
CONTRIBUTIONS TO THE THEORY OF LOOPS

BY

R. H. BRÜCK

Introduction. It is not altogether easy to single out the dominant idea of

the present paper; perhaps this may be said to be the notion of a ir-series,

which is introduced in Chapter I and recurs in Chapters II and III. Associ-

ated with this notion are the concepts of ir-nilpotent and of ir-solvable loops.

It would require too much space for precise definitions of these concepts

here. We may say, however, that 7r designates some "characteristic" property

which singles out certain elements of a given loop G; and that, by special

choices of ir, we arrive at the notions of a centrally nilpotent loop (analogous

to a nilpotent group), of a left-associatrally nilpotent loop (in which the role

of the centre in central nilpotency is now usurped by what we have called the

normal left associator), of a middle-associatrally nilpotent loop, and so on.

When attention is restricted to loops with the inverse property, as is the case

in Chapter II, we have in addition the notions of Moufang nilpotency and

Moufang-central nilpotency.

Certainly the most useful tool introduced in this paper is the inner map-

ping group 3 of a loop G. When G is a group, $ reduces to the group of inner

automorphisms of G. In any case, 3 has the property of deciding normality;

a subloop H of the loop G is normal in G if and only if H is mapped into itself

by every element of $• But it is not true that 3 always consists of auto-

morphisms. In view of this latter fact it is necessary to learn a new technique

for the purpose of calculating with 3. A considerable part of Chapter I is in

fact devoted to the theory of the inner mapping group, particularly in connec-

tion with finite centrally nilpotent loops.

Another important tool is the autotopism group of a loop G. We say that

an ordered triple (U, V, W) of one-to-one mappings U, V, Woî G upon itself

is an autotopism of G if and only if xU-yV=(xy) W for all x, y of G. (The

autotopisms form a group under the multiplication (U, V, W) (U\, Vi, Wi)

= (UUi, VVi, WWi).) As is shown in Chapter II, many interesting new struc-

ture theorems for loops with the inverse property may be derived with ease

by use of the autotopism group.

Chapter I deals with general loops, Chapter II with I.P. loops (loops with

the inverse property), and Chapter III with various problems of construc-

tion. In particular, most of our examples connected with the theory of the

first two chapters have been deferred until Chapter III. Each chapter is pref-

aced by a detailed description of its contents. However, the reader must
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consult the main body of the paper for definitions and references to the lit-

erature.

Perhaps we should reassure the newcomer to the theory of loops by stating

that every effort has been put forth to make the paper reasonably self-con-

tained. We have, of course, assumed a certain familiarity with group theory,

but most of the loop theory needed in the paper has been carefully and ex-

plicitly stated. Moreover, various known theorems have been proved anew

by means of the inner mapping group, especially in §3 of Chapter I ; but in

such cases, careful references have been given to the literature.

Chapter I. General theory

This chapter is devoted mainly to a theory of loops without the introduc-

tion of special laws. However, we do on occasion study special classes of

loops, for example, the finite ones. It has been thought worthwhile to preface

the main study (in §1) with some remarks on sets and mappings of sets, and

to derive a few theorems on the isotopy problems of groupoids. (In particu-

lar we consider a theory of multiplicative ideals which is not applied in the

sequel but is of interest in connection with the theory of rings.) Definitions

of the terms quasigroup and loop and of certain qualifying adjectives are

given in §2.

In §3 we sum up (with references) some of the known results on normal

subloops of a loop. The most important contribution of this section is the

notion of the inner mapping group 3 of a loop G, the analogue for loops of the

inner automorphism group of a group. (3 does not always consist of auto-

morphisms of G; however a subloop H oí G is normal in G if and only if H

is mapped into itself by every element of 3-) We use 3 to prove some of the

known theorems on normality ; and we also show that the union of an arbitrary

collection of normal subloops of a loop G is a normal subloop of G (Theorem 3G).

In §4 some of the basic properties of the central series of a (nilpotent)

group are generalized in an abstract theory of so-called 7r-series. Here ir desig-

nates some fixed "characteristic" property of loops, and associated with each

7T is a class of 7r-admissible loops, determined by explicit and easily handled

postulates, for which the theory is valid. Certain 7r-admissible loops are

called 7r-nilpotent, and for these the upper and lower ir-series exist and have

the same (minimal) length. We also give some theorems in this section on a

more general class of loops called 7r-solvable; for example, the union of all

normal ir-solvable subloops of a finite ir-admissible loop is a (uniquely defined)

normal ir-solvable subloop.

§5 deals briefly with the #-loop of a loop; and §6 considers certain "La-

grange" properties of a finite loop, namely the weak property (L) : the order

of every subloop of the finite loop G divides the order of G, and the strong prop-

erty (L') : every subloop H of the finite loop G has property (L). It is shown in

particular that a finite loop has property (L') if and only if the simple quotient
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loops in its decomposition series have property (L'). Moreover every finite loop

contains a unique maximal normal subloop with property (L')-

When ir is the property of lying in the centre of the loop G we have the

notions of central admissibility, central nilpotency and central solvability.

In §7 every loop is shown to be centrally admissible. The various terms in

the upper and lower central series are described in detail in terms of the inner

mapping group. For finite centrally nilpotent loops G, Theorem 7E and its

corollaries give a generalization of the Burnside Basis Theorem for p-groups,

which reduces to the usual form when G has prime-power order. Similarly

Theorem 7F generalizes a theorem of P. Hall on the order of the automor-

phism group of a finite p-group. §8 concerns the order of the inner mapping

group 3 of a finite centrally nilpotent loop G. It is shown that the order of

3 divides some power of the order of G. (This is remarkable, since there exists

a loop of order 5—of course not centrally nilpotent—whose inner mapping

group has order 4! = 24.) Moreover it is proved that a finite p-\ooo G (of

order a power of the prime p) is centrally nilpotent if and only if 3 is a

£-group. §9 gives a brief discussion of the relation of the theory of finite

centrally nilpotent p-loops to P. Hall's work on p-groups.

In §10 the notion of left-associatral series is touched upon lightly; here

ir is the property of lying in the Ieft-associator.(defined in §§1, 2) of the

loop G. It is shown that every loop is ir-admissible in this sense. Other types

of associatral series are also mentioned.

§11 introduces the autotopism group of a groupoid—not to be exploited

until Chapter II—and §12 shows the role of the inner mapping group 3 of a

finite loop G in the theory of the loop ring of G over a field F. We define two

elements x, y oí G to be conjugate if and only if xU=y for some element U

of 3, and then we may state a theorem wholly analogous to one for group

rings: // F is algebraically closed and (to specialize slightly) of characteristic

zero, the loop ring of G over Fis a direct sum of h simple algebras, where h is the

number of distinct classes of conjugate elements of G.

1. Groupoids. It will be convenient to recall some of the terminology of

set theory. A mapping T (a—>aT) of a set G into a set H is called single-

valued if, for every element a of G, aT is a uniquely defined element of H.

The single-valued mapping Toi G into H is said to be (i) a one-to-one mapping

of G into H ii aTj^bT for every two distinct elements a, b of G and (ii) a

one-to-one mapping of G upon H if (i) holds and, in addition, every element

of H has the form a F for some a in G. When F is a one-to-one mapping of G

upon H, then to every b of H there exists a unique element a = OF-1 of G such

that aT = b. In this case F_1 is a one-to-one mapping of H upon G, called the

inverse of T. In the sequel a one-to-one mapping P oí a set G upon itself will

often be called a permutation oí G.

According to Hausmann and Ore [l](') a set G is defined to be a groupoid

(') Numbers in brackets refer to the Bibliography at the end of the paper.
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relative to an operation ( • ) if and only if, to every ordered pair o, b of elements

of G, there corresponds a uniquely defined element ab of G. Since a set may

be a groupoid relative to more than one operation it is sometimes convenient

to speak for example of "the groupoid G(-)." If / is any fixed element of a

groupoid G(-) we may define two single-valued mappings L¡, R¡ of G into

itself by

(1.1) aL/=fa,       aRf = a-f,

where (1.1) is to hold for all o of G. An element 1 of a groupoid G(-) is said

to be a unit of G( ■ ) if, for every a of G,

(1.2) o-l = l-o = a.

If e is also a unit then e = el = 1, and hence a unit, if it exists, is unique. An

element/ of G(■■ ) is said to be left-nonsingular (right-nonsingular) if L¡ (Rj) is a

permutation of G. (Note that if G(-) consists of the natural numbers

1, 2, • • • under ordinary multiplication, the only left- or right-nonsingular

element is the number 1.)

Two groupoids G( ■ ) and H (o) are defined to be isotopic if there exist three

one-to-one mappings U, V, W (not necessarily distinct) of G upon H such that

(1.3) (xy)W = (xU)o(yV)

for all x, y of G. In particular two groupoids G(*) and H(o) are said to be

isomorphic if there exists a one-to-one mapping F of G upon H such that

(1.4) (x*y)T = (xT)o(yT)

for all x, y of G. Clearly isotopy and isomorphism are equivalence relations.

In particular two isomorphic groupoids are abstractly identical. Finally two

groupoids G( ■ ) and G(*), defined upon the same set G, are said to be principal

isotopes if there exist two permutations P, Q of G such that

(1.5) x-y = (xP)*(yQ)

for all x, y of G.

Lemma 1A. Let G(-) and H(o) be isotopic groupoids. Then there exists a

groupoid G(*) isomorphic to H(o) and isotopic to G(-). In particular G(*) may

be chosen to be a principal isotope of G(-).

Proof. We may assume (1.3), pick F arbitrarily as a one-to-one mapping

of G upon H, and define G(*) by (1.4). It follows at once that (x-y)Wi

= (xUi)*(y Vi) for all x, y of G, where Ux= UT~\ Vx= VT~\ Wi=WT~\ But
U\, Vi, Wi are permutations of G. By the special choice T=W we derive

(1.5) with F= UW~\ Q= VW-K
Thus, as A. A. Albert has pointed out in various papers, if we consider two

isomorphic systems as identical then in the theory of isotopy there is no loss
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of generality in restricting attention to principal isotopes. The following theo-

rem may be proved exactly as in Albert [l], and we shall omit the proof.

Theorem 1A. Let G(-) be a groupoid. Then a necessary and sufficient con-

dition that there exist a groupoid H(o), with a unit, isotopic to G() is that G(-)

possess at least one left-nonsingular element f and at least one right-nonsingular

element g. Every principal isotope G(o) of this type is given by

(1.6) xoy= (xR'^^yLj1)

for some such fixed pair f, g of G(-). In this case the unit of G(o) is e=fg.

If G(o) is given by (1.6), the one-to-one mappings La°, Ra° oí G into itself

may be defined by xLa" = aox, xRa°=xoa. Now suppose in particular that

G(-) has a unit 1. It follows at once that

(1.7) |Ä?-1,       /¿/_1=1,

since indeed \Rg = g, \L¡=f. But, even more important, we have

(1.8) L q = Lf ,        R/ = RB  .

For example, from (1.6), xL"ll = gox = (gi?„_1) • (xLf~x) = 1 • (xLf1) =xL/~1, and

so L°„=L/~1. From (1.8) it is clear that g is a left-nonsingular element and

that/is a right-nonsingular element of G(o).

Corollary to Theorem 1A. Let G(-) be a groupoid with unit 1. Let f, g

be respectively a left-nonsingular and a right-nonsingular element of G(-), and

let G(o) be the principal isotope, with unit e=fg, given by (1.6). Then f, g are

respectively a right-nonsingular and a left-nonsingular element of G(o), and we

have

(1.9) x-y = x(R>/)-ioy(L't)-1

for all x, y of G. Moreover 1 =gof.

Proof. By (1.8) and (1.6) the right-hand side of (1.9) reduces to

[(xRa)Rl)~1]- [(yLf)Lf-1]=xy. The rest of the proof was given above, save

for the point that gof = gR,,-1 -fL/'1 = 1-1 = 1.
It is to be noted that a subgroupoid H( ■ ) of a groupoid G( ■ ) is by definition

a subset H oí G which is a groupoid relative to (•). Again a groupoid G(-) is

said to be semigroup if

(1.10) (ab)c = a-(bc)

for all a, b, c of G ; that is to say, a semigroup is an associative groupoid. Every

groupoid G(-) contains certain associative subgroupoids. If G(-) is any

groupoid we define the subsets A \, A^, A „ of G as follows (2) :

(2) These associators and others have been defined by various authors, for example, by

Garrison [l].
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Definitions. A\ is the set of all elements a of G(-) such that

(1.11) (a-x)-y = a-(x-y)

for all x, y of G.
Aßis the set of all elements a of G(-) such that

(1.12) (x-a)-y = x-(a-y)

for all x, y of G.,
Af is the set of all elements a of G() such that

(1.13) (x-y)-a = x-(ya)

for all x, y of G.
We shall speak of .4x, A„, A„ respectively as the left-, middle- and right-

associators of G( ■ ).

If a, b are two elements of A\, and x, y any elements of G(-), then, by

repeated uses of (l.ll), (a ■ b) ■ (x ■ y) = a ■ [b • (x ■ y)]= a ■ [(b ■ x) ■ y]= [a ■ (b ■ x)] ■ y

= [(a-b)-x]-y. Thus a -b is in A\ for all a, b of A\, and so A \ is a subgroupoid

of G( ■ ). Again if a, b, c are any three elements of A \ then by (1.11) with x = b,

y = c we see that (1.10) holds, and A\ is a semigroup. Since a similar result

holds for A M and Ap, we have proved the first statement of the following theo-

rem.

Theorem IB. If G(-) is any groupoid, each of the three associators A\(-),

A„(-), Ap(-) of G(-) is a subgroupoid of G(-) and in fact a semigroup. If G(-)

has unit 1, and if G(o) is a groupoid with unit, isotopic to G(-), then the three

associators A\(o), Aß(o), A„(o) of G(o) are respectively isomorphic to the corre-

sponding associators of G(-).

Proof. We note that if G( ■ ) has unit 1, then 1 is common to the three asso-

ciators of G( ■ ) and hence the latter are non-empty. Because of Lemma 1A we

may assume that G(o) is the principal isotope of G(-) given by (1.6). First we

prove that A \( ■ ) and A \(o) are isomorphic. Consider the mapping L of A x( • )

into G(o) given by

(1.14) aL = (a-f)-g,

and note that, by (1.11), (1.14) is equivalent to aL = a- (f-g) =ae. If aL = bL

for a, b in Ax(• ) then (af)Ra = (bf)Re and so af=bf since g is a right-nonsingu-

lar element of G(-). Inasmuch as/ is a left-nonsingular element of G(-) the

element h — IF/-1 exists and has the property that/Ä = l. But then a = a-fh

= afh = bfh = bfh = b-l =b, since o, b are in -4x(-)- It follows that aL = bL

implies a = b. Therefore L is a one-to-one mapping of A\(-) into G(o).

Again, if x is any element of G, a any element of A(-), then

(1.15) (aL)ox = a-x,
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since (aL)ox = (aLRf1) ■ (xLr1) = (a-f)-xLf~1=a-(f-xLf1) = a-x. Moreover

[a ■ xRg-1 ]Ra = (a■ xR^1) g=a- (xR,-1 ■ g) = a■ x and so

(1.16) (a-x)R^= a-(xR^)

for all aÇLA\(-), z£G. Thus, by use of (1.15) and (1.16), [(aL)ox]oy=(a-x)oy

= [(a-x)Ra-1]-(yLr1)=[a-(xRa-1)]-(yLr1)=a- [(xR,-1)■ (yLr1)] =a-(xoy)

= (aL)o(xoy). It follows that

(1.17) [(aL)ox\oy = (aL)o(xoy)

for all a of A\(-) and x, y of G(o). Therefore L is a one-to-one mapping of

A\(-) into^4x(o).
If we now observe the relationship between (1.6) and (1.9) it will be clear

that the mapping L0, defined by

(1.18) cL0 = (cog)of, cGAx(o),

is a one-to-one mapping of A\(o) into A\(-). li a is any element of ^lx(-) then,

by (1.18), (1.17), (1.15) and the corollary to Theorem 1A, we see that

(aL)L0= [(aL)og]of=(aL)o(gof) =a-(go/)=a-l =a. Thus since aL is in

A\(o) it follows that L0 is in fact a one-to-one mapping of A\(o) upon A\(-).

Similarly L is a one-to-one mapping of -4x(-) upon -4x(o); and in fact L, L„

are inverse mappings. Finally, if a, b are in ^4x(-), then, by (1.15) and the fact

that bL = be, (aL)o(bL) =a-(bL)=a-be = ab e=(ab)L, or (ab)L = (aL)o(bL).

Hence -4x(-) and A\(o) are isomorphic, as was to be proven.

Similar proofs may be given to show that the mappings M, R, defined by

(1.19) xM =f-(x-g)

and

(1.20) xR=f-(g-x)

induce isomorphicms respectively of A^-) upon Aß(o) and of A„(-) upon

Ap(o). A slight difficulty arises however in the proof of the fact that

(1.21) [xo(aM)]oy = xo[(aM)oy]

for all a of A„(-) and x, y of G, and we therefore give this in detail:

xo(aM) = (xRa-1).   [(f-ag)Lr1] = (xRll-1)-(a-g)=[(xRll-1)-a]-g,   and   hence

[xo(aM)]oy = [xR,-1 • a] • (yL,~l) = (xRg~l) ■ W■ (yLr1) ] = xo [ {a(yLrl)}L{]

= xo[(fa)-yLf-1)]=xo[{(f-a)-g}oy]=xo[(aM)oy].

An element a of a groupoid G(-) which is both left- and right-nonsingular

will be said to be nonsingular.

Lemma IB. IfG(-) is a semigroup with unit 1, every left-nonsingular (right-

nonsingular) element of G(-) is nonsingular. Moreover the set H of all nonsingu-

lar elements is a subsemigroup of G(-) and in fact a group.
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Proof. If / is left-nonsingular, let /-1 = 1Z/-1 so that ff~1 = \. Then

(f-1 f)L, =f-(f~1 •/) = (/./-i)-/=l./=/; that is, /-i•/=/£,-! = 1. If * ¡s any
element of G() the element y=xR/-i has the property that yRf=(x-f~1)-f

=x-(f~1f)=x-i=x; conversely if yRf = x then xR/-i=y-(ff~1)=y. Hence

Rf~1=Rf-i, and similarly Lf~1=Lf-i; in particular both / and/_1 are non-

singular. Similarly if g is right-nonsingular and if g-1 = lFv„_1 then L<r1=Ls¡-i,

R„~1=Ril-i, and both g and g_1 are nonsingular. Finally, if p, g are nonsingular

then xRpq = xpq = xpq=xRpRt and Rpq~1=Rq-1Rp-1; pq is right-nonsingu-

lar and so nonsingular. This essentially proves that H( ■ ) is a group.

We may now prove the analogue of another theorem due to Albert [l ].

Theorem 1C. Let G(-) be a semigroup with unit 1. Then any groupoid H(o)

with a unit which is isotopic to G(-) is in fact isomorphic to G(-), and hence in

particular is a semigroup.

Proof. As before we may assume that H(o) is the principal isotope G(o)

given by (1.6). Since G(-) isa semigroup, -4x() coincides with G(-), and the

mapping L defined by (1.14), or by aL = a(f-g), gives an isomorphism of

A\(-) upon A\(o). By Lemma IB, e=f-g is a nonsingular element of G(-)

and hence L = Re is a permutation of G. It follows that -4x(o) coincides with

G(o).
If G(-) is a groupoid, the set A =A\r\AliC\Ap consisting of all elements

common to .4x(-)> A,,(-) and Ap(-) may be called the associator. Clearly .4(-)

is a subgroupoid of G( ■ ) and in fact a semigroup. The question is still open

as to whether isotopic groupoids with units have isomorphic associators A.

Added in proof: Since this was written I have constructed simple counter-

examples.

The subset C(-) of a groupoid G(-), consisting of those elements a of A

such that a-x = x-a for all x'oí G, is called the centre of G(-). More loosely

stated, C() consists of all elements of G(-) which commute and associate

with the elements of (?(•)• Theorem 1 D is also essentially Albert's[3].

Theorem ID. The centre C(-) of a groupoid G() is an associative sub-

groupoid ofG(-). IfG(-) has a unit, and if G(o) is a groupoid with unit, isotopic

to G(-), then the centre C(o) of G(o) is isomorphic to C(-).

Proof. The proof follows the pattern of previous proofs. The reader may

prove the first statement. The essential point in regard to the second state-

ment is the fact that if o is in C(-) then aL=aM=aR = a-e, where L, M, R

are given by (1.14), (1.19) and (1.20) respectively, and where e—f-g. Hence

L, M and R may be shown to yield the same isomorphism of C( ■ ) upon C(o),

where G(o) is assumed to be given by (1.6). It should moreover be obvious

from this remark where the difficulty lies in regard to a like theorem about

A(-).
An automorphism S of a groupoid G( ■ ) is a one-to-one mapping of G upon
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itself such that

(1.22) (x-y)S=(xS)-(yS)

for all x, y oí G. Following R. Baer [3] and the obvious suggestion from group

theory we shall define a subset H of G() to be characteristic ii HS^H (that

is, if hS is in H for every h oí H) for every automorphism S of G(-). An

endomorphism S of a groupoid G(-) is a single-valued mapping S oí G into

or upon itself such that (1.22) holds for all x, y of G(-); and a subset H of

G(-) will be called fully characteristic (Baer) if HS^H for every endomor-

phism of G(-).

Theorem IE. If G(-) is a groupoid, the subgroupoids A\(-), Aß(-), A„(-),

A(-) and C(-), defined above, are all characteristic.

Proof. Let a be any element of ^4x(0, S any automorphism of G(-). Then,

for all x, y oí G, [(aS)-x]-y={ [a- (xS'1)]■ (yS'1)}S= {a- [(xS-1)• (yS-»)]}S

= (aS) • (x-y), and hence aS is in A\(-). Thus^4x(-) is characteristic, and simi-

larly for A„(-), Ap(-). If a is in A(-), aS is then in each of ^4x(-)i ^m() and

ilp(.),and so in il(-).FinalIyif ais in C(-),(o5) •*= [a-(xS-1)]^ [(zS"1)-a]S

= x-(aS). Hence aS is an element of the characteristic groupoid A() which

commutes with every element of G(-), and so aS is in C(-).

As we shall show in the next section, all of the above theorems are valid for

loops. Indeed they also hold, with obvious modifications, for various types of

rings (see for example [Albert 3]). The following notion of a multiplicative

ideal stems from ring theory, and apparently has little value for the theory of

loops.

Definition. A subset H of a groupoid G( ■ ) will be said to be a left ideal, a

right ideal, or an ideal ofG(-) according as it satisfies the first two, the last two, or

all of the following conditions :

(i) For every a of H and x of G(-), x-ais inH.

(ii) For every a of H and every left-nonsingular f of G(-), aLf1 is in H.

(iii) For every a of H and x of G(-), ax is in H.

(iv) For every a of H and every right-nonsingular g of G(-), ai?„_1 is in H.

Every ideal of G(-) is a left ideal (and a right ideal) but not always con-

versely. Moreover, left, right and two-sided ideals are clearly subgroupoids

ofG(-).

Theorem IF. Let G(-) be a groupoid, H(-) any left (right, two-sided) ideal

of G(-). Moreover let G(-) possess an isotope Q(o) with a unit. Then Q(o) pos-

sesses a left (right, two-sided) ideal K(o) whose elements are in one-to-one corre-

spondence with those of H. If H( ■ ) satisfies both (ii) and (iv) above, then K(o)

is isotopic to H().

Corollary. If G(), Q(o) are isotopic groupoids, each with a unit, then their

(two-sided) ideals are isotopic in pairs.
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Proof. Again assume that Q(o)=G(o) where the latter is given by (1.6).

It follows at once, by (ii) and (i), that H forms a left ideal H(o) of G(o). In

fact if a £il then aLf1 = b Ç.H and so xoa = xRg-1 ■ b £iF for all x of G. More-

over the identity mapping sets up a one-to-one correspondence between the

elements of H(o) and H(-). If H(-) satisfies (iv) as well as (ii), then both

Z,/-1 and Rg_1 are permutations of H as well as of G, and (1.6) immediately

yields the fact that the groupoids H( ■ ) and H(o) are isotopes. This completes

the proof for left ideals, and the other cases give no trouble. The corollary is

immediate.

It should perhaps be pointed out that in the theory of linear algebras (of

finite order over a field) we consider only those ideals (in the present sense)

which form a group under addition. But then condition (ii) is a consequence

of (i), and (iv) a consequence of (iii).

Since we have been preoccupied in this section with isotopic systems it

has seemed worthwhile to put up with the nuisance of emphasizing the opera-

tions ((•)> (°) or (*)) of the various systems under consideration. In most of

what follows we shall usually assume that the operation in question is (•).

Moreover we shall often write xy for x-y, xy-z for (z-y) -z, and so forth.

2. Quasigroups and loops. The main purpose of this section is to list for

ready reference the definitions of quasigroup and loop and of certain impor-

tant subsets of the latter. The only novelty in these definitions is the restricted

meaning given to the term abelian. We also give slightly improved analogues

for loops of the theorems of the preceding section.

In terms of the language of §1 a quasigroup G might be defined to be a

groupoid in which every element x is nonsingular. More explicitly a set G

is a quasigroup if and only if the following two laws are satisfied.

I. To every ordered pair x, y of elements of G there corresponds a unique

element xy of G, called their product.

II. If, in the equation xy = z, any two of the symbols x, y, z are assigned as

elements of G, the third is uniquely determined as an element of G.

Clearly a groupoid is a set in which only (I) is assumed.

A loop is a quasigroup with a unit element. Thus a loop G obeys (I), (II)

and the following.

III. There exists an element 1 of G with the property that 1 x = x-1 =x for

every x of G.

A loop G can have exactly one unit. Moreover if a subset H oî G obeys

(I) and (II), with respect to the operation (•) of G, then it will contain the

unit 1 of G. Such a subset we call a subloop. The order of a loop is by definition

its cardinal number. An infinite loop may contain subgroupoids (subsets

obeying (I)) which are not subloóps, but we shall ignore these in the sequel.

A proper subloop is one which neither coincides with G nor contains only the

element 1.

An associative loop G is one which obeys :
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IV. For every triple x,y,z of G, xy-z = x-yz.

Such a loop is of course a group, and we shall use the terms "group" and "as-

sociative loop" interchangeably.

A commutative loop G is one subject to the following law.

V. For every two elements x, y of G, xy = yx.

We define a loop G to be abelian if and only if all five of the above laws

hold. Thus for the purposes of the present paper the terms "abelian loop"

and "abelian group" are synonymous. It is important to note that writers on

quasigroup theory (including the present author) have frequently used

"abelian" as equivalent to "commutative," in contrast with the present usage.

We might also remind the reader that laws (I), (II), and (IV) together imply

(III); an associative quasigroup is a group.

Since every loop is a groupoid, all of the theorems and definitions of §1

may be applied immediately to loops. However, Theorem IF has little inter-

est, since no ideal which is a subloop of a loop can be a proper subloop. It is

easily verified (and we take this for granted) that every groupoid isotopic to

a loop is a quasigroup.

Theorem 2A. If G is any loop, each of the subsets A\, Ap, A„, A and C of G

(as defined in §1) is a characteristic associative subloop of G. Moreover A\, A p., Ap

and C are respectively isomorphic to the corresponding entities defined for any

loop isotopic to G.

Corollary. Every loop isotopic to a group is an isomorphic group.

Proof. The only new point at issue is to show that A\ (for example) is

not only a semigroup but a group. This might appear to follow directly from

Lemma IB, since every element x of a loop is nonsingular; however, we must

show that if o£-4x then Fa-1 and Ra_1 are permutations not only of G but

of .4x- If a is in .4X, write o_1 = lZ0_1, so that oo_1 = l. Then for all x, y in G

we have a(ar1x-y) = (a-a~1x)y = (aa~1-x)y=xy=aa~1-xy = a(a"1-xy); and so

a~1x-y = a~1-xy, a-1 is in A\. As in the proof of Lemma IB, we may now

show that La-1=La-i, Ra-1=Ra-i. At this stage Lemma IB may be applied

to show that A\ is a group. A similar proof may be used in the case of Ap,

but Ap requires special handling. If aÇzAp we define o_1 = li0_1 as before,

so that oo_1 = l. Thus for every x in G, xa-a~1=xaa~1=x, whence Ra-^=Ra~1

and, in particular, o_1o = l. A similar calculation now gives La-i=La~1.

Finally, if x, y are in G we set z = yLa~1, so that y = az, and derive xa_1-y

=xa~1az=(xa~1-a)z=xz = x(a~1-az)=x-ar1y. It follows that o_1 is in Ap,

and the proof may readily be completed.

3. Normality for loops. The inner mapping group. A single-valued map-

ping F of a loop G upon (into) a loop K is said to be a homomorphism of G

upon (into) the loop K if and only if

(3.1) (xy)T = (xT)(yT)      .
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for all x, y oí G. Moreover, G is said to be homomorphic with (with a subloop of)

K, and the loop GT consisting of all xT with x in G is said to be the map or

homomorph of G under F. (Clearly G is homomorphic with GT for any homo-

morphism T of G.) In the notation of R. Baer [3] the subloop H oí G con-

sisting of all x such that xT= IF is called the kernel of F.

Definition. A subloop H oí a loop G is a normal subloop of G ii and only

if H is the kernel of some homomorphism of G.

A. A. Albert [1,2] and M. F. Smiley [l] have given necessary and suffi-

cient conditions that a subloop H be normal. (We shall derive an equivalent

condition below.) Moreover, these authors and Baer, particularly the latter,

have developed an extensive theory of normal subloops, wholly analogous to

the corresponding theory for groups. It will be convenient to list some of

their theorems without proof, and we shall do so, but our main purpose here

is to develop an analogue for loops of the inner automorphism group of a

group. In some cases this "inner mapping group" 3 facilitates brief proofs of

known results. It also leads to one theorem which seems to be new (Theo-

rem 3G).

Lemma 3 A. If H is a subloop of a loop G, the following condition is necessary

and sufficient that H be normal in G : Let x, y be arbitrary but fixed elements of G;

then, in the equation

(3.2) hxx-h2y — h3-xy,

whenever two of hu h2, h3 are assigned as elements of H the third is uniquely de-

termined as an element of H.

Proof, (i) Sufficiency(3). Suppose that the subloop H satisfies the condi-

tion of Lemma 3A, and designate by Hx the set of all elements hx with h

in H. From (3.2) with x = 1 (the unit of G) we see that any element of a "coset"

Hy determines the same coset. Moreover for any elements x, y of G,

(3.3) HxHy = Hxy.

Ii x, z are given, and if y is the unique solution of the equation xy = z, it fol-

lows from (3.2) that a necessary and sufficient condition that Hxu=Hz for

an element u of G is that u^Hy. Similarly if y, z are given and if x is deter-

mined by xy = z, it follows that a necessary and sufficient condition that

v ■ Hy= Hz for an element v of Gis that vÇzHx. Therefore the set G/H consisting

of all the distinct cosets Hx is a quasigroup. Moreover, by (3.3), the single-

valued mapping T defined by xT = Hx is a homomorphism of G, and xT= IF

if and only if Hx=H or xG.H. Thus ü is a normal subloop of G.

(ii) Necessity. Let H be the kernel of a homomorphism T oî G. If xT = yT,

let u=yRx~1. Then ux = y, uTxT = yT = xT=\TxT, uT=\T, uÇlH.  But

(3) The method used in this proof is essentially that of Smiley [l].
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conversely if u^H then (ux)T = uT■ xT = IT■ xT = xT. Hence the coset Hx

consists of exactly those elements y for which yT = xT. The rest of the proof

is an obvious consequence of this fact and (3.1).

In this proof we have incidentally encountered the notion of a quotient

loop G/H. The following theorem is obvious:

Theorem 3A. Let H be the kernel of a homomorphism T of a loop G. Then

the quotient loop G/H is isomorphic to the homomorph GT under the mapping

Hx—^xT.

From (3.2) with h2 = i we derive hiRxRv = h3Rxy, or hiRx¡v = h3, where

(3.4) RX,V   —   RxRyRxy.

Again from (3.2) with hi = \ we derive h2RyLx = h¡Rxv or h2MXiV = h3, where

(3.5) Mx,y = RyLtRZy.

Thus the following is an immediate consequence of Lemma 3A.

Lemma 3B. A necessary condition that a subloop H of a loop G should be

normal in G is that H be mapped into itself by all the permutations RXlV, MXtV

and their inverses.

We say of course that H is mapped into itself by a mapping S of G if

hSÇz.H for every h of H. It would be fairly easy to show at this stage that

the condition of Lemma 3B is also sufficient, but we shall do this more ele-

gantly later.

Definitions. If G is a loop, let © be the permutation group consisting of the

permutations Rx, Rz~l, LX, Lx_1 for all x in G, and of all products of a finite

number of these. We shall call @(4) the group associated with G.

Let $¿® be the subgroup generated by the set of all permutations Rx,y, Mx,y

with x, y in G. We shall call 3 the inner mapping group of G.

Theorem 3B. Let G be a loop, ® its associated group, and 3 Us inner map-

ping group. Then 1 ¿7= 1 for every element of 3, where 1 is the unit of G. More-

over every element X of © Äas a unique representation X = URX where U is in 3

and (hence) x = IX.

Corollary 1. A necessary and sufficient condition that an element T of ®

be in 3 ** that 1F = 1.

Corollary 2. Every element X of & has a unique representation X= VLX

where V is in 3 and (hence) x = \X.

Corollary 3. If ais in G, X in®, then aX=aU-x=x- a V where U, V are

in 3 and x = lX.

(4) This is Albert's group G, (Albert [l, 2]).
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Corollary 4. If G is a finite loop, G : 1 = ® : 3. In other words, the order of

G is the index of $in@.

Remark. The suggestion implied in Corollary 3 is frequently useful. For

example if b=[r(ap-q)]La~x it may be important to know that b = all-x

= x ■ aV where x = (r-pq)Ls~1 and where U, Fare in 3. In many cases we have

little interest in the exact determination of U and V.

Proof. From (3.4) we see that 12?Iiy = (a;y)2?a!I,_1 = l, and then also that

1 = lRx,y~1. Similarly 1MX,V = (xy)Rxy~1 = l and 1 = 1MX,V~1. Since the set con-

sisting of the Rx.y, Mx,y and their inverses generates 3, 117=1 for every U

of 3.'Thus if X= URX where U is in 3 we have lX = lRx = x, so that x is

uniquely defined. Moreover U = XRX~1, and so U is also unique. It remains to

show that every X oí G has at least one representation URX with U in 3,

and this we proceed to do by means of the seven identities which follow :

(Í) RXRV =  Rx.y-Rxy',

(ii)      RxLy = Mv,xRyx;

(iii)   RxRy   = RP:VRP, where p = xRy ;

(3.6) (iv)    RxLy   = My,q-Rq, where q = xLv ;

(v) Lx = Mx,i-Rx;

(vi)        Rx  = RU,XRU, where u = \RX ;

(vii)        Lx   = MX¡VRV, where v = \LX .

These are all readily verified. For example, consider (iii). If p=xRv~1 then

py=x and so Rp,y = RpRvRx~1, or Rp,y~1 = RxRy~1Rp~1, or RxRy-1=Rp,v~1RP.

Note moreover that the last three come from (ii), (iii) and (iv) with x = 1.

It follows from the definition of ® that each element X of ® has at least

one representation of form

(3.7) X = XiXi---Xr

where r ^ 1 is a finite integer, and where each Xi has one of the forms Rx, Lx,

Rx~x, ¿i_1. For X's with r=l the theorem is immediate in view of (v), (vi)

and (vii). Thus we assume inductively that it has been proved for all products

(3.7) with less than r factors; then X= VRX-Xr where FG3, x(E.G, and where

Xr has one of the four types just mentioned. In each case we have RxXr = WRZ

by (3.6), with TFG3, z<EG. Therefore finally X = VWRt = URZ with Z7G3,
and the induction is complete. This demonstrates the truth of Theorem 3B.

Corollary 1 is obvious. As to Corollary 2, if lX = x, set V=XLX~1. Then

lV=xLx~1 = i, so Fis in 3; and moreover X= VLX. Corollary 3 then follows

from Theorem 3B and from Corollary 2. As to Corollary 4, we deduce from

the theorem that each coset 3^ of the subgroup 3 of ® determines a unique

element x of G such that 3-^ = 3-Rz; thus the number of distinct cosets is
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equal to the order of G. (It is moreover clear that Corollary 4 holds in a sense

even for infinite loops.)

Theorem 3C. Let G be loop, 3 the inner mapping group of G. Then a neces-

sary and sufficient condition that a subloop H of G should be normal in G is that

H be mapped into itself by 3- (In symbols, H!$ ^H.)

Proof. Necessity follows from Lemma 3B and the definition of 3- As to

sufficiency, we need merely verify the condition (3.2) of Lemma 3A, and we

shall do this by repeated use of Corollary 3 to Theorem 3B. Let x, y be arbi-

trary but fixed elements of G. Then if hi, h2 are any two elements of G,

not necessarily in H, we have hxx■ h2y = hxU■ (x■ h2y) = (hxU) ■ (h2V■ xy)

= (hxUW-h2V)-xy, where U, V, W are in 3 and are independent of hi.

(In particular W~1=Rk¿r,xy.) Thus equation (3.2) may be written as

hxUW-h2V = h3. If hi is in H, so is h2V, and then hJJW (or Ai) is in Hiiand

only if h3 is. Similarly fax• h2y = h2U■ (h&■ y) = h2U• (hxV■ xy) (h2UW-hxV)-xy

for suitable U, V, W independent of h2, and thus if Ai£iF we see that h2(E.H

ii and only if h3(E.H. This completes the proof.

Remarks, (i) We have defined 3 to be the group generated by the set of all

permutations Rx,y and Mx¡v. But the set of all permutations

and

(3.9) Nx,y = L^zL'l

may also be shown to generate 3 ; and finally the set consisting of all the permuta-

tions Rx,y, I,,, and

(3.10) tx = ril:1

is another generating set. (We omit the proof of these easily proved state-

ments.)

(ii) When G is a group, every element of © Aas the form RxLy. Since

iRJLy = yx we see that 3 consists of the elements RJL^1. Thus 3 reduces to the

group of inner automorphisms of G, as might have been expected.

(iii) There exist non-associative loops G for which 3 is a group of automor-

phisms, and others for which this is not the case. (See Chapters II, III.)

(iv) In any problem concerning normality it is clearly always permissible to

work not with all of 3 but merely with any set © of generators of 3- (We shall

occasionally use this fact in later sections.)

Theorem 3D. (i) FAe centre C of a loop G is the set of all a of G for which

o3 = a (by which we mean that aU = a for every U of 3)- (ü) If a$=a, #£G,

F£®, then (ax)T=a-xT.

Corollary 1. C is a normal subloop of G.
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Corollary 2. If a^C, xE.G, FG®, then (ax)T = a-xT.

Proof. Let o, x, y be elements of G, with o3=o. Then (ax)Rv = ax y

= aUxy=a-xRy, and hence (axRy~1)Rv=a-xRy~1Ry = ax or (ax)Ry~1

= a-xRy~1. Similarly (ax)Ly = a-xLv and (ax)Ly~1 = a-xLy~1. Since © is gen-

erated by the Rv, Ly and their inverses, we have proved (ii). With the same

hypothesis on o we have

(3.11) ax = xa

for all x of G, since xa — aU-x=x for some Í7G3- Moreover the equations

(3.12) ax-y = a-»y,        »a-y = #ay,        xy-a = #-ya

hold for all x, y of G, since, by (ii) and (3.11), both sides of each equation

can be replaced by axy. But equations (3.11), (3.12) state that o is in C,

according to the definition given in §1. If conversely o satisfies (3.11), (3.12)

for all x, y of G, the first equation of (3.12) may be written as aRx,y = a and

as a=aRx,y~1. Moreover the second equation, by virtue of (3.11), may be re-

written as ax -y = x ■ ay, whence* -ay=ax -y = o -xy or aMx,y = o and o =aMx,y~l.

Since 3 is generated by the Rx,y, the Mx,y and their inverses, we have a3=o

for every element a of C. This proves (i).

Corollary 2 is an immediate consequence of Theorem 3D, but for Corol-

lary 1 we must give the proof, hitherto omitted, that C is a group. Let o, b

be any two elements of C. Then for every U of 3, (ab)U = a-bU = ab, or

(ab)$=ab. Again if ax = b then ax = b$ = (ax)!$=ax!$, so ï=ï3GC. Since

ax = xa, C is a subloop of G, and it follows from (3.11), (3.12) that C is in fact

an abelian group. Corollary 1 now follows at once.

Definition. If A, B are subloops of a loop G, then AC\B, the set consisting

of all elements of G which are common to A and B, is called the intersection of A

and B.

The definition may clearly be extended to any finite or infinite set of sub-

loops of a loop. Such an intersection is readily shown to be a loop (compare

the first sentence in the proof of the theorem which follows).

Theorem 3E(6). Let ß be any set of normal subloops K of a loop G, and let D

be the intersection of all the K's of Q. Then D is a normal subloop of G.

Proof. If, in the equation xy = z, two of x, y, z are given as elements of D,

the third is a uniquely determined element common to all the K's and hence

in D. Moreover F>3 1S in all the K's and hence in D.

Definitions. If S is a set of subsets S of a loop G, the smallest subloop

of G which contains each S of S (that is, the intersection of all subloops which

contain each S of 2) is designated by {2}. Frequently {2} is termed the

(s) Smiley [l ]. For Q finite this was previously proved by Albert [2].
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subloop generated by 2, or by the subsets S of 2.

If A, B are subloops of a loop G, {A, B\ is termed the union of A and B.

This definition may also be extended to any finite or infinite set of subloops

ofG.

Theorem 3F(6). If H, K are normal subloops of G then {H, K] is a normal

subloop of G and {H, K] =HK = KH, where HK is the set of all hk with h£E.H,
kGK.

The proof of this theorem by the present methods is brief but not very

elegant; hence we omit it. The result extends of course to the union of any

finite number of normal subloops, and from this fact we deduce the following

theorem which appears to be new for loops.

Theorem 3G. Let 2 be any set of normal subloops K of a loop G. Let S be

the set of all elements of G contained in one or more unions of a finite number of

K's of G. Then S is a normal subloop of G ; and in particular S is the union of

all the K's of 2.

Corollary. FAe union of any set of normal subloops of a loop G is a normal

subloop of G.

Proof. Clearly S contains every K of 2, and is contained in the union of

the K's. If a is in S then a is in some union P of a finite number of K's. But

P is a normal subloop of G, and P^S. In particular a3=P3=F^S, and so

S3áS. It now follows that S will be both a normal subloop and the union

of all the K's, provided only S is a subloop of G. If also ¿>£S then b(E_Q and

a, bÇzPQ = R, where Q, R are both "finite" unions and thus both in S, both

normal subloops of G. Clearly ab and the solutions x, y of ax = b, ya = b are

in R and hence in.S. Thus S is a loop and the proof is complete. It should

perhaps be noted that we have leaned somewhat heavily upon the axiom of

choice.

Remark. In the process of determining the inner mapping group 3 = 3(G)

of a loop G we introduced the notion of the group © associated with a loop G.

If B is an abstract loop isomorphic to a subloop A of G, it is readily verified

that S3 is a homomorph of the subgroup 21 of © generated by the set of all

permutations La, Ra of G with a in A. Thus in particular we may always con-

sider the inner mapping group 3(-<4) of a subloop A of a loop G to be a sub-

group of the group 3 = 3(G).

Theorem 3H. Let K be a subloop and H a normal subloop of a loop G. Then

D=H(~\K is a normal subloop of K.

Corollary. If, in addition, H is a subloop of K, then H is normal in K.

Proof. As remarked earlier, D is a subloop of G and hence of K. Also

(«) Albert [2, Theorem 3], Smiley [l, Theorem 4], Baer [3, Theorem l].



262 R. H. BRÜCK [September

D$(K)iíII-S(K)^H, so D-3(K)^(Hr\K)=D. In the case of the corol-
lary, D=H.

Theorem 3I(7). If H is a normal subloop of {H, K] for K a subloop of the

loop G, then \H, K\ =HK = KH, and reciprocal isomorphisms between

(HK)/H and K/(HC\K) are obtained by mapping the coset X of (HK)/H

upon the set XC\K and by mapping the coset Y of K/(H(~\K) upon the set HY.

A proof by the present method would be exceedingly awkward. The nor-

mality of HC\K in K follows from Theorem 3H.

Theorem 3J. Let H, K, L be subloops of a loop G, and let Kbea normal sub-

loop of L. Then HC\K is a normal subloop of HC\L.

Proof. Write A =HC\K, B=HC\L, 2)? = 3(B). We may assume, by the

preceding remark, that SK^3(i7)n3(Z,). Then AWl^HWl^H and Am
è Kíffl ̂  K, so A W é (Hr\K) = A.

The following theorem, for which we shall have frequent use, is very often

taken for granted in the literature. We shall omit the proof, merely remarking

that this can be given most neatly by the methods of Baer [3](8).

Theorem 3K. Let H be a normal subloop of a loop G. Then every subloop S

of the quotient loop G/H has a representation K/H where K^H is a unique

subloop of G, namely the set of all elements of G contained in the cosets Hx belong-

ing to S. Moreover K/H is a normal subloop of G/H if and only if K is a normal

subloop of G; and when this is the case, G/K is isomorphic to (G/H)/(K/H).

Later we shall have occasion to refer to the Jordan-Holder theorem and

the Zassenhaus refinement theorem, which have been proved for arbitrary

loops by Albert [2], Smiley [l], and Baer [3]. Albert has also shown that,

for isotopic loops, normal subloops are isotopic in pairs, whence in particular

the quotient loops in the composition series of isotopic loops are also isotopic

in pairs.

In concluding this section we might remark that our inner mapping group

3 has been put to quite a different use in earlier work. Baer has employed it

in a representation of any loop as the set of cosets of a group ® modulo a

non-normal subgroup 3, under an unusual form of multiplication.

4. ir-series for loops. We first define the notion of a characteristic property

it. Let the statement "the element a of the loop G has property it with respect

to G" (which, temporarily, we shall abbreviate to uawG") be determinative.

Then w will be called a characteristic property of loops if and only if it pos-

sesses the following properties(9) for every loop G:

(7) Baer [3, Theorem 1].

(8) See also Zassenhaus [l, p. 30].

(•) Our thanks are due to C. J. Everett for critical comments in this connection. We also

take this opportunity to express our indebtedness to R. A. Good for many valuable improve-

ments to Chapter I, and to §4 in particular.
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(i) l7rG, where 1 is the unit of G.

(ii) If airG and a£.H, where H is a subloop of G, then airH (distributivity

to subloops).

(iii) // airG and if GT = H, aT = b, where T is an isomorphic mapping of G

upon H, then birH (abstractness).

We note in passing that properties (i), (ii), (iii) may easily be shown to

be independent—by consideration, for example, of the following proper-

ties ir: "a is not the unit element of G"; ua=x2 for some x of G"; "a is a

matrix." The term characteristic is partly justified by the fact that the non-

empty subset GT of G, consisting of all a for which airG, is mapped into itself

by every automorphism of G, as follows from (iii). As an example of such a

characteristic property we may cite the case "aG5" where B is any fixed

one of the characteristic subloops A\, Aß, Ap, A or C dealt with in the preced-

ing sections. Other examples will be encountered in Chapter II.

We now proceed to lay down a series of postulates which determine a

class of so-called ir-admissible loops, for any characteristic property ir. These

will eventually be employed (in Chapters I and II) to develop many concrete

analogues for loops of the notion of central series of a group (P. Hall [l]).

The reader may find it helpful to keep in mind the case where G is a group

and where "airG" means "a is in the centre of G." It seems proper to add that,

inasmuch as characteristic subloops of a loop need not be normal (Baer [3]),

it is necessary here to be more elaborately cautious than in the theory of

groups.

Definition. If ir is a characteristic property of loops, we shall say that a

loop G is ir-admissible if and only if the following postulates (I), (II), (III),

(IV) and (V) are satisfied.

I. The set GT, consisting of all elements a which have property ir relative to G,

is a subloop of G.
Definition. We designate by Z = ZT(G) the union of all normal subloops

of G which are contained in GT. Z will be called the ir-centre(10) of G.

Note that Z exists, by Theorem 3G. In fact Z is a subloop of GT. More

precisely, GT and Z are respectively a characteristic subloop and a charac-

teristic normal subloop of G.

II. If K is a normal subloop of G, then G/K satisfies (I).

III. If N is any fixed normal subloop of G, there exists a non-empty subset

S(N) =ST(N, G) of N such that, for a normal subloop K of G, (NK)/K is in

ZT(G/K) if and only if K& S(N).
Remark. We use NK= {N, K] instead of N in order to cover the case

that K is not a subloop of N.

Definition. We designate by H=H^(N, G) the intersection of all normal

subloops of G which contain S(N). Note that H is unique, even though S(N)

may not be.

(10) A more consistent term would be v-or, but this is unpalatable.
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By Theorem 3E, H is a normal subloop of G; and clearly H^N. In fact

H is the smallest subloop of N, normal in G, such that N/H^ZT(G/H).

IV. If M, N are normal subloops of G then M^N implies S(M) ^S(N).

V. Every subloop of G satisfies (I), (II), (III) and (IV).
In the case that ir is the property of lying in the centre the reader may find

it of interest to verify that every associative loop G is ir-admissible. (In fact

Zr(G) and HW(N, G) are respectively the centre and the commutator subgroup

(N, G).) And indeed, with this choice of ir every loop is ir-admissible ; we leave

the proof for a later section.

The following lemmas embody a number of simple facts about ir-admissi-

ble loops.

Lemma 4A. Let ir be a characteristic property, G a ir-admissible loop, and F

a subloop of G. Then :

(a) F is ir-admissible ;

(b) Fr\Gr^FT;

(c) ifGr^FthenGT^FT;

(d) Fr\Z*(G)^Z*(F);
(e) if ZT(G) = F, then ZT(G) <ZT(F) ;

(f) if F=ZT(G) then ZT(F)=F.

Proof, (a) Clearly postulate (V) is the only one in question. If E is any

subloop of F, E is a subloop of G and hence, by (V), E satisfies the first four

postulates. Thus F satisfies (V).

(b) Since F(~\GT^F, the result follows by (ii) (distributivity to subloops).

(c) Since GT^F, Gr = Fi\Gr^FT, by (b).

(d) By Theorem 3H, FC\ZT(G) is a normal subloop of F. But ZT(G) ^GT,

and hence Fr\Zr(G)éFr\GrèFT, by (a). Thus Ffs\Zir(G)úZir(F).

(e) Since Zr(G)^F, ZT(G)=FC\Z*(G) =Z,(F), by (d).
(f) If F = Zr(G) then, by (e), F=Z*(G)-£ZT(F)^F, whence F=Z,(F).

Lemma 4B. If K, N are normal subloops of a ir-admissible loop G, and if

K^N, then Hr(K, G) £H„(N, G).

Proof. By (IV) and the definition, S(K)^S(N)^HX(N, G). Hence

HT(K, G), being the intersection of all normal subloops of G which contain

S(K), is a subloop of the normal subloop HT(N, G).

Lemma 4C. If K is a normal subloop of a ir-admissible loop G, then

H(K, G) = lif and only if K^ZT(G).

Corollary 1. Hr(l,G) = l.

Corollary 2. Hr(ZT(G), G) = l.

Proof. (Here 1 designates the subloop consisting of the unit element 1.)

By its definition, L=Hr(K, G) is the smallest subloop of K, normal in G,
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such that K/L^ZT(G/L). Thus L = 1 if and only if K^ZT(G). The corollaries

follow immediately.

Definition. A 7r-admissible loop G will be called a ir-loop if and only if

GT = G; in other words, if and only if G coincides with its ir-centre. As follows

from Lemma 4A, part (f), every ir-centre is a ir-loop.

Definition. Let G be a 7r-admissible loop, and let (K), or

(4.1) 1 - Kt á Ki á • • • á Km m G,

be an ascending chain of normal subloops of G, where m is a finite integer,

called the length of (K). Such a chain (K) we shall call a proper ir-series oí G

if and only if

(4.2) HT(Ki, G) =£ Ki+!, i = 0, 1, ■ • • , m - 1.

We now define by recursion the series (H) or

(4.3) Hi = G,       Hi+1 = Hx(Hi, G), i = 1, 2, • • • ,

which is meaningful for any 7r-admissible loop.

Lemma 4D. If the loop G is ir-admissible, Hi^Hi+i for every positive in-

teger i. And if there exists an integer i such that Hi+i=Hi then H¡=Hifor all

i = î.

Proof. The first statement follows from the fact that HT(N, G)^N for

every normal subloop N of G. Again, if H¡=Hi then Hj+\ = HT(H], G)

=HT(Hi, G)=Hi+i=Hi; hence the second statement may be proved by in-

duction.

We shall refer to the series (H) as the lower w-series of G. If Hi =Hi+i for

a finite integer i we shall call Hi the ir-potent of G. (The term is due to

R. Baer.) If in addition Hi = i, (H) is clearly a proper 7T-series when written in

the order of decreasing indices.

Similarly for every ir-admissible loop G we define the upper ir-series (Z) by

(4.4) Zo = 1,       Zi/Zi-i = Zr(G/Zi_i), i = 1, 2, • • • ,

where it is understood for all i è 1 that Zi is the unique normal subloop of G

referred to, in Theorem 3K. Note that Zi = ZT(G)=Z.

Lemma 4E. If G is w-admissible, Zi^Zi-ifor i = l, 2, • • • , and moreover

Hr(Zi, G)^Zi-i. If there exists a finite integer i^l such that Z¡=Zi-i, then

Zj = ¿Ti_i for all j^i — l.

Proof. This is obvious.

If Zi+i = Zi for some finite i, we shall call Z,- the hyper-rr-loop of G. If in

addition Zi = G, (Z) is clearly a proper 7r-series.

Theorem 4A. Let the ^-admissible loop G possess a proper w-series (K) of
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length m, as given by (4.1), (4.2). Then: (i) the lower ir-series (H) is aproper

ir-series of length I, where l^m; (ii) the upper ir-series (Z) is a proper ir-series of

length u, where u^m; (iii) l = u.

Definition. Under the hypothesis of Theorem 4A, the loop G win be

called ir-nilpotent oí class c, where c = cT(G) is the common length c — l = u of

the upper and lower ir-series.

Proof of Theorem 4A. (i) Hi = Km=G, by definition, and so Hx^Km. As-

sume inductively that iF,^i<Cm+i_,- for some t = l. Then Hí+x=Ht(Hí, G)

^HT(Km+i-i, G)x^Km-%. Here we have used Lemma 4B and have tacitly

assumed ¿ = m. Our induction is thus complete and yields in particular

Hm+i^Ko = 1, whence iFm+1 = l. If FèO is the smallest integer for which

iF{+i = l we have l^m. Moreover the series 1 =H¡+i <Hi < • • • <HX = G is a

proper ir-series of length I in the sense of the original definition.

(ii) Kq = Zo = í and so Ko^Z0. Assume inductively that FTi = Z,- for some

i = 0. Thus, by (4.2), HT(Ki+x, G)^X< = Zf, and hence, by postulate (III),
(Ki+iZi)/Zi is in ZT(G/Zi), whence Ki+iZi is in Z<+i and Ki+i^Zi+x. (We

have tacitly assumed ¿+1 ^m.) Thus our induction is complete, and in par-

ticular G = Km^Zm. If u is the smallest integer such that ZU = G it follows

that u^m, and that (Z) is a proper 7r-series of length u.

(iii) Since (Z) is a proper ir-series of length u, it follows from (i) that l^u.

Similarly (H) is a proper ir-series of length /, and m =7 by (ii). Thus l = u.

This is precisely analogous to the type of proof used by Hall [ljV

Theorem 4B. Let G be a ir-nilpotent loop of class c. Then every subloop K of

G is ir-nilpotent of class not greater than c. More precisely, if d^c is the smallest

integer for which Za^K, then K has class not greater than d.

Corollary. If, under the above hypothesis, K is a simple loop not equal to 1,

then K is a ir-loop of class 1, and either K^Z or KC\Z = \.

Proof. We define the set (A) of subloops Ai by

(4.5) A( = KC\Zi, i - 0, 1, 2, ••• , d.

Then from the definition of the Zi we have 1 =-4o^-<4iá • • • ^A¿ = K. Fur-

thermore Ai-x is a normal subloop of K and of A( (Theorem 3H and corol-

lary). We now make two simultaneous applications of Theorem 31, noting

that AiC\Zi-.i = Kr\Zi-i=Ai-i. Under the same isomorphism, At/Ai-i and

K/Ai-x are respectively isomorphic to (.¡4íZ¿_i)/Z,_i and (KZi-i)/Zi-x- But

A iZi-i ^ KZi-i and A ,Z,_i = Z„ whence ^4,Z,_i^ZiPi(isTZt_i). By property

(ii) of the characteristic property ir, (^4,Z¿_i)/Z¿_i is in the ir-centre of

(KZi_i)/Zi-i\ and the property (iii) of ir, namely that such relations are pre-

served under isomorphism, insures that Ai/Ai-i is in the ir-centre of K/Ai-x.

That is, Ai/Ai-x^Z„(K/Ai-x); or equivalently, H„(Ait IQ&At-i. Therefore
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the series (.4) is a proper 7r-series of K; and by Theorem 4A, K has class not

greater than d.

The loop 1 is clearly 7r-nilpotent of class 0. If K ^ 1 is nilpotent but simple,

so that K can have no proper normal subloops, it follows that l=Zo(K)

<Zi(K)=K, so that K has class 1, and FC is a 7r-loop. Again, the subloop

Ai = KC\Z, given by (4.5), where Z = Zi = ZT(G), is either 1 or K. This com-

pletes the proof of the corollary.

Lemma 4F. Let G be a ir-admissible loop, K a normal subloop of G. Then

G/K is TT-admissible.

Proof. By postulate (II), (I) holds. Again, any normal subloop of G/K

has a representation of form N/K where A7, is a uniquely defined normal sub-

loop of G (Theorem 3K). By the same theorem (G/K)/(N/K) is isomorphic

to G/N; but (I) is satisfied in G/N, and hence (II) is satisfied in G/K. As to

(III), we clearly may define S(N/K, G/K)=S(N, G)/Kand, with this defini-

tion, (IV) will be automatically verified. Finally (V) follows from the fact

that every subloop of G/K has the form F/K where F is a subloop of G. Note

incidentally that HT(N/K, G/K) = [HT(N, G)-K]/K.

Theorem 4C. Let K be a normal subloop of a tr-nilpotent loop G, of class c.

Then G/K is ir-nilpotent of class not greater than.c — n, where n is the largest

integer such that Zn^K.

Proof. Define a series (M) by

(4.6) K = Mo,       Mi/Mi-! = Z*(G/Mi-i), i = 1, 2, • • • .

Then clearly the series (Mo/K) ^ (Mi/K) á • • • will be the upper 7r-series

of G/K. By assumption Zn^Mo. If for some i^O we have Zn+i^Mi then

Hi(Zn+i+i, G) ^Zn+iSMi and so, by the argument used in the proof of Theo-

rem 4A, Zn+i+i á Mi+i. Thus Zn+i^Mi for » = 0. 1, • • • , and in particular

ilFe_„ = G.

Corollary to Theorem 4C. Under the hypothesis of Theorem 4C, K is

contained in a ir-series of G. In particular every minimal normal subloop of G

is contained in the w-centre.

In fact if m is the class of G/K we may choose Ki, Kt, • ■ • , Km = K so

that Kx/K^ ■ • ■ \\Km/K is the lower ir-series of G/K, and then define Kf

for i^m + i by Ki=Hr(Ki-U G). Ii the H{ are defined as before by (4.3)

we may prove inductively that Km+i^Hi for »el. Thus the series (K) ends

in 1 ; it is clearly a 7r-series. If in particular FT is a minimal normal subloop of

G we must have Km+i = HT(K, G) = l, whence, by Lemma 4C, K is in the

ir-centre ZT(G).

Definition. If G is a 7r-admissible loop we shall call HT(G, G)=GJ the

w-derived loop of G.
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Definition. If the series (G{), defined by

(4.7) G° = G,       G+1 = H(G\ G% i = 0, 1, 2, • • ■ ,

ends in the identity we shall say that the 7r-admissible loop G is ir-solvable.

(Note that G*+1 is the 7r-derived loop of G\)

In Chapter III we shall exhibit an example to show that although Gi+1

is normal in G', there exist 7r-admissible loops for which G2 is not normal in G.

Thus, in contrast with the usual situation in group theory, the series (G*) is

not necessarily a 7r-series.

If G is a finite 7r-admissible loop it may readily be deduced from the re-

sults of this section that G is 7r-solvable if and only if the simple factor-loops

in its composition series are all ir-loops. From this observation we obtain the

analogue for 7r-admissible loops of a theorem on finite groups due to Fitting

[1, Satzl]:

Theorem 4D. Every finite ir-admissible loop G possesses one and only one

maximal, ir-solvable, normal subloop S, which contains every other ir-solvable

normal subloop of G. S is thus a characteristic subloop of G.

Proof. By Theorem 31, if H, K are normal subloops of G, (HK)/H is

isomorphic to K/(HC\K). Thus the simple factor-loops of HK, which, by

the Jordan-Holder Theorem, are uniquely defined in the sense of isomor-

phism, consist of the simple factor-loops of K/(Hf~\K) and of those of H.

If H and K are 7r-solvable, all of these factor-loops are ir-loops and hence the

normal subloop HK is 7r-solvable. Similarly the union of any finite number of

normal ir-solvable subloops of G is a normal ir-solvable subloop of G. Thus

we may take S to be the union of all normal ir-solvable subloops of G. Since

ir is a characteristic property, SA will be a normal 7r-solvable loop of G for

every automorphism A of G. It follows that SA ?SS, whence S is a charac-

teristic subloop of G.

5. The <£-loop of a loop. Let x be an element of the arbitrary loop G. We

shall call x a non-generator of G (B. Neumann [l]) if and only if {x, S] =G

implies {S} =G for every subset S of G. The corresponding notion for groups

is essentially due to G. Frattini [l].

Theorem 5A. The set F of all non-generating elements of a loop G ^ 1 is a

characteristic subloop of G. Moreover F is the intersection of all maximum sub-

loops of G.

Definition. F will be called the faloop of G, and will be designated by

<b(G).
Proof. If o, b are non-generators, {ab, S} = G implies G = {o, b, S} = {b, S\

= {S\, since [o, b, S] certainly contains [ab, S). Similarly \aRb~1, S] =G

and \aLb~1, S] =G separately imply {s} =G. Thus ab, aLb-1 and aRiT1 are

non-generators, whence F is a subloop of G. If T is any automorphism of G,
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and S any subset of G, {s} =G implies {ST} = GT = G; and from this fact it

may be deduced that F is characteristic. We omit the proof of the second

statement. The corresponding proof by B. Neumann [l], given for arbitrary

groups, is valid without change for loops. (It should be noted that Neumann's

proof is based on the axiom of choice.)

For the loop 1 of order one, where the notion of a non-generator is not

very meaningful, we shall define the çMoop to be the loop itself. For a loop

G 7^1, 0(G) cannot contain every element of G (as is trivially evident), and

hence the series

(5.1) G = Fo>Fx>F2> •• • ,

where F<=<£(F<_i) for i = l, 2, •• -, is a strictly decreasing series of charac-

teristic subloops of G. Moreover if G is a finite loop we must have Ft = 1 for

some i. The author has given several constructions (Brück [3 ]) of simple finite

loops G for which <p(G) is at the same time an arbitrary finite loop and a

unique maximum subloop of G. By a repetition of such constructions the se-

ries (5.1) can be made to have any finite length, with none of the F< a proper

normal subloop of G. The contrast with the theory of ^-groups of a group is

thus very marked (Miller [l, pp. 71-72]), unless attention is restricted to

special classes of loops.

6. Lagrange properties for finite loops. The following property (L), when

stated for finite groups, is known as Lagrange's Theorem :

(L)  FAe order of every subloop H of the finite loop G divides the order of G.

Since every finite group G has property (L), the stronger property (L')

holds for groups:

(L') If K is any subloop of any subloop H of the finite loop G, the order of K

divides the order of H. More briefly, every subloop of G has property (L1).

By use of one of the constructions in Brück [3] one may obtain a loop F

of order 5 with a subloop of order 2 but no other proper subloops. Thus F

does not have property (L). Further one may construct a loop G of order 10,

containing F as a unique maximum subloop (which is in fact normal in G).

It follows that G has two subloops of orders 2 and 5, but no other proper sub-

loops. Therefore G has property (L) but not, however, property (L'). On the

other hand it should be obvious that */ a finite loop G has property (L') then

so does every subloop of G.

Hausmann and Ore [l ] have restricted their attention to quasigroups in

which a coset expansion (in a sense wholly analogous to that for groups) exists

with respect to every subquasigroup. Thus in their work property (L) and

often property (L') are trivially satisfied for finite quasigroups. The following

treatment, to which we shall wish to refer in later sections, is wholly inde-

pendent of the restrictive hypotheses of Hausmann-Ore.

Theorem 6A. Let G be a finite loop, and let the decreasing series of subloops
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(6.1) G = Co è Ci è • • • = Cr è Cr+i = 1

be such that Ci+i is a normal subloop of d and that Ci/'Ci+i has property (L)

fori = 0, 1,-2, ••• , r. Then G has property (L).

Proof. By hypothesis Cr = CT/Cr-i has property (L). Assume inductively

that d has property (L) for some i with 0 <i ^r, and let S be any subloop of

C,_i. Then, since d is normal in C,-_i, {S, d] =Sd and (Sd)/d is isomor-

phic to S/(Sr\d), as follows from Theorem 31. Since (Sd)/d is a subloop

of d-i/d, and since the latter has property (L), it follows that the order of

S/(SnCi) divides the order of Ci-i/C,-:

(6.2) [S:CSnC0]|[C*_i:C<],

where as usual [A :B] refers to the order of A divided by the order of B, and

m\n means that the integer m divides the integer n. But also SC\d is a sub-

loop of d and so, by our inductive hypothesis, we have

(6.3) [(SnCi):l]| [C«:l].

Since [S:(Sr\d)]■ [(Sr\d): 1 ] = [S: 1 ] and [&-*:&]■ [d: 1 ] = [Çw: 1 ] we
see from (6.2) and (6.3) by multiplication that

(6.4) [S:l]\ [d-i'.i].

Thus Ci_i has property (L), whence Theorem 6A follows by induction.

Theorem 6B. Let the finite loop G have a descending series (6.1) such that

d+iis anormal subloop ofdand d/d+ihas property (L') for ¿ = 0,1, 2, • • •, r.

Then G has property (L'). Conversely, if G has properly (L') and if (6.1) is any

descending series such that Ci+i is a normal subloop of d for i = 0, 1,2, • • • , r,

then Ci/d+i has property (L')fori = 0, 1, 2, • • • , r.

Proof, (a) Sufficiency. Assume that (6.1) is given with the prescribed prop-

erties and let H be any subloop of G. Since Co è H there exists a greatest in-

teger 5^0 such that C.^H, and we define

(6.5) ¿i = Cir\ff, i = s, s+ 1, • • • , r + 1.

By Theorem 3J, Ai+i is a normal subloop of A i for i = s, s + 1, • • • , r. Since

Ci+i = C«' and Ai^d it follows that ^4iCi+i=; {-4,-, C,+i}=Ci, whence

(.4iCi+i)/Ci+i is a subloop of d/d+i and thus has property (L'). Again,

A iC\ d+i = H(~\ dC\ d+i = HC\ Ci+i = A i+i ; and so, since the loops (A iCi+i)/G1+1
and A i/(A i(~\C,+i) =A (/A i+1 are isomorphic, it follows that A i/A ,+i has prop-

erty (L') for i = s, i+1, • • • , r. An application of Theorem 6A now shows

that H=A, has property (L), whence G has property (L').

(b) Necessity. If G is a finite loop with property (L') and if H is a normal

subloop of G, it is a trivial consequence of the familiar Theorem 3K that

G/H has property (L'). Now let (6.1) be any decreasing series of subloops
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of G with Ci+i normal in d for ¿ = 0, 1, 2, • • • , r. Then since C,-, as a subloop

of G, has property (L'), it results from the preceding remark that C</C¿+i has

property (L').

It should perhaps be noted that the trivial series G=l has not been ex-

cluded as a series (6.1).

As may readily be deduced from Theorem 6B, a necessary and sufficient

condition that a finite loop G have property (L') is that each of the simple factor-

loops in a composition series of G have property (L'). Albert [2, p. 412] defines

a finite loop to be solvable provided each of its simple factor-loops is without

proper subloops. Since a loop without proper subloops trivially has property

(L') we see that every finite loop which is solvable in the sense of Albert has

property (L1).

The following theorem, which can in fact be deduced from Theorem 6A

and the definitions of §4, has especial interest for the sequel.

Theorem 6C. FAe following properties are equivalent for any fixed charac-

teristic property ir :

(i) Every finite ir-loop has property (L').

(ii) Every finite ir-nilpotent loop has property (L').

(iii) Every finite ir-solvable loop has property (Lr).

Proof. This is a simple corollary of Theorem 6B.

Corollary. If the characteristic property ir is so chosen that ir-loops are

groups then every finite ir-solvable loop (and hence every finite ir-nilpotent loop)

has property (L').

The proof of the following theorem closely parallels that of Theorem 4D,

and hence is omitted.

Theorem 6D. Every finite loop G contains one and only one maximal nor-

mal subloop S with property (L'). S contains every other normal subloop of G

which has property (L'), and is thus a characteristic subloop of G.

7. Central series. In this section the characteristic property ir of §4 is

taken to be that of belonging to the centre. Thus the element a of the loop G

has property ir with respect to G if and only if

(7 1) ax = xa,       ax-y = a-xy,        xa-y = x-ay,        xy-a = x-ya

for all x, y of G. Then, for any loop G whatsoever, postulate (I) is satisfied;

in fact GT = Zr = Z is the centre of G. Moreover (II) is trivially satisfied. Be-

fore considering the remaining postulates it will be convenient to prove sev-

eral lemmas.

Lemma 7A. Let H be a subloop of a loop G, and let SDî be any set of mappings

of H into itself. Let FT(SDÎ) be the subloop of H generated by the set of all elements
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A ULh~1 with h in H, U in SO?. Then if K is any subloop of G such that i/(SD?) g K
^H, K is mapped into itself by SO?.

Corollary. H(3)l) is mapped into itself by SD?.

Proof. Let x he any element of K^H, U any element of SD?. Then the ele-

ment xULx~1=y is in H(W) ^K by hypothesis. Hence xU=yLx = xy is in K.

Lemma 7B. Let N be a normal subloop of a loop G, and let 3 be the inner

mapping group of G. Then N($), the subloop of N generated by the set of all ele-

ments nULn-1 with n in N, U in 3, is a normal subloop of G.

Proof. This follows from Lemma 7A and the fact that a subloop of G is

normal in G if (and only if) it is mapped into itself by 3-

Definition. If N is a normal subloop of a loop G we designate by (N, G)

the normal subloop iV(3) defined in Lemma 7B.

Lemma 7C. Let 3 be the inner mapping group of a loop G, and let SD? be

any set of generators of 3- FAe« if N is a normal subloop of G, (N, G) is gener-

ated by the set of all elements nUL^1 with n in N, U in 59?.

Proof. Let the elements nULn~1 generate the loop K. Since A7 is a normal

subloop of G, N is certainly mapped into itself by SO?. Thus, by Lemma 7A,

K is mapped into itself by SD?. Since SO? generates 3, K is also mapped into

itself by 3, and hence is a normal subloop of G. Where U, V are in 3, suppose

that it has already been shown that nULn~1 and «FL„_1 are in K for all n

of N. Thus nULn-1 = kGK; or nU=nk. Hence n = (nk)U~1 = kPnU-1 for

PG3, whence n^K^U'1) = (nU'^K, or nU^EnK, nU"lLn-^K. Again

n(UV) = (nU)V=(nk)V = kQ-nV for ÇG3, whence n(UV)EK-nK = nK or

nluV^Ln^GK. Thus nU^Ln'1 and nUVLn-1 are also in K, and it follows

by mathematical induction that wt7F„_1 is in K for every U of 3- Therefore,

since FC is a subloop, (N, G) ^K. But it is trivially evident that K^(N, G),

and so K = (N,G).

Lemma 7D. Where N is a normal subloop of the loop G, let S(N) be the set

of all elements «JVL„_1, nRXiVLn~1, nLXtyLn~x with n in N, x, y in G, where

(7.2) Í x — jCxLtX , -K-x,y — K-x-K.yJ\-xy, ^x,y = Lixi-'i/i^'ux.

Then if K is a normal subloop of G, a necessary and sufficient condition that

(NK)/K be in the centre of G/K is that K^S(N).

Theorem 7A. Let N, K be normal subloops of the loop G. Then a necessary

and sufficient condition that (NK)/K be in the centre of G/K is that K^.(N, G).

Corollary. Where S(N) has been defined in Lemma 7D, {S(A0} = (N, G).

Proof of Lemma 7D and Theorem 7A. Necessary and sufficient conditions

that the coset nK be in the centre of G/K may be written as follows, where
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x, y range over all elements of G:

(nx)K = (xn)K,   (nxy)K = (n-xy)K,   (xn-y)K = (xny)K,

(xy-n)K = (x-yn)K.

By use of (7.2) the first relation of (7.3) may be written equivalently in any

one of the following ways: [x(nTx)]-K = (xn)K; (xK)[(nTx)K]=xK-nK;

(nTx)K = nK; nTxÇznK; nTxLn~1Ç:K. Similarly the second and the fourth

relations of (7.3) are respectively equivalent to nRx,yLn~1G.K and nLy,xLn~1

£FC. Hence the condition K^S(N) is necessary. The third relation of (7.3)

may be written in the equivalent form

(7.4) nCx,yLn   £E K,       Cx,v = LXRVLX Ry .

It was shown in §3 that the set of all permutations Rx,v and MXiV, where

\t. J) M Xty = j\.yLtxK-xy =   I yl^y,xi xy,

is a set of generators of 3- Thus the set of all permutations Rx,v, Lx,v and Tx

also generates 3, whence, by Lemma 7C, (S(Ar)} = (N, G). Hence the condi-

tion K^(N, G) is also necessary.

Conversely, if K ^ S(N) then K è {S(N)} = (N, G). But 1C*,„

= (xy)Lx~1Ry~1 = l, so CI,„G3- Thus nCx,yLn~1 is in (N, G) and hence in K.

But it should be clear from what has gone before that the conditions K ¡g S(A0

and K-BnCx^Ln-1 for all «£iV, all x, y(E.G, are together sufficient as well as

necessary in order that (NK)/K be in the centre of G/N. This completes the

proof.

If we either take S(A0 as in Lemma 7D or set S(N) — (N, G) there is no

difficulty in verifying that the remaining postulates (III), (IV), and (V) are

satisfied with Hr(N, G) = (N, G). Hence all the results of §4 are valid in the

present circumstances. We may either drop the prefix "it" or replace it by the

adverb "centrally."

Every loop is centrally admissible. In a centrally nilpotent loop the upper and

lower central series have the same length c, the central class of the loop (Theo-

rem 4A). Every subloop of a centrally nilpotent loop is centrally nilpotent

(Theorem 4B). If K is a normal subloop of the centrally nilpotent loop G, then

G/K is centrally nilpotent; moreover K is contained in a central series of G

(Theorem 4C and corollary). The subloop (G, G)=G' we call the (centrally)

derived loop of G:
It follows from the general definition in §4 that a centrally solvable loop

is one in which the series G = G"'^:G1'^G2'^: ■ ■ ■ , defined recursively by

(7.6) G" = G,       G*1 = (G^G*), i = 0, 1, 2, • • ■ ,

ends in the identity after a finite number of steps. It is to be noted that for

any loop G, G/G' is a "central" loop, that is, an abelian group. Thus the sue-
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cessive quotients Gi/Gi+1 are all abelian groups. Since every isotope of a

group is an isomorphic group, and since isotopic loops have isotopic quotient

loops, it follows that every loop isotopic to a centrally solvable loop ts centrally

solvable. To this extent the present definition of solvability is superior to that

givçn by Albert. (See Albert [2 ] for his definition of solvability and for the

theorems to which we have just appealed.) It may also be stated, on like

grounds, that every loop isotopic to a centrally nilpotent loop is centrally nil-

potent.

Finally we note that, since "central" loops are abelian groups, it follows

from Theorem 6C that the order of every subloop of a finite centrally nilpotent

(or centrally solvable) loop divides the ordtr of the loop. More specifically, finite

centrally nilpotent or solvable loops have property (L').

Lemma 7E. Let the loop G have centre Z?± 1. Let H be a proper subloop of G

with the properties HC\Z=\, HZ — G. Then G is the direct product of H and Z:

G=HXZ.

Corollary. G'^H.

Proof. In what follows let A's and z's refer respectively to elements of H

and of Z. By assumption, every element of G has a representation hz. But

this representation is unique, for if hz = hxZx then Az2i_1 = Ai or hxLh~1=zzi~1

Çz(HC\Z) = 1, so Ai = A, zx = z. Finally, the equation

(7.7) AiZi • h2z2 = h3z3

is equivalent to the two equations

(7.8) hxh2 = A3,        zxz2 = z3.

It follows that G=HXZ (Albert [2]) and, as a consequence, that H is a nor-

mal subloop of G. (This might also be verified by use of one of the criteria

discussed in §3.) Thus G/H is isomorphic. to the abelian group Z, whence

iJ_^ (G, G)=G'. (It may indeed be shown by direct computation with 3 that

H' = G', but we shall not use this fact.)

Theorem 7B. Let G^i be a finite centrally nilpotent loop, H a maximum

subloop of G. Then (i) H = G'; (ii) His a normal subloop of G; (iii) H has prime

index in G.

Proof. First we note that (ii) and (iii) are immediate consequences of (i).

In fact if H/G' is a maximum subgroup of the abelian group G/G' then H/G'

is normal in G/G' and the group (G/G')/(H/G') or G/H is a cyclic group of

prime order.

As to (i), it is certainly true when G has prime order p, since in this case G

is a cyclic group. Thus we may assume inductively that (i) is true for any

finite centrally nilpotent loop L such that the total number of prime factors

in the order of L (counted with their multiplicities) is less than the corre-
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sponding number for G. Since G 5^1 we have Zj¿ 1 by hypothesis. If we define

Ziby

(7.9) Zi = E(~\Z

the case Zi = 1 may be disposed of immediately. In fact, Zi = 1 implies H<HZ,

whence, since H is maximum, HZ = G and we may appeal(n) to Lemma 7E.

Again, if Zit^ 1, then Zi, as a subloop of the centre G, is a normal subloop of G

(a proper normal subloop, since 1 <Zi^H<G) and our inductive hypothesis

allows us to assume that (i) holds for the finite centrally nilpotent loop G/Z±.

(Cf. Theorem 4C.) Since H/Zi is a maximum subloop of G/Zi we have H^K

where K/Zi is the derived loop of G/Zi. But G/K is isomorphic to the abelian

group (G/Zi)/(K/Zi), and therefore K^G'. Hence H^K^G', and the proof

is complete.

Lemma 7F. Let G be a finite centrally nilpotent loop, H a subloop of prime

index in G. Then H is a maximum subloop of G.

Corollary. A subloop of a finite centrally nilpotent loop G^l is maximum

in G if and only if it has prime index in G.

Proof. Let o be any element of G which is not in H, and set K= {a, H}.

Then [K:H]^l but [G:H]= [G:K][K:H]=p where p is a prime. Thus

|G:FC] = 1, G=K, H is a maximum subloop of G. The corollary follows from

Lemma 7F and Theorem 7B.

We note in passing that Theorem 7B and the corollary to Lemma 7F in-

dicate a method by which we may obtain a rather weak analogue, for a finite

centrally nilpotent loop G, of the notion of normalizer. Let H be a proper

subloop of G. Then among the set of all subloops [a, H) with o in G but

not in H there must exist at least one subloop K such that H is maximum in

K. Since FC is a finite centrally nilpotent loop, H is a normal subloop of prime

index in FC. It follows that we may define a strictly increasing series of subloops

H=Ho <Hi < • • • , which ends in G, such that Hi is a normal subloop of prime

index in Hi+i for i = 0, 1, • • • . Clearly this result is analogous to the one

which states that in a finite nilpotent group G one may reach the whole

group G from any subgroup H by the process of taking successive normalizers.

However it lacks the important property of uniqueness.

Theorem 7C. The faloop D =<b(G) of a finite centrally nilpotent loop G is a

characteristic normal subloop of G, and G/D is an abelian group.

Proof. By Theorem 5A, D is characteristic and is the intersection of all

maximum subloops of G. Since, by Theorem 7B, maximum subloops are nor-

(u) Indeed we may even obtain a contradiction, on the ground that H7^1 is centrally

nilpotent and that the centre of a direct product is the direct product of the centres. Thus every

maximum subloop of a finite centrally nilpotent loop has a nontrivial intersection with the

centre.
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mal, D is normal. Finally since every maximum subloop contains G', D^G',

and so G/D is an abelian group.

Definitions. If G is a finite centrally nilpotent loop, let ty be the set of all

primes pfor which there exists a maximum subloop H of index p in G.

For each fixed p in $ let Dp be the intersection of all maximum subloops of

index p in G.

Theorem 7D. // G is a finite centrally nilpotent loop, then for each p of $,

Dp is a characteristic normal subloop of G, and G/Dp is an elementary abelian

group of type (p, p, • ■ • ). Moreover D=<p(G) is the intersection of all the Dp,

and the abelian group G/D is isomorphic to the direct product of the groups G/DP.

Proof. Since Dp is the intersection of all maximum subloops of index p

it is clearly characteristic; it is also normal by Theorem 7B. From the defini-

tion of the Dp it is evident that D is their intersection.

Let M be any maximum subloop of index p in G, let x be any element of G,

and let xp designate any "pth power" of x, the grouping of the factors being

quite arbitrary. Then since G/M is a cyclic group of order p, (xM)p — xpM

^M, or xp£M. Since this is true for any such x and any such M, we have

xpÇ:Dp. Moreover since M^G' for each such M we have DP^G'. Thus

G/Dp is an abelian group in which each element save the identity has order p;

in other words, G/Dp is an elementary abelian group, of type (p, p, ■ ■ ■ ).

Now let N be the product of the distinct primes p contained in the set P,

and write N/p = Np. If x is any element of G, then, since G/D is an abelian

group, the coset xND is the same for every grouping of the factors in the

"power" xN. In particular xND=(xNp)pD for each p of P. Now (xWp)p and

D are both in Dp, whence xND is in Dp for each p of P, or xND is in D. Thus

the order of every element of G/D is a divisor of N. It follows at once from the

theory of abelian groups that G/D is a direct product of groups Ap/D, p(E.ty,

where Ap/D is the unique subgroup of G/D, consisting of all elements of

G/D whose orders divide p. Thus Ap is a unique normal subloop of G.

If Ap is defined to be the union of the Ag with q^p, then it is clear that

Ap'/D is the direct product of the AJD with q^p and that G/D = (AP/D)

X(A¿/D). Thus G/A/, or the isomorphic group (G/D)/(AP /D), is isomor-

phic to Ap/D. Since AP' =Z> and since G/Ap is elementary abelian of type

(p,p, • ■ • ), it follows that Ap =£>p. But also we must have Ap = Dg for q^p,

and hence Ap' =Dp, inasmuch as Ap i^Ap = D. This completes the proof of

Theorem 7D.

Definition. A set B of elements of a loop G will be said to constitute a

easts of G if {B} =G, and a minimal basis of G if in addition {C} <G for any

proper subset C of B.

The following theorem reduces to the well known Burnside basis theorem

in the special case mentioned in Corollary 2. In any case the proof is based

on that of P. Hall [l, Theorem 1.2, p. 35].
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Theorem 7E. Let G be a finite centrally nilpotent loop and let xiD, x2D,

■ • ■ , XtD form a minimal basis of G/D, where D=<p(G). Then xi, x2, ■ ■ ■ , xT

form a minimal basis of G. Conversely, if y\, y2, • ■ ■ , y, is any basis of G, the

set of cosets yiD, y2D, ■ ■ • , y,D contains a minimal basis of G.

Corollary 1. A necessary and sufficient condition that every minimal basis

of G contain exactly n elements is that this be true for the abelian group G/D.

Corollary 2. If G/D is a p-group of order pd, every minimal basis of G

contains exactly d elements.

Proof. Assume if possible {*i, x2, ■ ■ • , xr] =H?±G. Then H is contained

in a maximum subloop M of G. But since M^D we have that M/D con-

tains the set of cosets XiD, x2D, • ■ ■ , xrD, in contradiction to the hypothesis

that the latter generate G/D. Conversely if {yi, yi, ■ • • , y,\ —G then

y\D, yiD, ■ • ■ , y,D generate G/D. Hence the set of cosets yiD is either a

minimal basis of G/D or contains a minimal basis as a proper subset.

Corollary 1 is a trivial consequence of Theorem 7E, and Corollary 2 fol-

lows from Corollary 1 and the well known fact that every minimal basis of

an elementary abelian group of order pd contains exactly d elements.

In connection with Corollary 1 it seems worthwhile to mention the follow-

ing readily proved fact. Let the abelian group A be the direct product of n

cyclic groups A i where Ai has prime order pi and the pi are all distinct. Then

A has a minimal basis consisting of one element; and indeed it has a minimal

basis consisting of r elements for every integer r in the interval í¿r^n.

In the two theorems which follow we shall assume that G is a finite cen-

trally nilpotent loop, that the central'y derived loop G' and the (p-loop

D=<j>(G) have orders u and v respectively, and that G/D has order

p(l)da)p(2)d<-2) ■ ■ ■ p(r)dir) where the p(i) are distinct primes, the d(i) posi-

tive integers. According to Theorem 7D, the abelian group G/D is a direct

product of r elementary abelian ¿»-groups Ei/D, where Ei/D has order

p(i)d<-tí and is in fact the uniquely defined subgroup of G/D consisting of all

elements whose orders divide a power of p(i). Each minimal basis of Ei/D

consists of precisely d(i) members.

Again we borrow from P. Hall [l]. For each fixed i, let us suppose that

the ordered set

(7.10) P(i, 1), P(i, 2), ■ ■ ■ ,P(i,d(i))

is a set of representatives in Ei (and hence in G) of a minimal basis of Ei/D.

We regard two such sets (7.10) as the same if and only if they consist of the

same elements in the same order. If we denote the ordered set (7.10) by Bi,

then the set B, consisting of all of the elements of the sets Bi, B2, ■ ■ ■ , Br,

will be termed a canonical basis of G. As in the proof of Theorem 7E we may

show that a canonical basis is in fact a basis of G. Furthermore we regard two
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canonical bases B, C as the same if and only if, for each i, the ordered sets

d, Bi are the same.

There are A; ordered minimal bases P(i, l)D, • • • , P(i, d(i))D of Ei/D,

where

(7.11) ki = (p(i)dW - 1) • • • (p(i)d(i) - K*')d(<,_1).

Moreover each such basis is represented by vd<-fí distinct ordered sets Bi.

Thus, if in each group Ei/D a definite ordered minimal basis be chosen, we

derive a total of vd corresponding canonical bases B, where

(7.12) d = d(i) + d(2) H-+ d(r).

And finally we see that the total number of canonical bases is

(7.13) k = vdkxk2- ■ • kr.

Theorem 7F. In the notation above, the order of the group 21, consisting of

all automorphisms of the finite centrally nilpotent loop G, is a divisor of k.

Proof. Since the subloop Ei clearly is characteristic, every automorphism

S of G maps the set of ordered sets Bi into itself, and hence S maps the set

of all canonical bases into itself. Thus 21 divides the set of canonical bases into

b classes, each class containing all bases which can be derived from any fixed

member of the class by the automorphisms of 21. An automorphism S which

leaves a given canonical basis B fixed, that is, which maps each element of

B into itself, must be the identity automorphism. In fact [B] =G and so we

have xS = x for every element x of G. It follows that 21 permutes the elements

of each class regularly. Thus if 21 has order a, each class has a members. Hence

the total number of classes is ab = k; and we see that a divides k.

It is natural to define the group of inner automorphisms of a loop G to

be the intersection 2IF^3 of 21 and the inner mapping group of G. This defini-

tion leads to the following theorem.

Theorem 7G. With the hypotheses and notations of Theorem 7F, the order

of the inner automorphism group of G is a divisor of vd (and in fact of ud).

Proof. By multiplying the elements of a fixed canonical basis B of G by

the elements of the centrally derived loop G' (of order u) we obtain ud dis-

tinct sets C. Since G'^D, each C is a canonical basis. If S£(2IH3), xSL^r1

is in G' for every x of G; and thus, in particular, the aforementioned set of ud

bases is mapped into itself by 21^3- As in the proof of Theorem 7F we de-

duce that the order of 21^3 divides ud (and hence also vd).

In the special case that G is a finite £-group, Theorems 7F, 7G and their

proofs are due to Hall [l].

8. The inner mapping group of a centrally nilpotent loop. If G is a group

with centre Z and inner mapping group 3 it is well known that 3, which is

in this case the group of inner automorphisms of G, is isomorphic to G/Z.
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Thus the associated group G= {Rx, Lx; a;£G} is simply the so-called holo-

morph of G, and a great deal is known about the relationships between G,

3 and ©. In the more general case that G is a loop, only a very few properties

of 3 and © have been developed so far in this paper. They may be summed

up as follows: 3 consists of all elements U of G such that 117=1, where 1 is

the unit element of G. Several sets of generators of 3 have been given. A

subloop H of G is normal in G if and only if F?3=FF Finally, if G is finite,

@:F=(G:1) • (3^-0, where Fis the identity mapping of G; and ©:Fdivides gl

where g = G: 1.

Certain questions come to mind at once, among which we shall mention

the following.

(i) In case the loop G is finite, what can be said about the order of 3?

(ii) What can be stated about 3 and © when the loop G (finite or infinite) is

centrally nilpotent?

The situation in regard to (i) is in general quite complex. For example,

it is easy to construct a non-associative loop of order 5 for which 3 and ©

have (Albert [2]) respectively the maximum possible orders 4! and 5!, while,

at the other end of the scale, for an abelian group G, 3 has order 1 and © is

isomorphic to G. In this section, however, we shall show that if G is a finite

centrally nilpotent loop of order g then the orders of 3 and © divide some

power of g. In connection with (ii) it will be convenient to introduce a defini-

tion.

Definition. A finite loop G will be said to be a finite p-looo if and only if p

is a prime and the order of G is a power of p. Since there exist loops of prime

order with nontrivial subloops one cannot hope for too much from a general

study of ¿»-loops, but the results already obtained in this paper should make

it apparent that the class of finite centrally nilpotent ¿»-loops will repay fur-

ther study. At one stage in his research the author went so far as to produce

a "proof" that a finite loop is centrally nilpotent if and only if it is a direct

product of finite centrally nilpotent ¿»-loops. This highly desirable result, true

for groups, is unfortunately false for loops(12), and a counter example of order

6 will be given in Chapter III. It might be added that the decisive error was

connected with (ii), which we shall study presently with greater care.

The following lemma is based upon an idea essentially due to Albert [l, 2 ],

but used here in a slightly disguised form.

Lemma 8A. Let G be a loop with inner mapping group 3- Let H be a normal

subloop of G, and let 3» = 3 be the set of all U in 3 such that xU is in xH for
every x of G. Then 3/r ** a normal subgroup of 3, and the inner mapping group

3 (G/H) of G/H is isomorphic to 3/3jt-

Proof. We may set up a correspondence U—*U' between the elements of

(B) We seize the present opportunity to apologize for an enthusiastic misstatement in this

connection at a meeting of this Society, Chicago, November 1944.
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3 = 3(G) and those of 3(G/iF) by use of the following definition:

(8.1) (xH)U' = (xU)H.

First we note that (8.1) defines U' unambiguously as a mapping of the

cosets xH of G/H. In fact if xH = yH then y =xh for A in H, and so yU= (xh) U

= (xU)k for k in H, or (yU)H=(xU)H. Again, the set of all mappings

(Rx,y)' and (Mx,y)' defined according to (8.1) is a subset and in fact a gen-

erating subset of 3(G/H), as may readily be verified. Moreover (UV)'= U'V,

and so the mapping U—*U' is a homomorphism of 3 upon $(G/H). Thus

3(G/H) is isomorphic to 3/$, where Ä is the kernel of the homomorphism,

namely the set of all U in 3 such that (xU)H=xH for all x in G. Since

(xU)H = xH if and only if xU is in xH we see that the normal subgroup $

is identical with 3a, and the proof is complete.

Lemma 8B. Let G be a loop with centre Z, and let G/Z have order r (finite or

transfinite). Then the group 3z defined as in Lemma 8A is isomorphic to a sub-

group of the rth direct power Pr(Z) of Z. Thus in particular, 3z is an abelian

normal subgroup of 3-

Corollary. If G is a finite loop of order g_ the order of 3z divides some

(finite) power of g.

Proof. By the rth direct power of Z we mean of course the direct product

of r groups each isomorphic to Z. For convenience let us write $ = 3z- If U

is in $ then to each element x of G there corresponds a centre element u such

that xU=xu. But if y=xz for z in Z then yU=(xz)U=(xU)z = xu-z = xz-u

=yu. Hence to each element y of the coset xZ there corresponds the same

centre element u such that yU = yu. It follows that U is completely and un-

ambiguously determined by its effect on an arbitrarily selected element of

each coset. Furthermore if V is also in $ and if xV=xv then x(UV) = (xu) V

= xuv = xuv=x(VU); and of course, since xU = xu, x=(xu)U~1 = (xU~1)u

or xU~x =xu~1. Thus each fixed coset xZ sets up a uniquely determined homo-

morphism of $ into Z. It follows that these homomorphisms may be combined

to yield a homomorphism 9 of $ into Pr(Z). But if the element U of $ corre-

sponds under 6 to the unit element of Pr(Z) we have xU=x for every x of G,

or ¿7 = 7. Thus, finally, $ is isomorphic with a subgroup of PT(Z). We have

not assumed the finiteness of r, but the case of finite r is of special interest.

As to the corollary, the order of Z divides g, and hence the order of $ divides

gr. In fact, since the homomorphism of $ set up by the identity coset Z is a

homomorphism upon 1, the order of $ divides gr_1. But the less precise result

given in the corollary will be sufficient for our purposes.

We now combine the two preceding lemmas to derive the following:

Theorem 8A. Let G be a centrally nilpotent loop of (finite) class c, so that

the upper central series of G is
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(8.2) 1 = Zo < Zi < ■ ■ ■ < Zc = G,

where Zi/Zi-i is the centre of G/Zi-ifor i = l, 2, ■ ■ ■ , c. Then there exists an

ascending series

(8.3) I = St o < St i < • • • < Ä c-i = $c = 3,

of subgroups of the inner mapping group 3, with the following properties, for

j = 0, 1, 2, • • • , c-1:

(i) St j is a normal subgroup of 3 ;

(ii) the inner mapping group of G/Z¡ is isomorphic to 3/^jl

(iii)  Sij+i/Stj is an abelian group isomorphic to a subgroup of Pr>(Z,+i/Z¡),

where r,- is the order of G/Z,-.

Corollary I. If the centrally nilpotent group G has finite order g then 3

is a solvable group and the order of 3 divides some finite power of g. (Hence,

also, the order of the associated group © divides some power of g.)

Corollary II. If G is a finite centrally nilpotent p-loop, both 3 and © are

finite p-groups.

Proof. Since centrally nilpotent loops of classes 0 or 1 are abelian the theo-

rem is trivially verified for c = 0 or 1. Hence we may make an induction on

the class of G. Since Zi = Z is the centre of G we set $i = 3z, and it follows

from Lemmas 8A, 8B that properties (i) and (ii) are satisfied forj = 0, 1, and

that (iii) is true for/ = 0. But G/Zi has class c — 1, and so the rest of the theo-

rem follows by mathematical induction.

In connection with the first statement of Corollary I it seems desirable to

explain our use of the word "solvable," which is taken to be distinct from

"nilpotent."

Definition. A finite group will be said to be solvable if and only if the factor

groups in its decomposition series are all cyclic groups of prime order.

With this definition the first statement is readily verified, and the second

statement follows from (iii). (Compare the proof of the corollary of Lemma

8B.) Corollary II is a special case of Corollary I.

Theorem 8B. Let the loop G have upper central series (Zi), so that Z0 = l

and Zi/Zi-i is the centre of G/Z,_i for i=l, 2, • ■ ■ . Let 3 and © be respec-

tively the inner mapping group and the associated group of G, and let an ascend-

ing series (3¿) of subgroups of G be defined as follows: 3o = 3, and 3« is the

normalizer of 3»-i in ®for ¿ = 1,2, • • • . Then 3< *s the set of all elements URX

with U in 3 and x in Zi.

Corollary I. A necessary and sufficient condition that G be centrally nil-

potent of (finite) class c is that 3c = © but 3c-i ^ ©•

Corollary II. If a finite loop G is centrally nilpotent the associated group ©

is solvable.
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Corollary III. A sufficient condition that a finite loop G be centrally nil-

potent of class not greater than c is that the associated group © be nilpotent of

class c.

Proof. Let us assume temporarily the truth of Theorem 8B and dispose

of the corollaries. Corollary I is obvious. Corollary II is the result of combin-

ing Corollary I with Corollary I of Theorem 8A. As to Corollary III, if © is

a finite nilpotent group of class c, and if 3 is any subgroup of ©, the succes-

sive normalizers of 3 sweep out © in at most c steps; 3« = ® for age. Thus,

by Corollary I, G is nilpotent of class at most c.

As to Theorem 8B, it is certainly true for ¿ = 0, and we shall assume in-

ductively that it is true for some fixed ¿^0, so that 3¿ consists of all elements

URa with U in 3, a in Z,. If F is in © then F= WRX where IF is in 3 and

lT=x. A necessary and sufficient condition that T be in 3¿+i is that to every

element URa oí 3» there correspond an element VRb of 3« such that

(8.4) (WRx)(URa) = (VRb)(WRx).

Assuming the truth of (8.4) we operate with both sides on 1 and derive

xU-a = bWx. Since b is in Z„ so is bW, and this last equation implies

(xU)Zi = ZiX=xZi. Thus xUL^r1 must be in Z< for every U of 3, or, equiva-

lently, x must be in Z,+i. Hence 3»+i is contained in the set of all elements

WRX with W in 3, x in Z,+i. Conversely let F= WRX where W is in 3, x in

Zi+i. Then if URa is any element of 3¿ we have TURa = WxRy where

y = l(TURa) =xU-a and Wx is in 3- But, since x is in Zi+i, y=xU-a=xb = cx

with b, c in Zi, and so TUR. = WxRcx = W2RCRX = (WAW'1) (WRX)

= (VRd)(WRx) where W2 and Fare in3 and d = cW~x is in Z;. Thus we have

derived (8.4) with b replaced by d. It follows that 3<+i not only is contained

in but contains the set of all WRX with W in 3, x in Zi+x- Hence our inductive

proof goes through and Theorem 8B is true.

Theorem 8C(13). A necessary and sufficient condition that a finite p-loop

G be centrally nilpotent is that the associated group © be a p-group.

Proof. Since G and © are together finite or infinite, we shall assume finite-

ness in what follows. If G is a centrally nilpotent p-loop, then by Corollary II

to Theorem 8A, © is a /»-group. Conversely if © is a ¿»-group then G is a ¿»-loop.

Moreover © is nilpotent; and hence, by Corollary III to Theorem 8B, G is

centrally nilpotent.

The following sufficiency proof also seems worth recording, since it paral-

lels closely the usual proof that a finite ¿»-group is hilpotent. We say that two

elements x, y of a loop G are conjugate in G if and only if xU = y for some ele-

(") Theorem 8C shows that the definition of a p-loop given earlier by the author (Bull.

Amer. Math. Soc. Abstract 50-11-262) characterizes what is called here a finite centrally nil-

potent /»-loop.
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ment 17 of the inner mapping group 3- Thus the loop G may be partitioned

into classes #3 of conjugate elements. If G is finite the number of elements

in a class #3 divides the order of 3, being the index in 3 of the group 5 = 3

which leaves x fixed. A necessary and sufficient condition that x be in the

centre Z of G is that íc3=^, or that x be self-conjugate. Hence if G has finite

order g and Z has (finite) order z we have

(8.5) g-*+]£*<,

where each h is greater than 1 and represents the number of elements in some

class. If © is a ¿»-group then 3 is a ¿»-group and G is a ¿»-loop. But then g and

each hi is divisible by ¿»; and so, by (8.5), z is divisible by ¿>, Z is not the group

of order one. It is easy to show (Albert [l]) that the group associated with

G/Z is a quotient group of ®, and thus the argument may be repeated. There-

fore, since G is finite, it must be nilpotent.

9. Finite centrally nilpotent ¿»-loops. The two preceding sections contain,

usually as special cases, a large variety of theorems on finite centrally nil-

potent ¿»-loops, and we shall not repeat these. However we should like to

make a few remarks linking our results with some of the introductory theory

of P. Hall's fundamental paper [l] on finite ¿»-groups, which has been the

inspiration of most of the present work. If in §§1.1 to 1.4 of Hall's paper we

agree to replace the word "group" everywhere by "loop," and to interpret

"¿»-loop" as "centrally nilpotent ¿»-loop," all the results and proofs of these

sections remain valid, with three minor exceptions. These exceptions are:

(1.14), which becomes meaningless since the normalizer of a subloop has not

been defined (but compare the remarks on this topic in our §7); and (1.18),

(1.19), which both become false for odd primes ¿>. In fact we shall construct

in Chapter III a centrally nilpotent ¿»-loop of order ¿>2 which is not abelian.

We define an automorphism to be inner (as in §7) if and only if it lies in 3-

Hall's enumeration principle (§1.4) remains valid since it depends only

on the abelian ¿»-group G/D, and the proof of his Theorem 1.51 is still good.

Thus we may state the following theorem and refer the reader to Hall's paper

for proof.

Theorem 9A. The number of subloops of order pm of a centrally nilpotent

p-loop of order ¿>n is congruent to 1 (mod ¿») for O^m^n.

The question of whether Kulakoff's theorem (Hall's Theorem 1.52) has

an analogue for loops raises problems which are still unsolved. And indeed

the interested reader will find a host of questions arising in regard to loop

theory as he glances over the pages of any treatise on the theory of groups.

It might be added that, with some minor additions to the assumptions

concerning the characteristic property x considered in §4, it is possible to

define the notion of a ir-commutator subloop (H, K)T of any two normal sub-

loops FT, FC of a ir-nilpotent loop G. In the present (central) case the commuta-
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tor subloop (H, K) of two normal subloops H, K of G may be defined as the

smallest subloop L of HK such that: (i) L is normal in G; (ii) each element of

H/L commutes and associates (in G/L) with the elements of K/L, and con-

versely. There is no difficulty in proving the existence and uniqueness of

L = (H, K), but we have not attempted as yet to carry out the corresponding

program suggested by Hall's paper.

10. Associatral series. In §§7-9 we have considered the situation which

arises when "o7rG" is interpreted to mean that o is in the centre C of the loop

G. If C be replaced by any fixed one of the characteristic subloops .4x, Aß, Ap,

or A oí G we are led to the study of so-called left-associatral, middle-associ-

atral, right-associatral or associatral series of G. It seems unnecessary to treat

all of these types in detail, and we shall therefore restrict attention to left-

associatral series.

Thus in the present instance uairG" shall mean that

(10.1) ax-y = a-xy

for all x, y of G. As noted in §4, equation (10.1) defines a characteristic prop-

erty iv. Moreover the postulates I and II for ir-admissible loops are evidently

satisfied by every loop G. The corresponding 7r-centre may appropriately be

called the normal left associator of G. It is evident from the following theorem

that postulates III and IV are also satisfied by every loop G.

Theorem 10A. If N is any normal subloop of a loop G, let S(N, G) designate

the set of all elements «FIiVF„_1 with n in N, x, y in G, where as usual

Rx,y = RxRyRxy~x. Then, for any normal subloop K of G, (NK)/K is in the

normal left associator of G/K if and only if FC 2: S(N, G).

Proof. A necessary and sufficient condition that (nK-xK)(yK) = (nK)

■(xK-yK) for all n oí N, x, y oí G is that (nx-y)K = (nK)-(xy-K) or that

(nRx,y)K■ (xy ■ K) = (nK) ■ (xy • K) or that (nRx,y)K = nK. But this is equiva-

lent to «FI|VG«FC or to nRx,yLn~xG_K or to S(N, G) ¿K. Hence the condition

of Theorem 10A is necessary and sufficient that (NK)/K be in the left associa-

tor of G/K. But since (NK)/K is a normal subloop of G/K, the former will

be in the normal left associator of the latter if and only if it is in the left as-

sociator. This completes the proof.

Since postulates I-IV are satisfied by every loop G, postulate V is trivially

verified. Hence every loop is 7r-admissible in the present sense, and all the

results of §4 may be asserted at once. Since moreovtír normal left associators

are groups, it follows from §6 that every (finite left-associatrally nilpotent or

solvable loop has the strong Lagrange property (L').

We leave the topic of associatral series at this stage, merely remarking

that the results of §§7, 8 suggest many questions which are still unsettled.

For example, does every maximum subloop of a finite left-associatrally nil-

potent loop contain the left-associatrally derived loop?
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11. The autotopism group of a groupoid. Let G be any groupoid and let

$ be the group consisting of all permutations of G (§1). We shall here be con-

cerned with the direct power $3 = ^3 X $ X ty, and with a certain important

subgroup of ^8- We may think of $3 as consisting of ordered permutation-

triples

(11.1) « = (U, V, W),       ß = (Ux, Vx, Wx)

under the multiplication

(11.2) aß = (UUx, VVx, WWx).

We may designate by ßG the groupoid, isotopic to G, given by

(11.3) (xoy)Wx= xUx-yVx.

(Here ß is the permutation-triple (11.1), and (•) designates multiplication

in G.) It follows that

(11.4) a(ßG) = (aß)G

for all or, ß of $3, in the sense that both groupoids have the same product

operation. In fact if ct(ßG) has operation (*) then

(11.5) (x*y)W = (xU)o(yV),

whence, by (12.3), (x*y)WWx=[(xU)o(yV)]Wi=xUUi-yVVx. Thus (*)

also designates multiplication in (aß)G.

We define the element a of $3 to be an autotopism of G if and only if

aG = G, or, equivalently, if and only if

(11.6) (xy)W = xU-yV

for all x, y of G. If aG = G then, by (11.4), G=a~1G. Again, if also jSG = G,
then (aß)G=ct(ßG) =aG = G. Hence the subset 2Í3 of ty3, consisting of all auto-

topisms of G, is a subgroup of ^3.

If F is a permutation of G it is evident from the definition that (F, F, F)

is an autotopism of G if and only if F is an automorphism of G. Thus the

automorphism group of G is isomorphic with a subgroup of the autotopism

group.

The autotopism group of a groupoid G bears the same relation to the classi-

fication of the isotopes of G as the automorphism group of G bears to the

classification of the isomorphs of G. In fact if ccG=ßG, in the sense that both

these isotopes of G have the same product operation, then (ß~1a)G = G, so

that ß^a is an autotopism of G. We also note that if ßG = 6(aG) where

d = (T, T, T) gives an isomorphic mapping of aG into ßG, then ß^da is an

autotopism of G.

It would appear from these remarks that the autotopism group of a group-

oid is worthy of careful study, and indeed we shall find such an investigation
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of considerable value in connection with the more special topics considered in

Chapter II.

12. The loop ring of a finite loop. If G is a finite loop, written multiplica-

tively, and if F is an arbitrary field, we may regard the elements of G as a

linearly independent basis for a linear vector space R over F. We may further

define multiplication in R by use of the two-sided distributive law together

with the definition of multiplication in G. Under these circumstances R is a

linear non-associative algebra of a finite order over F, and is known as the

loop ring of G over F. In Brück [2, §7], loop rings (or rather the slightly more

general quasigroup rings) were studied by means of the group © associated

with G. At this point we wish to indicate briefly a method of studying R by

means of the inner mapping group 3 of G. We assume a familiarity with the

theory of linear algebras.

Definitions. If x is in G, the set of all elements xU with U in 3 will be

called the class of elements, (oí G) conjugate to x. This class may be designated

briefly as x3-

The element xi-\-x2-\- ■ ■ ■ -\-xr of R, consisting of the sum of all distinct

elements in the class #3, will be called the sum of the class x$, or, less explicitly,

a class sum.

Theorem 12A. Let C be the centre of R, where R is the loop ring of a finite

loop G over a field F of characteristic prime to the order of the inner mapping

group 3 of G. Then C has order h, where h is the number of distinct conjugate

classes of G. In fact, the h class sums of G form a linearly independent basis of

R over F.

Proof. Each element a of R has the form

(12.1) c=5>rr

where r is in G and ar is in F. If U is in 3 we extend U to a linear mapping of

R by the definition

(12.2) aU = £ <*r(rU).

Now o is in the centre of R if and only if

(12.3) ax-y = a-xy,        xa-y = x-ay,        xy-a =■ x-ya,       ax = xa

for all x, y of R. But, since the elements of G form a linearly independent basis

of R, there is no loss of generality in restricting x, y in (12.3) to be elements

of G. It is then easy to show that o is in C if and only if

(12.4) a = aU

for every U of 3- If 3 has order k it follows from (12.4) that ka =2Zo U where

the sum is over all distinct elements U of 3- Since the characteristic of F is

prime to k by hypotheses we have a=k~1£aU, or, by (12.1),
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(12.5) a=^(k-1ar)^(rU).
T U

Now, for each fixed r of G, ^u(r U) =ls where / is an integer and s is the sum

of the class of elements conjugate to r. Hence it follows from (12.5) that every

element of C is a linear combination of class sums. But, conversely, if s is a

class sum and U is in 3, sU=s, so C consists precisely of the vector space

generated by the class sums.

If si, s2, • • ■ , Sh are the class sums of the A distinct classes of G, no ele-

ment of G appears as a summand in two distinct s¿, since the classes of G are

obviously disjoint. Thus if ctxSx+ot2s2+ • • • +«aSa = 0 for a,- in F it follows

from the linear independence of the elements of G that cu = 0 for all i. Con-

sequently the Si form a linearly independent basis of C, and the latter is a

linear (commutative and associative) algebra of order A. This completes the

proof, and shows incidentally that a product of two class sums must be a

sum of classes, as is otherwise evident.

Theorem 12B. Let G be a finite loop of order g, with A distinct conjugate

classes. Let F be a field of characteristic zero or prime characteristic p>g, and let

R be the loop ring of G over F. Then R is the direct sum of d simple algebras,

where in general d^h but d = h when F is algebraically closed.

Proof. It has been shown elsewhere (Brück [2, §7]) that, under the hy-

potheses of Theorem 12B, i?isa direct sum R=Rx®R2(B • • • @R<¡ of simple

algebras Ri, and it may also be shown by the same methods that the centre C

oí R is a direct sum C=G©C2© ■ ■ • ©C«j of simple, commutative associa-

tive algebras C,. Moreover, if F is algebraically closed, each d must have

order one. We shall assume these results, although a direct proof would be

desirable.

Since the order of 3 divides g !, our present hypotheses ensure the truth of

Theorem 12A, and hence in particular we have d = A. Moreover, if F is alge-

braically closed, it is clear from the preceding remarks that d = h. This com-

pletes the proof of Theorem 12B.

If in Theorem 12B we let F be the field of complex numbers and remember

that loop rings of isotopic loops have essentially the same structure we see in

particular that two finite isotopic loops have the same number of distinct classes.

However a much better result is possible.

Theorem 12C. Let G be a loop, H any loop isotopic to G. Then to each class

of conjugate elements of G there corresponds a class of conjugate elements of H

with the same cardinal number. Moreover the set of all distinct classes of conjugate

elements of G has the same cardinal number as the corresponding set for H.

Proof. We merely sketch a method of proof. The reader may find it of

interest to fill in the details, (i) H is isomorphic to a loop Go with the same

elements and the same unit element as G, and such that (ii) Go and G have the
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same associated group ®. (iii) G0 and G have the same inner mapping group 3-

(iv) The classes of conjugate elements for G0 are identical with those for G.

As preface to a very simple example we may remark that Albert has shown

[2, Theorem 16] that (aside from the cyclic groups) all loops of order 5 are

isotopic. It is thus easily verified that every non-associative loop G of order 5

has exactly two classes and that the loop ring of G, over any field F of charac-

teristic not 5, is a direct sum of Fand a central simple non-associative algebra

of order 4.

In the case of this example, and often in other cases, it is unnecessary to

determine 3 explicitly in order to find the conjugate classes of G. We need

merely to observe that if xu = uy or if xu-v=y-uv then x and y are in the same

class, and so on.

Chapter II. Loops with the inverse property

It seems proper to begin with the remark that here, as in the rest of

Chapter II, all references to theorems and sections refer to Chapter II, unless

the contrary is explicitly stated.

When the ideas of Chapter I are applied to loops with the inverse property

(more briefly, to I.P. loops) a considerable simplification is achieved, appar-

ently because of the fact that one may calculate freely with inverses, just as

in the theory of groups. For example, the four associators A\, Ap, Ap, and A

all coincide, and hence we may speak unambiguously of the associator and

of the notion of associatral admissibility (§3). On the other hand the theory is

enriched in new directions. Indeed if G is an I.P. loop, the set of elements u

such that ux ■ yu = (u ■ xy) • u for all x, y of G is a Moufang loop M, the Moufang

nucleus of G (Theorem 4A). In terms of M we may introduce the new con-

cept of Moufang admissibility and the corresponding notion of Moufang nil-

potency (§5). Again, the set of elements v of G such that v2-xy = vx-vy for all

x, y of G is a commutative Moufang loop C, the Moufang centre of G (Theorem

4C), through which we obtain the theory of Moufang central series (§6).

From these remarks it will perhaps be apparent that the special class of

Moufang loops deserves a place of honour in the theory of I.P. loops. And

indeed §1, devoted to groups for which the mapping x—>x3 is an endomorphism

into the centre, is included here only because of its importance for the struc-

ture theory of commutative Moufang loops. §2 contains the definitions of

I.P. loops and Moufang loops, with a few known facts about their properties.

§3 deals with the associator. In §4, by examining the structure of the auto-

topism group of an I.P. loop G, we uncover the relationship between G, M,

and C^M, and incidentally derive a number of results on Moufang loops.

Of particular interest is the fact that the inner mapping group of a commutative

Moufang loop is a group of automorphisms. We also give necessary and suffi-

cient conditions that a like property hold for a noncommutative Moufang

loop. As another by-product we may mention that the elements which com-
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mute with every element of a Moufang loop G form a subloop; this subloop

is in fact the Moufang centre of G, which was defined somewhat differently

above in the case of an arbitrary I.P. loop.

After brief sections on ir-series (§§5-6) we turn to the study of Moufang

loops. Theorems 7A, 7B sum up the facts previously obtained on Moufang

loops, and Theorems 7C, 7D add further details to the theory of commutative

Moufang loops, the latter giving necessary and sufficient conditions that a

commutative Moufang loop be centrally nilpotent of class at most two.

In §8 we concentrate upon Moufang loops which possess an endomor-

phism x—>x3 into the centre, and show in particular that this property holds

for every isotope of a commutative Moufang loop; and hence, of course, for

every subloop of such an isotope. When a Moufang loop G has this property,

the system G0 defined by xoy =x~1yx2 is a commutative Moufang loop (Theo-

rem 8D). When G is also a group, Go is centrally nilpotent of class at most two

(Theorem 8E), and in fact, every commutative Moufang loop which is cen-

trally nilpotent of class at most 2 is either such a Go or a subloop of such a Go

(Theorem 8F). In Theorem 8H we show how to construct a commutative

Moufang loop with a normal subloop of index 3, and derive in particular the

existence of commutative Moufang loops which are centrally nilpotent of

class 3. (It might be pointed out here, since it becomes clear in the course of

§9, that Theorem 8H essentially solves the general problem of extending a

commutative Moufang loop to a commutative Moufang loop by use of a

cyclic group, whether of order 3, as in the theorem, or of arbitrary order.)

It is also proved in Theorem 8H that every Moufang loop, for which the

mapping x—>x3 is an endomorphism into its centre, is either an isotope of a

commutative Moufang loop or a subloop of such an isotope. There is thus a

most remarkable nontrivial relationship between the commutative Moufang

loops and the Moufang loops for which x—>x3 is an endomorphism into the

centre.

In §9 we attack the commutative Moufang loops through a study of the

generators [x, y, z] =x_1{ (xy ■z)(y~1z~1)} of the centrally derived loop. These

are shown to be skew-symmetric, in the sense that interchange of any two

of x, y, z replaces [x, y, z] by its inverse (Theorem 9A). We develop the prop-

erties of the triples [x, y, z] far enough to permit the explicit determination

of the "freest" commutative Moufang loop G subject to the restrictions that

G has n generators and is centrally nilpotent of class 2 (Theorem 9A). Finally,

Theorem 9B generalizes previously published results of the author on the

construction of non-commutative Moufang loops.

The well known theorem for groups, that the inner automorphism group

of a group G is isomorphic to the central quotient group G/Z, is known to be

false for loops. Nevertheless we are able to state an interesting analogue for

Moufang loops. If G is a Moufang loop we designate by ®p the group gener-

ated by the Rx with x in G, and by ®x the group similarly defined, in terms of
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the Lx. As before, © = {®p, ®x} is the group associated with G, and 3 is the

inner mapping group of G. We show that $ = 3F^®„ = 3FNi®x 's a normal sub-

group of 3, and that the mapping x—>StTx, where TX = RXLX~1, is a homomor-

phism of G upon the group 3/Ä (Theorem 10A). When G is a group this re-

sult reduces to the above-mentioned theorem on the inner automorphism

group. We say that a Moufang loop G is of the first kind if ®„ = ®x = ®, and

of the second kind otherwise. Thus every Moufang loop of the second kind is

homomorphic to a nontrivial group, and hence (assuming a suitable descend-

ing chain condition) is obtainable by a finite number of successive group-ex-

tensions from a loop of the first kind (Theorem 10B). It is also shown (Theo-

rem 10D) that a finite Moufang ¿»-loop is associatrally nilpotent if and only

if it is centrally nilpotent.

1. On a special class of groups. It will be convenient to begin this chapter

with some remarks on groups which possess an endomorphism x—>x3 into the

centre. With slight variations we follow a paper by F. Levi and B. L. van der

Waerden [l] which deals with the Burnside groups in which x3 = l.

Theorem 1A. Let G be a group for which the mapping x—>x3 is an endomor-

phism into the centre Z of G. Then :

(i) x3 = l for every element x of the derived group G' = (G, G) ;

(ii) G is nilpotent of class at most 3 : (G, G, G, G) = 1 ;

(iii) G' is an abelian group;

(iv) each element of G commutes with all its conjugates.

Proof, (i) If

(1.1) (x, y) = x^y^xy

is a commutator we have (x, y)3 = x~3y~3x3y3 = x~3x3y~3y3 = 1 ; but G' = (G, G)

is generated by the set of commutators (x, y).

(ii)-(iv). Since (xy)3 = x3y3 there results, for all x, y of G,

(1.2) xyx = y~1x~1y~1-x3y3.

Since x3 is in Z for each x we find, by several uses of (1.2), that

-1 -1 -1 -1       -1-13 -1       -1      -3    3 -1       -1       -3    3 3

x   y\xy2x    = x   yix     x   y2x     x  = (yi xyi -x   yi)-(y2 xy2   x   y2)-x

-1       -1       -1       -1       -3   3   3 -lr .—1   -i    —I       -3    3    3
= yi xyi -y2 xy2 -x   yiy2 = yi [x(y2y{)   x\y2 -x   yxy2

= yi [ytyi-x   -yiyi-x(yiyi)   ]y2   x   yiy2 = yi y2yix   y2y\y2 .

Thus
-i -i        -i -i -i

(1.3) x   yixy2x    = yi y2yia;   y2yiy2

for all x, yi, y2 of G. From (1.3), on left-multiplication by x,

(1.4) yixy2x    = xyi y2yxx   y2yxy2 ,
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whence in particular, with yx = y2 = y,

(1.5) y-xyx~x = xyx^-y.

Thus eacA element of G commutes with all its conjugates. This proves (iv).

In view of (1.1), (1.5) may be rewritten, after left- and right-multiplica-

tion by y1, as (a;-1, y1) = (y, x*1). Therefore

(1.6) (x, y) = (y~\ x) = (x, y-1)'1,

for all x, y of G. As usual we define

(1.7) (x, y, z) = ((x, y), z), (x; y, z) = (x, (y, z), (x, y; z, w) = ((x, y), (z, w)).

Then, in detail,

(a, b, c) = b-'a-^ac-^b-'abc = b^a^b-ac^a^-b^-a-by.

We may now apply (1.3) to the product in parentheses, using x = b~l,

yx = ac~1a~1, y2 = a. There results

(a, b, c) = iV_1a~1(aca~1.a-ac-1a-1-ô-a.ac~1a-1-a~1)c

= b-1-cac-1a-1-b-a2c-1a-2c = trl-(fi~l, a'1)-b-(a, c),

since a3 is in Z. But, by two uses of (1.6), (c-1, a~1) = (a, c~1) = (a, c)-1, and

hence we have (a, b, c) = (b; a, c) = ((a, c)_1, b) = (c, a, b), or

(1.8) (x, y, z) = (y; x, z) = (z, x, y)

for all x, y, z of C. Thus, in particular, (x, y, z) is invariant under cyclic per-

mutations ofx, y, z.

If we define, as usual,

(1.9) (x, y, z, w) = ((x, y, z), w)

it follows from (1.7), by two applications of (1.8), that

(1.10) (x, y; z, w) = (z, w, x, y) = (x; z, w, y).

From (1.10), and the above remark concerning (x, y, z), we see that (x, y;z,w)

is invariant under cyclic permutations both of z, w, x and of z, w, y, and hence

under the alternating group on x, y, z, w. Thus, using the even permutation

(xz)(yw), we have (x, y; z, w)~1=(z, w;x, y)-' = (x, y; z, w) or 1 = (x, y; z, w)2.

Hence, by (i),

(1.11) (x, y; z, w) = (x, y; z, w)s = 1.

From (1.10) and (1.11) it follows that (z, w, x, y) = 1 for all z, w, x, y of G.

Thus (G, G, G, G) = 1, or (G', G) is in Z; in other words G is nilpotent of class

at most 3. This proves (ii).

The main object of the Levi-van der Waerden paper [l] is the proof of

the following theorem, which we shall be content merely to state.
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Theorem IB. There exists a group G with the following properties:

(i) x3 = 1 for every xofG;

(ii) G has n generators, where n = 3 is a positive integer;

(iii) G, its derived group G', and its centre Z have respective orders 3", 3f, 3"

where

(1.12)      e = Cn,i + Cn,i + C„,3,       / = C„,2 -f C„,3,        g = C„,3;

(iv) G is nilpotent of class 3 ;

(v) G, G', Z and 1 are the only characteristic subgroups of G;

(vi) Every group H with properties (i) and (ii) is a homomorphic image of G.

It is of course evident that if a non-abelian group G with two generators

a, b satisfies (i) of Theorem IB (or even the less restrictive hypotheses of

Theorem 1A) the commutator (a, b) lies in Z and hence G has class 2.

2. Loops with the inverse property. A loop G is said to be a loop with the

inverse property (or, more briefly, an I.P. loop) if and only if, to every element

x of G, there corresponds a unique element x_1 of G such that the equations

(2.1) x~x-xy = y,       yx-xr1 = y

hold for every y of G. For various methods of constructing I.P. loops, and for

a detailed study of the more general subject of I.P. quasigroups, the reader is

referred to a previous paper (Brück [l]). From (2.1) with y = l we see that

(2.2) ar1* = xxr1 = 1,

and hence also that

(2.3) (or1)'1 = 1.

Moreover the mapping x—>a;_1 is an anti-automorphism of the I.P. loop G:

(2.4) (xy)-1 = y-1*-1.

In fact, if xy = z, then, by successive uses of (2.1), y=x~1z, x~1=yz~1,

z~1 = y-1x~1; but this last equation is equivalent to (2.4). It will be conven-

ient to have two lemmas concerning special types of I.P. loops.

Lemma 2A. If the equation

(2.5) (x-yz)x = xy-zx

holds for all x, y, z of the loop G, then G is an I.P. loop.

Proof. From (2.5) with y = l we derive

(2.6) xz-x = x-zx

for all x, z of G. If for each a: of G we define x*1 to be the unique solution of the

equation x■ x~l = 1 it follows from (2.6) withz = ;c-1 that;e=a:-:*r1:x:or:xr'1:*; = l.
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Thus (2.2), and hence (2.3), holds for all x of G. Now we set x = y-1 in (2.5)

and derive (y~1-yz)y~1 = zy~1 or y~1-yz = z for all y, z of G. Therefore the first

equation of (2.1) holds in G. Again, (2.5) and (2.6) together imply x(yz-x)

=xy-zx, from which with x = z~1 we derive z~1-(yz-z~1)=z~1y or yzz~1=y,

which is essentially the second equation of (2.1). This completes the proof.

Lemma 2B. If the equation

(2.7) x(y-zy) = (xy-z)y

holds for all x, y, z of the loop G, then G is an I.P. loop.

Proof. From (2.7) with x = l follows y-zy = yz-y, or (2.6), and thus (2.2),

(2.3) as before. Then (2.7) with z = y~1 yields essentially the second equation

of (2.1). Again, (2.7) with x=y~x yields y~1(y-zy), which, whenzy is replaced

by z, is essentially the first equation of (2.1). This comp'etes the proof.

Definition. A loop G is Moufang if and only if equation (2.7) is valid

for all x, y, z of G.

It follows from the definition that a Moufang loop has the inverse prop-

erty, as indeed is well known. (For some historical remarks see Brück [l,

p. 44].) G. Bol [l] has shown that, in a loop G, the defining relation (2.7)

implies the defining relation (2.5), and, in a letter to the author, D. C.

Murdoch has raised a question as to the converse proposition. This is in fact

also valid, but it will be convenient to defer the proof, since both results fall

out as by-products of later work on autotopisms (Corollary 2 to Lemma 4A).

For proof of the following theorem we refer the reader to a paper by

R. Moufang [l].

Theorem 2A. Let G be a Moufang loop. Then

(i) every two elements x, y of G generate a group ;

(ii) if three elements x, y, z of G are associative in some order (say x-yz

=xy-z) then {x, y, z] is a group.

In the present chapter we shall make frequent use of the various conse-

quence of Theorem 2A and of (i) in particular. It should be observed that (i)

obviates all necessity for the use of brackets in products formed from one or

two elements. Thus for Moufang loops the power xn (for integral n) is un-

ambiguous, and so is the commutator

(2.8) (x, y) — x^y^xy.

As another obvious consequence of (i) we note that every two elements of a

commutative Moufang loop generate an abelian group. Hence we have:

Corollary. If Gis a commutative Moufang loop, not an abelian group, then

G has at least three generators.

Moreover Bol [l ] gives an example of a non-abelian commutative Mou-

fang loop (of order 81) with exactly three generators.
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We conclude this section with an easily proved assertion which may pos-

sess some interest for the reader.

Theorem 2B. Let G be a groupoid with unit 1. Suppose that to every x of G

there corresponds at least one element x', and at least one element x", such that

(2.9) x'-xy = x-x'y = y,       yx-x" = yx"-x = y

hold for every y of G. Then Gis a loop with the inverse property.

3. The associator of an I.P. loop. The characteristic subloops ^4x, A M, Ap

and A = A\r\Aßr\A, of the arbitrary loop G have been defined in §§1, 2 of

Chapter I. The following theorem shows that all of these coincide for a loop

With the inverse property.

Theorem 3A. If G is an I.P. loop, if a is a fixed element of G, and if one of the

following equations holds for all x, y of G, then each of the others holds as well.

(3.1) ax-y = a-xy;

(3.2) xa-y = x-ay;

(3.3) xy-a — x-ya.

Proof. (3.1) is equivalent to (3.3). From (3.1), by taking inverses, we find

y~1-x~1a~1=y~1x~1-a~1, or (when y_1, x_1 are replaced by x, z), x-zar1

= xz-a~1. Setting z = ya we get xy = (x-ya)ar1 and xy-a=x-ya. Thus (3.1)

implies (3.3), and (obviously) conversely.

(3.1) is equivalent to (3.2). We multiply each side of (3.1) on the left by

(ax)~1=x~1a~1, whence y = x~1a~1- (a-xy). In this relation replacement of y

by x~1-a~1y~1 gives x~1-a~1y~1=x~1a~1-y~1, whence, by inversion, ya-x

= yax. Thus (3.1) implies (3.2). But conversely, multiplication of (3.2) on

the right by (ay)~1 = y~1a~1 yields (xa-y)(y~1a~1)=x, whence replacement of

x by xy~1-a~1 gives x-y~1a~1=xy~1-a~1; from which by inversion ay-x_1

= a-yx~1. This completes the proof.

The terms associator and normal associator are thus unambiguous for I.P.

loops, and the various notions of associatral series (§10 of Chapter I) now

coincide. But an even better situation exists for Moufang loops.

Theorem 3B. The associator A of a Moufang loop G is a (characteristic)

normal subloop of G.

Proof. If o is in A we have aRx,y = a by (3.1) and a = aLy,x by (3.3). But

the inner mapping group of G is known to be generated by the set of all

Rx.y, Lx,y and Tx, where TX = RZLX~1, aTx=x~1-ax. Thus, by virtue of Theo-

rem 3A, it is only necessary to establish the equation

(3.4) y-z-(x~1ax) = yz-x~1ax

for all a oí A and x, y, z of G. We do this by easy stages. Now, by (2.6) and
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the fact that a is in A, xy■ xa = (xy■ x)a = (x-yx) -a=x-(yx-a), or

(3.5) xy-xa = x-(yx-a).

By (2.5) and (3.5), z(x-1ax) = (xx-1z)(x~1a-x) = [x-(x~1z-x~1a)]x=[x{x~1

• (zx~x• a)} ]x = (zx'1 -a)x = zx~x-ax, or

(3.6) z(x~xax) = zx~1-ax.

By (2.5) and (2.6), x[(x-1y)(zx-1a)]=x[(x-1y-zx-1)a]=x[{x-1-(yz-x~1)} ]a

= (yz-x~1)a, or

(3.7) x[(x-1y)(zx-1-a)] = (yz-xr^a.

By (3.6), (2.5), (3.7) and (3.6),y[z- (x^ax)] =y(zx~1-ax) = (x-x-'y) [(zx~1-a)x]

= {x[(x-1y)(zx~1-a)]}x= [(yz) ■x~1)a]x = (yz-x~1)(ax)=yz-x~1ax. Thus (3.4)

is established.

The following example shows the existence of a loop of order 6 (not an

I.P. loop!) in which the left associator (elements 1, 2) has order 2 and the

middle and right associators each have order 1. (Note that the left associator

is the only proper subloop.)

(3.8)

1    2 3    4 5   6

2

1

6

5

3

4

3

4

5

6

1

2

5 6

6 5

4' 2

3 1

2 ' 4

1    3

The loop (3.8) may also be used to illustrate the fact, so often reiterated

in Chapter I, that characteristic subloops need not be normal.

4. The autotopism group of an I.P. loop. The notion of an autotopism

(U, V, W) of a loop G has been introduced in §11 of Chapter I. In the present

connection it will be convenient to introduce the permutation / of the I.P.

loop G, defined by

(4.1) xJ = x-\

Lemma 4A. Let (U, V, W) be an autotopism of the I.P. loop G. Then

(JUJ, W, V) and (W, JVJ, U) are also autotopisms of G.

Corollary 1. In addition, (V, JWJ, JUJ), (JWJ, U, JVJ) and (JVJ,
JUJ, JWJ) are autotopisms of G.

Corollary 2. For an I.P. loop G the defining relations (2.5) and (2.7) are

equivalent; either characterizes a Moufang loop.
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Proof. By hypothesis we have

(4.2) xU-yV = (xy)W

for all x, y of G. Right-multiplication of (4.2) by (yV)~1=yVJ gives

xU= (xy)W-yVJ, whence, with x, y respectively replaced by xy, y~1=yJ, we

derive (xy) U = xW-yJVJ. Thus (W, JVJ, U) is an autotopism. Again, left

multiplication of (4.2) by xUJ and replacement of x, y respectively by xJ,

xy gives (xy)V=xJUJ-yW, whence (JUJ, W, V) is an autotopism. This

proves the lemma. It should be noted that we now have a process of deriving

new autotopisms from a given one (U, V, W) : interchange one of the first two

elements with the last, and transform the remaining element by J = J~1.

Corollary 1 results from repetitions of this process. As to Corollary 2, the

defining relation (2.5), or (x-yz)x = xy-zx, holds for the I.P. loop G if and

only if (Lx, Rx, LXRX) is an autotopism of G for all x of G. When this is

true it follows from Lemma 4A that (JLXJ, LXRX, Rx) is an autotopism of G,

and so (xy-1)-1- (xz-x)=yz-x or yx-1- (xz-x)=yzx in G. The latter equation,

with y replaced by yx (and with xz-x replaced by x-zx by virtue of (2.6)),

yields (2.7) with the roles of x and y interchanged. Since each step is clearly

reversible, the proof of Corollary 2 is complete.

Lemma 4B. Let u = iU, v=lV, w=lWwhere (U, V, W) is an autotopism

of the loop G. Then uv = w, and

(4.3) F-W = FU,       U-W-R,.

Proof. From (4.2) with x = l we derive u-yV=yW. If y = l we have

uv = w. In any case FF„= W, or Fu= V^W. Similarly from (4.2) with y = l,

xU-v=xW or URV=W, R^U^W.

For the next result it is convenient to note that the equation (xy)-1

=y-1a;-1 for I.P. loops yields RyJ'= JLy-i = JLV-1, or indeed

(4.4) JRJ = L~x,        JLJ = R?.

We have of course used the fact that, for example, yRxRx-i=yxx~1=y or

RxRx~1 = I, Rx-i = Rt-1.

Lemma 4C. Let (U, V, W) be an autotopism of the I.P. loop G. Then, in

the notation of Lemma 4B, (Lu, Ru, LURU) is an autotopism of G; that is,

(4.5) ux-yu = (u-xy)u

for all x, y of G.

Definition. An element u of the I.P. loop G which satisfies (4.5) shall be

called a Moufang element of G.

Corollary. The elements u, u-1, v, v-1, w, w-1 are all Moufang elements

ofG.
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Proof of Lemma 4C. By Lemma 4A and Corollary 1, and the fact that

the autotopisms form a group, it follows that the permutation triple

(V, JWJ, JUJ)-\W, JVJ, U) = (V~xW, JW-WJ, JU-UU)

is an autotopism of G. By (4.3), V~1W=LU, and so, by (4.4), JW~lVJ

= (JV-1WJ)~1 = (JLUJ)-1 = RU. Thus, if we write JU~UU=T, we have that

(Lu, Ru, T) is an autotopism, or that

(4.6) ux-yu = (xy)T

for all x, y of G. From (4.6) with y = l we have ux-u = xT or T = LURU. This

completes the proof of Lemma 4C. As to the corollary, we need only to refer

to Lemma 4A and Corollary 1, and to note that \JUJ = uJ = w1, iW=w,

17=!/, \JWJ = w-\ UVJ = v-\

Theorem 4A. Let M be the set of all Moufang elements of the I.P. loop G.

Then M is a (characteristic) subloop of G, and, moreover, M is a Moufang loop,

which we shall call the Moufang nucleus of G.

Proof. If « is a Moufang element, then (Lu, Ru, Zui?„)_1 = (Lu_1, *, *) is

an autotopism and hence, by Lemma 4C, lLu~1 — u~1 is a Moufang ele-

ment(u). If v is also a Moufang element, then (Lv, Rv, LVRV)(LU, Ru, LURU)

= (LvLu, *, *) is an autotopism, and so again \L„LU = uv is a Moufang element.

Thus M is a subloop of G. That M is Moufang should be obvious from (4.5),

Corollary 2 to Lemma 4A, and the definition of a Moufang loop (§2).

Lemma 4D. Let u, v be Moufang elements of the I.P. loop G. Then

\~t *   I J J-^UV -**-U   -l-iV**-U*-'Ui ^liï -i-ty    X\.%tJ~iyJ\.y*

Proof. The product (Lu, Ru, LURU)(LV, Rv, LVRV) is an autotopism, so

(4.8) xLuLvyRuRv = (xy)LuRuLvRv

for all x, y of G. From (4.8) with y = l we derive LULVRUV=LURULVRV, or

Ruv=Lv~1RuL„Rv. Moreover from (4.5) with x = l we have u-yu = uy-u,

whence, for any Moufang element u,

(4.9) RULU = LURU.

Finally, from (4.8) with x = l, RURVLVU=LURULVRV, or, by use of (4.9), Lvu

= RV~1LURVLV. But this is the first equation of (4.7), with u and v interchanged.

Corollary. In a Moufang loop G, equations (4.7) hold for all u, v of G.

Moreover Albert's groups ®x, ®p are normal subgroups of the associated group ®.

(") Here and later we write asterisks (*) in place of elements in which we have no immediate

interest.
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For example, ®x is defined to be the group generated by the Lx with x

in G; but RU~1LVRU= LutLv~l by (4.7), and it follows that F-1®xr = ®x for

every T of ®. Similarly ©„= {Rx; x£.G}, but LV~1RULV=RUVRV-1, and so

T-^pT^&p for every T of ®.

Lemma 4E. Let (U, V, W) be an autotopism of the I.P. loop G, with 1 U=u,

lV=v, lW=w = uv. Then if u = \, a necessary and sufficient condition that U

be an automorphism of G is that v = w lie in the associator of G. Similarly, if

v = 1, a necessary and sufficient condition that V be an automorphism of G is that

u = w lie iii the associator ; and, ifw = l, a necessary and sufficient condition that

W be an automorphism of G is that u = v-1 lie in the associator.

Proof. We shall prove only the first statement. (The others can be ob-

tained by use of Lemma 4A.) Since w = l it follows from (4.3) that V=W

= URV. Thus

(4.10) (xU)-(yU-v) = (xy)U-v.

Now if v is in the associator, the left-hand side of (4.10) may be written as

(xU-yU)v. Thus xU-yU= (xy) U, or U is an automorphism. Conversely, if U

is an automorphism, the right-hand side of (4.10) may be written as

(xU-yU)v. Thus, when x, y are replaced by xU-1, yU~l, we have x-yv=xy-v,

whence v is in the associator.

In Chapter I it was shown that the inner mapping group 3 of a loop G

could be generated by the set of all permutations

\ * * ^ *•} ^x,y ^=       %**'jt*-/j/xi ~^x,y ==  "^x-**y-*^xj/1 •*■ x ^=  ■**x^'x

with x, y in G. The following theorem therefore yields considerable informa-

tion about the inner mapping group of a Moufang loop.

Theorem 4B. Let G be an I.P. loop with associator A, and let u, v be Mou-

fang elements of G. Then a necessary and sufficient condition that Tu, Ru,v or

Lu,v be an automorphism of G is that u3, v-1u~xvu or uvu_1v_1 respectively lie in A.

Corollary 1. A necessary and sufficient condition that the inner mapping

group of a Moufang loop G should be a group of automorphisms of G is that x*

and (x, y) =x~1y~1xy lie in the associator of G, for all x, y of G.

Corollary 2. If G is a commutative Moufang loop the mapping x—>x3 yields

an endomorphism of G into its centre Z. Moreover the inner mapping group is

a group of automorphisms of G.

Proof. As a matter of convenience let us define Au by

(4.12) A„- (Lu, RU,LURU).

Since Au is an autotopism, so, by Lemma 3A, is B = (LURV, Zu_1, Lu). Thus

AUB = (LU2RU, Tu, *) is an autotopism with 1F„ = 1, and hence, by Lemma 4E,
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Fu is an automorphism if and only if lLu2Ru = u3 is in the associator. Again,

AuAvAuv~l = (LuLvLuv~1, Ru,v, *) is an autotopism with li?u,„=l, and hence

Ru,v is an automorphism if and only if 1Z„Z,„ZUV-1 =v~1u~1vu lies in A. Finally,

AuAvAvu~1 = (Lu¡v, RuRvRvu-1, *) is an autotopism with 1ZU,„=1, and hence

Lu,„ is an automorphism if and only if \R%lRvRvu~1 — uvu~1v~1 is in A. This

completes the proof of Theorem 4B, and Corollary 1 follows immediately. In

the case of Corollary 2, x~1y~1xy = l for all x, y and so Rx,y=Lx,y is an auto-

morphism. But also TX = RXLX~1 = I is an automorphism, so x3 lies in the as-

sociator, now become the centre. The fact that (xy)3=x3y3 follows from

commutativity and Theorem 2A.

Theorem 4C. Ifuis a fixed element of an I.P. loop G, a necessary and suffi-

cient condition that

(4.13) u2-xy = ux-uy

for all x, y of G is that u be a Moufang element which commutes with every ele-

ment of G;

(4.14) ux = xu,       ux-yu = (u-xy)u

for all x, y of G. The set of all such u forms a (characteristic) commutative Mou-

fang subloop C of G, which we shall call the Moufang centre of G.

Corollary 1. If Gis a Moufang loop, the set of all elements which commute

with every element of G is a (characteristic) subloop, the Moufang centre of G.

Corollary 2. FAe inner mapping group of the Moufang centre C of an I.P.

loop G is the homomorphic image of a group of automorphisms of G.

Proof. From (4.13) with y = l, u2-x = ux-u. From (4.13) with rc=T,

u2-y=u-uy. Thus we obtain u2-x = ux-u=u-ux, whence it is clear that u

commutes with every element of G and also that (4.13) may be replaced by

the second equation of (4.14). From the first equation of (4.14), Lu = Ru,

and thus also Lu-x = Ru-i. If v is another Moufang element with LV=RV, then

by (4.7), Luv=Lvu = Rv~1LuRvLv=Lv~1RuLvRv=Ruv, so that uv has the same

property. Corollary 1 is immediate, and Corollary 2 follows from Theorem 4B.

In fact Ru,v=Lu<v is an automorphism of G for all u, v of C; and of course

TU = I.

We are forced to leave unsolved the problem of completely determining

the autotopism group of an arbitrary I.P. loop. We have encountered three

special types of autotopism: (1) (F, F, F), where F is an automorphism;

(2) (Lu, Ru, LURU), where « is a Moufang element; and the autotopisms ob-

tainable from this by the method of Lemma 4A; (3) (/, Ra, Ra), where L is

the identity permutation and a is an associator element; and the autotopisms

obtainable from this by Lemma 4A. (Type (3) was implicitly treated in

Lemma 4E.) In the case of a group it is readily seen that the three types
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suffice to generate the autotopism group, but the question remains open as

to whether the same situation prevails for every I.P. loop. The assumption

of commutativity, however, leads to an affirmative answer.

Theorem 4D. The autotopism group of a commutative I.P. loop G is gen-

erated by the autotopisms of the three types described in the preceding paragraph.

More precisely, every autotopism of G has the form aßy where a, ß, y are auto-

topisms of types.(I), (2) and (3) respectively.

Proof. Since G is commutative we may write LX = RX for each x. If

(U, V, W) is an autotopism, it follows from (4.2)> by interchange of x

and y, that (V, U, W) is also an autotopism. Thus, using (4.3), we see that

( 17, V, W)-1 ■(V,U,W)=:(U-1 V, U'1 U, I) = (RvRu-\ R^R*'1,1) is an autotop-

ism. Application of Lemma 4E shows that the element a = iRvRv,~1=vu~1 lies

in the associator (here the centre) of G. Thus v=au = ua and so w = uv = au2

= u2a. If we now define 7 = (F, Ra, Ra), ß=(Ru, Ru, Ru2), so that ß, y are auto-

topisms, we have (17, V, W)y~1ß~1 = (V, V, W) where U'=URv-\

V'^VRa-tRu-1, W =WRa~1Rv-2 and hence IU' = 1 V' = 1W' = 1. It follows
at once that U' = V = W = T where T is some automorphism of G. Thus,

finally, if a = (T, T, T), we have (17, V, W)=aßy as stated.

5. Moufang series for I.P. loops. Let the characteristic property 7r be the

"Moufang property" expressed as follows: u has property 7r with respect to

the loop G if and only if

(5.1) ux-yu = (u-xy)-u

for all x, y of G. We now consider the postulates laid down in §4 of Chapter I.

Theorem 5A. Every I.P. loop G is Moufang-admissible, in the sense of

equation (5.1).

Proof. Postulate (I) holds, since GT is the Moufang nucleus of G—the set

of all Moufang elements. Thus the ir-centre will be a Moufang loop. Postulate

II is trivially verified. As to postulate III, let A7 be a normal subloop of G

and designate by S(N) the set of all elements p oí G such that

(5.2) (nx-yn)p = (n-xy)n

for some n in N and x, y in G. Since N is normal in G, (n-xy)-n=xy-a and

(nx-yn)p = (xy-b)p=xy-cp for some o, b, c in N. Thus xy-a=xy-cp, a = cp,

p is in N, and S(N) is a subset of N. If K is a normal subloop of G, a neces-

sary and sufficient condition that (NK)/K be in the Moufang nucleus of

G/K is that

(5.3) (nx-yn)K = [(n- xy)n]K

for all n oi N, x, y oí G; or, equivalently, that the elements ¿> defined by

(5.2) be in K. Hence the set S(N), defined as above, satisfies the demands of



1946] CONTRIBUTIONS TO THE THEORY OF LOOPS 301

postulate III. Finally, postulates IV and V are obviously satisfied.

6. Moufang central series for I.P. loops. This time u will be said to have

property ir with respect to the loop G if and only if, for all x, y of G,

(6.1) u2-xy = ux-uy.

Equivalently, u must satisfy (5.1) and commute with every element of G.

Theorem 6A. Every I.P. loop G is Moufang-centrally admissible in the

sense of equation (6.1 ).

Proof. Gr is the Moufang centre of G. If A7 is a normal subloop of G, S(N)

is defined to be the set of all elements p of G such that

(6.2) (n2-xy)p = nxny.

It is readily seen, as in the previous section, that the five postulates for

ir-admissibility are satisfied.

As noted in Corollary 1 to Theorem 4C, the Moufang centre of a Moufang

loop G consists of those elements u of G which commute with every element

of G. Thus for Moufang loops equation (6.1) may be replaced by

(6.3) ux = xu,

and, correspondingly, (6.2) may be replaced by nxp=xn or

(6.4) p = (x, n) = x~1n~1xn.

Thus we have the following theorem.

Theorem 6B. Let G be a Moufang loop, N a normal subloop of G. Designate

by C(N, G) the intersection of all normal subloops of G which contain every com-

mutator (x, n) with x in G, n in N. Then C(N, G) is a subloop of N and a normal

subloop of G. Moreover, if K is a normal subloop of G, NK/K is in the Moufang

centre of G/K if and only if K^ C(N, G).

7. Structure theorems for Moufang loops. Aside from Theorem 2A (Mou-

fang's theorem) we have obtained a number of results on Moufang loops

more or less incidentally to the course of the preceding study of I.P. loops.

It will be convenient to list these here in the form of two theorems.

Theorem 7A. If G is a Moufang loop, then:

(i) G is characterized by either of the laws xyzx=(x-yz)-x, x(y-zy)

= (xy ■ z)y. In particular G has the inverse property (Lemmas 2A, 2B ; Corollary 2

to Lemma 4A) ;

(ii) every two elements of G generate a group ; three elements generate a group

if and only if they are associative in some order (Theorem 2A) ;

(iii) the associator A of G is a characteristic normal subloop of G (Theorem

3B);
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(iv) a necessary and sufficient condition that the inner mapping group 3 be

a group of automorphisms of G is that G/A be a commutative Moufang loop in

which every element save the identity has order 3 ((iii) above and Corollary 1 to

Theorem 4B) ;

(v) the set C consisting of all elements commutative with the elements of G

is a characteristic commutative subloop of G, the Moufang centre. If u,v are in C,

Ru,v is an automorphism of G (Corollary 1 to Theorem 4C; Theorem 4B).

Theorem 7B. If G is a commmutative Moufang loop, then:

(i) G is characterized by the law x2-yz=xy-xz (a consequence of Theorem

4C);
(ii) every two elements of G generate an abelian group ; every three generate an

abelian group if and only if they are associative in some order (Theorem 2A);

(iii) the mapping x—>x3 is an endomorphism of G into its centre Z (Corollary

2 to Theorem 4B) ;

(iv) the inner mapping group of G is a group of automorphisms ; hence every

characteristic subloop of G is normal in G (Corollary 2 to Theorem 4B).

By use of Theorem 7B we may readily extend our knowledge of commuta-

tive Moufang loops.

Theorem 7C(15). If G is a commutative Moufang loop, then:

(i) the subset F of G, consisting of all elements of finite order, is a character-

istic (hence normal) subloop of G;

(ii) F is a direct product F=AXN where A is a subgroup of the centre Z

of G and where N contains every element of G of order a power of 3 ; moreover A

and N are characteristic (normal) subloops of F and of G ;

(iii) N contains the derived loop G' ; in fact x3 = l for every element of G';

(iv) G/F is an abelian group.

Proof, (i) If x, y are in F, every element of the abelian group {x, y} has

finite order. Hence F is a subloop of G. The rest follows by Theorem 7B (iv).

(ii) Let A consist of all elements of F oí order prime to 3. Then A is a

characteristic, hence normal, subloop of G, by the above argument. In view

of Theorem 7B (iii), A gZ. Similarly A7 is a characteristic normal subloop

of G. If the element x of F is neither in A nor in N then, since {x} is a finite

abelian group, x has a unique representation x=yz with y in A, z in N. Since

A(~\N=1 by construction, the proof is complete.

(iii) G' is generated by the set of all elements x_1-xS with x in G, S in

the inner mapping group 3 of G. By (iii), (iv) of Theorem 7B, (x~x-xS)3

=x~3 • (xS)3 =x~3 ■ (x?)S=x~3 ■ x3 = 1. Hence y3 = l for every element y of G'.

(iv) This follows since F^NliG'.

Again, if F is the kernel of the homomorphism x—>x3, G/T is isomorphic

(") It seems apparent from Bol's paper [l ] that he was at least partly aware of the truth

of Theorem 7C. However, no such theorem is stated in his paper.
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to a subgroup of the centre Z. We may state this as a corollary.

Corollary to Theorem 7C. Let T be the subset of N consisting of all ele-

ments x of G such that xz = l. Then T^G' is a characteristic (normal) subloop

of G, and G/T is isomorphic to a subgroup of Z.

Clearly the corollary could have been used to prove (iii).

Theorem 7D. Let G be a commutative Moufang loop with associated group

®={Rx;xGG}. Then:

(i) the inner mapping group 3 of G is contained in the derived group

©' = (©,©) of®;
(ii) a necessary and sufficient condition that G be centrally nilpotent of class

c = 2 is that the group © possess an endomorphism X—*X3 into its centre (and

thus incidentally be nilpotent of class at most 3) ;

(iii) if G is centrally nilpotent of class 2, © is nilpotent of class 3. Then, by

(i), (ii), 3 ** a commutative group of automorphisms of G, each of order 3.

Proof, (i) Since G is commutative we may use the defining relation

x2-yz=xy-xz along with Lx = Rx. By (ii) of Theorem 7B it follows that

(7.1) Rx = Rx*

for every integer n, positive, negative or zero. Thus the defining relation

yields LyL2=LxLy or
—i       %

(7.2) Rxy — Rx RyRx.

From (1) by interchange of x and y we haLveRx¡y=RxRyRXy~1=RxRyRv~iRx~lRu

=RxRy~1Rx-1Rxy or

(7.3) Rx,y = (R~\ Ry).

Thus each Rx.v is in (©, ©), and since these generate the inner mapping

group 3 of the commutative loop G, the result follows.

(ii) First suppose that the loop G is centrally nilpotent of class c^2,

and let S be in 3, * in G. Then the element <x=x~1-xS is in Zf\G'. Since a

is in G', a' = 1 by (iii) of Theorem 7C, and since a is in Z, aS=a. But xS = ax,

xSi=(ax)S = aS-xS=a. ax=a2x, and xS3 = (a2x)S = a2-ax = a3-x=x. Thus

S3 = I for every S of 3- Again, if y is in G, yRxS=(ytc)S=yS-xS=yS-ax

= (ya)S-x=yRaSRx and so RxS = RaSRx. Furthermore, since a is in the cen-

tre of G, Ra is in the centre of ®. Now (SRx)2 = SRxSRx = S(RaSRx)Rx

=RaS2Rx2, and (SRx)3=RaS2Rx2SRx=Ra3S3Rx3=Ra'Rx'=Rx'. But x3 is in

the centre of G and so (SRX)3 = RX> is in the centre of ®. Since every element

of G has the form SRX with S in 3, x in G, it follows that the cube of every

element of ® is in the centre of ®. If F is also in 3, and if xT=ßx, then, by the

same reasoning, (SRx)(TRy) =RßSTRxRy = RßURxy, where U=STRx,y is in

3, and so (SRx-TRy)3 = Rß3Rxy3 = Rx>Ry> = Rx3Ry3=(SRx)3(SRx)3. Hence the
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mapping X —>X3, for X in ®, is an endomorphism of ® into its centre.

Now let us assume that ® possesses an endomorphism X—*X3 into its

centre. By Theorem 1A, ®' = (®, ©) is an abelian group, and by (i) of the

present theorem, ®' = 3- Thus if 3i is the normalizer of 3 in ®, 3i^®'-

Hence 3i is a normal subgroup of G, and so 32 = ® where 32 is the normalizer

of 3i in ®. A reference to Theorem 8B of Chapter I reveals that G is centrally

nilpotent of class at most 2, the case of class 2 arising only when 3i^®-

(iii) If G is an abelian group, ® is an isomorphic group, and hence ® has

class 0 or 1 according as G contains exactly one element or more than one

element. Conversely if ® is an abelian group, so is G. We now must show

that if G is centrally nilpotent of class 2, @ cannot have class 2. Suppose on

the contrary that ® has class 2. Then 3, as a subgroup of ®', is contained

in the centre of ®, and hence is a normal subgroup of ®. This is impossible,

since then, in the notation of the last paragraph, we would have 3i = ®, in

contradiction to the fact that G has class 2. Since the only remaining possibil-

ity is that ® have class 3, the proof is complete.

8. Construction of commutative Moufang loops. We first give a simplified

version of a result previously announced by the author (Brück [l, §9]).

Theorem 8A. Let G be an I.P. loop and let the loop G0 be a principal isotope

of G given by

(8.1) xoy = xf-gy

where f, g are fixed elements of G. Then a necessary and sufficient condition that

G„ have the inverse property is thatf, g be Moufang elements of G.

Corollary 1. Every loop isotopic to a Moufang loop is Moufang.

Proof. It should be noted that every principal loop-isotope of an I.P. loop

can be obtained in the form (8.1). Since moreover every isotope of a loop is

isomorphic to a principal isotope, the corollary follows immediately from

Theorem 8A. Now consider the equation

(8.2) zo(xoy) = y,

which, by use of (8.1), can be written successively in the following equivalent

forms: (zf) [g(xf-gy)]=y, g(xf-gy) = (zf)~1-y, and

(8.3) W)-1- UW-gyii-r1.

We may say that G0 has the left inverse property if for each x the solution z

of (8.2) is independent of y. Hence a necessary and sufficient condition that G„

have the left inverse property is that the right-hand side of (8.3) be in-

dependent of y. Now if g is a Moufang element, (Lg, R0, L„R„) and thus

(L0Rg, Lg-1, L„) are autotopisms of G. In this case g(xf-gy) = (xf-gy)LB

= [(xf)LgRg] [(gy)Lg~1] = [(g■xf)g]y, and hence (8.3) can be written as
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(8.4) (zf)-1 = (g-xf)g,

which shows that z is independent of y. Conversely, if z is independent of y,

we equate the right-hand side of  (6.3)  to its expression for y = 1 ; thus

[g(xf-gy)]y~1 = g(xf-g), or g(xf-gy)=[g(xf-g)](g~1-gy), whence (RaLa, Lg-1,
Lg) is an autotopism, and g a Moufang element, of G.

In similar fashion the equation

(8.5) (yox)oz = y

may be replaced by the equivalent equation

(8.6) (gz)-1 = rll(yfg*)fl

If / is a Moufang element of G, (Lf, Rt, L¡R¡) and (R¡~x, LjRj, Rf) are auto-

topisms of G; by virtue of the latter autotopism (6.6) may be replaced by

(8.7) (gz)-1 = (f-gx)f,

whence z is independent of y, G0 has the right inverse property. Conversely,

if we equate the right-hand side of (8.6) to its value for y = l, we derive

(yf-gx)f= (yf-f-1) [(f-gx)f], whence (Fe/-1, L¡R¡, Rf) is an autotopism, and/ a
Moufang element, of G.

From (8.4), (8.7) we get formally distinct expressions for the inverse z oí x

in G0. That these are the same may be verified either by computations with

elements or by reference to Theorem 2B. With this the proof is complete.

From what has gone before the truth of the following corollary is evident.

Corollary 2. A necessary and sufficient condition that the loop G0 given by

(8.1) have the left inverse property (right inverse property) is that g(f) be a Mou-

fang element of the I.P. loop G.

In preparation for further study it will be convenient to have a theorem on

arbitrary loops.

Theorem 8B. Let G be a loop with unit 1, and let G„ be the principal isotope

of G defined by

(8.8) xoy = xR'b1 yLZ1,

with unit e = ab. If the mapping S yields an endomorphism of G into its centre,

then the mapping T, defined by

(8.9) xT = xS-(eS)-1-e,

yields an endomorphism of G0 into the centre of G0.

Proof. It follows from the work of §§1, 2 of Chapter I (cf. the proof of

Theorem ID, Chapter I) that the mapping

(8.10) x->xe
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induces an isomorphism of the centre of G upon the centre of G0. Hence, since

S is an endomorphism of G into its centre, it follows that xT is in the centre of

G0 for all x of G0. Now (xoy)S=(xSRba-1)(ySLaS-1) = (xS)(bS)~1(yS)(aS)-1

= (xS) (yS) [(afc)S]-1 = (xS) (yS) (eS)~\ and so

(8.11) (say) F = (xS)(yS)(eS)~2e.

On the other hand, by the above remark in connection with (8.10), (ue)o(ve)

= uve for any two elements u, v of the centre of G. Hence in particular

(8.12) (xT)o(yT) = (xS)(eSyi(yS)(eS)-1e = (xS)(yS)(eS)~2e.

From (8.11) and (8.12) it follows that (xoy)T=(xT)o(yT) for all *, y oí G0,

and thus that the mapping T yields an endomorphism of G0 into its centre.

One remark is perhaps in order. In (8.9) and in the derivation of (8.11)

we introduced inverses, for example the element (aS)-1. This was permissible,

for arbitrary loops, in view of the fact that the elements in question lay in

the centre of the loop.

Theorem 8C. Let G be a Moufang loop with the property that the mapping

x—*x3 is an endomorphism of G into its centre. Then a like property holds for

every loop isotopic to G.

Proof. It is clearly necessary to treat only the case of the principal isotope

G0 given by (8.1). If A be defined by

(8.13) A = /g,

then G0 has unit e='h~l. Thus, by virtue of Theorem 8B, it is sufficient to

prove that

(8.14) xoxox = xT = »»(A-1)"»*-1 = x3h2.

(Note that we have omitted parentheses in (8.14), since G0, like G, is a

Moufang loop.) Now, by (8.1), xox = xf-gx = (xfg)x = xh-x = xhx,

and so (xox)ox = [(xhx)f](gx) = [x- (h-xf)]- (f_1h-x) = x- [(h-xf) ■/_1A]-x

=x- [h-(xf-f-1)h]x=xhxhx=(xh)3h-1=x3h3h~1=x3h2. Thus (8.14) is verified.

(In this computation we have made several uses of formula (2.5) and one

use of the formula (xhx)f=x- (h-xf), which latter amounts to employing the

autotopism (LXRX, Lm~l, Lx).)

It is well known that all the isotopes of a commutative loop G are com-

mutative if and only if G is an abelian group. Since there exist non-associative

commutative Moufang loops, the following corollary is not without interest.

For proof we cite Theorems 7B (iii), 8C.

Corollary to Theorem 8C. Every loop H isotopic to a commutative Mou-

fang loop has the property that the mapping x—>x3 is an endomorphism of H into

its centre.
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Theorem 8D. If the mapping x—>x3 is an endomorphism of the Moufang

loop G into its centre, the groupoid GB defined by

(8.15) xoy = xrxyx2

is a commutative Moufang loop. Moreover:

(i) if H is a subloop of G the set H0, consisting of the same elements as H,

is a subloop of G,

(ii) if H is a normal subloop of G, H0 is a normal subloop of Go, and G0/H0

is isomorphic to the loop (G/H)e formed from G/H by the method of (8.15);

(iii) if H is in the centre of G, Ho is in the centre of Go-

Proof. First we verify that G0 is commutative. Now (xoy) (yox)~x

=x~1yx2(y~1xy2)~1 = x~1yx2y~2x^1y = x3y~3 ■ x~1yx~1yxr1y = x3y~3(x~1y)3 = x*

■x~3y3-y~3 = \, hence xoy=yox. Next, by Theorem 7B(i), we must show that

(8.16) (xoy)o(xoz) = (xox)o(yoz)

for all x, y, z of G0. From (8.15) it is clear that

(8.17) xox = x2,        {xoy)* = xzy3.

The left-hand side of (8.16) may be written as

(xoy)-1(xoz)(xoy)~1(xoy)3 = (x~2y-1x)(x-1zx2)(x-2y-1x)x3y3

= (xy~1x)(x~1zxr1)(xy~1x)y3

— (xy~1x-x~1)(zx~1-xy~1x)yl

= (xy~1){[(zx~1-x)y-1]x}yi

= (xy~1)(zy~1-x)y3 = x(y~1zy~1)x-y3

= x(y"1zy2)x = x(yoz)x,

and thus we have

(8.18) (xoy)o(xoz) = x(yoz)x.

Again, (xox)o(yoz)=x2o(yoz)=x"2(yoz)xi=x~2(yoz)xx3 = x(yoz)x, and so

(8.19) (xox)o(yoz) = x(yoz)x.

But (8.18) and (81.9) together imply (8.18). Thus G0 is a commutative Mou-

fang loop.

We now proceed to the remaining assertions of Theorem 8D.

(i) This is obvious.

(ii) From (8.15) and the fact that G0 is commutative we see that the right

and left mappings of Go are given by

0 0 2—1

(8.20) Rx = Lx = RXLX .

Since G0 and G have the same unit 1, it follows that the inner mapping group

of G0 is contained in that of G. Thus, by (i) and this fact, Htt is a normal sub-
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loop of G0 when H is a normal subloop of G. Moreover, by (8.15) and the nor-

mality of H in G, we readily derive the equations

(8.21) xoE = xH,        (xH)o(yll) = (xoy)H,

which imply, first, that the cosets of H0 in G0 are identical with those of H

in G, and, secondly, that (G/H)0 is isomorphic to Go/H0.

(iii) This follows from the above remark on inner mapping groups, and

the fact that centre elements are self-conjugate.

We now specialize the situation of Theorem 8D by taking the Moufang

loop G to be associative.

Theorem 8E. Let G be a group with centre Z, derived group G' ; and let C

be the centralizer(u) of G' in G. Further let the mapping x—*x3 be an endomor-

phism of G into Z. Then, if Go is the commutative Moufang hop obtained from G

via (8.15):

(i) Co is the centre of Go ;

(ii) Go is centrally nilpotent of class c^2, equality holding if and only if the

nilpotent group G has class 3 ;

(iii) if G has class 3, and if H= (G', G), then Ho is the centrally derived loop

of Go;
(iv) the inner mapping group 3o of G0 is isomorphic to the abelian group

G'/(GT\Z).

Proof. First let us consider the equation

(8.22) (cox)oy = do(xoy).

By (8.15), (cox)oy =yo(xoc) =y~1x~1cx2y2, and do(xoy) = (xoy)od = (xoy)~1d(xoy)2.

Thus (8.22) is equivalent to y_1x_1cx2y2 — (xoy)~ld(xoy)2 or to

(8.23) d(xoy)2y~2x~2 = (xoy)y-1X'1c.

But (8.22) is satisfied for all x, y when c = d = l. Hence, from (8.23),

(xoy)2y~2x~2 = (xoy)y~1x~1 = x~1yx2y~1x~1 = (y~1x)~1x2(y~1x)x~2=(y~1x, x~2)

= (y~lx, x), the last equation holding since x3 is in Z. Thus (8.22) or (8.23)

is equivalent to d(y~xx, x) = (y~hc, x)c or to

(8.24) d = (x, y-1*)-^*, y'H).

We now consider in turn the various items of Theorem 8E.

(i) The element c is in the centre of G0 if and only if (8.22) is satisfied,

with d = c, for all x, y of G. Thus (8.24) must hold with a" = e for all x, y, and

it follows that ac — ca for every element a of G'. Thus c is in C. Conversely

if c is in C, (8.24), and hence (8.22), is satisfied, with d = c, tor all x, y oí G.

(M) The centraliser (in G) of the subset S of the group G is the subgroup of G consisting of

all elements of G which commute with every element of 5.
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Thus the Moufang loop Co, derived from C via (8.15), is the centre of Go.

(ii) By Theorem 1A, G' is an abelian group. Hence C^G', and Go/Co is

an abelian group isomorphic to G/C. Thus Go has central class eg2. Now

C = G if and only if G' gZ, and hence Go is an abelian group if and only if G

has class less than 3., In other words, Go has class 2 if and only if G has class 3.

(iii) If G has class 3, G/H has class 2 and hence Go/Ho is abelian, Ho è K0,

where FCo is the centrally derived loop of Go. But Ko, as a subgroup of Z0 =Z,

is identical with a subgroup K of Z. Thus K is a normal subgroup of G, and

since Go/FCo is abelian, G/K must have class at most 2. Hence K^H^.K,

whence K = H. This completes the proof of (iii).

(iv) From the fact that (8.22) is equivalent to (8.24) we see that 3o is

isomorphic to the group of mappings c—*a"1ca of G into itself, where a ranges

over all elements of G'. Hence G' is homomorphic to 3o, the kernel of the homo-

morphism being G'C\Z.

Theorem 8F. Let H be a commutative Moufang loop, centrally nilpotent of

class at most 2. Further let G= {Rx; xÇ^H} be the group associated with H, and

let K^G' be the inner mapping group of H. Then :

(i) H is isomorphic to a subloop of the commutative Moufang loop Go ob-

tained from G via (8.15);

(ii) FCo is a normal subloop of Go ;

(iii) H is isomorphic to Go/Ko.

Corollary. Every commutative Moufang loop which is centrally nilpotent

of class at most 2 is among the subloops of (and the homomorphs of) the loops Go

obtained by the method of Theorem 8E.

Proof, (i) That G0 is a commutative Moufang loop (centrally nilpotent of

class at most 2) follows from Theorems 7D (ii) and 8E. Now the elements Rx,

Rv of G are in G0 and, moreover, by (8.15), (7.2), RxoRy=Rx~1RvRx2 = Rxy

Hence the one-to-one mapping x—*Rx yields an isomorphism of H into Go.

This proves (i).

(ii) By Theorem 7D (i), K is a subgroup of G' and hence K0 is a subloop

of Go'. Since G' is commutative, by Theorem 1A, G' lies in its centraliser C,

and so K0¿G0' g Co. But Co is the centre of G0, by Theorem 8E (i), and hence

FCo, as a subloop of Co, is a normal subloop of Go.

(iii) The elements of Go/K0 have the form K0oRx, x in G. Moreover

(KooRx)o(KooRy)=Koo(RxoRy)=KooRXy, by (i), and hence the mapping

x^>KooRx is a.homomorphism of H upon Go/FCo. The kernel of this homo-

morphism is the set of elements x such that K0oRx = Ko, or that Rx is in K.

But Rx is in K ii and only if lRx=x = 1. This completes the proof of (iii).

The corollary is of course an immediate consequence of Theorem 8F. It

is interesting to note that if in this corollary the phrase "method of Theo-

rem 8E" be replaced by "method of Theorem 8D" the statement becomes

wholly trivial. Indeed the commutative Moufang loops are among those which
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possess an endomorphism ¡e—*k8 into the centre, and if the G of Theorem 8D

is commutative, the corresponding G0 is identical with G. However every

isotope G of commutative Moufang loop H possesses an endomorphism x—*x*

into its centre (Theorem 8C) and yet not every such G is commutative; so

that it seems worthwhile to consider the properties of the corresponding G0.

As we shall now see, nothing new results.

Theorem 8G. If G is an isotope of the commutative Moufang loop H, and

if Go is the commutative Moufang loop obtained from G via (8.15), then G0 is

isomorphic to H.

Proof. We shall let xy designate the product of x and y in H and assume

(as we may without loss of generality) that G is the principal isotope FZ* of H

given by

(8.25) x*y = xf-gy,

where /, g are fixed elements of H. A reference to Theorem 8A shows that the

inverse of a; in G is the element z given by (8.3) or (8.4). Using (8.4), we see

that

(8.26) zf = g-^t'x-^g-1 = g-'CT1*"1).

Again (8.15), when interpreted in the present circumstances, gives

(8.27) xoy = z*[y *(x*x)].

It will also be convenient to set/g = e-1, so that e is the unit of G and G0, and

(8.28) fi=e-\       g~1 = ef = fe.

Nowx*x=xf-gx=x-fg-x = xe-1x = e-1x2,andg(x*x) = (e-1/-1) (erlx2) =e~2(f-1x2).

Thus tt=y*(***) = (yf)[g(x*x)] = (Jy)(f~xx2■ e~2) = Pbit'if-^-e-2)] ]
=f-lb{f(f-1**-<rt)} ] =f-1\y{x2-fe~2} ], or

(8.29) « «■ y*(x*x) = f~1[y(x2-fe-2)].

But xoy=z*u = (zf)(gu)= [g-2(f-1x-1)](gu)=g-3-g2[f-1x~lu], or

(8.30) xoy = z*u = (e/)^-1*-1-«).

Next, from (8.29), f~lx-1u=f-2{x-1\y(x2fe-2)]] =f~*{x2[y^-1 -fe~2)]}

=ti[(xy)(fe-2)] = (f-1-xy)e-2 = (ef)-1(er1-xy), and so by (8.30),

(8.31) xoy = e~1-xy.

It follows from (8.31) that the mapping x—>ex is an isomorphism of H upon

Go; in fact (ex)o(ey) =e~1(ex-ey) =e~1(e2-xy) =exy. This completes the proof

of Theorem 8G.
In the next theorem we consider a special case of the extension problem

for commutative Moufang loops.
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Theorem 8H. Let M be a Moufang loop with unit 1, which possesses an

endomorphism x—*x3 into its centre. Let E be the cyclic group of order 3, written

additively, with elements 0, 1, 2, and let G=(M, E) be the set of all couples

(x, p) with x in M, p in E, where (x, p) = (y, q) if and only if x = y, p = q.

Finally let multiplication in G be defined by

(8.32) (x, p)(y, q) = (fa-P(x, y), p + q)

where

(8.33) fa(x, j) = x^yx2,       fa(x, y) = xy,       fa(x, y) = yx,

for all x, y of M and p, q of E. Then :
(i) G is a commutative Moufang /oo¿>(17);

(ii) M is isomorphic to a subloop of a loop isotopic to G;

(iii) G = MXE if and only if M is commutative;

(iv) if M is not commutative, the centre of G consists of all elements (x, o)

with x in the centre of M;

(v) if N is a normal subloop of M, the set of all elements (x, o) with x in N

is a normal subloop H of G, isomorphic to N, and G/H is isomorphic to the loop

(M/N, E) obtained from M/N as G is obtained from M;
(vi) a necessary and sufficient condition that G be centrally nilpotent of class

c is that M be centrally nilpotent of class c.

Corollary 1. Every Moufang loop which possesses an endomorphism x—*x3

into its centre is either an isotope of a commutative Moufang loop or a normal

subloop of index 3 in such an isotope. (But there exist loops of this type which are

isotopic to no commutative Moufang loop, namely the noncommutative groups.)

Corollary 2. There exists a commutative Moufang loop which is 'centrally

nilpotent of class 3.

Proof, (i) It follows from (8.33) and from Theorem 8D that, for each fixed

¿» of E, <f>p(x, y) defines the product of x and y in a quasigroup (which is in

fact a Moufang loop). Thus, by the general extension theory for loops (Albert

[2], Brück [2, §10]) G is a loop. According to Theorem 7B(i), G is a commuta-

tive Moufang loop if and only if (x, p)*[(y, q)(z, r)]= [(x, p)(y, q)][(x, p)(z, r)],

or, equivalently, if and only if

(8.34) 4>u+t,[<í»o(*, x), <¡>,-u(y, z)] = <*>«,_„[<£„(*, y), <t>„(x, z)].

(In (8.34) we have set u =q—p, v = r—p; and it is to be understood that this

equation must hold for all x, y, z of M and u, v of E.) The truth of (8.34) in

the case u=v = 0 is a consequence of Theorem 8D. There remain eight cases,

which we must consider in detail. In the cases u=v = l and u=v = 2, (8.34)

becomes respectively

(") In §9 we shall show that every commutative Moufang loop G with a cyclic quotient

loop E may be constructed essentially as in Theorem 8H.
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(8.35) (y~xzy2)x2 = (xy)~1(xz)(xy)2

and

(8.36) x^y-'zy2) = (yx)-\zx){zx)*.

But since M is Moufang, (y~1zy-1)x~1=y-1(z-y~1x~1)=[(xy)~1-x][z(xy)~1]

= (xy)~1(xz)(xy)~1, and so (y~1zy2)x2=[(y-1zy-1)x~1](xy)3=(xy)-1(xz)(xy)2.

Thus (8.35) is true, and by taking inverses we get x~2(y~2zy~1) = (y~1x~1)2

■ (z~1x~1)(y~1x~1)~1, which, since u3 is in the centre for every u, is equiva-

lent to (8.36). This completes the cases in which v = u. When v = u-\-l, (8.34)

becomes <pi-u(x2, yz) =<j>u(x, y)d>i+u(x, z) ; and, taking m = 0, 1, 2 in turn, we get

(8.37) x2-yz = (xr1yx2)(xz),

(8.38) x~2(yz)x* = xy-zx,

(8.39) (yz)x2 = (yx)(x-Hx2).

Now (8.37), on division by x3, becomes x~1-yz=(x~1yx~1)(xz), which is true

since (£»-12?x-1, Lx, Lx_1) is an autotopism of M ; and (8.39) comes from

(8.37) by taking inverses. The left-hand side of (8.38) is equal to x(yz)x

=xy-zx. Finally, when v = u+2, (8.34) becomes ç6&_u(*2, zy)=4>i±u(x, z)<j>u(x, y).

But interchange of y and z and replacement of « by «+1 gives exactly the

equation corresponding to v = m + 1. This completes the proof of (i).

(ii) Since (x, p)(l, l) = (<px-P(x, 1), p-\-\) = (x, p + i) and, similarly,

(1, 2)(y, q) = (y, 2-\-q), it follows that the loop Go with multiplication

(8.40) (x, p)o(y, q) = (*, p + l)(y, 2 + q) - (4>t-P+x(x, y), p + q)

is isotopic to G. Moreover the set H of elements of form (x, o) is a normal sub-

loop of Go. But (x, o)o(y, o) = (xy, o), and so H is isomorphic to M under

the mapping (x, o)—*x.

(iii) If M is commutative it is evident that G = MXE, and this is impos-

sible otherwise, since G is commutative.

(iv) A necessary and sufficient condition that the element (x, p) be in

the centre of G is that [(x, p)(y, q)](z, r) = (x, p) [(y, q)(z, r)] for all y, z of

M, q, r of E. If u, v are defined by u = r — q, v = q — p, this condition reduces to

(8.41) <pu+p[(pv(x, y), z] = (pu-p[x, <j>u(y, z)],

holding for all y, z oí M and u, v of E. But the right-hand side of (8.41) is

independent of v, and thus (8.41) may be replaced by the two equations

(8.42) <pv(x, y) = <j>i(x, y) = xy,

(8.43) <l>u+p(xy, z) = xd,u(y, z).

Now (8.42) with v = 2 yields yx = xy, whence* must commute with every element

of M. But then <p0(x, y) =x~1yx2 = xy, and so (8.42) yields nothing more. If
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(x, 1) is in the centre of G, then (x, l)(x~x, 2) = (fa(x, x~x), 0) = (1, 0), and so

(x~x, 2) is also in the centre. Thus we need only consider (8.43) in the cases

¿> = 0,¿> = 1.
The case p = 0. Then (8.43) becomes <pu(xy, z) =xfa(y, z). From this with

m = 1 we get xy-z = x-yz, whence x must not only commute with every element

of M, but also lie in the associator of M. This means that x is in the centre of

M. But, conversely, every centre element clearly satisfies (8.41) for ¿» = 0, as

we see from (8.33).

The case ¿» = 1. From (8.43) with u = 0 we get

(8.44) xy-z = x(y~1zy2).

Since interchange of y and z leaves the right-hand side of (8.44) invariant,

we have in particular

(8.45) xy-z = xz-y.

From (8.44) with z replaced by yz we obtain xy-yz=x-zy2. We use without

comment (8.45) and the fact that x commutes with M to get, successively,

x-zy2=xy-yz = yx-yz = yxy-z = xy2-z=xz-y2. Thus x-zy2 = xz-y2 or x-zy~x

= xz-y~x for all z, y, whence, as before, x is in the centre of M. But then (8.45)

yields yz = zy, in contradiction to the fact that M is not commutative. Hence

the centre of G contains no elements of form (xt 1) or (x, 2). This completes

the proof of (iv).

(v) It is immediately evident from (8.33) and the normality of N that

<bP(Nx, y)=N<pp(x, y) for all x, y oí G. Thus if H = (N, o), H(x, p) = (Nx, p),

[H(x, p)](y, q) = (Nfa^p(x, y), p+q) and { [H(x, p)](y, q)} {(x, p)(y, q)\-x
= (N, o) =H. Hence H is mapped into itself by every generator of the inner

mapping group, and so is a normal subloop of G. To see that G/H is isomor-

phic to (M/N, E) we note that H(x, p) = (Nx, p) and that [H(x, p) ] [H(y, q) ]

= (fa...p(Nx, Ny),p+q).
(vi) If G is centrally nilpotent of class c, so is every loop-isotope of G,

and thus M, as a subloop of an isotope of G, is centrally nilpotent of class

d^c. But conversely, if M is centrally nilpotent of class d, it follows from

(iii), (iv) and (v) that G is centrally nilpotent of class c^d. Thus we have

c^d^c, whence c = d.

The first statement of Corollary 1 is a consequence of (ii) and of Theo-

rem 8C. As to the second statement, every loop-isotope of a group is an iso-

morphic group. Corollary 2 follows from (vi) and Theorem IB.

It is still an open question as to whether every Moufang loop which

possesses an endomorphism x—>x3 into its centre is centrally nilpotent. In

view of (vi) and of Corollary 1, this need only be proved for commutative

loops.

9. The derived loop of a commutative Moufang loop. If G is a commuta-

tive I.P. loop we have LX = RX for all x of G. Moreover, since Rx,y = RxRyRxy~x,
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it follows that Rx,y-x=RxyRy-iRJrx=Rxy.y-i. Thus, by §§3, 7 of Chapter I we

see that the (centrally) derived loop G' of G is generated by the set of all triples

(9.1) [x, y, z] m x-x-xRv,, = x-x{(xyz)(yz)-x}

with x, y, z in G. In what follows we shall assume that the commutative loop

G is Moufang.

Lemma 9A. Let G be a commutative Moufang loop with center Z, derived

loop G', so that G' is generated by the set of all triples [x, y, z] defined by (9.1).

Then:
(i) xy-z = (x[x, y, z])(yz);

(ii) if c is in Z, [ex, y,z]= [x, cy,z]= [x, y,cz]= [x, y, z] ;

(iii)   [x, y, z]3 = l;

(iv)   [x, y, z]~x=[y, x,z];

(v)   [x, y, z]= [y, z, x];

(vi) if p, q, r are rational integers, [xp, y", zr] = [x, y, z]pqr;

(vii)  [x,y,z]=[x,y,yz].

Remark. From (iv) and (v) it follows that interchange of any two of x, y, z

in the triple [x, y, z] replaces the triple by its inverse. Thus, by this and (iii),

if two of x, y, z are equal, [x, y, z] = l. Hence the triple behaves very much

like a three-index skew-symmetric tensor. The analogy would be even more

evident if G were written additively.

Proof, (i) and (ii) should be obvious, and (iii) follows from the fact that

the mapping x—*x? is an endomorphism of G into Z. In further stages of the

proof it will be convenient to have the formula

(9.2) or1 ■ yz — xr3(xy ■ xz).

In fact, since x3 is in Z, x~x-yz=x~3(x2-yz) =x~3(xyxz), by the defining rela-

tion for commutative Moufang loops. We also use without further comment

the fact that every two elements of G generate a group.

If Ay=(Ry, Ry, Ry2), then A y is an autotopism of the commutative Mou-

fang loop G, and hence so is AvAzAyz'~x= (Rv,z, Rv,x, Ry.?)- It follows at once

that Ry,t:=Ry'J, and hence that [x, y, z] = [x, y2, z2]. But y2 = y3-y~1, and y3

is in Z. Thus, by (ii),

(9.3) [x, y, z] = [x, y~x, z~x].

Again, by two uses of (9.2), [x, y, z]=x~x{ (xy ■ z) (y-xz~x)} =x~3{x(xy-z)}

• [x-y~xz~x] =(y-x~xz)(x-y~xz~x), whence

(9.4) [x, y,z] = (x-y-xz-x)(yx-xz) = [y, x, z~x].

Next we have [x, y, yz]=x~x{(xy-yz)(y-yz)~x} =x~x{(xz-y2)(zy2)-x]

= [x, z,y2]= [x, z, y3y~x] = [x, z, y~x], whence by (9.4),

(9.5) [x, y, yz] = [z, x, y].
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Similarly, by (9.2), [x, y,y~xz] m x_1 {(xy -y_1z)(y -y_1z)-1} =x_1 {(xy-y-tyz-1}

=x_1 {(xy ■ z) (y_1z • z)} z~3=x~l {(xy ■ z) (y-1z_1)} = [x, y, z ], so

(9.6) [x, y, y-»z] = [x, y, z].

In (9.6) we replace z by yz and use (9.5), deriving

(9.7) [x, y,z] = [z, x, y].

It follows from (9.7) that [x, y, z] is invariant under cyclic permutations of

x, y, z. Thus (9.7) is equivalent to (v). Moreover (9.5) and (9.7) together

imply (vii). Since the mapping x—*x~l is an automorphism of G we see that

(9.8) [x, y, z]'1 = [x-1, y1, z-1].

From (9.8), (9.3), (v) and (9.4) we have [x, y, z]~l= [x~\ y~\ zr1] = [«-», y, z]

= \y, z, x~x] = [z, y, x] = [y, *, z], which proves (iv). As to (vi), it is clear from

(ii), (iii) that proof need only be given when p, q, r are prime to 3. Indeed,

by (iv), there is no loss of generality in assuming p = l. The case q = r = l is

trivial; the case q = r= — 1 follows from (9.3); moreover [x, y, z_1]= [y, x, z]

= [x, y, z]_1 and so [x, y1, z]=[z, x, y_1] = [z, x, y]_1 = [x, y, z]_1. This com-

pletes the proof of Lemma 9A.

As a next step in the study of the generators of G' it is natural to consider

the five-fold symbol [[u, v, w], x, y]. In view of the "skew-symmetry" of the

triple [x, y, z], one might wonder whether the relation

(9.9) [[m, v, w], x, y] = [[y, u, v], w, x]

held for every G. We shall now show that this is not the case.

Lemma 9B. A necessary and sufficient condition that (9.9) be true for all

u, v, w, x, y of the commutative Moufang loop G is that G be centrally nilpotent of

class at most 2.

Corollary. FAere exist commutative Moufang loops G in which (9.9) is

violated.

Proof. Sufficiency. It follows from (9.9) that the five-fold symbol

F= [[w, v, w], x, y] is invariant under cyclic permutation of u, v, w, x, y.

Thus, by Lemma 9A, Fis "skew-symmetric" in its five arguments; in particu-

lar F=l whenever two arguments are equal. Since Rx,y is an automorphism

of G, we have (pq)Rx,y=p'q', where we have written p'=pRx.y, q'=qRx,y for

convenience. By this fact, by Lemma 9A(i), and by the "skew-symmetry" of

F, we have (pq)[pq, x, y] = (pq)Rx,y = pRx.vq'= (p[p, x, y])q' = ([p, x, y]p)q'

= ([P, x, y][[p, x, y], p, q'])(pq') = {p, x, y](pq'). But similarly pq'

= p{ak, x, y]}=([q, x, y]q)p= [q, x, y](qp), and so (pq)[pq, x, y]= {(pq)

•b. x, y]} [p,x,y]={(pq)[pq, [q, x, y], \p, x, y]]\ { [q, x, y] [p, x,y]). As we

shall show in a moment,
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(9.10) [z, [q, x,y], [p, x,y]] = 1

and so (pq) [pq, X, y]= (pq) { [q, x, y] [p, x, y]} or

(9.11) [pq, x, y] = [p, x, y][q, x, y]

for ail p, q, x, y of G. As to (9.10), if w= [q, x, y], then [z, w, [p, x, y]]

= [[p, x, y],z, w]= [[w,p,x],y,z]hy (9.9); but [w, p, x]= [[q, x,y],p,x] = l

by skew-symmetry. Hence (9.10) follows from Lemma 9A(ii). It is clear from

(9.11) that, for each fixed pair x, y of G, the mapping p-^[p, x, y] is an endo-

morphism of G. Thus in particular [[u, v, w], x, y]=[[u, x, y], [v, x, y],

[w, x, y]] = l, by (9.10). It follows that each triple [u, v, w] lies in Z. Hence

G'^Z, G is centrally nilpotent of class at most 2.

Necessity. Ii G'^Z, [[u, v, w], x, y] = l for all u, v, w, x, y and hence (9.9)

is trivially satisfied.

The corollary follows from Lemma 9B and Theorem 8H, Corollary 2. We

have proved incidentally that (9.11) holds when G'¿Z. The following lemma

generalizes this result.

Lemma 9C. Let G be a commutative Moufang loop with centre Z, and let

Z2/Z be the centre of G/Z. Then (9.11) holds for every x in Z2 and for all p, q, y

of G.

Proof. If x is in Z2, [p, x, y] is in Z for all p, y of G. Thus (pq) [pq, x, y]

= (pa)Rx,y = pRxiy-qRx,v=(p[p, x, y])(q[q, x, y]) = (pq) [p, x, y][q, x, y]; and

so (9.11) is verified. Note that if G is centrally nilpotent of class at most 2,

Z2 = G.

Lemma 9D. If G is a commutative Moufang loop,

(9.12) xzp-yz" = {(ay)!*, y, z]p-"\zp+'1

for all x, y, z of G and for all rational integers p, q.

Proof. In proving (9.12) we may assume the integers p, q to be reduced

modulo 3. When q = p, the equation is trivially verified. Again, if it is true

for a certain pair p, q, it is true for the pair q, p, as we see by interchanging

x and y. Therefore we may assume p=l. First we take q= — 1. Now

(xz-yz-1)-1 = x^z^y^z = (xy)2{(x~1y~1-x~1z~1)(x~1y~1-y~1z)} = (xy)2

\(x~2-y~1z~1)(y~2-x~1z)\ =x~3y~3(xy)2{(x-y~1z~1)(y-x~1z) ] = (x~1y~1)[x, y, z]

by (9.4), and hence (9.12) is true in this case. Next take q = 0. But (xz-y)z~1

= (xz2-yz)z-3 = (xz-x-yz) = (yx)[y, x, z]_1 = (xy) [x, y, z] by the case ¿» = 1,

a = — 1, and so xz ■ y = {(xy) [x,y, z]}z. This concludes the proof.

We are now ready to consider the problem of constructing Moufang loops

with a given number of generators.

Theorem 9A. Let n = 3 be a fixed integer, and let G be the set of all couples

A = (a,-, aijk) where a< is an n-dimensional tensor with rational integral coeffi,-
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dents and where ai¡k is an n-dimensional skew-symmetric tensor with rational

integral coefficients reduced modulo 3. Define the product AB=P by

(9.13) pi = ai + bi (*- 1, 2, • • ■ ,n),

(9.14) pijk = aijk + bijk + (aibj — a¡bt)(ak — bk) (mod 3),

where in (9.14) it is assumed that l^i^jg¡k^n. Then:

(i) G is a commutative Moufang loop ;

(ii) the centre Z of G consists of all elements A of G such that ai = 0 (mod 3)

for i=l, 2, ■ ■ • , n;
(iii) the derived loop G' of G consists of all elements A of G such that o, = 0

for i'=l, 2, ■ ■ ■ , n;
(iv) G is centrally nilpotent of class 2 ;

(v) if K is the complement of G' in the centre Z = G'XK, G/K has order

3", where a = C„,i+Cn,3;

(vi) o necessary and sufficient condition that a commutative Moufang loop

H with n generators be centrally nilpotent of class 2 is that H be a homomorphic

image of G.

Proof, (i) It is evident from the definition that AB is uniquely defined and

that AB = BA for all A, B of G. Moreover if 77= (0, 0) we see that UA =A U

= A for all A, so that 17is the unit element of G. If P, A are given, we may

solve uniquely for B from the equation AB =P; in fact bi = pi—ai, by (9.13),

and hence (for 1 ̂ i^júk^n) bijk=piik — aijk + (aipj — aipi)((ak+pk) (mod 3),

by (9.14). In particular, when P= U, we have bi= —ai, bi,k= —o,-,t (mod 3),

and hence are led to define

(9.15) A~x = (— o,-, — aijk).

By direct substitution we see that AB = P implies B=A~XP. Thus G is a

commutative I.P. loop.

It is convenient to define the sum of A and B:

(9.16) A + B = (ai + bi, aijk + bijk).

If further we define/(o, b) to be the element (a,-, o)(h, o), so that

(9.17) f(a, b) = (0, rijk),   nik = (atbj — a¡b,)(ak — bk) (mod 3),

we see that

(9.18) AB = A + B + f(a, b).

We shall also make use of the elements of form

(9.19) [a, b, c] = (0, tijk), ti,,-,k m

ai a j

bi bi

Ci     c<

ak

bk

ck

(mod 3).
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It is a consequence of (9.16) and (9.18) that A2=AA =2.4. Hence

A2-BC = 2A + B + C + f(b, c) + /(- a, b + c)

while on the other hand

AB-AC = 2A + B + C + f(a, b) + f(a, c) + f(a + b, a + c),

where for example a and a-\-b denote respectively the tensors o,- and ai+bi.

Thus a necessary and sufficient condition that G be a commutative Moufang

loop is that, for all tensors o, b, c,

(9.20)    f(b, c)+f(-a,b + c) = f(a, b) + f(a, c) + f(a + b, a + c).

But, for 1 tZi^j^k^n, the ijk component of the right-hand side of (9.20) is

a i   a j

bi   bs
(ah — bk) +

at   a¡

Ci    c.
(ak — bk) +

ai + bi, a} -f bj

Oi + Ci,   Oy + Cj
(bk — ck),

which may easily be rearranged as

bi   b¡

d   c,-
(bk — ck) +

di

bi + Ci,  bi + Ci
(ak + bk + ck),

the corresponding component of the left-hand side. This completes the proof

of (i).

(ii) and (iii). We now wish to derive the formula

(9.21) (AB-C)(BC)~X = A+ [a, b, c],

where [a, b, c] is given by (9.19). Direct substitution gives (AB-C)(BC)~X

—A =/(o, b)—f(b, c)+f(a-\-b, c)-L-f(a+b+c, —b—c). But the ijk component
of the latter is congruent (mod 3) to

bi   b¡
(bk — ck)

ai   a¡

h   b¡
(ak — bk) -

+

Ci     Ci

o,- + bi a¡ + bj

Ci Cj
(ak + bk — Ck)

+
at + bi + d a¡ + b¡ + c¡

— bi — ct      — b¡ — Ci
(ak — bk — ck) =■

at a¡

bi b¡

Ci    c¡

o*

bk

Ck

as may be verified by a straightforward calculation.

Again, after multiplying (9.21) on both sides by A~x= —A, we see that

(9.22) [A, B, C] = [a, b, c]

where the triple on the left is defined as in  (9.1). Thus it follows that

A = (a, auk) is in Z if and only if [a, b, c] = U for all b, c. Clearly [a, b, c] = U
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when a,= 0 (mod 3) for all i. But conversely, if for fixed i<j<k we choose

b, c so that b, = 1, c* = 1 but all other components of b, c are zero we find that

the ijk component of [a, b, c] is congruent to a¿ mod 3; whence [a, b, c] = U

implies a< = 0 (mod 3). This completes the proof of (ii).

As for (iii), it is clear from (9.22) that if AÇ.G' then a, = 0 for i = i,

2, ■ ■ ■ , n. Conversely we may show that a, b, c may be chosen so that

[a, b, c] = (0, ti,,-,k) has tiy]-,x = 0 (mod 3) except when i,j, k are permutations

of three arbitrarily chosen indices u<v<w, and hence that G' contains every

element A of G whose component a is zero. Thus (iii) is proved. Incidentally

we may note at the same time that G has exactly n generators, namely the

vectors a with one component equal to 1 and the others equal to 0.

(iv) This is an immediate consequence of (ii) and (iii).

(v) Since G' is a subgroup of the abelian group Z it follows that Z is a direct

product Z = G'XK, where in fact K consists of those elements A = (a, a<,,-,¡t)

such that a, = 0=a,-,-4 (mod 3) for all i, j, k. K, as a subgroup of the centre Z

of B, is a normal subloop of G; and G/K may be represented as the set of

couples A — (a,-, a,-,-*) where the tensors a< and a,-,* have components in GF(3),

and where multiplication is defined as before. The number of distinct tensors

a¡ and a,-,-* are thus 3" and 3m, where m = C„,3. From these remarks (v) follows

at once.

(vi) Let iFbe a commutative Moufang loop, centrally nilpotent of class 2,

written multiplicatively. Let gx, g2, ■ ■ • , gn be a set of generators of H, in-

dependent in the sense that no subset of these elements will generate H. Since

H has class 2, the triples [gi, g¡, gh] are in the centre of H. Moreover, in view

of the "skew-symmetry" of these triples (see Lemma 9A), We shall use as

(integral) exponents only skew-symmetric tensors ai,-*. Moreover the a,-,-*,,

by Lemma 9A (iii), may be reduced modulo 3. If a, is a tensor with rational

integral components we define the elements A i oí H recursively by

(9.23) Ax = gV, Ai = Ai-x-gV for 1 < i = ».

Finally we set

(9.24) A =   u   [gi,gi,gk]°<*-An.
i<i<k

If B is similarly defined, corresponding to tensors bi and &,/», and P, corre-

sponding to tensors pi and pm, we wish to show that AB=P where P is

determined by (9.13) and (9.14). Before proving this point it will be well to

note its implications. First we shall have that the set of all elements of type

(9.24) is a loop, which therefore must coincide with H. Secondly, since, as

will be seen, we shall raise no questions as to the identity of two elements of

type (9.24), it will be clear that H is a homomorphic image of G.

Because of the complications of notation we merely sketch the proof,

which is fairly straightforward. By Lemma 9D and the fact that the triples
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[x, y, z] are in the centre,

(9.25) AnBn=   (An-l-gl'KBn^-gn)   =    [¿„-1, F„_l, gn]""'"" ■ (An^Bn-l) ■ gn"^".

From (9.23), (9.24) and (9.25) we see by mathematical induction that

AB^P (mod G'), where we may take pi=ai+bi, i = i, 2, • • • , n. Thus it is

only necessary to determine the ¿»„a,. Since the mapping x—>[#, y, gn] is, for

each fixed y, an endomorphism of H into its centre, we may verify that

(9.26) [An-l, Bn-l, gn]   =     U     [g*, gi, g»]'™
«j<n

where c(i, j)=aibj — a¡bi (mod 3). Thus from (9.23), (9.24) and (9.25) we see

that, for i<j<n, we may take ¿>,y,,=ai)n+oi,n-r-(a,Fj —o,o¿)(o„ — bn) (mod 3).

The rest of the proof follows by induction.

Remarks, (i) When n = 3, the loop G/K of order 34, considered in Theorem

9A(v), is abstractly identical with that constructed by Bol [l ].

(ii) It is easily deduced from (9.21) that the inner mapping group of the

loop G constructed in Theorem 9A is isomorphic with G' ; that is, with an abelian

group of type (lm), order 3m, where m = C„,3.

We shall conclude this section by pointing out the intimate connection

between Theorem 8H and Lemma 9D. Let G be a commutative Moufang

loop and let H be a normal subloop of G such that G/H is a cyclic group. If/

is a representative of G/H in G the elements of G all have the form xf* where

¿» is an integer and x is in H. According to Lemma 9D we have

(9.27) xf'-yfi = {(xy) [x, y, /]*"•}/»+«,

where of course [x, y,f] is in H whenever x and y are. If we set

(9.28) fa(x, y) = (xy)[x, y]'

where [x, y] = [x, f, y] we note first that fa?(x, y) =fa.(x, y) for all x, y of H

whenever p = q (mod 3). Now the loop G0, isotopic to G, defined by

(9.29) (xf)o(yf«) = (xf •/) ■ (yf* -f~x) = fa-p+i(x, y)f»+°,

has as subloop H0 consisting of the same elements as H under the multiplica-

tion

(9.30) xoy = fa(x, y) = (xy)[x, y].

In view of Theorem 8C, Ho is a Moufang loop such that the mapping x—>xoxox

is an endomorphism into its centre, and, in view of Theorem 8H, every

Moufang loop with this property can be obtained in the same manner as iFo-

Upon these remarks may be based several observations. First it should be

seen that Theorem 8H may be generalized by replacing the 3-group E oí

that theorem by the additive group of integers and by insisting that fa, and

fa. coincide whenever ¿>=-q (mod 3). Secondly it would seem that, given some-
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what more knowledge than we have at our disposal at present, it should be

possible, by use of (9.28), to treat the extension problem discussed in the last

paragraph in terms of the loop H alone, without use of the non-commutative

loop M introduced in Theorem 8H.

The crux of the matter seems to be the determination of a complete but

simple set of characteristic properties of the binary operation [x, y] of HH

on H. Note that [x, y]= [x, f, y], so that [x, y] must have the known prop-

erties of a triple; but, among other things, / is not an element of H. In the

following theorem, the proof of which we omit, we impose upon [x, y] condi-

tions which are sufficient for the purpose, but which hardly seem necessary.

Theorem 9B. If H is a commutative Moufang loop, if [x, y] is a binary

operation on HH to H, and if Ho is the set consisting of the same elements of H,

with product xoy defined by (9.30), then the following postulates ensure that H0

is a Moufang loop. Moreover, when the postulates hold, the mapping x-^xoxox

is an endomorphism of Ho into its centre :

For all x, y, z of H, (i) [x, x] = l; (ii) [y, x]= [x, y]~u, (iii) [[x, y], z]

— [[y< z], x]\ (iv) for every fixed v of the subloop {x, y, z), the mapping

u—>[u, v] (and hence, by (ii), the mapping u—>[v, u]) induces an endomorphism

of {x, y, z} into its centre.

In regard to the proof we merely remark that it can be shown, on the basis

of (i), (ii), (iii) and (iv), that x~1o(xoy) = (yox)ox~1=y and that (xoy)o(zox)

= {xo(yoz))ox=x2yz. (Note that all operations are actually performed

within the subloop {x, y, z\.) If H has centre Z and H/Z has centre Z2/Z,

we may satisfy the postulates by setting [x, y] = [x, y, h] where A is any fixed

element of Z2 (see Lemma 9C), with the slight difference that the mapping

x—*[x, y] will then be an endomorphism of H into its centre.

Theorem 9B generalizes an earlier construction of the author [l, §5], as

is especially apparent when H is written additively and [x, y] is regarded as

a product operation on H.

10. The inner mapping group of a Moufang loop. In §3 we derived neces-

sary and sufficient conditions that the inner mapping group 3 of a Moufang

loop G be a group of automorphisms of G (Theorem 4B and corollaries). In

particular this is true when G is commutative. We now wish to subject the

inner mapping group to a closer study. For a Moufang loop G we may use

equations (4.7) or

(10.1) Lyx = Ry LxRyLv,       Rxy = Ly RxLyRy,

together with (4.9) or

(10.2) LxRx = RxLx.

The groups ®x= ¡Lx; x in G], ®p= {Rx; x in G] and the group ®={®x, ®„}

associated with G will play an important part. By the corollary to Lemma 4D,
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®x, ®p are normal subgroups of ®, and hence so are ®\r\®„ and (®x, ®P),

their intersection and their commutator group respectively.

Now 3 is generated by the set of all permutations

(lU.Oj Lix,y   =   IjzI>yLj|£l K-X,y   =   K~XK'yJ\xy, 1  x   ==   J\-xLx    .

But from  (10.1), Lx,y = LxLy-Ly-1Ry-1Lx-1Ry = LxRy-1Lx-1Ry = (Lx-1, Ry),

and similarly Rx,y = RxLy~1Rx~1Ly=(Rx~1, Ly), whence

(10.4) Lx,y = (L~x\ Ry),       Rx,y = (RZ\ Ly),       Lx.y = R¡¡\^.

Thus, in particular, the set of all Lx,y generates the same subgroup of 3 as does

the set of all Rx.y- This subgroup we shall designate by ft.

It is readily deduced from the proof of Theorem 3B of Chapter I that the

set of all Rx,y generates that subgroup of ®p consisting of all U in ®„ such that

1 ¿7=1. Thus $ = 3^®p, and by further arguments of the same sort we ob-

tain the following lemma.

Lemma 10A. If G is a Moufang loop, then, in the above notation, 3<^®x

= 3n®, = 3r\(®xPi®p) = ß. Moreover ft, together with the set of all Tx, gen-

erates 3-

Corollary. If G is a commutative Moufang loop, 3 =^ (®, ®) =®'.

Lemma 10B. // G is a Moufang loop, the permutation

(10.5) Ux.y = TxTyT~xl

is in ft for all x, y of G.

Proof. By Lemma 10A, it will be sufficient to show that Ux,y is in ®x,

since it clearly is in 3- But ®x is a normal subgroup of ®, and so, from the

definition of Tx, Ux,y = RxLx-1RyLy-1LxyRxy-1£RxRyRxy-1®\ = Rx,y®\èft®\

= ®x.

Theorem 10A. If G is a Moufang loop, then, in the notation of this section,

ft is a normal subgroup of 3, and the mapping x—*ftTx is a homomorphism of G

upon the group 3/$- FAe kernel of this homomorphism is N= 1 [®xC^®„]; that

is, the set of all elements IP with P in ®-k(~\®p.

Corollary. FAe inner automorphism group of a group G is isomorphic to

the central quotient group G/Z.

Proof. Since ®x is normal in ©, then ft=$C\®\ is normal in 3- By Lemma

10B, ftTxT^^-^ft, and so

(10.6) (ftTx)-(ftTy) =®Txy.

Since ft and the Tx generate 3, and since G has the inverse property, (10.6)

completes the proof of the first assertion. The kernel of the homomorphism
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clearly consists of those x for which Tx is in St, or for which TX = RXLX~X= U

with ¿7in $. But then RX=ULX, whence Rx is in $®x = ®x, or F^is in ®x/°\®P.

Conversely, every element of ®x has form ULX with 17 in St, every element

of ®p has form FF„with Fin St, and ULX= VRV implies x = l ULX = 1 VRy = y.
In this case, ULX= VRX, Tx= V~xUGSt. Thus N= 1 [©xPi®p], as stated. The

corollary follows from the fact that, on the one hand, Stè (®x, ®P) =F, while,

on the other hand, TxÇE.St = I ii and only if RX=LX, x is in Z. It is thus appar-

ent that Theorem 10A gives a direct generalization of a familiar theorem on

groups.

Note that if G is commutative the homomorphism x—>StTx becomes triv-

ial, since TX = I for all x. It will be convenient to make the following definition.

Definition. The Moufang loop G is a Moufang loop of the first kind if

©x = ®P = ® ; otherwise G is of the second kind.

Lemma IOC. A necessary and sufficient condition that the Moufang loop G

be of the first kind is that the homomorphism considered in Theorem 10A be

trivial.

Proof. Necessity. If ®x = ®P = ® then ©xO®,, = © and so N= 1® = G. Thus,

by Theorem 9A, the homomorphism x-*StTx is trivial.

Sufficiency. If TX = RXLX~X is in Aá®x^®P for all x, then RxGStLx^&x.

Hence ®p g ®x, and similarly @x ̂  ®P, so that ®x = ®P = ®.

It is readily verified that every loop-isotope of a Moufang loop of the

first kind is also a Moufang loop of the first kind. And hence a like statement

is true for Moufang loops of the second kind.

Theorem 10B. If G is a Moufang loop of the second kind, and if the descend-

ing chain condition holds for subloops of G, there exists an integer w è 1 and a

strictly decreasing series

(10.7) G= Bo> Hi> • •• > H»

of subloops of G with the following properties :

(i) for each j—1, 2, • • -, n, Hi is the associatrally derived loop of Hj-i,

and incidentally Hj-i/Hj is a group;

(ii) the associatrally derived loop of Hn is Hn ;

(iii) Hn is a Moufang loop of the first kind.

Remark. It follows from Theorem 10B, in particular, that every finite

Moufang loop may be built up from a Moufang loop of the first kind by suc-

cessive extensions by groups.

Proof. By definition, the associatrally derived loop F7i of a loop G is the

intersection of all normal subloops K of G such that G/K is a group. Thus

(§3), Hi is a normal subloop of G and G/Hi is a group. For/> 1 we define FT, as

in (i). If, for some integer/, H1-=H1+i, it is clear that H,=Hk for every in-

teger ¿fee/. In view of the descending chain condition, such a/ exists; the
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smallest such j we call n. Thus (ii) is verified. As to (iii), assume, if possible,

that the Moufang loop Hn is of the second kind. In this case, as we see from

Lemma IOC, there exists a proper normal subloop N of Hn such that Hn/N

is a group. But then Hn >N^Hn+1, in contradiction to (ii). Hence Hn is of

the first kind.

Theorem IOC. FAe associator of a Moufang loop G of the first kind coincides

with the centre.

Proof. The associator A of G consists of all elements a oí G such that

aft=a, as follows from Theorem 3A and the present section. But since G

is of the first kind, Ä = 3, by Lemma IOC, and hence A coincides with the

centre of G.

Theorem 10D. If G is a finite Moufang loop of order g, and if G is associa-

trolly nilpotent, the order of the associated group © divides some power of g.

Corollary. A finite Moufang p-loop is associatrally nilpotent if and only

if it is centrally nilpotent.

Proof. As before let 3 = 3(G) be the inner mapping group of G, and let

ft = ft(G) be the normal subgroup of 3 generated by the set of all Rx,y with

x, y in G. Then, by Theorem 10A, 3/$ is a homomorphic image of G, and

hence the order of 3/Ä divides g. We shall now show that the order of ft

divides some power of g. This part of the proof follows closely the proofs of

Lemmas 8A, 8B, and Theorem 8A of Chapter I, and hence a brief sketch

should be sufficient. The mapping ¿7—>¿7', where U' is defined by

(10.8) (xA)V = (xU)A

for all x of G, and where A is the associator of G, yields a homomorphism

of ft(G) upon ft(G/A), the kernel of the homomorphism being the set 2 of

all U of ft such that xU(E.xA for all x of G. We assume inductively that the

order of ft/2 divides some power of the order of G/A, and hence some power

of g. Now aft=a for every a of A. Hence if U is iii 2, so that for each fixed

x of G we have xUÇ.xA=Ax, or xU=ux for u in A, then (xa)U—xU-aT

= uxa = u-xa, since T = LxULxU~x is in ^i^®\= ft. Thus the element u is

uniquely determined by U and the coset xA. Again x = (xU)U~1 = (ux)U~1

= u-xU~1, and so xU~i = u~1x. Finally, if V is in 2, and if xV = vx, then

xUV=(ux)V = u-vx = uv-x. Hence, for each fixed coset xA, the mapping

U—*u=xURx~1 is a homomorphism of 2 into A. If we designate by 6 the

union of these homomorphisms, the kernel of 6 is the identity mapping, for

if ¿70 = 1 then x¿7=x for all x of G, whence ¿7 = 7. It follows that 2 is isomor-

phic to a subgroup of a (finite) direct power of A. Hence the order of 2 divides

some power of g. Thus, in view of bur inductive assumption, the order of ft,

and hence the order of 3, divides some power of g. Finally, by Corollary 4
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to Theorem 3B, Chapter I, the order of the associated group © divides some

power of g.

As for the Corollary to Theorem 10D, if the associatrally nilpotent Mou-

fang loop G is a finite ¿»-loop, the associated group © is a ¿»-group and hence

(Theorem 8C of Chapter I) G is centrally nilpotent. It is of course trivially

evident that every centrally nilpotent loop is associatrally nilpotent.

Chapter III. Special theory. Examples and constructions

Here again, all references to theorems and sections refer to Chapter III,

unless the contrary is explicitly stated.

Our main concern in Chapter III is to study in greater detail the various

entities introduced in Chapters I and II. This we do in various ways, some-

times considering quite genera) problems of construction, as in §§2 and 3,

and at other times tackling more special problems which nonetheless involve

situations of considerable generality, as in §§1, 5, 6, 7. In contrast with these

we have §4, which deals with one specific counterexample.

In §1 we consider the construction of the most genera) loop E which con-

tains as a normal subloop a given abelian group G, such that E/G is a given

abelian group H. Thus E is centrally nilpotent of class at most 2. Our main

concern here is with the inner mapping group 3 of E. When H has order 2,

E is an abelian group. When H has order 3, complete results on 3 are given

in Theorem IB: by choice of certain structure constants, 3 may be made iso-

morphic to any subgroup of G which can be generated by two elements. As a special

consequence we have the existence of a centrally nilpotent loop of order 6,

class 2, in contrast with the case for groups. Again, if G and H are isomorphic

cyclic groups of any finite odd order n, the structure constants may always

be chosen so that 3 is isomorphic to the (n-l)th direct power of G, and hence

has order nn~x (Theorem 1C). This shows that certain of the results given in

§8 of Chapter I are "best possible" in a nontrivial sense.

The culminating result of §2 may be stated as follows (Theorem 2A) : Let

n ^ 2 be an arbitrarily assigned integer, and let Gi, G2, • • • , G„ be n groups,

finite or infinite, each of order at least two, but with Gn-i and G„ not both of order

two. Then there exists a left-associatrally nilpotent loop E, of class n, with the

following properties: If I =A0<Ai< ■ ■ • <An = Eis the upper left-associatral

series of E, then, for i= 1, 2, • ■ ■ , n, Ai/A^i is not only the normal left-asso-

ciator but also the left-associator of E/Ai-i; and Ai/Ai-i is isomorphic to Gi.

Similarly we show in §3 that if a centrally nilpotent loop E of class n has

upper central series 1 =Z, <Z2 < • • • <Zn = E, the only restriction on the abe-

lian groups Z,/Zi_i (i = 1, 2, • • ■ , n), aside from the obvious fact that each must

contain at least two elements, is that Z„/Z„_i have order at least three (Theo-

rem 3A).

In §4 we construct a particularly interesting example of the fact that a

characteristic subloop of a loop G need not be normal in G. In the example,
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G has order 12, the centrally derived loop G' of G has order 6, and the cen-

trally derived loop G" of G' has order 2. But G", though it is a characteristic

subloop of G, is not normal in G.

If G is any loop, 21 any group of automorphisms of G, we define the 2I-holo-

morph of G to be the loop consisting of all couples (S, x) with S in 21, x in G

under the multiplication (S, x)(T, y) = (ST, xT-y). This definition generalizes

the notion of the holomorph of a group. In Theorem 5A the more immediate

properties of the 2I-holomorph are studied in great detail. It is shown in par-

ticular that passage from a loop G to a holomorph preserves the inverse prop-

erty but not the property of being Moufang. Theorem 5B is concerned with

the normal subloops of the 2l-holomorph which contain a given 2l-admissible

normal subloop of G, and Theorem 5C treats of the holomorphs of certain

Moufang loops. From the various results we derive examples of associatrally

nilpotent and Moufang-nilpotent I.P. loops. Finally, Theorem 5D points out

the existence of an I.P. loop whose associator is not a normal subloop, in con-

trast with the case for Moufang loops.

The general problem discussed in §6 is that of expressing the product

operation of one loop in terms of that of another. After some preliminary

remarks we consider a Moufang loop G in which x2n+x = 1 for every x, where

n is a fixed integer. First we prove that the system Go, consisting of the ele-

ments of G under the operation xoy = (x2y~2) "x2, is a commutative loop

(Lemma 6A). A necessary and sufficient condition that Go have the inverse

property is that x-y~xxy=y~xxy-x for all x, y of G; and in this case we have

the simpler expression xoy = (xy2x)~n (Theorem 6A). Taking G to be a group

in which every two conjugate elements commute, we use certain results due

to Burnside to prove that Go is a commutative Moufang loop, centrally nil-

potent of class at most 2 (Theorem 6B). But then, with Theorem 6B at our

disposal, we are able to sharpen Burnside's results (Theorem 6C).

§7 is devoted to a study of totally symmetric (or T.S.) quasigroups,

namely those in which a valid equation xy=z remains true under all permuta-

tions of x, y and z. If (U, V, W) is an autotopism of a T.S. quasigroup G we

call the one-to-one transformation U of G upon G an autotopic mapping of G.

The set of all autotopic mappings forms a group §, and there exists a uniquely

defined endomorphism 6 of § such that (17, U, IIe) is an autotopism of G

if and only if 17 is in §. Those autotopic mappings 17 which satisfy the equa-

tion xlI-y = x-yU for all x, y of G form an abelian group S, a normal sub-

group of §. Every autotopism of G has the form (U, UR, US) where 17 is

in §, R, S are in E, and RS= U~x Ue. The group S is of importance in the study

of the T.S. isotopes of G. Moreover £ plays the rôle of a centre for the T.S.

quasigroup G, and we may form a "central quotient" quasigroup G/(S. We con-

clude with an example of a T.S. loop of order 3n+l (w^2) with centre of order

1, for which every autotopism is an automorphism; that is, if (U, V, W) is an

autotopism, U=V—W.
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1. The inner mapping group of a centrally nilpotent loop of class two. If E

is a loop with centre Z and centrally derived loop E', a necessary and suffi-

cient condition that E have class 2 is that 1 <E' ^Z <E (compare Chapter I,

§7). If G is a subloop of E such that E'^G^Z then G, as a subloop of Z,

is normal in E (since indeed every element of G is invariant under the inner

mapping group of E); moreover E/G is an abelian group since G^E'. We

shall denote by H an abstract abelian group isomorphic to E/G, written

additively, with elements o,p,q, ■ • • . Further let us suppose that E is written

additively, that the elements of G are o, x, y, - • • , and that to each p of H

there has been chosen a representative up in E, where in particular «o = 0.

Then every element of E will have the form x-\-up for x in G, p in H, where

x-\-Up=y-\-yq if and only if x=y, p = q. In particular we shall have

(1-1) up + ug = hp,„ + Up+q,

where for each ordered pair p, q of H, hp,g is a uniquely determined element

of G. Moreover since G is in Z

(1.2) (x + Up) + (y + uq) = (x + y) + (up + uq) = (x + y + hp,q) + Up+q

for all x, y of G, p, q of G. By setting p = 0 in (1.1) we derive ug = h0,q+uq, or

the first of the conditions

(1.3) h0,p = hp,0 = 0, all p in H.

The second comes by setting q = Q in (1.1). We have thus proved the con-

cluding statement of the following lemma.

Lemma 1A. Let G, H be two abelian groups, written additively, with elements

o, x, y, ■ ■ ■ , and o, p, q, ■ ■ • , respectively. To every ordered pair of indices p,

q of H let there be defined an element hp,q of G, subject to the restriction (1.3).

Let E be the set of all couples (x, p), x in G, p in II, where (x, p) = (y, q) if and

only if x = y, p=q; and let multiplication be defined in E by

(1.4) (x, p)(y, q) = (x + y + hp,q, p + q).

Then Eis a loop ; the set (G, o) of all couples (x, o) is a (normal) subloop of E,

isomorphic to G and contained in the centre of E ; and the corresponding quotient

loop E/(G, o) is a loop isomorphic to H. Conversely if Eis a loop with center Z,

centrally derived loop E, and if the subloop G of E satisfies E'^G^Z, so that

E/G is an abelian group H, then E is isomorphic to one of the loops of type (1.4).

Proof. That (1.3), (1.4) define multiplication in a loop follows from the

general extension theory (Albert [2], Brück [2]). That the elements (x, o)

form a subloop of the centre may be verified very simply, but it will be con-

venient for the sequel to proceed as follows. We define A, B, C by

(1.5) A = (x,p),       B = (y,q),       C=(z,r).
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With the usual meanings for the permutations Ra, La, and so on, we see from

(1.4) that

(1.6) ARB = (x + y + hp.q, p + q), ALb= (x+ y+ hq,p, p 4- q).

Hence

(1.7) ARB   = (x — y — hp-q,q, p — q),   ALB   = (x - y — ä5iJJ_s, ¿» - q),

as we may verify, for example, by computing ARb~xRb- A perfectly straight-

forward calculation shows that if Rb,c = RbRcRbc~x, Lb,c=LbLcLbc~x,

Tb = RbLb~x then

(1.8) ARb.c = (x + ap,Q,r, p), ALb.c = (x + bp,q,r, p),  ATB = (x + cp,q, p)

where

ap,q,r =   <lp,q ~T  ftp+q.r "q,r ^p,q+r', CPlQ =   «p,s "q,p',

Op.q.r =   "q.p   \    "r,p+q        Ar¡í flq+rlP = ariQtP.

We note that (1.3) and (1.9) imply

^Í.IU^ a0¡q,r   =    api0¡q   =    Qptqto   —   00tqir   =   C0,q   ==   U,

for all ¿», q, r. Now Rb.c, Lb.c, Tb and their inverses generate the inner map-

ping group 3 of E, and an element A = (x, p) is in the centre of E if and only

if A U=A for every 17 of 3- Hence, by (1.8), (1.10), (x, o) is in the centre for

every x of G. That the elements (x, o) form a loop (G, o) isomorphic to G,

and that the quotient loop E/(G, o) is isomorphic to H, are also consequences

of the general extension theory for loops. This completes the proof of Lemma

1A.
Now AB- C=A BC for all A, B, C of the loop E if and only if ARB,c=A

for all A, B, C, or, by (1.8), if and only if op,g,r = 0 for all ¿>, o, r of H. Hence

we may state a well known lemma.

Lemma IB. A necessary and sufficient condition that the loop E, defined by

(1.4), should be a group is that

(1.11) hp,q +  hp+q,r =   hq,r + hp,9+r

for all p, q, r of H.

Similarly, E is commutative if and only if AB=BA or ATb=A for all

A,BoíE. Hence:

Lemma 1C. A necessary and sufficient condition that the loop E defined by

(1.4) should be commutative is that hp,q = hq,pfor all p, q of H.

Consider the mapping M of E upon E, defined by

(1.12) (x, p)M = (x + tp, p)
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where the tp are elements of G, arbitrary except for the restriction ¿o = 0.

With A,B as in (1.5) we have (AB)M=(x+y+h„,q+tp+q, p+q), (AM)(BM)
= (x+y+hp,q+tp+tg, p+q). Now the mapping M is clearly one-to-one, for

every choice of the tP. From (1.13) we therefore derive the following:

Lemma ID. A necessary and sufficient condition that the mapping M, defined

by (1.12), should be an automorphism of the loop E, defined by (1.4), is that

(1.13) tp+g = tp + tq

for all p, q of H.

From (1.12) and (1.7) we obtain

(1.14) AMLl1 = (tp, o).

But the set of elements (1.14), obtained by letting M range over the set of all

permutations Rb.c, Lb,C and TB, generate the centrally derived loop E' of E

(Chapter I, §3 and Lemma 7C). Moreover the mapping M—*(tp, o) induces a

homomorphism of the inner mapping group 3 of £ upon a subgroup Gp of G.

We may go further:

Theorem 1A. Let E = (G, H) be the centrally nilpotent loop, of class at most

two, defined by (1.3) and (1.4). Let E',^ be respectively the centrally derived loop

and the inner mapping group of E. In addition let GP, for each fixed p of H, be the

subgroup of G generated by the elements ap,a,r, bp,q,r, and cp,q, where q, r range

over H. Then E' and 3 are respectively isomorphic to the union and to a subgroup

of the direct product of the set of all groups Gpfor p in H.

Corollary. If G is a cyclic group, and if E has class 2, E' is isomorphic to G

and 3 to a direct power of G.

Proof. That E' is isomorphic to the union of the Gp is obvious. The fact

about 3 represents only a slight sharpening (the proof being unchanged) of

Lemma 8B of Chapter I. The corollary follows immediately.

Lemma IE. FAere exists no centrally nilpotent loop with central quotient

group of order 2.

Proof. Let H have order two, elements 0, 1. Then clearly cPiQ = 0 and

aP,q,r = 0 for all p, q, r, since ai,g,i = 0. Thus E = (G, H) is an abelian group.

Theorem IB. In the notation of Theorem 1A, let H be the additive cyclic

group of order three (elements 0, 1, 2), and let F be the subgroup of G generated

by the elements hx,i-\-h2l2 — hi,2, hi,2 — h2li. Then E' and 3 are respectively iso-

morphic to F and FX F. Moreover the subgroup of 3 consisting of the "inner"

automorphisms of E is isomorphic to the subgroup of F consisting of all elements

of F of order 3.

Corollary 1. If the abelian group G can be generated by two elements, the
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hp,q can be chosen so that E' and 3 are respectively isomorphic to G and GxG.

Corollary 2. There exists a centrally nilpotent loop of class 2, order 6 (the

smallest possible order).

Corollary 3. Not every finite centrally nilpotent loop is a direct product of

p-loops.

Proof. If M is defined by (1.12) with /0 = 0, the mapping M—>(h, t2) in-
duces an isomorphism of 3 into the group GXG, the elements of the latter

being written as couples. At this stage it will be convenient to write Rq,r in-

stead of Rb.c, for example, since the latter mapping depends only on q, r

when B = (y, q), C= (z, r). With a similar notation for the other generators of

3 we may verify that, in the above-mentioned isomorphism of 3 into GXG,

FT/1-» (0, hit - h21),       T2 -> (hi2 - ha, 0).

F2i = Fn —* (hi2 — hn, An + A22 — A2i),

i?i2 = R22 —> (An + A22 — A2i, A21 — Ai2),

F2i = Fn —» (A2i — Ai2, An + A22 — Ai2),

Fi2 = L22 —> (An + A22 — A2i, Ai2 — A2i).

As a consequence, the image of 3 in GXG has as its generators the couples

(Ai2 — A21, 0), (Aii+A22, 0), (0, Ai2 —A2i) and (0, An-r-A22 — Ai2). Thus 3 is iso-

morphic to FXF, where F is defined as in the theorem. Moreover G0 = 0,

Gi = G2 = F, in the notation of Theorem 1A, and hence E' is isomorphic to F.

As to the last statement of Theorem IB, if the mapping M, defined by

(1.12), is an automorphism of E, then, by Lemma ID, tp+q = tp-\-tq, from

which we find ii+/2 = 0 and 3¿i = 0. Thus Z7£3 is an inner automorphism

of E if and only if its image, in the isomorphism of the previous paragraph,

is of form (/, —t) with t in Fand 3t = 0.

The corollaries seem to be immediate. Perhaps we should remark, in con-

nection with Corollary 3, that a loop of order 6, for example, can be a direct

product of finite ¿»-loops if and only if it is an abelian group.

Theorem 1C. In the notation of Theorem 1A, let G and H be (isomorphic)

cyclic groups, each of finite odd order n. Then the hp,q may be chosen so that 3

Aos (maximum possible) order nn~x and is in fact isomorphic to the (n — l)th

direct power of G.

Proof. Without loss of generality we may assume that G and H are identi-

cal with the additive group consisting of the integers 0, 1, 2, • • • , n — 1, taken

modulo n. Then let us set

(1.15) Ao,8 ■ 0,        hp,q = q for ¿> ¿é 0 (mod »).

Under the present circumstances the mapping M—>(h, h, ■ ■ ■ , t„-i) induces
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an isomorphism of 3 into the (n-l)th direct power of G. (Compare the proof

of the previous theorem.) It may be verified from (1.9) and (1.15) that, if p, r,

and r—1 are incongruent to zero modulo n, ap,_i,_r — aJ,,_r,_r = 2r, —2r, or 0

(mod n) according as p = l, p = r, or p^l, r. Thus in the isomorphism in-

duced by M—»(ii, t2, ■ ■ ■ , tn-x), R-x.-rR-r.-r~1 is mapped into such a symbol

with ¿i = 2r, tT= —2r, tp = 0 otherwise. Since G is cyclic it follows that the iso-

morphic image of 3 contains the symbols (1, — 1,0, • • • ), (1, 0, —1,0, • - ■),

• • -, (1, 0, 0, • • • , — 1). Thus if t2, t3, ■ ■ ■ , tn-x are any integers, the image

of 3 also contains (¿2+ ■ • • +tn-x, —t2, —t3, ■ ■ ■ , —tn-i) and in particular—

the case tp = 2—p, p = 2, • • • , n — 1—the symbol (3, 0, 1, 2, • • • , n — 3).

But, for pjéO, cP,2 = 2-p and so rs-»-*(-l, 0, 1, 2, • • • , n-3). By

subtraction we see that the image of 3 contains (4, 0, 0, ■ • • , 0) and hence

(1,0,0,0, ••), (0,1,0, 0, ••.),.. • . Thus 3 is isomorphic to the (w-l)th

direct power of G, and has order »"-1.

Corollary 1. If, under the hypotheses of Theorem 1C, the Ap,8 are chosen

in any manner so that 3 Aas order «n_1, the group of "inner" automorphisms of

the loop E — (G, H) has order n.

Proof. Since G is cyclic, it follows by Lemma ID that a mapping M of type

(1.12) is an automorphism of E if and only if tp = pt, p = 2, 3, • • ■ ,n — 1. The

group of all automorphisms of this type is thus isomorphic with G. But these

automorphisms M will certainly all be "inner" (that is, contained in 3) when

3 has order nn~1.

Corollary 2. FAere exist centrally nilpotent p-loops of class 2, order p2m,

for every odd prime p and for every positive integer m ; and at least one of those

of order p2m has an inner mapping group of order pq where q = m(pm—l).

Proof. This corollary follows from Theorem 1C with n=pm. The case of

special interest is m = 1, since every group oí order p2 is an abelian group (and

hence has class 1). Note that this case (m = 1) also illustrates the fact that the

centrally derived loop of a finite centrally nilpotent /»-loop may have index

as small as p, in contrast with the case for groups. Since every loop of order

22 = 4 is known to be an abelian group, the restriction to odd primes is essen-

tial.

2. Construction of left-associatrally nilpotent loops of arbitrary class. Let

F be a loop, written multiplicatively, with a normal subloop G contained in

the left associator. Let the loop E/G be isomorphic to a loop H, written

multiplicatively, with elements 1, p, q, ■ ■ ■ , and suppose that to each ele-

ment p of H there has been chosen a representative up in E such that «i = 1.

Finally let the elements of G be 1, x, y, ■ • ■ . Since G is in the left asso-

ciator, xupyuq = x- (Up-yuq). Again, since G is normal in E, up-yuq

— (ySp,q)-(upug), where Sp,g is in the inner mapping group of E, and

where in particular Sx,g = I, the identity mapping, for all q of H. Of course
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ySp, „is in G, and also lSp,a = l, for all ¿», g of H. Thusxup-yuq = x- (ySp,q-upuq)

= (x-ySp,q)-upuq. Finally, there must exist an element hp,q oí G, correspond-

ing to every ordered pair of elements ¿>, q of H, such that upuq=-hp<q-upq and

also Ai,p = Aj,,i = 1 for all ¿» of H. Since G, as a subloop of the left associator, is

a group, we have proved the concluding statement of the following lemma.

Lemma 2A. Let G be a group with elements 1, x, y, • ■ ■ , H a loop with ele-

ments 1, ¿>, q, • ■ • , each written multiplicatively. Corresponding to every ordered

pair p, q of elements of H let there be chosen a one-to-one mapping Sp,q of G

upon G, and an element hp,q of G, subject to the following restrictions:

(2.1) iSP,q = Ap.i = Ai,8 = 1 for all p,qofH;

(2.2) Si,„ = I, the identity mapping, for all q of H.

Further let E = (G, H; Sp,q, hp¡q) be the set of all couples (x, ¿>) with x in G, p

in H, where (x, p) = (y, q) if and only if x=y, p = q; and let multiplication be

defined in E by

(2-3) (x, p)(y, q) = (x-ySp.q-hp,q, pq).

Then E is a loop with unit (1, 1) ; the set (G, 1) of all elements (x, 1) is a normal

subloop of E, isomorphic to G and contained in the left associator of E ; and the

quotient loop E/(G, 1) is isomorphic to H. Furthermore every loop E with a

normal subloop G contained in the left associator and with quotient loop E/G

isomorphic to His isomorphic to such a loop (G, H; SP.q, hp,q).

Proof. We leave it to the reader to verify that

(2.4) [(x, l)(y, q)](z, r) = (xyzSq,r- hq,r, qr) = (x, 1) [(y, q)(z, r)]

for all x, y, zoi G and q, r of H. The rest of the proof follows easily.

Lemma 2B. Let E = (G, H; Sp,q, hp,q) be a loop constructed as in Lemma 2A,

where G and H have orders at least two. If G, H both have order two, E is an

abelian group; but otherwise the Sp,q and kp,q can always be chosen so that the

left associator of E is precisely (G, 1).

Proof. If both G and H have at least three elements we may set hp,q = \

for all p, g of H and define the Sp,q as follows:

(2.5) Si,, = I;       Sp,q = S„ for p —* 1 ;       Si = J,

where we choose the Sq so that, for each q ¿¿ 1 of H, Sq is a non trivial automor-

phism of G. (This is always possible(18) when the order of G is greater than 2.)

With this choice we have

(18) A little thought will convince the reader that the only troublesome case is when G is a

non-denumerable abelian group in which every element save the identity has order 2. This case

may be handled with the help of the axiom of choice.
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(2.6) (at, p)(y, q) = (x-ySq, pq) for p * 1.

Now we shall show that (x, p) is in the left associator of E if and only if p = 1.

Assume in fact p5¿l, and choose q so that q^ 1, pq~^i. (This is always possi-

ble since H has order greater than 2.) Then, since pqj¿\, we have from (2.5),

(2.6) that [(*, p)(y, q)](z, l) = (x-ySq-z, pq). But (y, q)(z, l) = (yz, a) and so

(*> £)[(y, q)(z, l)] = (x-(yz)Sg, pq) = (x-ySq-zSq, pq). Since S„ is a nontrivial

automorphism we may choose z so that z^zSg. Thus (£, />) is not in the left

associator of E for p9^ 1. But every (G, 1) is in the left associator, by Lemma

2A. This proves the point at issue.

Again, if G has at least three elements but H has order two, elements 1, e,

we set hp,g = 1 for all p, q of H and let Se,, = S be a nontrivial automorphism

of G. We wish to show that (x, e) is not in the left associator of E. In this case

[(*, e)(y, e)](z, l) = (x-yS-z, 1), but (*, e)[(y, e)(z, l)] = (*-(yz)S, 1)

= (x-yS-zS, 1) ; and we can always choose z so that z and zS are distinct.

Note that we have shown incidentally that if G has order at least three

and FT order at least two, not only is Lemma 2B correct but there exist, more-

over, three elements (x, p), (y, q), and (z, 1) of E such that [(x, p)(y, q)](z, 1)

~* (x, P) [(y, g)(z, 1) ]• This leads to the following corollary.

Corollary to Lemma 2B. If G and H have orders not less than three and

two respectively, the Sp,q and hp,q may be so chosenJhat (G, 1) is precisely the left

associator of E and is, moreover, not wholly contained in the right associator of E.

If the group G has order 2 we must proceed a little differently. For if G

has elements 1, e (with e2=l) and if S is a one-to-one mapping of G upon G,

1S=1 implies eS = e. Thus (2.3) becomes

(2.7) (x,p)(y,q) = (xyhp,g,pq),

so that (G, 1) is, in fact, contained in the centre of E. In this case suppose H

has order at least three and set hp,g = e for/», q^l, APiS = l otherwise. If p^\

is given, choose a so that pq = 1 (and hence q5^1), and choose r (as is possible)

so that r9^ 1, qr9^1. Then (x, p)(y,q) = (xye,. 1) and [(x,p)(y,q)](z,r) = (xyze,r);

but (y, q)(z, r) = (yze, qr) and (x, p) [(>, q)(z, r)] = (xyz, p-qr). Hence compari-

son of the left-hand components, xyze and xyz, shows that (x, p) is not in the

left associator.

Finally, it is well known that every loop of order four is an abelian group.

This completes the proof of Lemma 2B.

Now let n = 2 be an arbitrarily assigned integer, and let Gi, G2, ■ ■ • , G„

be n groups, finite or infinite, but each of order at least two. Assume more-

over that G„_i and G„ are not both of order two. Define a sequence of loops Ei

as follows: £o = l;£i=(G„, E0) =G„;£, = (G„+i_i, £,_i) for 2=j^w, such that

the left associator F, of £,• is a normal subloop isomorphic to Gn+i-<, and

Ei/Fi is isomorphic to 22<_i. (This is possible, in view of Lemmas 2A, 2B.)

Now let E = E„.  It follows that there exists a strictly increasing series
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l=.4o<-4i< • • • <^4„ = £ of normal subloops of £ such that ^4,/^4i_i is the

left associator of E/Ai-i and Ai/Ai-i is isomorphic to d, for i — 1, 2, • • • , n.

In fact if A i is the associator of E, Ai/Ao=A is normal in E = (Gi, En-i) and

isomorphic to Gi, and £/^4i is isomorphic to E„-i= (G2, En-i). The rest of the

proof follows by induction. Thus we have obtained the following theorem.

Theorem 2A. Let «^2 be an arbitrarily assigned integer, and let

Gi, G2, ■ ■ ■ , Gn be n groups, finite or infinite, each of order at least two, but

with Gn-i and G„ not both of order two. Then there exists a left-associatrally nil-

potent loop E, of class n,with thefollowing properties: If l=Ao<Ai< ■ ■ ■ <An

= E is the upper left-associatral series of E, then for i = l, 2, ■ ■ ■ , n, Ai/Ai-i

is not only the normal left associator but also the left associator of E/A ,_i ; and

Ai/Ai-i is isomorphic to G,.

It should be remembered that the restriction of G„_i, G„ to groups not

both of order two is essential. (Compare Lemma 2B.)

Wholly analogous results may of course be given for right-associatral se-

ries, but new problems arise in the cases of middle-associatral and associatral

series. The theory of the latter is in fact roughly of the same order of diffi-

culty as the extension theory of non-commutative groups.

3. Centrally nilpotent loops of arbitrary class. With the detailed work of

the two preceding sections as background, we may now proceed more in-

formally. If G is a (multiplicative) abelian group of order at least two, with

elements 1, x, y, • • • , every loop F which contains G as a normal subloop of

its centre is isomorphic to a loop E consisting of couples (x, p), where ¿» is an

element of the (multiplicative) loop G/E=H, and where

(3.1) (x, p)(y, q) = (xyhp,q, pq).

Here the hp,q are arbitrary elements of G, subject only to the restrictive

(3.2) Ai,p = hp,i = 1.

Now if H has order two, E is an abelian group, by Lemma IE; hence we shall

assume that H has at least three elements.

We now wish to prove that the hp,q may be chosen so that (G, 1) is pre-

cisely the centre of E = (G, H). It is convenient to distingush two cases. If

G has an element e^l of order two, set hp,q = e for ¿»^1, 05^1, hp,q = \

otherwise, and proceed as in the latter part of the proof of Lemma 2B:

Given ¿»^1, pick j^l so that pq = l, and pick r^l so that qr^l. Then

[(x, p) (y, q) ] (z, r) = (xyze, r) but (x, p) [(y, q) (z, r) ] = (xyz, r), so that (x, p) is

not in the centre of E.

On the other hand, if G has an element e^l, not of order two, we may

instead set hp,q = e provided ¿»^1, q^i, pq^l, and hp,q = l otherwise. In

this case, given ¿»5^1, choose q and r exactly as above. This time we find

[(x, p) (y, q) ] (z, r) = (xyz, r) and (x, p) [(y, q) (z, r) ] = (xyze2, p-qr), so the con-
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elusion still holds. We now may state a theorem.

Theorem 3A. Let « = 2 ¿»e an arbitrarily assigned integer, and let

Gi, G2, ■ ■ ■ , Gn be n abelian groups, finite or infinite, each of order at least

two, but with Gn of order at least three. Then there exists a centrally nilpotent

loop E, of class n, with the following property: If 1 =Z0 <Zi < • • ■ <ZW=E is

the upper central series of E, then Zi/Zi-x is isomorphic to Gif or i = 1, 2, • • • , n.

The proof of Theorem 3A is wholly analogous to that of Theorem 2A.

As previously remarked, the restriction on G„ follows from Lemma IE: the

centre Zn-x/Z„-2 cannot have index two in the centrally nilpotent loop

Zn/Zn-% of class 2.

4. Characteristic subloops need not be normal. It is known that charac-

teristic subloops of a loop need not be normal, and an example has already

been given in this paper (Chapter II, §3) of a loop with a non-normal left

associator. In view of the great importance of the point at issue it seems

worthwhile to present here an example of a different type.

Let G be a centrally solvable loop with centrally derived loop G', and let

G" be the centrally derived loop of G'. Now G' is a characteristic subloop

of G, in view of its definition, and G", as a characteristic subloop of G', is

also characteristic in G. Thus G' is normal in G, and G" normal in G'; but we

shall construct G so that G' is not normal in G.

Since G' has composite order, and is not an abelian group, G' must have

order at least 6, and hence G must have order at least 12. Therefore let the

elements of the proposed loop G be 1, 2, • • ■ , 12, where 1 is the unit element,

and let the multiplication table of G be written in the form

A

B

B

C

where the elements 1, • • • , 12 are to be written in order in the sideline and

headline, and where A, B, C are 6X6 latin squares whose construction will be

explained. In particular we let A, including the corresponding part of the

sideline and headline, be given by

12-34-56

(4.1)

3 4

4 3

6 5

5 6

2 1

1 2

5

6

2

1

4

3

To form B we write the elements 7, 8, •• -, 12 in natural order in the first
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row, and permute them cyclically in subsequent rows. Finally, for C we take

any latin square on the elements 1,2, • • • , 6.

Clearly G is a loop with unit 1. The set H, consisting of the elements

1,2, • • • , 6, is a subloop of G, as is clear from (4.1). But H has index 2 in G,

and hence is normal (Albert [2]); and of course G/H is the 2-group, so

H^G'. It is readily verified from (1.2) that the only nontrivial subloop of H

is FC = (1, 2); moreover K is a normal subloop of H, since the cosets FC=(1, 2),

3K=(3, 4) and 5FC = (5, 6) form the cyclic group of order 3. However, K is

not normal in G, since for example 7FC= (7, 8) but 8FC = (8, 9). Thus H is the

only proper normal subloop of G which contains G', so H=G', and K is the

only proper normal subloop of H, so K = H' = G". Hence G" is not normal

in G.

5. The holomorphs of a loop. Let G be any loop, 21 any group of auto-

morphisms of G, and denote by (21, G) the set of all couples (S, x) with S in 21,

x in G, under the multiplication

(5.1) (S,x)(T,y) = (ST,xT-y).

Then (21, G) is a loop, which we shall call the %-holomorph of G.

When G is a group and 21 is the group of all automorphisms of G, (21, G) is

isomorphic to the holomorph of G—used extensively by many early writers

on group theory—as will be seen from parts (i), (ii), and (iii) of the following

theorem. We designate by 1 both the unit of 21 and the unit of G. Moreover,

if 93, K are any subsets of 21, G respectively, we denote by (93, K) the set of all

elements (S, x) with S in 93, x in K. Clearly (1, G) is isomorphic to G, and

(21, 1) to 21.

Theorem 5 A. If E = (21, G) is the %,-holomorph of the loop G, then :

(i) (1, G) is a normal subloop of E, and E/(l, G) is isomorphic to 2Í ;

(ii) if K is the associator of G, (21, K) is the associator of (21, G) ; thus E is a

group if and only if G is a group ;

(iii) every "^.-automorphism of (1, G) is induced by an inner automorphism

of E; specifically, (S, 1)_1(1> x)(S, 1) = (1, xS);
(iv) E is an I.P. loop if and only if G is an I.P. loop ;

(v) if G is an I.P. loop with Moufang nucleus M, and if N is the set of all x

of M such that xSLx~x is in the associator of G for every S of 21, then (21, N) is

the Moufang nucleus of the I.P. loop E;

(vi) if G is an I.P. loop with Moufang nucleus M, the Moufang centre of

the I.P. loop E consists of all elements of form (U, u) where uÇ.M satisfies

uS = u for all S of 21 and where 17G2I satisfies xU = uxu~x for all x of G. Inci-

dentally U is unique when it exists, and lies in the centre of 21.

Remarks. Part (ii) of Theorem 5A shows how to construct loops with non-

trivial associators. Moreover (v) demonstrates the existence of an I.P. loop

with a nontrivial Moufang nucleus; we can for example take G to be a com-
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mutative Moufang loop, centrally nilpotent of class 3, and let 21 be the inner

mapping group of G.

Proof, (i) This follows from the general extension theory.

(ii) By use of (5.1) we find that [(S, x)(T, y)](U, z) = (S, x)[(T, y)(U, z)]

ii and only if (xTUyU)z = xTU-(yU-z). Since the various associators of G

are characteristic subloops of G it follows that (S, x) is in the left associator

of E if and only if x is in the left associator of E; that (T, y) is in the middle

associator of E if and only if y is in the middle associator of G; and that ( ¿7, z)

is in the right associator of E ii and only if z is in the right associator of G.

But (ii) is an immediate consequence of these facts and of the definition of

the associator.

(iii) By (ii), (S, 1) is in the associator of E for every S. It follows that the

mapping (F, x)—»(S, 1)_1(F, x)(S, 1) = (S~1TS, xS) is an inner automorphism

of E. Taking F= 1, we get the result stated.

(iv) If E is an I.P. loop, (1, G) and hence G are I.P. loops. If G is an I.P.

loop, we note from (5.1) that we should define

(5.2) (S, x)-1 = (S-1, (*-i)S-i).

But then (S, x)-l[(S, x)(T, y)] = (T, y) = [(F, y)(S, x)](S, x)~\ and so E has
the inverse property.

(v) (S, x) is in the Moufang nucleus of the I.P. loop E if and only if

{(S, x)[(T, y)(U, z)]}(S, x) = [(S, x)(T, y)][(U, z)(S, x)] for all F, ¿7, y, z;

or, equivalent!y, if and only if (xV■ yz)x = (xV■ y)(zx) for all V of A. In other

words, (Lxy, Rx, LxyRx) must be an autotopism of G for all V. The case V— 1

says (Lx, Rx, LXRX) is an autotopism; and hence (LxvL^1, I, L^L^1) must

be an autotopism; that is, \LxvLx~x =xVLx~1 must lie in the associator of the

I.P. loop G. The converse gives no trouble. From these facts (v) follows im-

mediately.

(vi) We remind the reader that the Moufang centre of an I.P. loop E con-

sists of those elements of the Moufang nucleus which commute with every

element of E. Thus if (¿7, u) is in the Moufang center of E, u must be in N

(in the notation of (v)) and hence in M. Further, we must have (¿7, u)(S, x)

= (S, x) (¿7, u) for all S, x, from which we derive the two conditions

(5.3) US = S¿7,       uS-x= xU-u.

We ignore the first condition for the moment. From the second, with S=l,

we derive ux=xU-u, or, since the product uxu~x is unambiguous when u is

in M,

(5.4) xU = uxw1

for all x. From (5.3), (5.4) we derive uS-x = ux or uS = u for all S.

Conversely, if u is in M, and if uS = u for all S, then uSLu~1 = 1 for all S,

whence, by (v), u is in N. If, further, there exists a ¿7 of 2J which satisfies
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(5.4), 17 is clearly unique. But, moreover, x(S~xUS) = (u-xS~x-u~x)S = uxu~x

=xU, and hence S~XUS= U, US = SU for all S. Thus both conditions (5.3)

are satisfied for all S, x; and, since u is in N, (U, u) is in the Moufang centre

of£.
Definition. If 21 is a group of automorphisms of a loop G, we shall say

that a subset FT of G is 2l-admissible if and only if xS is in H for every x oí

H and S of 21.

Theorem 5B. Let (21, G) be the %-holomorph of the loop G, and let H be an

^-admissible normal subloop of G. Then :

(i) if 93 is a subset of 21, (93, H) is a normal subloop of (21, G) if and only if 93
is a normal subgroup of 21 with the property that xULx~x is in H for every x of G

and U e/93;
(ii) the subset 93 of 21, consisting of all U of 21 such that xULxT1 is in H for

every x of G, is a normal subgroup of 21.

(iii) if 93 is the normal subgroup of 21 defined in (ii), the quotient group 21/93

is isomorphic to a group of automorphisms S of the quotient loop G/H, and

(2Í, G)/(93, H) is isomorphic to the ^.-holomorph (S, G/H) of G/H.

Proof, (i) By Lemma 3A of Chapter I, (93, H) is a normal subloop of (21, G)

if and only if, for every assigned pair of elements (S, x), (T, y) of (21, G), the

equation

[([/, a)(S, x)][(V, b)(T, y)] = (W, c)[(S, x)(T, y)]

ensures that all three of (U,a), (V,b), (W, c) are in (93, H) whenever two are.

But this equation is equivalent to the two equations

(5.5) USVT = WST;

(5.6) (aSVT-xVT)(bT-y) = cST-(sT-y).

It follows from (5.5), with S=F=1, that93 must be a subgroup of 21. Again,

(5.5) may be written as SFS-1 = U~XW, whence we see that 93 must be normal

in 21. Since F/"=i72l is normal in G, (5.6) implies (H-xVT)(Hy)=H(xT-y)

= (H ■ x T)(Hy). Thus (H-xVT)=H-xT, or HxV = Hx. This is equivalent

to stating that xV is in Hx = xH, or that xVLx~x is in H, for every F of 93

and x of G.

Conversely, if 93 is à normal subloop of 21, the conditions in connection

with (5.5) are satisfied. And if, further, x ULX~X is in H for every x of G, i/of 93,

then o is in H ii and only if aSVT-xVT is in HxVT= (HxV)T = H-xT; b is

in H ii and only if bT-y is in Hy; c is in H if and only if cST-(xT-y) is in

'H(xT-y) = (H-xT)(Hy). Thus, in this case, the conditions in connection with

(5.6) are also verified. This completes the proof of (i).

(ii) We note that xULx~x is in H for all x ii and only if H-xU=H-x

for all x. If 17 has this property so does U~x, since H-xU~x = (Hx)U~x

= (H'xU)U~x=H-x; and if U, V have this property, so does   Z7F, since
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HxUV=(H-xU)V=(Hx)V=HxV = Hx. Finally, if HxU=Hx for all *,
Hx(S~1US) = [H- (xS-1) ¿7]S= (HxS~1)S=Hx. Thus the set 93 consisting of

all ¿7 of 21 such that HxU = Hx for all x is a normal subgroup of 21.

(iii) If 53 is defined as in (ii), and if we define a group S of automorphisms

S' of G/H by setting (Hx)S'=H-xS, it is clear at once that the homo-

morphism S—*S' of 21 upon S has kernel 93. If, as is convenient, we write

the cosets of (21, G)/(93, H) in the form (S, *)(93, H) = (S93, xH) = (S', *fl),
it follows that (S', xH)(T', yH) = (S'T', [xH]T'-yH). This completes the

proof.

Theorem 5C. Let G be a Moufang loop whose inner mapping group 3 is a

group of automorphisms; and let E = (3, G) be the ^-holomorph of G. Then:

(i) if A is the associator of G, (3, A ) is that of E ;

(ii) if A2 is the centre of G/A, the Moufang nucleus of E is (3, A2) ;

(iii) the centre and the Moufang centre of E coincide, both being (1, Z), where

1 is the unit of 3, Z the centre of G;

(iv) if G is associatrally nilpotent of class n so is E; and conversely ;

(v) E is Moufang nilpotent if and only if it is associatrally nilpotent;

if it has associatral class n it has Moufang class [(n-fT)/2] (the greatest integer

not exceeding (w + l)/2).

Corollary. If G (and hence E) is associatrally nilpotent of class 2, E is

Moufang, and the inner mapping group of Eis a group of automorphisms.

Remark. If we start with a commutative Moufang loop G, centrally nil-

potent of class 2, we see from (i), (iii), and the corollary thatE is a non-commu-

tative Moufang loop whose inner mapping group is a group of automorphisms.

Proof. By Theorem 7A (iv) of Chapter II, a necessary and sufficient con-

dition that the inner mapping group of a Moufang loop G be a group of auto-

morphisms is that G/A (where A is the associator of G) be a commutative

Moufang loop in which every element save the identity has order three. We

proceed to the proof of Theorem 5C.

(i) This follows from Theorem 5A(ii).

(ii) Since A2 is precisely the set of all elements x of the Moufang loop G

such that xUL^r1 is in A for every ¿7 of 3, this is a consequence of Theo-

rem 5A(v).

(iii) Now uS = u for every S of 3 if and only if u is in the centre Z of G.

If further ¿7 is an element of 3 such that xU=uxu~x=x for all x of G, then

¿7=1. Thus, by Theorem 5A(vi), the Moufang centre of E is (1, Z). Since

Z^A, the intersection of the associator (3, A) and the Moufang centre

(1, Z) of E is (1, Z), which is therefore also the centre of E.

(iv) If ft is the set of all S of 3 such that xSL^1 is in A, it is readily veri-

fied that the inner mapping group of the commutative Moufang loop G/A

is isomorphic to 3/$. But, by Theorem 5B (iii), (3, G)/(ft, A) is isomorphic
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to (3/$, GI A), the latter being the (3/$)-holomorph of G/A. Now (iv) is
certainly true for n = 0. But, if we assume inductively that (ii) is true for

some n — 1 ̂ 0, then, since G/A is associatrally nilpotent of class n — 1, so is

(3/Í?, G/A); and it follows that (3, G) is associatrally nilpotent of class n.

This completes the proof of (iv).

(v) If 8 is the set of all S of 3 such that xSLx~x is in ^42, it follows that

(in the sense of isomorphism) 3/8 is the inner mapping group of G/A2. More-

over (3, G)/(8, Ai) is isomorphic to (3/8, G/A2), the (3/8)-holomorph of

G/A2. Thus the proof proceeds as before. If G is associatrally nilpotent of

class » = 0, w = l or n = 2, then E is Moufang nilpotent of class [(»-fT)/2],

since it is in these cases, respectively, a group of order one, a group of order

greater than one (by (i)), or a non-associative Moufang loop (by (i) and (ii)).

If G is associatrally nilpotent of class n >2, then G/A2 is associatrally nilpo-

tent of class m —2; and we assume inductively that (3/8; G/A2) is Moufang

nilpotent of class [(« —1)/2], But then (3, G) is Moufang nilpotent of class

l + [(n-l)/2] = [(« + l)/2]. This completes the proof of (v).

As to the corollary, if G is associatrally nilpotent of class 2, G/A is an

abelian group (since in any case it is a commutative Moufang loop) and thus

xULx~x is in A for every 17 of 3- Thus ((3, G)/3,-4) is isomorphic to the abel-

ian group G/.4. Since (3, A) is the associator of the Moufang loop (3, G),

and since every element of G/^4 save the identity has order 3, the inner map-

ping group of E = (3, G) is a group of automorphisms.

We may deduce from the last two theorems another example of the fact

that characteristic subloops need not be normal.

Theorem 5D. There exists an I.P. loop whose associator is not a normal

subloop.

Proof. Let G be a commutative Moufang loop, centrally nilpotent of class

3. (See Corollary 2 to Theorem 8H, Chapter II.) By Theorem 5A(ii),

E = (3i G) has associator (3, Z). Now ^42 = Z2, the set of all x oí G such that

xULx~x is in 4sZ for all U of 3, is a proper subloop of G, and hence, by

Theorem 5B(i), (3, Z) is not a normal subloop of E.

6. Commutative loops expressible in terms of Moufang loops. If G and G0

are two groupoids with the same elements (see §1 of Chapter I), and if the

product xoy can be expressed in terms of the elements x, y, the operation ( • )

of G, and any fixed mappings of the set G into itself, we shall say that Go is

expressible in terms of G. When defined in these vague terms, the notion of

expressibility seems altogether too general to be of any use. It is to be noted

that expressibility contains isotopy as a special case, but is not however an

equivalence relation. We shall be content here to consider the case that G is a

group or a Moufang loop, and to investigate certain special situations where

Go turns out to be a commutative loop.

A concept of expressibility, sufficiently restricted to be useful, has been
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enunciated for linear algebras by R. W. Wagner (Bull. Amer. Math. Soc.

Abstract 48-5-168). However, Wagner's work has not yet been published.

In Chapter II (§8) we considered a Moufang loop G for which the mapping

a:—»*3 was an endomorphism into its centre, and showed in particular that

the system Go, with multiplication given by xoy =x~1yx2, was a commutative

Moufang loop. This then is our first nontrivial example of an expressibility

relation.

As a generalization, let G be a Moufang loop, let m = 2n-\-l be a fixed

odd positive integer, and assume that the mapping x—*xm is an endomor-

phism of G into its centre. Then (x~1y)m = (x~1y)nx~1y(x~1y)n=x~mym, and so

(x~1y)nx2n = (y~1x)ny2n. Therefore, under this assumption, the system G*, ex-

pressed in terms of G by the relation

(6.1) x*y = (xr1y)nx2n,

is a commutative groupoid. (It should be noted that the above trick fails

when m is an even integer.)

It will not be true in all cases that G*.is a quasigroup. In fact, if x, z are

given elements, and if we seek an element y of G such that x * y =z, we arrive

immediately at the equation (x~1y)n=zx~2n. Clearly the latter equation will

determine y uniquely in all cases if and only if the mapping x—*x" is a one-to-

one mapping of G upon G. Suppose that this condition is verified, so that the

mapping F defined by xT=xn possesses a (unique) inverse T~1. Then G* is a

quasigroup. Moreover we have x*l = l*x=x" =xT. Thus the system Go, de-

fined by

(6.2) xoy = (xT~1)*(yT-1),        xT = *»,

will be a commutative loop with unit 1.

In the situation of Chapter 11 we had m = 3, n — 1 ; and so F was the iden-

tity mapping. As a more general case we may assume the existence of a fixed

integer k such thatxT~1=x~k for all x, and hence x = (xT~1)T = x~kn, xkn+1 = 1.

Now if n is greater than 1, there exists no integer k such that A« + 1=0.

Hence, in the case n >1, the last assumption requires that every element x

of G should generate a finite group. We are thus led to the consideration of

Moufang loops in which every element has bounded positive order.

Rather than treat all of the possibilities in their utmost generality, let us

consider a Moufang loop G in which every element x generates a finite group.

Then to each x j¿ 1 there will correspond a positive integer p (the order of x)

such that xp= 1 but xq9i\ for 0 <q <p. We shall assume that the various or-

ders p are bounded odd integers. Then the least common multiple m of these

orders will exist and be odd: m=2n-\-l. Moreover we shall have xm = l for

every x. It is thus apparent that the following lemma applies to a large

variety of Moufang loops (and thus to groups), all of whose elements are of

finite bounded odd order. In particular the lemma will hold for finite Moufang
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loops without elements of even order.

Lemma 6A. Let nbea positive integer, and let G be a Moufang loop in which

x2n+x = 1 for every x. Then the groupoid Go, defined by

(6.3) xoy = (x2y~2)nx2,

is a commutative loop with unit 1.

Proof. l = (x2y-2)2n+x = (x2y*-2)nx2y-2(x2y-2)n = (xoy)(yox)-x, and so yox

= xoyiorallx,yoiG. Further, if xoy = z where x, zare given, then (x2y~2)n = zx~2,

and so (xz-2)-2=je2y2, y-2=(zx~2)~2x~2, y=y~2»= [(ztr2)-2xr2]n. Finally,

\ox = xo\ =x2n+2=x. This completes the proof.

Theorem 6A. A necessary and sufficient condition that the commutative loop

Go defined in Lemma 6A should have the inverse property is that

(6.4) x-y~xxy — y~xxy-x

for all x, y of the Moufang loop G. When (6.4) holds true, Go may be defined

alternatively by

(6.5) xoy = (xy2x)~n;

that is to say, the equation

(6.6) (x2y~2)nx2 = (xy2x)~n

holds for all x, y of G.

Proof. If xoy = (x2y~2)nx2 = I then (x2y~2)n=x~2, x2y~2 = xi, y~2 = x2 and

y _y-2n — xin = x-i Hence if Go has the inverse property, the inverse of x must

be x~x. It follows that the commutative loop Go has the inverse property if and

only if (xoy)oy~x=x for all x, y. But (xoy)oy~1 =y~lo(xoy) = [y~2(xoy)~2]ny~2.

Hence Go has the inverse property if and only if [y~2(xoy)~2]" = xy2 for all x, y.

We may solve this equation for xoy in the form (6.5). In fact [y_2Ot0y)~2]-1

= (xy2)2, (xoy)2y2 = xy2xy2, (xoy)2=xy2x, and xoy = (xy2x)~n. Moreover each

step is reversible, so that Go has the inverse property if and only if (6.3) and

(6.5) are equivalent; that is to say, if and only if (6.6) holds for all x, y oí G.

From (6.5) and the fact that Go is commutative we derive (xy2x)~n = xoy

=yox = (yx2y)~n, whence

(6.7) xy2x = yx2y

for all x, y. If we replace x by xy~x in (6.7) we obtain x -yxy~x=yxy~x- x, which

is, equivalent to (6.4). Conversely, from (6.4) with x replaced by xy~x there

results xy~~2x=y~xx2y~~x, which is equivalent to (6.7).

The proof will therefore be complete when we show that (6.7) (along with

the assumption that x2n+x = l for every x of G) implies (6.6). It is simplest

to   proceed as follows.   If xoy is  given by  (6.5)  we have   \ox=xo\ =x.



1946] CONTRIBUTIONS TO THE THEORY OF LOOPS 343

Moreover xoy = yox by (6.7). Thus (xoy)oy~1 = (yox)oy~1=[y~1(yox)2y~1]~n

=x(y~1-yx2y-y~1)~n = x~2"=x, and so G0, when defined by (6.4), (6.5), is a

commutative I.P. loop. Now from (6.5), yox~x = (yx~2y)~n, (yox~1)2=yx~2y,

(yox~1)2x~~2 = (yx~2)2, x2(yox~1)~2=(yx~2)~2, and

(6.8) [^(yo*-1)-2]"*2 = yx~2-x2 = y.

Now in (6.8) replace y by yox, and we derive (x2y~2)nx2 =yox=xoy = (xy2x)~n,

or (6.6).

If Go is defined as in Lemma 6A it is clear that to any subloop H oí G there

corresponds a subloop Ho of Go, consisting of the same elements. Moreover,

it is not too difficult to show that if H is normal in G then Ho is normal in Go,

and Go/H a may be obtained from G/H just as Go is obtained from G. (This

last would be false in some cases if we had assumed that 2« + l was the least

common multiple of the orders of the elements of G; but we have in fact made

no such assumption.)

When G is a group, equation (6.4) may be expressed by saying that every

two conjugate elements of the group G commute (or are permutable). Such groups

G have been considered by Burnside [l], with particular reference to the case

that G has a finite number of generators. Burnside's paper is not wholly free

from error—the part dealing with the possible orders is based on earlier in-

correct results which were later corrected by others (Levi-van der Waerden

[l ])—but we shall state in the form of a lemma certain of the correct results

which we shall use. (For further details, see Theorem 6C below.)

Lemma 6B. Let G be a group in which every two conjugate elements commute,

and let (x, y) =x~1y~1xy, (x, y, z) = ((x, y), z), and generally (xx, x2, • • • , x¿)

— ((xx, x2, - - - , Xk-x), Xk), denote the usual commutators. Then:

(i)  (xr, y') = (x, y)T'for all x,y of G and for all integers r, s ;

(ii)  (x,y,z)3 = lfor allx,y, z;

(iii) interchange of any two of the elements Xi in a commutator (xx, x2, ■ ■ •,

Xk) replaces the commutator by its inverse ;

(iv) if G has a finite number of generators, each of finite order, the order of G

is finite ;
(v) if every element of G has finite odd order, the elements of order prime to 3

form a subgroup P which is nilpotent of class at most two ; the elements of order

a power of 3 form a subgroup Q; and G is the direct product PXQ.

Proof. For the proof of the first four statements see Burnside [l]. How-

ever (iv) is a direct consequence of (i), (ii) and (iii). As to (v), it follows from

(iii) that (x, y) commutes with x and y, and hence we may show inductively

that (xy)k = (x, y)kmxkyk where m = (k —1)/2. If A is the least common multiple

of the orders of x and y, so that k is odd and m is an integer, we have

(xy)k= (x, y*)m= 1. By considering the cases that A is prime to 3 and that A

is a power of 3 we derive the existence of the groups P and Q. U x, y, z are in P,
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(x, y, z) = 1, by (ii) ; and hence P1 is nilpotent of class at most two. Again if x

is in Q, and has order r, it follows from (i) that (x, yr) = (xT, y) = 1. Hence every

element y of P commutes with every element x of Q. This completes the es-

sentials of the proof.

These groups, in fact, form a special case of the regular groups of P. Hall

[1].

Theorem 6B. Let G be a group in which every two conjugate elements com-

mute, and suppose that x2n+x = 1 for every element x of G, where n is a fixed posi-

tive integer. Then the groupoid Go, consisting of the same elements as G under the

multiplication Go, is a commutative Moufang loop, centrally nilpotent of class

at most 2. More specifically:

(i) xoy = (x, y)n-xy for all x, y of G;

(ii) the centre of Go consists of the elements of Z2, where Z and Z2/Z are the

centres of G and G/Z respectively;

(iii) the derived loop of Go is (G\ G) = (G, G, G) ; in fact we have [x, y, z]

= (x, y, z)n, where the first symbol has been defined in §9 of Chapter II ;

(iv) Go is centrally nilpotent of class at most 2.

Proof. That Go is a commutative I.P. loop follows from Theorem 6A. We

shall defer for the moment the proof that Go is Moufang, and take up the

other points in order.

(i) Now xoy = (xy2x)~n. But, by Lemma 6B, yx ~ (y~x, x~ x)xy = (x, y)~xxy ;

xy2x = (x,y)~1(xy)2, since (x, y) commutes with x and y ; and xoy = (x,y)n(xy)~2n

= (x,y)nxy.

(ii) The element c is in the centre of the commutative loop G if and only if

co(yox)=yo(cox) for all x, y. Using the form xoy = (xy2x)~n we derive the

equivalent equation c-yx2y-c=y-cx2c-y, or, on replacing x by x~n, and re-

arranging,

(6.9) (c, y)x = x(c~x, y~x)

for all x, y. Now (c~x, y~x) = (c, y) by Lemma 6B(i); and hence c is in the

centre of G0 if and only if (c, y) is in Z for all y. This is equivalent to stating

that c is in Z2.

(iii) If u is the solution of the equation (xoy)oz = uo(yoz), the element

x~xou is the derived loop of the commutative loop Go; and, conversely, the

derived loop is generated by the set of all elements x~xou. The equation for

m may be rewritten in the form zo(yox) = (yoz)ou, and this is equivalent to

z-yx2y-z = (yoz)u2(yoz), or to

(6.10) m2 = (yoz)~xzy • x2 • yz(yoz)~x.

We simplify this by use of Theorem 6B (i). In fact (yoz)~xzy = (y, z)~nz~xy~x ■ zy

= (y, z)~n(z, y) = (y, z)~n~x = (y, z)n, and likewise yz(yoz)~x=yz-z~xy~x(y, z)~n

= (y, z)~n. Hence we havew2 = (y, z)nx2(y, z)~n = ((y, z)'n, x~2)x2 = (y, z, x)2nx2



1946] CONTRIBUTIONS TO THE THEORY OF LOOPS 345

= (x, y, z)~xx2. Now (x, y, z) is commutative with x, by Lemma 6B (iii), and

hence u = (u2)~n=x- (x, y, z)n. Again, x~xou = (x~1, u)nx~1u = (x, u)~n(x, y, z)n.

But (x, m) = (k, x)~x = (x, y,z, x)~n = l, and hence xr1oy = (x, y, z)n. It follows

that the derived loop of Go is generated by the (x, y, z)n and hence by the

(x, y, z). In particular, then, the derived loop consists of the same elements as

(G\ G) = (G, G, G). We also note that [x, y, z]=x~1o{[(xoy)oz]o(yoz)~1}

=x~1ou = (x, y, z)n.

(iv) If x, y, z, u, v are any five elements of Go we have [[x, y, z], u, v]

= ((x, y, z)n, u, v)n = (x, y, z, u, v)k, where k = n2. It follows that the symbol

[[x, y, z], u, v] has the "skew-symmetry" of (x, y, z, u, v). If Go is a com-

mutative Moufang loop, we have that Go is nilpotent of class at most 2, by

authority of Lemma 9B (Chapter II).

Finally we must prove that Go is Moufang. Now [(xoy) o (aroz)]2

= (xoy)xz2x(xoy). But, by (i) of the present theorem, (xoy)x = (x, y)nxyx =

(x, y)nx(y~1, x~x)xy = (x, y)n~1x2y, and x(xoy) = (x, y)nx2y = (x, y)n(x~2, y~x)yx2

= (x, y)n+2yx2 = (x, y)~n+1yx2. Thus [(xoy)o(xoz)]2 = x2y ■ (x, y)n~1z2(x, y)~n+1

■yx2=x2y-(x, y, z)2n~2z2yx2. However (x, y, z)2n~2 = (x, y, z)3 = l, by Lemma

6B(ii), and thus [(xoy)o(xoz)]2 = x2-yz2y-x2 = x2(yoz)2x2=[x2o(yoz)]2. But

xox = (x, x)nx2 = x2, by (i) again, and so (xoy)a(xoz) = (xox)o(yoz) for all

x, y, z of Go. Therefore Go is a commutative Moufang loop, and the proof of

Theorem 6B is complete.

We may now use Theorem 6B to make more precise the results of Burn-

side.

Theorem 6C. If G is a group in which every two conjugate elements commute,

and if every element of G has finite, bounded, odd order, G is nilpotent of class

at most 4.

Proof. Under the above hypotheses there must exist an odd integer 2ra-f-l

such that x2n+1 = 1 for every n. Let 1 =Z0 <Zi <Z2 <Z3 < • • • be the upper

central series of G. By Theorem 6B, since Go, with centre and derived loop

consisting of the elements of Z2 and of (G', G) respectively, is centrally nil-

potent of class at most 2, we must have (G', G) ^Z2. But then the usual proof

shows that G' = (G, G) ^Z3 and that G^Zi. Hence G is nilpotent of class ät

most 4.

In view of the case where all the elements of G have order 3, we know

that class 3 is attainable. It is, so far as I know, an open question as to whether

there also exist such groups of class 4.

7. Structure theorems for totally symmetric quasigroups. A quasigroup G

is said to be totally symmetric (or a T.S. quasigroup) if and only if every valid

equation xy = z in G remains true under all permutations of x, y and z. In

other words, a T.S. quasigroup G is characterized by the laws

(7.1) xy = yx,        x-xy=y.
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In Brück [l] methods were given for constructing a wide variety of T.S.

quasigroups, and the isotopy properties of such quasigroups and loops were

studied to a considerable extent. In Brück [2], T.S. loops were used for the

construction of certain types of simple algebra. As will be seen in what follows,

we may amplify the theory of T-S. quasigroups considerably, and quite effort-

lessly, by studying the structure of the autotopism group (compare Chapter I,

§11 and Chapter II, §4).

Lemma 7 A. If the triple (U, V, W) is an autotopism of the totally symmetric

quasigroup G, so are the'other five triples obtainable by permutation of U, V

and W.

Proof. The proof parallels closely the proof of Lemma 4A of Chapter II.

By hypothesis, 17, V, W are one-to-one mappings of G upon itself, and

(7.2) *Z7-yF = (xy)W

for all x, y of G. Since G is commutative, interchange of x and y in (7.2)

shows that (V, 17, W) is also an autotopism. Since xy-y=y-yx=x for all

x, y, we may replace x by xy in (7.2) and derive (xy) U-yV=xW, and thus

xW-yV=(xy)U. Hence (W, V, U) is an autotopism. The rest of the lemma is

an immediate consequence of these two facts.

Lemma 7B. If U, Ware one-to-one mappings of the T.S. quasigroup G upon

itself, and if I is the identity mapping, necessary and sufficient conditions that

the triple ( U, I, W) be an autotopism are that W= U~x and that

(7.3) xU-y = x-yU

for all x, y of G.

Corollary. The set 6, consisting of all one-to-one mappings U of G upon

itself which satisfy (7.3), is an abelian group.

Proof. If (17, F, W) is an autotopism, we have

(7.4) xU-y = (xy)W

for all x, y of G. Interchange of x and y gives (7.3). Conversely if 17 is a one-

to-one mapping of G upon itself, and if U satisfies (7.3), we replace y by y U~x

in (7.3) and have that (U, U~x, I) is an autotopism. Thus, by Lemma 7B,

(U, I, U"x) is an autotopism. But if (17, I, W) is also an autotopism, so is

(U, I, W)(U, I, U-X)~X = (I, I, WU). Hence xy = (xy)WU for all x, y, or
WU= I, W= U~l. This completes the proof of Lemma 7A. As to the corollary,

if ( 17,1, U-x) is an autotopism, so is ( U, I, C/-1)-1 = ( U~x, I, U) ; hence S con-

tains the inverse of each of its members. If F is also in S, ( 17, F, U~x) ( V, I, F_1)

= (UV, I, U~XV~X) is an autotopism. It follows from Lemma 7B both that

UVis in S, so that S is a group, and that U~XV~X = (UV)-X, so that VU= UV,

(5 is an abelian group.
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Definition. A one-to-one mapping ¿7 of a T.S. quasigroup G upon itself

will be called an autotopic mapping if and only if there exist two one-to-one

mappings V, IF of G upon itself such that ( ¿7, V, W) is an autotopism of G.

Note that, in view of Lemma 7A, V and W will also be autotopic map-

pings.

Theorem 7A. FAe set of all autotopic mappings U of a T.S. quasigroup G

forms a group §. FAe group § contains the group E, defined in the corollary to

Lemma 7B, as a normal subgroup. Moreover:

(i) to every autotopic mapping U in § there corresponds a uniquely defined

mapping T in C such that ( ¿7, ¿7, ¿7F) is an autotopism of G ;

(ii) every autotopism of G has the form (U, UR, US) where ¿7 is in H, R, S

are in C, and where the mapping associated with U, in the sense of (i) ,isT = RS.

Proof. If ¿7 is in § there exist mappings V, W (also in §), such that

(¿7, V, W) is an autotopism. But then (¿7, V, W)-l = (U~\ V~\ W~l) is an

autotopism, so ¿7_1 is in §. Moreover if ¿7i is in §, (¿7i, Vx, Wx) is an autotop-

ism for some Vx, Wx, and hence (¿7, V, W)(Ux, Vx, Wi) = (UUu VVU WWx)

is an autotopism, ¿7¿7i is in §. Thus § is a group. Since in addition

(¿7, V, W)-\S, I, S-1)^, V, W) = (U~1SU, I, W-'S-'W), it follows by
Lemma 7B that ¿7_16¿7= 6 for every U of §. Hence S, which is obviously a

subgroup of §, is also normal in §.

It will be convenient to prove (i) and (ii) together. If (¿7, V, W) is an auto-

topism, then, by Lemma 7 A, so are (¿7, W, V)-X(V, W, U) = (U-XV,I, V~lU)

and (¿7, V, W)~*(W, V, U) = (U~XW, I, W~lU). It follows from Lemma 7B
that the mappings U~1V = R and U~lW=S are in S, and that (¿7, V, W)

= (U, UR, US). Since R is in 6, (R, I, i?_1) is an autotopism, and thus, by

Lemma 7A, so is (¿7, UR, US)(I, R, R-1)~1 = (U, U, USR). Hence if F = SR
= RS, so that Fis in 6, (¿7, ¿7, ¿7F) is an autotopism. If (¿7, ¿7, UTi) is also an

autotopism, so is (¿7, ¿7, UT)-\U, ¿7, UTi) = (I, I, T~xTx); and therefore

T~lTx = I, Tx = T. Hence F is uniquely determined by ¿7, although R and S

will not be. In fact if (¿7, ¿7, ¿7F) is an autotopism, if R is any element of 6,

and if S=TR'\ then (Í7, ¿7, UT)(I,R, R~1) = (U, UR, US) is an autotopism.
This completes the proof of Theorem 7A.

From Theorem 7A we may deduce an interesting corollary.

Corollary. There exists an endomorphism 6 of § with the following prop-

erties :

(i)  ( ¿7, ¿7, Ue) is an autotopism of G for every ¿7 of §;

(ii)   ¿7_1 ¿7s is in 6/or every U of § ;

(iii)   U° = U~2 if U is in &;

(iv) if UB = ¿7~2, and if U2 is in E, ¿7 is in Ë;

(v)   W = I if and only if ¿7 is in S a«a" U2 = I;

(vi)   W=U if and only if U is an automorphism of G.
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Proof. The existence of the single-valued mapping U—>Ue follows from

Theorem 7A. Moreover (17, U, US)(V, V, Ve) = (UV, UV, UeVe), so

(UV)e= UeVe, by Theorem 7A. This proves (i), and (ii) follows from the fact

that 17" = Z7F where T is in (5. As to (iii), if 17 is in S, (17, I, U~X)(I, U, U~x)
= (17, 17, Í7-2) is an autotopism, so IIe = Í7-2. Conversely, if 17*= U~2, where

Z72 is in (S, then U~xUe = U~3 is in 6, and so 17= 173- Z7~2 is in g. This proves

(iv). As to (v), if IP = F, then U~x=U-xUe is in 6, so Ue=U~2 = I; and the

converse follows from (iv). Finally, (vi) is a direct consequence of the defini-

tion of an automorphism.

Theorem 7B. Let L be a commutative I.P. loop, and let G=L0 be the T.S.

quasigroup, isotopic to L, with multiplication given by

(7.5) xoy = x~xy~x.

Let the groups !q and S have the same significance for G as in Theorem 7 A. Then:

(i) S ti isomorphic to the centre ofL;

(ii) 17 is in § if and only if xU — xA ■ ufor all x, where A is an automorphism

of L and u is in the Moufang center of L ;

(iii) if the element U of § is given as in (ii), ( 17, 17, 17') is an autotopism of G

if and only ifxUe=xA- u~2for all x.

Remarks, (i) A T.S. loop is simply an I.P. loop in which x~x=x for all *•

Thus if F is a T.S. loop, G and L are identical. Hence the theorem gives a

determination of § and Ë for all T.S. loops. In this case, however, the results

could have been obtained directly from Theorem 4D of Chapter II.

(ii) Note that U is an automorphism of G if and only if m3 = 1. Thus the

automorphism group of G contains that of L, sometimes as a proper subgroup.

Proof of Theorem 7B. It was shown in Brück [l] that G is a T.S. quasi-

group, and also that, on the other hand, not every T.S. quasigroup is isotopic

to an I.P. loop. Indeed if xoy=x~xy~x it is clear that xoy=yox; but also

xo(xoy) =x~x(x~~xy~x)~x=x~x-xy=y. Hence G is totally symmetric, as stated.

(i) If S in S, (xS)oy=xo(yS), or, equivalently, xS-y = x-yS, for all x, y

of L. Setting y = l, we get xS = xs where lS = s, and hence xs-y = x-ys for

all x, y. Since L is commutative, s is in the center of L. Conversely let xS = xs,

where s is in the centre of L. Then xS-y=xs-y=x-ys=x-yS, and so

(xS)oy = xo(yS), S is in Ë. If also xT = xt, where / is in the centre of L,

x(ST) = (xS)T = xs-t=x-st. Thus the mapping S—>s = lS is an isomorphism

of S upon the centre of L.

(ii) and (iii). By Theorem 7A, 17 is in § if and only if (Z7, 17, UT) is an

autotopism of G for some T of S. By (i), we may assume that xT=xt for some

element t in the centre of L. Thus (xU)o(yU) = (xoy) UT tor all x, y ii and

only if (xU)~x(yU)-x = (x~xy-x)U■ t for all x, y. If we let J, as usual, be the

mapping xJ = x~x, it follows that (UJ, UJ, JURt) is an autotopism of L. We

may now apply the results of Theorem 4D of Chapter II, which states that
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every autotopism of a commutative I.P. loop L has form (BRV, BRVRC,

BRv2Ra), where B is an automorphism of L, v is in the Moufang centre of L,

and a is in the centre of L. Thus we have UJ = BRv = BRvRa, JURt = BRv2Ra.

First we see that a = l and that U = BRVJ. Next we have JBRvJRt = BRv2,

whence Rv-1Rt=Rv2, or Rt=Rv3. Thus t = lRv3 = v3, which merely reflects the

known fact that the cube of every element of the Moufang centre of L lies in

the centre of L. If now we set A =BJ, u =v~l, we have U = AJRVJ — ARU, and

t=u~3, W= URt=AR„~2. Thus xU=xA -u and xU"=xA -u~2 where A is an

automorphism of L and u a Moufang element of L. Conversely, for an arbi-

trary automorphism A and an arbitrary Moufang element u, we have

(xoy)Ue = (x~xy-l)A ■ u~2 = [(xA)'1 ■ (yA)-x]u~2 = (xA ■ u)'1 ■ (yA ■ u)~l

= (xU)o(yU). This completes the proof of (ii) and (iii).

Theorem 7C. Let G be a T.S. quasigroup and let §, E and 6 have the same

meanings as in Theorem 7A and its corollary. Further let Go be a principal

isotope of G with multiplication given by

(7.6) xoy ■> xU-yV.

Then:

(i) necessary and sufficient conditions that Go have the right inverse property

are that ¿7 be in § and U2 be in E. Moreover, when these conditions are satisfied,

the right-inverse of x in Go is xR where R=VU2UeV~1;

(ii) similarly, for the left inverse property, V must be in §, V2 in E; and

when these conditions are satisfied the left inverse of x in Go is xL where
L=UV2VeU~1;

(iii) necessary and sufficient conditions that Go be a T.S. quasigroup are that

¿7 and V be in E; and in this case we have xoy=xS-y=x-yS, where S=UV;

(iv) if ¿7, V are in E, a necessary and sufficient condition that Go be iso-

morphic to G is that UV= W~lWe for some W of §.

Proof, (i) First we shall show the sufficiency of the conditions. If ¿7 is

in §, (¿7, W, ¿7) is an autotopism of G; and if ¿72 is in 6, (¿7-2, ¿72, Í) is also

an autotopism. Thus when both conditions are satisfied (¿7~2, U2,T)(U, U*, U)

= (U~\ U2U6, U) is an autotopism, and hence (*¿7-yF)¿7=x-yF¿72¿7«

= x-yRV, where R=VU2UeV~l. In this case (xoy)oyR = (xyRV)-yRV = x,

for all x, y of G, which means that Go has the right inverse property.

Now suppose conversely that Go has the right inverse property, the right

inverse of y being yR, where R is some one-to-one mapping of G upon itself.

Then (xoy)oyR = (xU-yV)U-yRV = x for all x, y. Thus (xU-yV)U = x-yRV

and so (xy) U=xU~1-y Wfor all*, y, where W= V^R V. Therefore ( U~\ U, W)

is an autotopism, Uis in §, and (U~\ U, W)(U~\ U~\ U~e) = (¿7~2, /, WU~*)

is an autotopism, where U~e=(U~1)6. By Lemma 7B we now have WU~*

= (¿7-2)-1=¿72, W** U2Ue. Therefore, finally, R= VWV~l<= VU2WU~\

(ii) This proof is completely analogous to that of (i).
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(iii) A T.S. quasigroup is simply a quasigroup with the inverse property

for which L = R = F. By (i), R = I= VU2UeV~x implies ¡7" = £/~2 with 172 in (£.

But it then follows from (iv) of the corollary to Theorem 7A that 17 is in (£.

Conversely, if Z7 is in S, U' = Î/-2 by (v) of the same corollary, and hence

R = I. Similarly L = I if and only if F is in S. Finally, if 17, F are in S,
ící7-yF = a;yFZ7 = xyS = a!:S-y, where S= FÍ/= Í7F. (This follows most di-

rectly from (7.3).)

(iv) We may suppose that xoy=xyS where S= UV is in E. Now Go is

isomorphic to G if and only if there exists a one-to-one mapping IF of Go upon

G (and hence, in this case, of G upon G) such that (xW)o(yW) = (xy)W, or

xW-yWS = (xy)W. But this holds if and only if (IF, WS, IF) is an autotopism

of G ; in other words, if and only if IF is in Hand WS=W,S=UV= W~xWe.

Theorem 7C leads to some interesting results if we consider the case that

Go is a loop. If we define Rv as usual by xRv=xy=yx, it follows here that

xRy2=xyy = x, so F„2 = i for all y, and hence Fc„_1=i?B. Thus Go is a loop

if and only if U = RP, V = Rq for fixed elements ¿>, q of G. Under what cir-

cumstances will Go have the right inverse property? Since U2 = RP2 = I, the

only condition to be satisfied is that Rp be in §, or that (RP, RP, RPT) be an

autotopism, where T = Rp(Rp)e is in S. But then px-py = (p-xy)T = pT~x-xy

for all x, y. Taking x—p we get p2 ■ py = pT~x ■ py for all y, whence p2=pT~x.

Since moreover xRpT=(px)T = pT~x-x = p2x=xRp2, we see that RpT = Rjn.

Thus we may state a lemma.

Lemma 7C. If G is o T.S. quasigroup and p is a fixed element of G, a neces-

sary and sufficient condition that Rp should be in !q is that p2-xy = px-py for

all x, y of G. Moreover the set M of all elements p of this type is a subquasigroup

ofG.

Corollary 1. If Go is a loop, isotopic to G, defined by xoy=pxqy where p, q

are fixed elements of G, then Go has the right inverse property (left inverse prop-

erty) if and only if p (if q) is in M.

Corollary 2. G is isotopic to a Moufang loop if and only if M=G.

Proof. The first statement of Lemma 7C has been proved above. As to the

second, if ¿>, q are in M we have p2(q2xy)=p2-(qx-qy) = (p-qx)(p-qy)

= [q2(pqx)][q2(pq-y)] = (q2)2[(pq-x)(pq-y)], or

(7.7) P2(q2xy) = (q2)2[(pq-x)(pq-y)].

Again, v/e have p2-(q2-xy) = (q2)2[(p2-q2)(xy)]; but p2-q2 = pq-pq = (pq)2, and

so

(7.8) P2(q2-xy) = (q2)2[(pq)2(xy)].

It follows from (7.8), (7.7) that (pq)2xy = (pq-x)(pq-y) for all x, y. Hence
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pq is in M. Inasmuch as G is totally symmetric, this completes the proof of

Lemma 7C.

In this proof we have used the fact that p2 is in M when p is. Now p is

in M if and only if i?pisin§; but if i?pisin §, (Rp, Rp, Rpt) is an autotopism,

Rp2 is in &, p2 is in M.

Corollary 1 is an immediate consequence of Theorem 7C and the present

lemma. Corollary 2 follows from Corollary 1 and the fact that every loop

isotopic to a Moufang loop is Moufang.

The subquasigroup M (oí the T.S. quasigroup G) discussed in Lemma 7C,

has close analogies with the Moufang centre of a commutative I.P. loop, as

may readily be verified by combining Theorems 7C, 7B with Lemma 7C. The

set N oí idempotent elements of M forms a subquasigroup of M, since if

p = p2, q = q2 are in N, then (pq)2 = pq■ pq = p2■ q2 = pq. Ii N = G, we have the

curious case of a self-distributive T.S. quasigroup :xyz=xyxz for all x, y, z of

G. That such a G exists may be seen by taking the loop L of Theorem 7B

to be any commutative Moufang loop in which every element (save the iden-

tity) has order 3. Conversely, it may be shown that every loop isotopic to a

self-distributive T.S. quasigroup is a Moufang loop in which every element

has order 3. But a self-distributive T.S. quasigroup G will have T.S. isotopes

which are not self-distributive. To see this, let L be a commutative Moufang

loop in which x3 = l for every x, let / be any fixed centre element of L, and

define Lo by xoy =f-x~1y~1. Then Fois commutative, and therefore it is totally

symmetric, since (xoy)oy=ff~1xyy~1=x. However xox=f-x~2=fx, and

hence Lo will be self-distributive if and only if t = 1. The point is thus proved

when we reflect that the T.S. quasigroups Lo corresponding to different

choices of/ are all isotopic.

We now turn our thoughts in a different direction.

Theorem 7D. Let G be a T.S. quasigroup, and let E be the group defined in

the corollary to Lemma 7B. Further, letf be any fixed element of G, and let A¡ be

the set of all elements s of G such that

(7.9) fx-sy = sx-fy

for all x, y of G. Then Af forms an abelian group under the operation sot=f-st,

and the mapping S-^s =fS yields an isomorphism of E upon A¡. Moreover if g

is any other fixed element of G the mapping s—+f-gs yields an isomorphism of A/

upon Ay.

Proof. Let S be any element of E, so that xS-y=x-yS for all x, y of G.

If we set s =/S, the last equation, with x =/, yields sy=f-yS, or

(7.10) xS = f-sx,

for all x of G. Suppose conversely that S is given in the form (7.10). Then S

is in E if and only if (f-sx)y=x- (f-sy) for all x, y of G. On replacing x, y by
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sx, sy respectively, we derive the equivalent equation (7.9). We also note that

if S is given by (7A0),fS=fsf=s.
Now suppose that F is also in S, and that/F = /. Then f(ST) =f(TS)

= (fT)S = tS=f-st, by (7.10). Hence we have the correspondences S—+s,

T—*t, ST^>f-st = sot. Thus A¡ is an abelian group, and the mapping S-^s=fS

is an isomorphism of S on A¡. If g is any other fixed element of G, we note

from (7.10) that gS=f-sg=f-gs. But the mapping/S—>gS, or s—*f-gs, is evi-

dently an isomorphism of A¡ on Aq.

Theorem 7E. Let G be a T.S. quasigroup, and define [x], for each fixed x,

to be the set of all elements xS with S in (S. Then the mapping x—>[x] is a homo-

morphism of G upon a T.S. quasigroup G/S.

Proof. It follows from the proof of Theorem 7D that [/], for each/,con-

sists of the same set of elements as the abelian group A¡. Thus the different

"cosets" [x] are in one-to-one correspondence. Moreover, if R, S, T are three

elements of E, the equation xR-yS = zT is equivalent to the equation

(xy)R~xS~x = zT. Thus it holds only if [xy] = [z], and we may as well assume

z=xy. In this case we have (xy)R~xS~x = (xy)T or RST = I; and hence any

two of R, S, T determine the third. We have proved that [x] ■ [y]= [xy], for

all x, y. But then we see at once that the cosets [x] form a T.S. quasigroup,

say G/6, and that the mapping x—>[x] is a homomorphism of G upon G/S.

A little reflection shows that the corresponding problem of construction

should be solved as follows.

Theorem 7F. Let Q be a T.S. quasigroup, elements p, q, • ■ ■ , and let A be

an abelian group, elements S, T, • • • . Let there be chosen, corresponding to every

pair p, q of elements of G, an element Fp,q of A with the properties that

(7.11) Fp.q  —  Fq.P, Fpq.q   = Fp,q

for all p, q of Q. Then the system G = (Q, A), consisting of all couples (p, S)

under the multiplication

(7.12) (p, S)(q, T) = (pq, F^S^F"1),

is a T.S. quasigroup. Furthermore if A be represented as a group of one-to-one

mappings of G upon G by use of the definition

(7.13) (p, S)T = (p, ST),

then A is a subgroup of the abelian group ß defined in the corollary to Lemma 7B.

We omit the proof of Theorem 7F, which is perfectly straightforward. It

should be noted, however, that if we replace A by a commutative I.P. loop and

pick the Fp,qfrom its centre, G will still be a T.S. quasigroup.

If the T.S. quasigroup G is a loop, Ë is isomorphic with the centre of G,

as follows from Theorem 7D with/=l. In any case S has many of the prop-
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erties of a centre (consider the "associative-commutative law" xSy = x-yS),

and the quotient quasigroup G/E of Theorem 7E is a sort of "central"

quotient. Moreover, by Theorem 7A, a necessary and sufficient condition

that every autotopism ( ¿7, V, W) of G be an automorphism (in the sense that

¿7= V=W) is that S = F It follows from Theorem 7E that if G is finite we

may, after formation of a finite number of successive "central" quotients,

reach a T.S. quasigroup all of whose autotopisms are automorphisms. In

order to give a nontrivial example of such a T.S. quasigroup we shall use the

methods of Brück [l] to construct a T.S. loop of order 3n + l whose centre

has order 1, for every integer n > 1.

Let G be an elementary abelian group of order 3", type (1"), with w^2,

and let Go be the T.S. quasigroup, isotopic to G, defined by xoy = x~1y~1. It

follows from Theorem 7B (ii) that ¿7 is an autotopic mapping of Go if and only

if xU = xA -u where A is an automorphism of G and u an element of G. By

(iii) of the same theorem, every such ¿7 is an automorphism of Go, since

u~2 = u and hence Ue= U. Moreover xox=x~2=x for all x of G. Now let G*

be the system of order 3n + l consisting of the elements of G with one addi-

tional element e, and let multiplication in G* be defined as follows:

e*e = x*x = e;       e*x = x*e = x:
(7.14)

x*y = xoy = x~1y~1;

where x, y are any two distinct elements of G. It was shown in Brück [l],

and it may also be verified directly, that G* is a T.S. loop with unit e. If ¿7

is any one-to-one mapping of G upon G we may extend it to a one-to-one

mapping of G* upon G* by defining eU=e. In this way we extend every

automorphism ¿7 of Go to an automorphism of G*, for we have (eU)*(eU)

=e*e=e = (e*e)U, (eU)*(xU)=e*(xU)=xU=(e*x)U, (xU)*(xU)=e=(x*x)U,

and (xU)*(yU) = (xU)o(yU) = (xoy)U—(x*y)U, where, as before, x and y

are any two distinct elements of G. But if x and y are any two fixed elements

of G it is clear that there exists an automorphism ¿7 of Go such that xU = y;

we may in fact define ¿7 by z¿7 = z-a:_1y for every z of G. Therefore the only

characteristic subloops of G* are the subloop of order one and G* itself. Since

« = 2, G contains a subgroup H of order 9, and thus G* contains a subloop

H* of order 10, consisting of e and the elements of H. Clearly FT* is not an

abelian group (since, for example, all of its elements save e have order 2)

and hence G* is not an abelian group. Therefore the centre of G* has order 1.

We also note that the có-loop of G* has order 1, and that the automorphism

group of G*, like that of G0, has order 3"(3n —l)(3n —3) • • • (3n-3"-1).
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