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A compact continuum W is said [l](') to be a simple web if there exists

an upper semi-continuous collection G of mutually exclusive continua filling

up W and another such collection H also filling up W such that (1) G is a

dendron with respect to its elements and so is H and (2) if g and h are elements

of G and H, respectively, the common part of g and h exists and is totally

disconnected. Hence, a simple web is a web(2).

Examples of simple plane webs. Although a simple web is not necessarily

a subset of the plane, this paper will deal only with those of this type. A

square plus its interior is a simple web. We may consider the elements of G

to be intervals parallel to one pair of sides of the square and the elements

of H to be intervals parallel to the other pair of sides. We see from Theorem 1

of this paper that if G, G, • • • are circles no two of which intersect each

other and such that G incloses G (i = 2, 3, • • • ), then G plus its interior

minus the sum of the interiors of G, G, ■ • •  is a simple web.

A square plus its interior plus an interval intersecting both the interior

and the exterior of the square is not a simple web. Hence, a plane web is not

necessarily a simple web. By the use of Theorem 1 of this paper, we find that

the continuous curve described on page 273 of [7] which is left connected

but not locally connected on the omission of some countable subset is not a

simple web.

This paper gives necessary and sufficient conditions that a compact plane

continuum be a simple plane web. Professor R. L. Moore suggested the prob-

lem of finding such conditions. Much credit is due him for the development

of this paper.

It has been shown [6] that every simple plane web is a continuous curve.

In the present paper, the following theorem will be established.

Theorem 1. In order that a compact plane continuous curve be a simple

plane web, it is necessary and sufficient that it remain connected and locally con-

nected on the omission of any countable subset.
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(1) Numbers in brackets refer to the references cited at the end of the paper.

(2) A web has been defined by Moore [3] to be a compact continuum M for which "there

exist two upper semicontinuous collections Hi and Hi of mutually exclusive continua such that

(1) each of these collections fills up M, (2) each of them is a dendron with respect to its elements,

and (3) there exists an uncountable subcollection W oí the collection Hi such that no element

of W is a subset of any element of Hi."
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Proof of necessity. The following argument is similar to that found in the

proof of Theorem 1 of [l]. Suppose that G and 77 are collections satisfying

with respect to the simple plane web W all(3) of the conditions described in

the preceding definition. Suppose that K is a countable subset of W. If Wz

(Z = G, H) denotes the sum of all of the continua of the collection Z that do

not intersect K, then any two points of Wo+ Wh He on a continuum which is

the sum of three continua of the collection G+/7 that do not intersect K.

As Wg+Wh is dense in W, W—K is connected.

If W—K is not locally connected at P, there exist a domain(*) d containing

P and a sequence of points of W—K converging to P such that each belongs

to a different component of (W—K) -d. Let G, G, G denote three circles such

that G incloses P, G incloses G, G incloses G but no element of G or 77

and C» plus its interior is a subset of d. Now G incloses a sequence of points

7*1, 7*2, •• • of Wo no two of which belong to the same component of

(W—K) d such that if g,- is the component containing P¿ of the common

part of d and the element of G containing P,-, then gi, g2, ■ ■ • has a sequential

limiting set F. There exists a sequence G, Qi, • • • in Wh converging to a

point of G such that Qn is a point of a subcontinuum of gm (m è «) irreducible

from G to G. If hi denotes the component containing Ç, of the common part

of d and the element of H containing Qi, then some nondegenerate subcon-

tinuum of F belongs (see [6, Theorem 2]) to the limiting set of hi, h2, • • • .

However, as G and H are upper semi-continuous collections, this nondegener-

ate continuum is both a subset of an element of G and a subset of an element

of 77. This is contrary to the hypothesis that the common part of an element

of G and an element of H is totally disconnected.

This establishes the necessity of the condition of Theorem 1. A number

of preliminary theorems will be proved before the establishment of its suffi-

ciency. When the term "simple plane web" is used in the following theorems,

it is to be understood that we refer to a compact plane continuum that re-

mains connected and locally connected on the omission of any countable sub-

set.

Theorem 2. Each complementary domain of a simple plane web is bounded

by a simple closed curve but no two boundaries of its individual complementary

domains have more than one point in common.

Proof. The outer boundary of a bounded complementary domain of a

continuous curve is a simple closed curve [4]. As a simple plane web has no

cut points, the boundary of one of its complementary domains is also the

outer boundary of this domain. If the boundaries of two such complementary

(3) However, in the argument no use is made of the condition that G and H are dendrons

with respect to their elements.

(4) A domain is an open set not necessarily connected. However, a complementary domain

is connected [7, pp. 11 and 153].
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domains intersected in a pair of points, this pair of points would separate the

simple plane web.

Theorem 3. // the connected set x is the sum of a countable number of points

and complementary domains of the simple plane web W, then each point of W-x

is a limit point of W—W-x.

Proof. Suppose that d is a domain containing a point P of W-x. As

W— Wx is a connected and locally connected inner limiting set, the com-

mon part of it and d contains [8] an arc AQB. There exists in Wan arc ACB

containing no point of the countable point set W-x + Q. The point set

AQB+ACB contains a simple closed curve J which contains an interval

A'QB' of AQB. There exists in W an arc a from Q to J—A'QB' which con-

tains no point of Wx-t-A'-t-B'. The arc a contains an arc Q'OL having in

common with ¿ only its end points Q' and ¿ which belong to A'QB' and

J—A'QB' respectively. Let Q'A'L and Q'B'L be arcs lying on ¿with points

as indicated. Then Q'A'L + Q'B'L + Q'OL divides space into three mutually

exclusive domains only one of which contains the connected set x. Now one

of the segments(6) (Q'A'L), (Q'B'L) and (Q'OL) contains no point of x and

each of them contains a point of d. Therefore d contains a point of W— W- x.

Since any domain containing a point of W- x contains a point of W— W- x,

then each point of W-x is a limit point of W—W-x.

Theorem 4. Under the hypotheses of Theorem 3, the closure of x does not

separate W.

Proof. If P is a point of the plane S, then S— (x+P) is a connected and

locally connected inner limiting set. Hence [8] it is arcwise connected. Fur-

thermore [2, Theorem 12], S — x is connected.

Suppose that W— W- x is the sum of two mutually separated sets Si and

S2. There exists in S—x an arc AB from a point A of Si to a point /¿of S2.

Let P denote the last point of the closed point set Si-AB in the order from

A to B on AB. There is a point Q following P on AB such that the interval

PQ of AB contains no point of S2. Let P' denote the first point in the order

from Q to B that the interval QB oí AB has in common with ß, the boundary

of d, the complementary domain of W that contains Q. Since the closure of

x-\-d does not separate S, one arc of ß from P to P' contains no point of *.

But P belongs to Si and P' belongs to 52. Thus, the supposition that W— W- x

is not connected leads to a contradiction.

Theorem 5. If R is a connected point set consisting of a plane domain plus

a totally disconnected point set and the complement of R is a locally connected

inner limiting set, then R is a continuous curve.

Proof. If 7? is not locally connected, there exist a domain d, a sequence

(6) By (a) is meant the arc a minus its end points.
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of components Ci, c2, ■ ■ • of d- R, and a sequence of arcs «i, a2, • • • suchthat

(1) for each positive integer j, a¡ is a subset of d — d- R; (2) if h, i, j are posi-

tive integers such that h<i<j, then a< separates o> from c,- in d and c,- sepa-

rates ah from a,- in d; (3) d intersects c, the sequential limiting set of

Ci, Ci, ■ • • . The sequence «i, «2, • • •  converges to c.

As no point of c is a point of a domain lying in R and some nondegenerate

subcontinuum c' of c is a subset of d, the complement of R contains two points

Pi and P2 of c'. There exist domains ¿i and d2 containing Pi and P2 respec-

tively such that ¿i and d2 are mutually exclusive subsets of d. As the comple-

ment of R is locally arcwise connected at Pi and P2, there exists a positive

integer j such that each of the point sets di—dj-R and di — d2-R contains

an arc intersecting both a¡ and aj+2. Therefore, there is a simple closed curve J

lying in d — d-R and intersecting a,- and ct,-+2. As R is connected and contains

no point of 7, it does not intersect both the interior and the exterior of 7.

Therefore, no component of d-R separates a,- from a,-+2 in d and R is locally

connected.

Theorem 6. Under the hypotheses of Theorem 3, xis a continuous curve each

of whose degenerate cyclic elements is a point of W in x and each of whose non-

degenerate cyclic elements is the closure of a complementary domain of W in x.

Proof. As the complement of # is a locally connected inner limiting set, it

follows from Theorem 5 that x is a continuous curve. If P is a cut point of x,

it is a cut point of x and therefore must be a point of W in x.

If 7 is a simple closed curve in x, we shall show that it is a subset of the

closure of a complementary domain of Win x. Since * does not separate space

(see Theorem 4), one of the complementary domains of 7 is a subset of x.

By Theorem 3, we have that J separates no two points of x—x from each

other. Therefore, one of the complementary domains of 7 is a subset of x

and is therefore a subset of a complementary domain of W in x.

Theorem 7. Suppose W is a simple plane web, ß is its outer boundary and

X is the collection of all nondegenerate continua x such that x is maximal with

respect to being the closure of a connected set which is the sum of a countable

number of points and bounded complementary domains of W. If A and B are

points of W, there is an arc AB in W such that AB minus its end points contains

no point of either ß or any element of X.

Proof. Suppose that A belongs to xA of X and that B belongs to neither ß

nor any element of X. As W—W-xa+A is connected, A is accessible [10,

Theorem l] from W—W-xA- Since the continua of the collection X are mu-

tually exclusive and no one of them separates the plane, then xA plus the com-

plement of the sum of the elements of X is a connected and locally connected

inner limiting set which if regarded as space satisfies Axioms 1-5 of [7]. In

this space, there exists an arc AB having no point except A in common with
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au+p\ The arc AB is a subset of W.

Theorem 8. Under the hypotheses of Theorem 7, if P is a point belonging to

both ß and an element xp of X, Q is another point of ß and c is a component of

Xp — P, then there exists in W a simple closed curve J inclosing c but no point

of xp — c and containing P and Q but no other point either of ß or of an element

of X.

Proof. Let X' denote the set of all continua of the collection X except Xp

and xq where xq denotes the element of X containing Q if there is one but de-

notes Q if there is not. Let Z denote the collection whose elements are the

continua of X' and the points of the plane that belong to no element of X'.

The collection Z is upper semi-continuous and no one of its elements sepa-

rates the plane. It follows [5] that the space Si whose "points" are elements

of Z is topologically equivalent to the plane. If S2 denotes the space whose

"points" are the "points" of Si other than the elements of X' not intersect-

ing ß, then it is topologically equivalent to a plane minus a countable number

of points. If ß' denotes the "point" set whose points are the points of ß that

belong to no element of X' and the continua of X' that intersect ß, then in

the space S2, ß' is a simple closed curve and xF and xq are continuous curves

each lying except for one point wholly in the interior of ß'. In this space, there

exists an arc EQ from a point E of c to Q such that xp-r-XQ+ß' intersects EQ

only at E-\-Q. Furthermore [7, Theorem 12, p. 217], there exists a simple

closed curve intersecting xp-\-Xa-\-ß' only at P-\-Q and inclosing c-\-EQ — Q

but no point of xp — c.

Description of dendrons G and 7*". In this section, W will designate a

compact plane continuous curve which is left connected and locally connected

on the omission of any countable point set. Also, X will denote the set of all

nondegenerate continua x such that x is maximal with respect to being the

closure of a connected set which is the sum of a countable number of points

and bounded complementary domains of W.

As a step toward proving the sufficiency of Theorem 1, we shall describe

an upper semi-continuous collection G of mutually exclusive continua filling

up W such that G is a dendron with respect to its elements. At the same time,

we shall describe a dendron F in W such that each element of G intersects F

in only one point.

As the description of G is somewhat complicated, we shall describe it by

steps. First, we consider a transformation T throwing a square plus a subset

of its interior into W. Next, we describe an upper semi-continuous collection

of mutually exclusive continua which is an arc with respect to its elements

and which covers a part of the inverse of W under transformation T. We cover

more of this inverse by another upper semi-continuous collection of mutually

exclusive continua. The process is continued until we have an upper semi-

continuous collection of mutually exclusive continua filling up the inverse
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of W under T such that this collection is a dendron with respect to its ele-

ments. The image of the elements of this collection with respect to T gives

the elements of G.

Transformation T. Let PiP2P3 and P1P4P3 be two arcs whose sum is the

boundary ß of the unbounded complementary domain of W and whose ends

are not points of X*(ñ). There exist in W arcs PiP6P3 and P1P0P3 which

except for their end points are mutually exclusive and contain no point of

X* +j8. Let R be the interior of a square with diagonals Vi F3 and V2 Vi and

let Vt, V« be the midpoints of Vi Vt, V2 V3 respectively.

There exists a continuous transformation T of R into W+X* such that

T(ViV„) = T(V4Vb) = PiP6, T(V2Vo) = T(ViVo) = P3P*, T(VbV2) = PJ>i,
T(ViV6) =PiP6 and each point of W+X*-PiP6-PoP3 is the image of only

one point of R— F1F5F4— V2VtV3 under the transformation T.

Let M denote the set of all points P of R such that the image of P under

T is a point of W. We note that Af is a compact continuous curve which is

left connected and locally connected on the omission of any countable subset.

Let Y be the collection of all continua y such that y is the inverse under T

of an element of X. We note that y is maximal with respect to being the clos-

ure of a connected set which is the sum of a countable number of points and

bounded complementary domains of M.

The elements of Y are ordered yi, y», • • • . By Theorem 7 and the fact

that M is separable, there exists a countable point set Zi, z2, • • • dense in M

and such that for each positive integer i, z,- belongs to M but not to Y* or

the boundary of R. The bounded complementary domains of M are ordered

di, d2, • ■ ■ .

We shall describe an upper semi-continuous collection G' of mutually ex-

clusive continua filling up M such that (1) G' is a dendron with respect to

its elements, (2) no element of G' contains more than two points of Y*,

(3) each element of G' intersects V6V2 and ViVt, and (4) each element of

G' is a continuum of condensation of M. Also, we shall describe a dendron

F' in M such that each element of G' intersects F' in only one point.

First step. If some element of Y has a point P in common with ViV2 or

Vi Vi and P is nearer the midpoint than either end point of the one of Vi V2,

Vi Vi on which it lies, let * be the least positive integer n such that yn is such

an element of Y and let P be the point that y,- has in common with

F1F2+F4F3. If there is no such i, let P be the midpoint of VXV2. Let Pi

and P2 be the projections of P on ViV2 and VtVi respectively. Let k be the

least positive integer w, if there is one, such that yn has no point in common

with the boundary of R. There are two arcs PiAP2 and PiDP2 lying in M,

intersecting Y* plus the boundary of R only at Pi and P2 and forming a

simple closed curve 7 such that (1) 7 incloses Zi and yk, (2) the interior of J

together with Pi and P2 contains each element of Y (if any) that contains

(6) By X* is meant the set of all points P such that P is a point of an element of X.
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Pi or P2, and (3) PiAP2 separates (PiDP2) from Vi F4 in M.

We shall consider the case in which Pi and P2 belong to elements y (Pi)

and y(P2) of Y respectively. Let (PiBP2) and (PiCP2) be mutually exclusive

open arcs in M which are inclosed by ¿, which contain no point of Y*, and

which are such that PiBP2 separates (PiCP2) from ViVi in M, the simple

closed curve formed by PiAP2-\-PiBP2 incloses y(Pi)—Pi, the simple closed

curve formed by PiBP2+PiCP2 incloses y(P2)-P2, and P2C of PiCP2 inter-

sects Vf,V2.

If y (Pi)—Pi is not connected, let Ci, c2, ■ • ■ denote its components. Let

*', j be the least positive integers m, n respectively such that zm, y„ are in-

closed by PiAP2-r-PiBP2. There is a simple closed curve ¿i in M containing

Pi and P2 and inclosing a, Zi, y¡ but no point of y (Pi) —¿i which is such that

Ji—Pi — P2 contains no point of F* and is inclosed by PiAP2 + PiBP2. Let 0

represent the simple closed curve which is a subset of PiAP2+PiBP2 + Ji and

which incloses c2 but no point of ¿i. Let i,j be the least positive integers m, re

such that zm, y„ are inclosed by 0. There is a simple closed curve ¿2 in M

containing Pi and P2 and inclosing c2, Zi, y¡ but no point of Y(Pi)—c2 which

is such that J2—Pi—P2 contains no point of Y* and is inclosed by O. This

process is continued until for each c¿ there is a unique ¿< inclosing it.

The interior of PiAP2+P.iBP2 is topologically equivalent to the bounded

complementary domain of Pi/3P2+P2C+Pi7?P2. Treating P2BPi+PiDP2 as

PiAP2 and P2C+CP2 as PiBP2, we consider curves //, J2 , • ■ • inclosing

the components of y(P2) —P2 in a manner similar to that in which we consid-

ered simple closed curves inclosing the components of y(Pi) —Pi.

Let gi denote the closure of /+Pi5P2+P2C+/i+¿2+ • • • +JÍ +JÍ

+ • • • . The continuum gi is a subset of ari element of G'. It is to be noted

that gi is a continuum of condensation of M intersecting both V¿V2 and

VtVe and if Cis the common part of M and a bounded complementary domain

of g(, then (1) C intersects the interiors of triangles ViV2Vs and V^Ve,

(2) C is a simple plane web, and (3) no two elements of Y intersect both C

and the boundary of C with respect to M.

Second step. Let i be the least positive integer re such that yn intersects

one of the intervals F1P1 and ViP2 in a point P nearer the midpoint than

either end point of that interval. If there is no such i, let P be the midpoint

of V1P1. Let P3, Pi be the projections of P on V1P1 and VtP2 respectively.

By treating FiP]+Pi^4P2+P2F4+ ViVi as the boundary of R and following

a procedure similar to that used in finding gi, we obtain g2 . By treating

PiV2+V2V3+V3P2+P2DPi as the boundary of R, we get g{. This process

is continued until every point of M belongs to either the closure of the sum

of all the gn 's or to a bounded complementary domain of one of them.

If U is a component of M minus the common part of M and the sum of

the g„' 's together with their bounded complementary domains and U is closed,

U will have a point in common with Vi V2 and a point in common with F4 V%



140 R. H. BING [July

and is to be considered as a g'. If U is not closed, it will not have a point in

common with either ViV2 or F4F3 and, as every two g„' 's are separated in M

by a third gñ, there is only one g„' which contains a limit point of U. If there

are such U's, g„' plus all U's which have a point of g„' as a limit point is a g'.

Each g' described is a subset of an element of G'.

If G{ is the set of maximal g"s thus described, G{ is an arc with respect

to its elements, each point of G{* is a limit point of M' — G{*, no element of

G{ has two points in common with an element of Y and each element of G{

has both a point in common with ViV2 and a point in common with ViV*.

There exists a dendron F{ in M such that F{ G{* is F4F3, Pi — FiFs inter-

sects neither ViVt nor any element of Y and if C is a component of M—G{*,

then F{ ■ C is an arc minus an end point of diameter less than the diameter

of ViV2 and if K is a connected subset of C that intersects both this arc and

an element of Y that intersects the boundary of C with respect to M, then K

intersects both V¡ V2 and Vi Vo. Let Di be a domain containing F{ — Vi Vi such

that each point of />i is nearer F{ than G{*-\-ViVt. Then A intersects G'*

only in Vi V3.

Third step. If C is a component of M—Gl*, C is the common part of M

and a bounded complementary domain of some element of G{. We now con-

sider the breaking up of C into elements of G'. We note that C intersects the

interiors of the triangles FiI^P^ and F4F3F6. If ß denotes the boundary of C

with respect to M, then C+j3 is a simple plane web and no more than one ele-

ment of Y intersects both C and ß.

Let ya be such an element of Y intersecting ß at Pi and let c denote the

closure of the common part of ya and C. Let QiQ2 be an arc such that QiQi — G

is P/ • C. Let i be the least positive integer « such that dn is a subset of c. There

is a point P2 of the boundary of d¡ such that c-\-ß — P2 is connected. There is a

subcontinuum w oí c such that (1) w contains Pi and P2, (2) if a point of a

complementary domain of M belongs to w, the complementary domain is a

subset of w, and (3) no subcontinuum of w has properties (1) and (2). There

is an upper semi-continuous collection E of mutually exclusive continua filling

up w such that E is an arc from Pi to P2 with respect to its elements and such

that every element of E is either a point or an arc which has only its end

points in common with the boundary of c. Designate the arc of elements of E

by £(PiP2). Each connected subset of C that intersects £(PiP2) and QiQ2 also

intersects VbV2 and ViVo- To adjust the argument to the case where no ele-

ment of Y has a point in common with both C and ß, let £(PiP2) be an arc

in C+Pi from a point Pi of ß to a point P2 of C such that £(PiP2) contains

no point of F* and any connected subset of C intersecting both £(PiP2) and

QiQi also intersects both FsF2and ViVo-

Let j, k be the least positive integers m, « respectively such that zm, yn

are subsets of G There is a simple closed curve J lying in C, inclosing yk,

intersecting ¡;(PiPi)+QiQi only at P2 + Q2 and such that GG + ^ contains */.
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We note that J plus the common part of M and the interior of ¿ is a simple

plane web intersecting both V6 V2 and F4 Vg.

A breaking up of the portion of C not in the interior of ¿ into elements

of G' will now be considered* Considering the elements of £(PiP2) as points,

í(PiPi) as ViV2, ß as_FiF4, £(PiP2) as VtV,, /as V2VZ, and QXQ2 as V,V,, we

divide the portion of C not in the interior of ¿ in a manner somewhat analo-

gous to that described in the second step. We divide the portion of C corre-

sponding to Vi V2 Ve V& in the manner in which Vi V2 V3 Vt was divided in the

second step and we divide the portion of C corresponding to ViV*VtVi in

the same fashion, care being taken that each pair of g"s thus defined that

intersect on QiQ2 also intersect the same elements of ¿(PiP2).

The closures of all components of M—Gi* are broken up just as was C.

If a g' as defined in this step intersects another g' defined in either this or

the second step, the sum of the two is a g'. Let G2 denote the set of maximal

g"s defined. We note that the boundary of o\- of y„ is a subset of G2'*. Also,

each element of G2 intersects V¡V2 and V^Vt and so does each component

of M-Gl*.
There exists a dendron F2 in M such that F2 -G2* is F{, F2 —Fi is a

subset of Di, F2 —Fi intersects no element of Y, and if C is a component of

M—Gl*, then F2 • C is an arc minus one end point of diameter less than one-

half the diameter of ViV2. Let ¿>2 be a domain containing F2 —Fi such that

each point of ¿>2 is nearer F2 than G2* D2 and is a subset of Di + Fí.

Fourth step. We shall now describe the breaking up of a component C of

M—G2*. The boundary of C with respect to M is a simple closed curve /.

If an element of Y intersects both C and ¿, break up C as described in the

third step. Otherwise, let j be the least integer equal to re such that y„ is in-

closed by ¿. Let P be a point of y,- such that y¡—P is connected. Let QiQ2 — Qi

be the common part of F2 and the interior of J. There is an arc QiP in M

which except for its end points intersects neither ¿+ QiQ2 nor any element of

Fand which is such that any connected subset of the interior of J intersecting

QiQ2 and y¡ but not ÇiP intersects both ViV2 and ViV&. Treating QiP+J,

QiQi, and y j as ß, QiQ2, and c respectively were treated in the third step, we

break up the common part of M and the interior of ¿ in a manner analogous

to that in which C was broken up as considered in the third step.

Let G{ be the set of all g"s considered after all components of M—Gi*

are broken up as described above. We define a dendron Fí in D2 containing

P2' and satisfying conditions analogous to those satisfied by F2 . In like man-

ner, we consider GI, G¿, • ■ • and F¡, F¿, • • • . It is to be noted that (1) for

each positive integer,/, there is an re such that z¡ and the boundary of d,- be-

longs to G„'*, (2) for no re do three points of Y* belong to the same element

of G» , (3) each element of G„' intersects VsV2 and ViVo, and (4) each compo-

nent of M—Gñ* intersects V6V2 and F4F6.

Definition of dendron G. Let G' be the set of all continua such that g'
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is an element of G' only if either (1) for some positive integer «, g' belongs to

G>' and G-Í+., or (2) g' is a component of il/-(G'*+G'*+ • — )• With re-

spect to its elements, G' is a dendron. Each element of G' is a continuum

intersecting both V6V2 and F4F6. Each element of G' is a continuum of con-

densation of M. No element of G' intersects an element of Y in more than

two points.

We define G to be the collection of all point sets g such that g is the image

of an element of G' under T. We note that G is an upper semi-continuous

collection of mutually exclusive continua filling up Wsuch that G is a dendron

with, respect to its elements.

Definition of dendron F. We define F' to be the limiting set of

F{, FÍ, ■ ■ • . We note that it is a dendron that intersects each element of G'

in only one point. We define F to be the image of F' under transformation T.

We note that F is a dendron that intersects each element of G in only one

point and the outer boundary of W in only an arc.

Description of arc H. We shall describe an upper semi-continuous collec-

tion 77 of mutually exclusive continua filling up W such that 77 is an arc

with respect to its elements and such that if g and h are elements of G and 77

respectively, then g-h is totally disconnected. First, we shall establish four

additional theorems.

Theorem 9. If R is the interior of a square and E is a collection of point

sets covering R such that for each point P and each domain D there is a point P'

of D which belongs to no element of E that contains P, then for any positive e and

any two points A and B of R there is in R-\-A +P an arc A CB such that (1) for

any two points Qi and Q2 of ACB(7), cos (QiQ2, AB) > 1 — e and (2) no element of

E contains a subarc of A CB.

Proof. There is a point Pi such that(8) d(A, Pi) = d(Pi, B), the intervals

APX and PiB are subsets of R+A+B, and cos (APU AB)>\-e. There

exists a quadrilateral Q lying in R-\-A +B and inclosing ^4Pi+PiP — (A -\-B).

Within Q there exist (1) a point P2 not belonging to any element of E that

contains A and such that max [d(A, P2); d(P2, Pi)]<(2/3)d(A, Pi),

cos (APi,AB)>l-e and cos (P2Pi, AB) > 1 - e and (2) a point P3 not belong-

ing to any element of E that contains Pi and such that max [d(Pi, P3) ; ¿(P3, B) ]

< (2/3)d(Pu B), cos (PiP3, AB) > 1 - e and cos (P3B, AB)>\-e. Likewise we

get within Q a point P4 not belonging to any element of E containing A and

such that max [d(A, P4) ; d(P4, P2)] <(2/3)d(A, P2) and cos (APh AB) > 1 -e

and cos (PiP2, AB) > 1 — e. This process is continued.

Let L denote the closure of the sum of all such P„'s. Since L is closed and

compact and as its projection on the line AB is the interval AB and each line

(') By cos (AB, CD) is meant the cosine of the smaller angle between the lines AB and CD.

If AB and CD are coincident or parallel, cos (AB, CD) = 1.

(s) By d(A, B) is meant the distance between A and B.
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perpendicular to this interval contains only one point of ¿, then L is an arc

from A to B.

As each of the numbers cos (P2Pi, AB) and cos (P1P3, AB) is greater

than 1—e and as the projection of Pi on AB is between the projections of

P2 and P3, it follows that cos (P2P3, AB)> 1—e. By induction, we get for

different integers j and k that cos (PjPk, AB)>\—e. Hence if Qi and Q2 are

points of the continuum ¿, cos (QiQ2, AB) > 1 — e.

Each subarc of ¿ contains a P¡ and a P* such that P,- does not belong to

any element of E containing P*. Hence, no subarc of ¿ is a subset of an ele-

ment of E.

Theorem 10. Let R be the interior of a square with diagonals ViV3 and

V2 Vi ; let E be a collection of mutually exclusive point sets filling up R such that

(1) no element of E contains a nondegenerate connected subset of ViVi-\- V2V3

and (2) no element of E is dense in a domain ; then there exists an upper semi-

continuous collection H of mutually exclusive arcs filling up R such that H is an

arc with respect to its elements, each element of H has one end point on Vi V2

and one on Vi V3, each point of Vi V2-\- Vi V3 is an end point of an element of H,

and no element of E contains a subarc of an element of H.

Proof. With the help of the preceding theorem, it will be shown that

there exists a set of mutually exclusive arcs «i, a2, • • ■ such that (1) each of

them has one end point on Vi V2 and the other on V4 V3 and has no arc in com-

mon with an element of E and (2) the components of R — (ai+a2+ • • • ) are

arcs having one end point on Vi V2 and one on F4 V3 and, furthermore, no such

component has an arc in common with an element of E.

We shall assume that R — R is a unit square. Consider points Qlt Q2, Q3,

Qi, Qi, Qo in the orders VxQiQ2Q3Vi and V2QiQbQsV3 and such that Qu Q2, Q3
and Qi, Qi, Q» divide Vi Vi and V2 V3 respectively into four equal parts. Choose

a positive number e less than 1. Let Po be the midpoint of VXV2 and Pi, P2

be points of ViV2 at a distance from P0 equal to e/6 and in the order

F1P1P0P2F2. Let P3 and P4 denote points on VXV2 at a distance from P0

equal to 2e/6 and in the order ViP3PoPiV2. Similarly, consider points

P¡, Pe, • • • , Pij-i, Pa where P2¡_i and P2/ are at a distance from P0 equal

to je/6 and from Vi and V2 respectively of not more than e/6 and are in the

order ViP2j-.iPoP2jV2. Let P2Í+1 be the midpoint of FiP2)-_i and in general

let P2,+2t+i be the midpoint of FiP2¡+2ifc-i for all positive integers k. Also

P2i+s*+2 is the midpoint of P2¡+2kV2. Let P,-,i, Pt-,2, P,-,3, P,-,4 be the projections

of Pi on QiQi, QiQi, Q3Qo, Vi V3 respectively.
It is assumed that each of the following arcs has the properties that

(1) no subarc of it is a subset of E and (2) if A and B are two points of it,

cos (AB, FiF4)>l/(l+€2)1/2. There exist in P0+P2+R mutually exclusive

arcs PoPo.i and P2P2,i satisfying the above two conditions and such that no

arc from P0P2 to Po,iP2,i in PoP2+Po,iP2,i plus the interior of PoP2+P2P2,i



144 R. H. BING [July

+P2,iPo,i+Po,iPo is a subset of an element of E. In the case where the ele-

ments of E contain arcs, this may be seen by constructing PoPo.i and P2P2,i so

that two elements of E contain arcs from P0Po,i to P2P2,i in PoPo,i+P2P2,i

plus the interior of PoP2+P2P2,i+P2,iPo,i+Po,jPo. Also, there exist in R

mutually exclusive arcs P0,2Po,3 and P2,2P2,i which satisfy the above two con-

ditions and such that no arc from Pa,iP2,2 to P0,3P2,3 in Po,2P2,2+Po,3P2,3

plus the interior of Po,2P2,2+P2,2P2,3+P2,3Po,3+Po,sPo,2 is a subset of an ele-

ment of E. Furthermore, there are mutually exclusive arcs Po,iPo,2 and

Pi.iPi.j in R satisfying the above two conditions and such that no arc from

Pi.iPo.i to Pi,2Po,2 in Pi,iPo,i+Pi,2Po,2 plus the interior of Pi,iPo,i+Po,iPo,2

+Po,2Pi,2+Pi,îPi,i is a subset of an element of E. Arcs satisfying correspond-

ing conditions join Pll3, P0,3 to Pi,4, Po,4 respectively. Furthermore, arcs which

intersect no arc previously described and which satisfy conditions analogous

to those given join P3, Pi to P3,i, Pi,i; P3,2, Pi,2 to P3i3, Pi,3; P2,i, P4,i to

P2,2, P4.2Î P2,3, P4.3 to Pi,i, P4,4; Pj,i, P3,i to P6,2, P3,2; ••• in such a manner

that if on designates P<P,-,i+P,-,iP,-,2+P<,2P,-.3+P,-,sP<.4, then FXF4, V2Vi

are the sequential limiting sets of a\, a3, • • ■  and «o, 0:2, • • •   respectively.

Let Hi be the set consisting of ViVt, V2V3, ct0, «i, • • • . If hi and h2 are

elements of 77i which are not separated from each other in R by any element

of 77i and C is set of all points of R between hi and h2, no arc from QiQi to

ViV2+ ViV¡ in QiQt+ ViV2-\- ViV3 plus the bounded complementary domain

of F1F2+ ViVi+hi+h? is a subset of an element of E.

Designate VXV2- C and F4F3- C by G G and G G respectively, where the

points Ui, U2, U», Ui are in the orders ViUiU2V2 and F4GGF3. Treating

G G and G G as ViV2 and F4F3 were treated, we break up C in a manner

somewhat analogous to that in which R was divided except that instead of

three lines QiQi, QiQi, GG, we use seven lines parallel to G G that divide a

segment from G G to G G into eight equal parts. The division of all such

C's gives us Hi. This division of C is possible, for no use was made above of

the fact that Vi Vi and V2 V¡ were straight lines. In fact, it can be shown

that if (1) PiP2 and Pi'P2' are parallel intervals, (2) PxPi' and P2Pl are mu-

tually exclusive arcs such that if A and B are either two points of PiP{ or

two points of P2P2', then sin (AB, PjP2) >l/(l+e2)1'2, (3) Qu Q2, Qi, QI are

points in the orders PiQiQ2P2 and Pi Qi Qi Pi and min [sin (GG', P1P2);

sin (QiQi, PiP2.)]>l/(l+62)1/2, and (4) E is a collection of mutually exclu-

sive point sets filling up P1P2+P2P2' +Pi Pi +P/P1 plus its interior and such

that no element of E is dense in a domain, then there exist in its interior plus

the points G, Qi, Qi and Qi two mutually exclusive arcs GG' and GG' such

that no arc from GG to Qi Qi in QiQ2 + Q2Q¿ +QÍ Qi +QÍ G plus its interior
is a subset of an element of E and such that if C and D are two points oi-QiQl

or two points of GG', then sin (CD, PiP^l/U+e2)1'2.

No element of E contains an arc in R—(H?-r-H2*) whose projection of

FiF4 is of length 3/8. With the use of fifteen lines parallel to ViV2, H3 is de-
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fined in such a way that no element of E contains an arc in 72 — (Hi-t-H2*-\-H*)

whose projection on FiF4 is of length 3/16. If a suitable pattern is used in

defining ¿74, ¿76, • • • and ¿7 is the set such that h is an element of H only if

it is an element of some Hn or a component of R— (¿/*+//2*+ • • • ), then 7¿

satisfies the conditions of our theorem.

Our method actually gives the following result.

Theorem 11. Let R be the interior of a square with diagonals ViV3 and

Vi V2 ; let E be a collection of point sets covering R such that no element of E con-

tains a nondegenerate connected subset of FiF4+ V2V3 and if ¿>i and D2 are two

domains, there exist nondegenerate connected subsets /i and f2 of Di and D2 re-

spectively such that no element of E intersects both /i and f2. Then there exists an

upper semi-continuous collection H of mutually exclusive arcs filling up R such

that H is an arc with respect to its elements, each element of H has one end point

on ViV2 and one on ViV3, each point of FiF2+ ViV3 is an end point of an ele-

ment of H and no element of E contains a subarc of an element of H.

Theorem 12. Let R be the interior of a square with diagonals Vi V3 and V2 F4;

let F be a dendron in R intersecting the boundary of R only in Vt V3 ; let Ebea

collection of point sets covering R such that no element of E contains a nondegen-

erate connected subset of FiF4+ V2V3 and if Dx and D2 are two domains, there

exist nondegenerate connected subsets fi andf2 in Di and D2 respectively such that

no element of E intersects both /i and f2. There exists an upper semi-continuous

collection H of mutually exclusive continua filling up R such that H is a dendron

with respect to its elements, Vi Vi is a subset of an element of H and so is V2 V3,

no element of E contains a nondegenerate subcontinuum of an element of H and

each element of H intersects Fin only one point and Vi V2 in only a totally discon-

nected point set.

Indication of proof. We construct dendron H so that each element of

H intersects F in only one point in a manner analogous to that in which we

constructed G' so that it intersected F' in only one point. We use the methods

of Theorem 10 to insure that no element of H intersects an element of E

in a nondegenerate continuum.

Definition of arc H. We shall now define an upper semi-continuous collec-

tion H of mutually exclusive continua filling up W such that H is an arc

with respect to its elements, each element of H intersects each element of G,

and the intersection of an element of G and an element of H is a totally dis-

connected point set.

As the points of M—M- Y* and the elements of Y form an upper semi-

continuous collection of mutually exclusive continua filling up R, it follows

[5 ] that there is a continuous transformation T' carrying M-\- Y* into R such

that (1) T' carries each point of ViV2+ VtVt plus the portion of the boundary

of R not belonging to Y* into itself, (2) T' carries each point of M—M- Y*
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into a point, (3) T' carries each element of Y into a point, and (4) each point

of R is either the image of only one point of M— M- Y* or the image of only

one element of Y. If G" is the set of all T'(g')'s where g' is an element of G',

the elements of G" intersect V6V2 and ViV6- By the methods of Theorem 11,

it can be shown that there is an upper semi-continuous collection 77" of

mutually exclusive continua filling up R such that (1) H" is with respect to

its elements an arc with ends at Vx and V3, (2) every element of 77" other

than Vi and V2 is an arc having only one point on FXF2+ V2 V3 and only one

point on F1F4+F4F3, these points being its end points, (3) if g" is an element

of G" intersecting an element h" of 77", g" h" is totally disconnected, and

(4) one element of 77" contains F6+ V2 and another contains F4+F6 and

each of these elements lies except for its end points on the interior of the

parallelogram Vh V2 Vo Vi.

If 77' is a set such that h' is an element of 77' only if it is a subcontinuum

of M which is maximal with respect to T'(h') being an element of 77", then

77' is a collection of mutually exclusive continua filling up M. Furthermore,

it is an arc with respect to its elements. As no element of G' has more than two

points in common with the boundary of an element of Y, if g' is an element of

G' having a point in common with an element h' of H', g' h' is totally dis-

connected.

Let 77 be a set such that h is an element of 77 only if it is a continuum

which is maximal with respect to being the image under T of the sum of two

or three elements of H'. Then 77 is the required collection of mutually exclu-

sive continua filling up W. The sufficiency of Theorem 1 is demonstrated.

Theorem 1 may also be stated as follows:

Theorem 1. A necessary and sufficient condition that a compact plane con-

tinuum W remain connected and locally connected on the omission of any count-

able subset is that there exist two continuous monotone transformations 7\ and

T2 such that both Ti(W) and 7*2(W) are nondegenerate dendrons and if a andb

are elements of T¡(W) and T2(W) respectively, then Trx(a) ■ T2_1(b) exists and is

totally disconnected^).

Alternate definition of a simple plane web. Actually, we have shown

that the following is an equivalent definition to that previously given.

Definition. A compact plane continuum W is a simple plane web pro-

vided there exist an upper semi-continuous collection G of mutually exclu-

sive continua filling up W and another such collection 77 also filling up W

such that (1) G is a dendron with respect to its elements and 77 is an arc with

respect to its elements and (2) if g and h are elements of G and H respectively,

then gh exists and is totally disconnected. It has been shown [l] that condi-

tion (1) is unnecessary.

(9) G. T. Whyburn and some of his students have worked with monotone mappings onto

dendrons. See [9] for references.
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However, we cannot substitute for (1) in the above definition the condi-

tion (1') that G is an arc with respect to its elements and so is H. Consider

the plane continuum W obtained by subtracting from a circle Co plus its

interior the interiors of five mutually exclusive circles G, G, G, G, G, each

of which is tangent to Co internally. Now G is not both a subset of an element

of G and also a subset of an element of 7¿. Assume that C¡ (7 = 1,2, 3) is not a

subset of an element of G. Then there are uncountably many elements of G

that intersect C,-. It may be seen that some element g, of G separates a point

P,-of G-from G + G+ • • • +G-C,in Wand intersects G (i = 0, 1, • • • , 5)
only if i is equal to j. No one of the elements gi, g2, g3 separates the other two

from each other in W. Hence, G is not an arc with respect to its elements.

Theorem 13. // W is a simple plane web, there exist a dendron F in W, an

arc a in F, an upper semi-continuous collection G of mutually exclusive continua

filling up W and another such collection H also filling up W such that (1) G is

a dendron with respect to its elements and H is an arc with respect to its elements,

(2) if g and h are elements of G and H respectively, g ■ h exists and is totally dis-

connected, (3) each element of G intersects F in only one point, and (4) each ele-

ment of H intersects a in only one point.

Proof. Consider the dendron F and the upper semi-continuous collections

G and H already defined. If à is the common part, of F and the outer boundary

of W, then F, a, G, and 7/ satisfy the conditions of our theorem.

Theorem 14. // W is a simple plane web, there exist a dendron F in W, an

upper semi-continuous collection G of mutually exclusive continua filling up W

and another collection H also filling up W such that (1) G is a dendron with re-

spect to its elements and so is H, (2) if g and h are elements of G and H respec-

tively, g ■ h exists and is totally disconnected, (3) each element of G intersects F

in only one point and so does each element of H.

Proof. The dendron F and the upper semi-continuous collection G are the

same as those previously described.

We shall use the same symbols as those used in our definition of the arc 7¿.

Let F" be the image of F' under T'. lî h is the element of H" containing

Vi+ Ve, let Hi' denote the set of all continua h" such that h" is either Vlt

h, or an element of H" between Vi and h. Using the methods of Theorem 12,

it can be shown that there exists an upper semi-continuous collection Z72"

of mutually exclusive continua filling up h + (R — IIi'*) such that (1) H2' is

a dendron with respect to its elements, (2) A is a subset of an element of HI',

(3) each element of 7/2" intersects F" in only one point and V6V3 in a totally

disconnected set, and (4) if g" is an element of G" intersecting an element h"

of Hi', g"-h" is totally disconnected. We define H from Hi' +/72" in the

same manner in which the arc 7/ was defined from H".

Theorem 14 may also be stated as follows.
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Theorem 14. Suppose that W is a compact plane continuum and that Ti, Ti

are continuous monotone transformations of W such that if a and b are elements

of Ti(W) and T2(W) respectively, then Tïx(a) and Tr2(b) are nondegenerate

sets whose common part exists and is totally disconnected. Then there exist mono-

tone retractions Pi and P2 of W such that Ri(W) is a dendron, Ri(W) is the same

dendron and if a and b are elements of this dendron, Rrx(a) ■ Rix(b) exists and is

totally disconnected.
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