collection H also filling up W
such that (1) G is a dendron with respect to its elements and H is an arc with
respect to its elements and (2) if g and / are elements of G and H respectively,
then g-h exists and is totally disconnected. It has been shown [1] that condi-

tion (1) is unnecessary.
(®) G. T. Whyburn and some of his students have worked with monotone mappings onto
dendrons. See [9] for references.
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However, we cannot substitute for (1) in the above definition the condi-
tion (1) that G is an arc with respect to its elements and so is H. Consider
the plane continuum W obtained by subtracting from a circle C, plus its
interior the interiors of five mutually exclusive circles Cy, Ce, C;, Cy4, Cs, each
of which is tangent to C, internally. Now C; is not both a subset of an element
of G and also a subset of an element of H. Assume that C;(j=1,2, 3) isnota
subset of an element of G. Then there are uncountably many elements of G
that intersect C;. It may be seen that some element g; of G separates a point
P;of Cjfrom Co+C;+ - - - +Cs—C;in W and intersects C; (¢=0,1, - - -, 5)
only if 7 is equal to j. No one of the elements g1, g2, gs separates the other two
from each other in W. Hence, G is not an arc with respect to its elements.

THEOREM 13. If W is a simple plane web, there exist a dendron F in W, an
arc o in F, an upper semi-continuous collection G of mutually exclusive continua
filling up W and another such collection H also filling up W such that (1) G s
a dendron with respect to its elements and H is an arc with respect to its elements,
(2) if g and h are elements of G and H respectively, g-h exists and is totally dis-
connected, (3) each element of G intersects F in only one point, and (4) each ele-
ment of H intersects a in only one point.

Proof. Consider the dendron F and the upper semi-continuous collections
G and H already defined. If & is the common part of F and the outer boundary
of W, then F, e, G, and H satisfy the conditions of our theorem.

THEOREM 14. If W is a simple plane web, there exist a dendron Fin W, an
upper semi-continuous collection G of mutually exclusive continua filling up W
and another collection H also filling up W such that (1) G is a dendron with re-
spect to its elements and so is H, (2) if g and h are elements of G and H respec-
tively, g-h exists and is totally disconnected, (3) each element of G intersects F
in only one point and so does each element of H.

Proof. The dendron F and the upper semi-continuous collection G are the
same as those previously described.

We shall use the same symbols as those used in our definition of the arc H.
Let F'’ be the image of F’ under T'. If % is the element of H’’ containing
Vit Ve, let H{' denote the set of all continua 4’’ such that A’/ is either Vj,
k, or an element of H’'’ between V; and k. Using the methods of Theorem 12,
it can be shown that there exists an upper semi-continuous collection Hy'’
of mutually exclusive continua filling up A+ (R—H{'*) such that (1) H{' is
a dendron with respect to its elements, (2) & is a subset of an element of Hy',
(3) each element of H{' intersects F’/ in only one point and VsV in a totally
disconnected set, and (4) if g’/ is an element of G’ intersecting an element A’/
of H{!, g’’ k'’ is totally disconnected. We define H from H{’+4H;’ in the
same manner in which the arc H was defined from H"’.

Theorem 14 may also be stated as follows.
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THEOREM 14. Suppose that W is a compact plane continuum and that Ty, T
are continuous monotone transformations of W such that if a and b are elements
of TW(W) and Ty(W) respectively, then Ti'(a) and Ti*(b) are nondegenerate
sets whose common part exists and is totally disconnected. Then there exist mono-
tone retractions Ry and Ry of W such that Ry(W) is a dendron, R.(W) is the same
dendron and if a and b are elements of this dendron, Ri*(a)- Ri '(b) exists and is
totally disconnected.
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