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1. The w2 heat surfaces. If a given homogeneous and isotropic region

of space is heated in any way by conduction, the temperature v depends not

only on the position of the point (x, y, z) but also on the time /. Thus the tem-

perature is v=<p(x, y, z, t), where <p satisfies the Fourier heat equation:

dfy      d2<p      d2<t>      dtp

dx2      dy2      dz2 ~ dt

At any fixed time, consider all the surfaces of constant temperature; these

are °° ' isothermals at that time. As the time varies, the isothermals will, in

general, change. In 1917, Kasner introduced the term heat surfaces to denote

the complete set of »' isothermals for all instants of time.

Therefore heat surfaces are the loci of constant temperature throughout

a given flow of heat. In general, they form a two-parameter family, the

parameters being the temperature and the time; but in certain cases, the

family may degenerate into merely °°1 surfaces.

Heat surfaces should not be confused with ordinary isothermals connected

with the Laplace equation. These are the °°1 isothermals defined by a steady

flow of heat, and thus they constitute a very special case of a degenerate heat

family. This special case occurs frequently in physics and geometry, and func-

tion theory.

2. Kasner's theorems on heat curves^)- In his work of 1917-1918 which

was later published in 1932-1933, Kasner developed the following theorems

concerning families of heat curves in the plane.

The <»2 straight lines of the plane do not make up a heat family. There are

no systems of oo2 circles which form a heat family.

If all of a family of heat curves are straight lines, the family degenerates

into »1 and is a pencil of straight lines. For a pencil with finite vertex, the

flow is steady, whereas for a parallel pencil, the flow need not be steady.

If all of a family of heat curves are circles, the family degenerates into »1

and is a pencil of circles. The flow of heat need not be. steady for a concentric

family. If the heat family of circles is elliptic, parabolic, or hyperbolic, then
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(l) These results were presented before the National Academy of Sciences in 1917. See

Abstracts in the Bull. Amer. Math. Soc. vol. 23 (1916-1917) pp. 272, 302; vol. 24 (1917-1918)

p. 173.
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the flow is steady(2).

As a corollary of the above, the following theorems of Lagrange may be

deduced. The only isothermal systems of »1 straight lines are the pencils. If

a system of »1 circles is isothermal, then it is a pencil.

The degenerate situations, where there are only oo* heat curves throughout

a given flow, are related to the equations of Laplace, Poisson, and Helmholtz-

Pockels(3).

3. Summary of our work. In the present paper, we shall extend the pre-

ceding theorems of Kasner to spaces of three and « dimensions. We shall prove

the following results in the geometry of oo2 heat surfaces in space.

In the real or imaginary domain, there are no systems of oo2 planes which

make up a heat family. In the real domain, there are no systems of oo2 spheres

which form a heat family. However, in the imaginary domain, it is found that

the only heat families of exactly oos spheres are those whose centers describe

a minimal straight line. The flow of heat is not steady for this imaginary case.

If all of a family of heat surfaces are planes, the family degenerates into

»l. In the real domain, the family is a pencil. But in the imaginary domain,

we find not only pencils but also the osculatory planes of an arbitrary minimal

curve. The flow of heat need not be steady for a parallel pencil of planes.

If all of a family of heat surfaces are spheres, with centers not on a mini-

mal straight line, then the family degenerates into oo > and is a concentric set.

The flow of heat need not be steady in this case.

It is noted that not all pencils of spheres can form a heat family in space.

The concentric pencils of spheres are the only heat families of »1 spheres in

space.

As a corollary of the preceding work, we obtain the following extensions

to space of the theorems of Lagrange concerning isothermal families of

straight lines and circles. The only isothermal systems of °°1 planes are the

pencils and also the sets of °°1 minimal planes. A system of oo1 spheres is

isothermal if and only if it is a concentric family. Thus a pencil of spheres is,

in general, not isothermal, as is the case for a pencil of circles in the plane.

We generalize the above results to euclidean space of « dimensions. It is

found that the theorems stated for » = 3 are quite similar to those for ra>3.

There is a striking distinction between the case « = 2 and the cases «1=3.

It will be shown that the degenerate situations, where there are only oo >

hypersurfaces throughout a given flow of heat, are related to the equations

of Laplace, Poisson, and Helmholtz-Pockels in space of n dimensions.

We shall prove that the only point transformations of euclidean space of

«^3 dimensions which convert every isothermal system of hypersurfaces into

(2) Kasner, Geometry of the heat equation: first paper, Proc. Nat. Acad. Sei. U.S.A. vol. 18

(1932) pp. 475^80.
(3) Kasner, Geometry of the heal equation : second paper. The three degenerate types of Laplace,

Poisson, and Helmholtz, Proc. Nat. Acad. Sei. U.S.A. vol. 19 (1933) pp. 257-262.
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an isothermal system are those of the similitude group of (n2+«+2)/2 pa-

rameters (4).

The result for the plane, namely, the case « = 2, is quite different from the

above cases where n ^3. In that case, we have proved that all the point trans-

formations of the plane which send every isothermal system of curves into

an isothermal system form the conformai group(6). Also we have extended

this theorem to transformations of differential elements in the plane(6).

In the final part of our paper, we shall show that Lie's characterization

of isothermal families in the plane, which states that the inclination 8 of any

isothermal family is a harmonic function of the point, is not valid, in general,

in euclidean space of «è3 dimensions.

All proofs will be given for a euclidean space of n dimensions.

4. The Fourier heat equation. Let a certain homogeneous and isotropic

region of euclidean space of n dimensions be heated in any way by conduction.

The temperature v depends not only on the position of the point, defined by

the cartesian coordinates (xi, x2, • • ■ , xn) = (x), but also on the time t. Thus

the temperature is v=<p(xi, x2, • • • , xn; t)=<p(x; t), where <p is any solution

of the Fourier heat equation

(1) Z^ <Pxz = <t>xixi + <t>x,xz +   • •  •   + 4>x„xn = <t>t-

In the usual form, there is a constant k2 appearing as the coefficient of <pt.

This quantity k is a physical constant depending on the conductivity, density,

and specific heat of the region. By appropriately changing the unit of time,

this constant k may be changed to unity. Thus the Fourier heat equation

may be written in the above form.

If <£ satisfies the equation (1), the °o2 heat hypersurfaces, each of (« — 1)

dimensions, are defined by v =<p(x ; t), where v and / are two arbitrary parame-

ters. That is, along any one of the heat hypersurfaces, both v and t are con-

stant. For this reason, we speak of our problem as the geometry of the heat

equation.

(*) Kasner and DeCicco, The Laplace equation, Science vol. 102 (1945) pp. 256-257. Also

The geometry of the Laplace equation in space, Proc. Nat. Acad. Sei. U.S.A. vol. 31 (1945) pp.

247-249.
(6) Kasner, Lineal element transformations which preserve the isothermal character, Proc.

Nat. Acad. Sei. U.S.A. vol. 27 (1941) pp. 406-409. Also Transformation theory of isothermal fami-
lies and certain related trajectories, Revista de la Universidad Nacional de Tucumán, Series A,

Matemáticas y Física Teórica vol. 2 (1941) pp. 17-24. J. Douglas has given another proof that

the only available point transformations in the plane are conformai, Bull. Amer. Math. Soc. Ab-

stracts 48-3-130, 49-1-71, and 49-5-160.
(*) DeCicco, Lineal element transformations which preserve the dual-isothermal character,

Proc. Nat. Acad. Sei. U.S.A. vol. 27 (1941) pp. 409-412. See the following papers by Kasner and

DeCicco, Transformation theory of isogonal trajectories of isothermal families, Proc. Nat. Acad.

Sei. U.S.A. vol. 28 (1942) pp. 328-333; Generalized transformation theory of isothermal and dual

families, Proc. Nat. Acad. Sei. U.S.A. vol. 28 (1942) pp. 52-55; Generalized Iransformation theory

of isothermal families, Revista de la Universidad Nacional de Tucumán, Series A, Matemáticas y

Física Teórica vol. 4 (1944) pp. 91-104.
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If the relation involving the cartesian coordinates (x) of the point, the

time /, and the temperature v is given in the implicit form F(x; /, v) =0, the

Fourier heát equation (1) assumes the form

(2) FÎ[(2>»„) -,Ft] - 2F,[X)F»F„] +F„LI>!] = 0,

where ¿„^0 and the various symbols denote the following expressions

fn   5>« = FXIXI +■■■+ FXnXn,       J^FJf„ = FXlFxir + ■ • • + FXnFXn„
W) _—,      2 2 2

T,Fx = Fxl+---+FXn.

A second implicit form is z =xn =/(*i, íc2, • • • , **_j; i, f) ■=/(*; ¿, p), where

2 denotes the last coordinate xn of a point. For this implicit form the Fourier

heat equation (1) is

(4) 2»[(S z**) — z'] — 2z,[X zxzx,] + z„„[l + (^ zx)] = 0,

where z„?í0 and the summation extends only over the indices (1, 2, • • • ,

M-l).

5. Heat families of hyperplanes. We shall discuss the situations where all

the heat hypersurfaces are hyperplanes.

Theorem 1. There are no heat families of exactly oo2 hyper planes. If all

of a family of heat hypersurfaces in « à 2 dimensions are hyperplanes, then the

family degenerates into oo : and is a pencil of hyperplanes or a system of oox

minimal hyperplanes. The flow of heat need not be steady only for a completely

parallel pencil of hyperplanes.

The proof is by mathematical induction. We assume that the theorem has

been proved for (« — 1) dimensions. Then we do not have to discuss the case

in which all the hyperplanes are parallel to the (x„ = z)-axis as this case is an

obvious consequence of the result for (« — 1) dimensions.

Let us consider a heat family of hypersurfaces which are all hyperplanes,

not all parallel to the (a:n=z)-axis. This family may be written in the form

(5) z = (X) ax) + c = aiXi + a2x2 + • ■ • + an_i*n_i + c,

where the (« — 1) a's and c are all functions of the temperature v and the time t

only. By (3), we must have

[(£<*»*) + c]2[(X)ö<*) + c'] + 2[(X)a,x) + c,][Xaa»]

- [l + (2>*)][(5>»*)+«»] =0.

All the at must be identically zero. For otherwise it follows from the preced-

ing identity that all the coefficients, namely the (« — 1) a's and c, are inde-

pendent of the temperature v. This is impossible. Therefore our heat family of

hyperplanes must be necessarily of the form z= [£a(v) ■x\-\-c(v, t).

Let us consider the case where the flow of heat is not steady, that is, where
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ct7^0. From the above identity, it follows that all the a„ must be identically

zero. Thus the (n — 1) a's are independent of both the time t and the tempera-

ture v, and the hyperplanes form a totally parallel pencil. In this case, the

identity (6) reduces to the form

(7) clct- [1 + (2>2)K = 0.

As there are an infinitude of solutions for the function c(v, t) of this one-

dimensional heat equation, it is seen that if the flow of heat is not steady,

then the heat family of hyperplanes is a completely parallel pencil.

Next we consider the case where the flow of heat is steady. Then the

(» — 1) at's and ct are all zero.

In the first place, it is seen that if the heat hyperplanes consist of oo1

minimal hyperplanes so that the condition l+2Z(a2) =0 is fulfilled, then (6)

is identically satisfied. Thus the osculating hyperplanes of a given minimal

curve can be the heat hypersurfaces of a given steady flow of heat.

Finally if, in the steady state, the hyperplanes are not all minimal, we

obtain from the identity (6) the following conditions

(8) 2(^2 aa,)/(l + (X a-)) = a„/a, = cyy/cv.

These show that the family of hyperplanes is a pencil; they possess a common

hyperplane of (n — 2) dimensions.

If it is a totally parallel pencil, the distance is a linear integral function of the

temperature. For since all the a's are independent of both / and v, we can as-

sume each to be zero. Thus our hyperplanes are defined by z =c(v). From (8),

it follows that c is linear integral in v. This proves the above italicized state-

ment.

// it is a pencil with a common finite hyperplane of (n — 2) dimensions, the

angle of the pencil is a linear integral function of the temperature. For in this

case, the pencil may be written in the form z=xi tan a, where a is the angle

of the pencil. By (8), it is found that a is linear integral in v. Thus the above

statement follows.

The preceding work completes the proof of our Theorem 1. Of course, it

is evident from the above that there are no heat families of exactly oo2 hyper-

planes.

Theorem 2. The only isothermal systems of °° x hyperplanes in euclidean

space of n ^ 2 dimensions are the pencils and the families of oo1 minimal hyper-

planes.

This is a consequence of Theorem 1 by assuming that the flow of heat is

steady. Hence Fourier's heat equation reduces to that of Laplace. The heat

families degenerate into isothermal systems.

6. Heat families of hyperspheres. We shall state and prove the following

result concerning hyperspherical heat surfaces.
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Theorem 3. The only heat families of exactly oo2 hyperspheres in «^3

dimensions are those where the centers describe a minimal straight line. Other-

wise if all of a heat family of hypersurfaces in euclidean space ofn^3 dimensions

are hyper spheres, the family degenerates into oo * and is a concentric family.

In the former case, the flow of heat is not steady. In the latter, the flow

can be steady or not steady.

This proposition is quite different from the corresponding one in the plane

as demonstrated by Kasner. There are no heat families of exactly oo2 circles,

real or imaginary. If all of a heat family of curves are circles, the family de-

generates into «J* and is a pencil which can be not only concentric, but also

elliptic, parabolic, or hyperbolic.

We begin to prove our Theorem 3. If all of a heat family of hypersurfaces

are hyperspheres, the family may be written in the form

(9) £ (* - a)2 = (xi - öl)2 + (*, - a2)2 +••• + (*„- an)2 = r2,

where the cartesian coordinates (oi, a2, • • • , a„) = (a) of the center and the

radius r are functions of the temperature v and the time t only. By (2), we

must have the following identity

[ { S a'{x — a) ) + rr,\ ■ [n + {^ at(x — a)} + rrt]

(10) - 2t2>»(*- *)]•[{£ <*•(*- a)} +rrr]

— r [{£ a"(x — a)} + rr„ + r, — { £ aA\ = °>

where the indicated summations extend over the indices (1, 2, • • • , «).

It can be proved by (9) and (10) that the radius r is not identically zero

if »>2.
Let us write z for the last coordinate xn of any point, and c for the last

coordinate a„ of the center. That is, z=x„.and c = an. Upon projecting stereo-

graphically any one of the hyperspheres from the point (ai, a2, • • • , a„_i;

c+r) upon the hyperplane z = c — r, in which the cartesian coordinates may

be written as («i+ai, a2+a2, ■ • • , an-i+a„_i; c — r) = (a+a; c — r), it is found

that any one of our hyperspheres may be given by the parametric equations

4r2a r[(L«2)-4r2]
(11) x — a = -=-;       z — c = —=->

(Sa2) + 4r2' ,(E«2) + 4r2

where the summation extends over the indices (1, 2, • ■ • , « — 1), and the first

equation stands for exactly (» — 1) equations of the same form.

We introduce the symbol

(12) e=(Za2) + 4r2,

so that Q is a quadratic expression in the (« — 1) a's.

Substitute (11) and (12) into the identity (10). Upon simplifying, we find
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that the identity (10) becomes

[4r(£ a,a) - ü/c, + (c, + r,)Q]%'• [4r*(£ atoi) - Sr"ct + (rct + rrt + n)Q]

(13) - 2Ç[4r(£ a„a) - 8r%, + cjQ] • [4r(£ a,ct) - %r\, + (c, + r,)Q]
9 9 A 2 2 5

— 6 [4r (2 a»*a) — 8r c" + Q(rc„ + rr,, + r„ — c, — (^ a,)] = 0,

where the indicated summations extend over the indices (1, 2, • • • , n — 1).

We shall prove that every at and ct are zero. That is, the center of the hyper-

sphere depends only on the temperature v. For otherwise let us assume that

not all the a¡ and c< are zero. Since the above is an identity in the (n — 1)

a's, the quadratic expression Q must be a factor of the quantity 64r4

[(E,ayCt)— 2rc,]2[(£laia) — 2rct\. This can be so only if all the a, and c, are

zero. With these conditions it follows that Q3 is a factor of (13). Therefore

Q is a factor of 4r2r„2 [(2a(a) — 2rc¡]. This can happen only when the latter

expression is identically zero. Of course this is impossible since not all the at

and ct are zero and r, j=0. Thus we have reached a contradiction. The preced-

ing italicized statement has been established.

With the above facts, we find that (13) can be written in the form

[4r(X) <*,a) - 8r2c + (c, + rp)Q]

t    N        -[4r(rr, +n- 2)(^ara) - 8r2cy(rrt +n- 2)
(14) , .    ,

+ {cv(rrt + n - 2) + r,(rrt + n)}Q]
2 s 2 2 2

— Ç/[4r (X) Opvot) — 2>r C" + lrc" + rr" + r, — c, — (X ö>-)}(?] = 0.

In the above identity, it is found that the quadratic expression Q must

be a factor of 16r2(rr(+ra — 2) [(2a»°0— 2rc,\2. This is so if and only if the

latter expression is identically zero. Thus either rrt+n — 2=0, or all the a,

and c, are zero.

First let us consider the case where the hyperspheres are not all concentric.

Then rr(+w —2 =0. Using this condition, the identity (14) yields the following

equations

(15) ra„ = r,av;       rc,v — rrc„       rr„ — r, — c, — ("£, ay) = 0.

In the case under consideration, not all the a, and c, are zero, and also all

the a's and c are independent of the time t. Thus we deduce from the above

equations that rrrl — r,rt = 0. Substituting r( = (2— n)/r into this, we find

2(«-2)r,/r = 0. Therefore either « = 2 or r„ = 0.

If « = 2, the flow of heat is steady. The circles degenerate into °o ' in num-

ber, and form a pencil, which may be either elliptic, parabolic, or hyperbolic.

In this case, the radius is found to satisfy an equation of the form

2 2
(16) rr¥, — r, — (const.)r   = 0.

If n7£2, then r, = 0. For this non-concentric case, we find
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a = (const.)? + (const.); c — (const.)»» + (const.),
( 1 / / 2 2 2

r   = (const.) - 2(w - 2)t;       c„ + (X a.,) = 0.

Thus a system of exactly oo2 hyperspheres in euclidean space of « ^ 3 dimen-

sions is a heat family if and only if the centers describe a minimal line. In that

event, the coordinates of the center are all linear integral functions of the tempera-

ture v, and the square of the radius decreases uniformly at the rate of 2(w —2)

square units per unit interval of time. Also the center is independent of the time t,

and the radius is independent of the temperature v.

The only other case to be considered is where the hyperspheres are all

concentric. Our identity (14) reduces to

2 2

(18) rr„ — (p. — \)rr — rr,rt = 0.

Thus in this case, the flow of heat need not be steady. If it is steady, it is

found that for «^3, l/r"-2 is a linear integral function of the temperature.

For the steady state in the plane, log r is a linear integral function of the tem-

perature.

Theorem 4. The only isothermal systems of oo• hyperspheres in euclidean

space of n^3 dimensions are the concentric families.

This result is strikingly different from the one in the plane. According

to a theorem of Lagrange, the only isothermal systems of circles in the plane

are the pencils which may be concentric, elliptic, parabolic, or hyperbolic.

The proof of our Theorem 4 is a consequence of Theorem 3 by assuming

the flow of heat to be steady. In this case \/rn~~2 is the essential harmonic

function of (x).

7. The degenerate cases of the Fourier heat equation. In euclidean space

of «^2 dimensions, we shall discuss the cases where all of a heat family of

hypersurfaces degenerate into oo l.

Theorem 5. A one-parameter system of hypersurfaces in «^2 dimensional

space is a degenerate heat family of hypersurfaces if and only if its equation can

be put in the form G(xi, x2, • • • , x„) =G(x) = const., where G satisfies an equa-

tion of the form

(19) T,Gxx = Gxlxl + Gx¡x¡+ •• • +GXnXn = oG+b,

where a and b are constants.

Let the heat family of hypersurfaces degenerate into oo >. This family can

be defined by u(x) =u(xi, x2, • ■ • , xn) =const. The temperature v is defined

by an equation of the form

(20) u(x) - v(v, t) = 0,

where v,¿¿0. Substituting this into (2), we find
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(21) «¿[(£ ««) + »<] - v„Y£, ux] = 0.

Since vy^0, we may divide the above by v,2, and then differentiate the

result with respect to v and t, thus obtaining

¡d    vyy\   _.    2 (d    v„\   ^   2
(22) vty - (-—)(£«,) =0,      „„-(__) (2 «,)=0.

Let us suppose that at least one of the coefficients of (^ux2) in the above

equations is not zero. Then by (21) and (22), it follows that £«/) =K and

(£«xx) =L, where K and ¿ are constants independent of the temperature v

and the time t. If K = 0, we obtain oo1 minimal hyperplanes as solutions of

£«,!) =0. This is an isothermal system by Theorem 2. If Kf^O, there exists

a function G(u) such that G is harmonic. For evidently (£Gxx) =Gu(£iuxx)

+Guu(y^.ux2) =LGu-\-KGuu = 0. Thus G is either linear integral in u or ex-

ponential in u. Hence since G is harmonic, this case is of the form (19) where

both a and b are zero.

Next we must consider the cases for which

2
(23) vt = const.,        v„/v, = const,

where the constants are independent of the temperature v and the time /.

Suppose that vyy is zero. Hence v=Av-\-Bt-{-C, where A ^0, B, Care con-

stants independent of both v and t. By (21), we find Ç^juxx) = —73. This is of

the form (19) where u = G, a = 0, b=—B.

Finally let us consider the case where v,y is not zero. By (23), we find

v=A log (v — vo)-\-Bt-\-C, where (^4^0, B, C, vo) are all constants independ-

ent of both »'and t. Substituting into (21), we ñnd A (£uxx)-\-AB — (^tvO^O.

Let G = e-"'A. Thence (£,GXX)=BG/A. This is of the form (19) where a = B/A

and o = 0.

Theorem 6. .4wy degenerate heat family can be given by the  equation

G(x) = const., where G is a solution of one of the three types:

Type I.  Those defined by the Laplace equation

(24) £ Gxx = GXlXl + GX2X1 + • • • + GXnXn = 0.

Type II. Those defined by the special Poisson equation

(25) £C. - 1.

Type III. Those defined by the Helmholtz-Pockels equation

(26) ZG*= ±G.

This proposition may be deduced from Theorem 5 by use of a similitude.

Of course, the two distinct cases appearing in the Type III are equivalent in

the imaginary domain.
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8. The transformation theory of the Laplace equation. In this section,

we shall discuss the point correspondences which preserve the class of iso-

thermal families of hypersurfaces. The following result will be proved.

Theorem 7. All the point transformations of euclidean space of « ^ 3 dimen-

sions which convert every isothermal family of °o* hypersurfaces into an isother-

mal family form the similitude group of (w2+« + 2)/2 parameters.

This proposition is strikingly different from the corresponding one in the

plane. We have proved that the only point transformations in the plane which

send every isothermal family of curves into an isothermal family are the con-

formal ones. We have extended this to transformations of differential ele-

ments in the plane.

Let us consider a point transformation in euclidean space of » dimensions

Xi = Xi(xu Xi, • ■ ■ , xn), Xi = X2(xi, Xt, •••,«_),••• ,
(27)

Xn = Xn(Xi, x2, • • • , xn),

with nonvanishing jacobian j = d(Xit X2, • • • , Xn)/d(xi, Xi, • • • , xn). This

may be abbreviated as X=X(x) with jacobian j = d(X)/d(x)5¿0.

We shall obtain all point transformations (27) which carry every isother-

mal family of oo• hypersurfaces into an isothermal family.

If F(X) =F(Xi, Xi, • • • , Xn) = const, is an isothermal family in the (X)

space, we can suppose that F has been so chosen that the parameter is iso-

thermal. Hence

(28) 2-, F xx = FxiXi + ¿x2x2 + • • • + ¿xnx„ = 0.

The corresponding system in the (#)-space of the above family is

F[X(x)] = F[Xi(xi, x2, ■ ■ • , xn), Xi(*i, Xi, ■ • • , xn), • ■ • ,

Xn(xi, Xi, ■ ■ • , xn)] = const.

If this system in the (#)-space is isothermal, the parameter is not necessarily

isothermal. But ¿must be a function of a harmonic function in (x). Therefore

the expression

(¿lFxx)      FXIX1 +FX}X1+ • ■ ■ +FXnX„
(30) A = —=-=-

CLFl) FXl+Fli + ---+Fln

must be a function of F alone. That is, we must have

(31) AXJF^ = AxjFXf,

for all X, ju = (li 2, • • • , «), and \¿¿u.

Now we proceed to find out when A is a function of F alone where F satis-

fies the condition (28), for any arbitrary F. First we find from (29) that A

has the following form
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E ft«. (£-)'+2 S «« (?) (?) + £ ft- (S)
/™\ a./3 V 0*3 / a<ß.t \ OXS /   \ OX¡ / a.ß \ OXß  /

A= E(E^?y '

where the various summations extend over the indices (1,2, • • • , n).

Upon evaluating the left-hand side of (31) by substituting (32) into it,

we find that the left-hand side of (31) becomes, as far as the partial derivatives

of third order of F,

A      E iw. (?) (?)V 2 E fw. (¥) (£=) (i5)
/o,\   A,x _   a.ß.t_\ Bx\ / \ dXß / g<ß.i.i \ dx\ / \ dXj / \ dxt /

^~~ [ZFxa— ~\[E( ¿ZFxa— VI
L   a Ö*X J L   ß   \   a "   dXß '   -I

This is equal to a similar expression where only X is replaced by p..

Let y be a definite one of the integers (1, 2, • • • , n). By (28), we may

eliminate Fx7x7 and Fx7x7xv, rj = l, 2, • • • , n, from  (33), hence from (31).

Now (31) must be an identity in Fxax,xa where a is any integer different

from y. Upon setting its coefficient equal to zero, we find that the expression

dXg     /dxa\2   dxa     /dXy y dxy     /dxa\ /dx7\

,    . dx\    ß   \dXß)       dx\    ß   \dXß/* dx\    ß   \dXß J\dXß /
(34)      -

yp     dXß

ß da*

is equal to a similar expression where X is replaced by p.

The result obtained from (34) must be an identity in the partial deriva-

tives of F. Setting the coefficient of Fx„ equal to zero, we find

(35) [^1  àX1_àXa  dXyl       /dXg\ /dXy\ =

L dX\     dXf. dx„     dx\ J   ß   \dXß )\dXß )

This must be valid for all a, y, X, n = l, 2, • • • , n, where a^y, and X^ju-

The left-hand bracketed expression in (35) can not be zero. For otherwise,

any two rows (or columns) of the jacobian would be in proportion, and hence

the jacobian would be identically zero. Thus we Obtain the identities

„ /dXa\ /dXy\ _

ß  \ dxß ) \ dXß )

for all a, y — 1, 2, • • • , n, and ay^y.

Using this result, we find upon setting the coefficient of Fxt where 8?*a,

from the identity obtained from (34), equal to zero,

m     f «: iil _ «: «il r E (ÜY- E (S£f\, 0.
L dx\     dxß âx„     dX\ J L   ß   \ dXß I ß   \ dXß / J
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This is valid for all a, 7, 5, X, u = l, 2, • • ■ , n, where aj^y, a^b, and Xf^/í.

The first bracketed expression in (37) can not be zero. For otherwise, the

jacobian would be zero. Thus we obtain the identities

ß   \ dxß / ß   \ dxß /

for all a, y = 1, 2, • • • , «, and a^y.
From (36) and (38), we deduce that our point transformation (27) is con-

formal. According to a theorem of Liouville which states that all the con-

formal transformations of euclidean space of «^3 dimensions form the

inversive group of (« + l)(»+2)/2 parameters, we find that our point trans-

formation (27) must belong necessarily to the Liouville inversive group. That

is, it must carry planes and spheres into spheres and planes.

If the point transformation (27) is not a similitude, it will carry a parallel

pencil of hyperplanes, which is isothermal, into a parabolic pencil of hyper-

spheres (all those tangent to a fixed hyperplane at a given point), which is

not isothermal, by Theorem 4 above. Therefore we arrive at the conclusion

that the point transformation (27) must be a similitude.

This completes the proof of our Theorem 7.

The following corollary may be established. The Laplace equation remains

unchanged only for the similitude group in euclidean space of « à 3 dimensions.

Of course, in the plane (« = 2), the Laplace equation is invariant under the

conformai group (involving arbitrary functions of a complex variable).

9. Lie's characterization of isothermal families in the plane is not valid

in euclidean space of «^3 dimensions. This theorem of Lie states that, in

the plane, the angle between any isothermal family of curves and a parallel

pencil of straight lines is a harmonic function of the point(7). We shall prove

that, in general, this is not valid in euclidean space of «^3 dimensions.

First we shall state and prove the following proposition.

Theorem 8. Let H=H(x) =H(xi, x2, • ■ ■ , xn) be any arbitrary harmonic

function of (x) in n-dimensional space, and let F=F(p)=F(pi, p2, ■ ■ ■ , p„)

be a function of the n first-order partial derivatives, pa = dH/dxa, of H. If « è 3,

the function F is harmonic in (x) for any H if and only if F is linear integral

in the n arguments. If n = 2, Fis harmonic in (x) for any H if and only if Fis

harmonic in the two arguments.

Let us note that

(39)   2^Fxix¡ = z_jFPaPaHXaX¡ + 2 2j FPaPfiHXaX¡Hxßxs + ¿_,FPaHXaHxi,
8 a,h a<ß.i a. S

where the summations extend over the indices (1, 2, • • • , «).

(') Kasner, Geometric properties of isothermal families, Publicaciones del Institute de Mate-

mática de la Universidad Nacional del Litoral, Rosario, Argentina, vol. 5 (1943) pp. 91-98.
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Impose the hypothesis that Fis harmonic in (x). Then the right-hand side

of the above equation is identically zero in the partial derivatives of H, which

are subjected to the condition that ^Hxx = 0.

Let y be a fixed integer of the indices (1, 2, • • • , «). We may eliminate

Hx7i7 and HX7XyZS for 5 = 1, 2, • • • , n from the above identity by using the

condition that H is harmonic. The resulting equation must be an identity in

the remaining partial derivatives of H.

If re is 3, we shall prove that FPaPa = 0for all a = l, 2, • • • , n. The quantity

(d2H/dxa2)2 can appear only in the first summation which appears on the

right-hand side of (39). Upon setting its coefficient equal to zero, we find

(40) Fpapa + FP7P7 = 0.

This is valid for all a, y=»l, 2, • • • , n, where aj¿y. If «2:3, we deduce from

the above equation the following system of three equations

("H) FPaPa + FpyPy  =   °. FpßPß + FPyPy   =   °> F Pa Pa + F pßTß  =   0.

These hold for all a, ß, y = 1, 2, • • • , n where ay^ß, a5¿y, and ß^y. From

these we discover that FPaPa = FPßPß== FPyPy =0. This proves the above itali-

cized statement.

// »st3, we shall show that FPaPß = 0for all a, ß — 1, 2, • • • , n, where a^ß.

It is found that the only place where the quantity (d2H/dxa2)(d2H/dXadxß),

for which oiy^ß, a5^7, and ß^y, can appear, is in the second summation on

the right-hand side of (39). Its coefficient is FPaPß, which must be zero. Hence

FPaPß = 0 for all ct^ß, a^y, and ß^y. Since y can be any one of the indices

(1, 2, • • • , n), it follows that FPaPß = 0 for all a, ß — 1, 2, • • • , n, where aj*ß.

That is, either a or ß can be y also. (It is to be noted that, since H is har-

monic, the coefficient of (d2H/dxa2)(d2H/dxadx7) is zero. However, the co-

efficient of (d2II/dxa2)(d2H/dxßdxy) is — FPßPy, which must be zero. Hence

FPßPy=0, and similarly, FPaPy = 0.) Thus we have established completely the

above italicized statement.

In the preceding two paragraphs, we have proved that, if «2:3, all the

second order partial derivatives of F with respect to its arguments (p) are

zero. This means that F is linear integral in the arguments. Thus our proposi-

tion is established in the cases where re 2:3.

In the plane (re = 2), the equation (39) becomes

2-1 ^ x¡x¡ = fr j)ipi[" mi + u XIX1 j + •f'pjjjjL" « xj + " 12*2!

(42)   *

+ 2FplP2HxlX2[Hxlxl + 77*2*2] +   7?pl--1- Fp2-   [77iin + HX2Zt\.
L       OX! 3x2J

From this, it follows that /" is harmonic for any arbitrary harmonic func-
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tion 77 if and only if F is harmonic in its arguments (pi, p2). Thus the last

assertion of our proposition is established.

Theorem 9. Lie's characterization of isothermal families in the plane is not

valid in euclidean space of n =; 3 dimensions. That is, the angle between an iso-

thermal family of hypersurfaces and a parallel pencil of hyperplanes is not, in

general, a harmonic function of (x).

LetH(x)—H(xi,x2, • • • , xn) = c be an isothermal family of hypersurfaces.

Then we may assume H to be a harmonic function of (x). The angle between

this family and any one of the coordinate hyperplanes is of complicated alge-

braic structure in the partial derivatives of 77 alone. Hence by Theorem 8,

the angle can not be, in general, a harmonic function of (x). This establishes

our Theorem 9.

Of course, in the case of the plane, Lie's theorem is valid since F= F(pi, p2)

= —arc tan pi/pi is harmonic in (pi, p2). Hence by the second part of our

Theorem 8, the inclination, —arc tan HXl/Hxv of the isothermal family of

curves, H(xi, x2) = const., to the ^i-axis is harmonic in (xi, x2).

We have shown elsewhere(8) that Lie's theorem is valid for the case of

multi-isothermal systems of hypersurfaces defined by multiharmonic func-

tions in space of 2« dimensions by using the pseudo-angle of Kasner. In this

geometry, we find many theorems which are analogous to the corresponding

ones for isothermal systems of curves in the plane.

(8) Kasner, Conformality in connection with functions of two complex variables, Trans. Amer.

Math. Soc. vol. 48 (1940) pp. 50-62; Biharmonic functions and certain generalizations, Amer.

J. Math. vol. 58 (1936) pp. 377-390. See the papers by Kasner and DeCicco, Pseudo-conformal

geometry : functions of two complex variables. Bull. Amer. Math. Soc. vol. 48 (1942) pp. 317-328;

Bi-isothermal systems, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 169-174. Also the article,

Multi-isothermal systems (Spanish), Publicaciones del Instituto de Matemática de la Universidad

Nacional del Litoral, Rosario, vol. 11 (1946) pp. 117-125. Finally see DeCicco, The pseudo-angle

in space of 2n dimensions, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 162-174.

Columbia University,

New York, N. Y.

Illinois Institute of Technology,

Chicago, III.


