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1. Introduction. The present paper is the first of a set of three papers

concerned primarily with the isoperimetric problem of Bolza. This problem

is one of the most general problems in the calculus of variations and can be

described as follows: Consider a class of arcs

C: a\ r(t) (t1 á * £ t2; h = 1, • • • , r; i = 0, 1, • • • , «)

in ay-space satisfying a set of conditions of the form

(1.1) *"(a, y, j) = 0 (j8 = 1, • • • , m < n),

(1.2) yKt1) = T«(a),       y(t2) = T"(a),

(1.3) I'(C) = g'(a) +  f f°(a, y, y)dt = 0 (<r = 1, • ■ • , s).
J c

The components aK of C are constants. We seek to find in this class of arcs

one that minimizes a function

(1.4) 1(C) = g(a)+  f f(a,y,y)dt.
J c

The functions <j>e, f", f are positively homogeneous in the variables y*. The

problem here formulated contains as special cases most of the interesting

problems in the calculus of variations involving simple integrals(x).

In the present paper we shall develop certain interesting properties of

the Weierstrass ¿-function. These properties are of interest apart from their

applications to be found in the papers that follow. We shall be concerned

particularly with the concept of Is-dominance. This concept can be described

briefly as follows: Let 3) be the set of all admissible elements (a, y, p) satisfy-

ing the conditions <pß(a, y, p) =0 and let Co be an arc whose elements (a, y, p)

= (a, y, y) are in ÜD. A function F(a, y, p) will be said to ¿-dominate a second

function H(a, y, p) near Co on 3) if there is a neighborhood £)0 relative to 3)

of the elements (a, y, p) on Co and a constant 2>>0 such that the inequality

EF(a, y, p,q) ^ b\ EH(a, y, p, q) |

Presented to the Society, April 24, 1943; received by the editors November 9, 1945.

0) Cf. M. R. Hestenes, Generalized problem of Bolza, Duke Math. J. vol. 5 (1939) pp. 309-

324. A discussion of several different formulations of the problem of Bolza can be found in this

paper.
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holds whenever (a, y, p) is in 35o and (a, y, q) is in 35. Here EF and Eh are the

¿-functions of F and H respectively. We are especially interested in finding

necessary and sufficient conditions that a function F(a, y, p) shall ¿-dominate

the integrand L(p) = (pipi)112 of the length integral. It is shown below that

L(p) is ¿-dominated by a function of the form

F = i«f + i*f + m?(a, y)4>?

if and only if the arc Co satisfies, with the multipliers Io, l', mß(a, y), the

strengthened condition of Weierstrass and the condition of nonsingularity.

That the strengthened condition of Weierstrass plus nonsingularity implies

that L is ¿-dominated by a function F of this type has also been established

by W. T. Reid in connection with an expansion proof of a sufficiency theorem

for parametric problems. His results have not been published as yet. In the

present paper we not only show the equivalence of these relations but show

further that a function F ¿-dominates L near Co on 35 if and only if there is a

function of the form
p* = F + e(a, y, p)4^<t^

that ¿-dominates L near Co on the class of all admissible elements (a, y, p).

The results here given indicate that for a function F possessing only first

derivatives the condition that F shall ¿-dominate L appears to be a natural

extension of the strengthened condition of Weierstrass and the condition of

nonsingularity.

The concept of ¿-dominance will be used freely in the two papers that

follow. In the first of these it will be used in connection with a theorem of

Lindeberg analogous to one given by Reid(2) for the nonparametric case. In

the second paper it will be shown that the sufficiency theorems for the prob-

lem of Bolza can be obtained from those of the problem of Mayer, a result

that does not appear to have been completely justified. Following the method

used by Reid we shall show that sufficiency theorems for the isoperimetric

problem of Bolza can be obtained from those of the problem of Bolza without

isoperimetric conditions. Moreover it will be seen that sufficiency theorems

for parametric problems can be obtained from those for nonparametric prob-

lems. Interesting results will also be obtained in regard to the regions in which

the sufficiency theorems are valid.

The third and final paper of the present series will be devoted to the proof

of a sufficiency theorem for a proper strong relative minimum for the iso-

perimetric problem of Bolza. This sufficiency theorem is essentially one con-

jectured by McShane(3) with the usual inequality I(C)>I(C0) (CVC0) re-

placed by an inequality of the form

(2) W. T. Reid, Isoperimetric problems of Bolza in nonparametric form, Duke Math. J.

vol. 5 (1939) pp. 675-691.
(3) E. J. McShane, Sufficient conditions for a weak relative minimum in the problem of Bolza,

Trans. Amer. Math. Soc. vol. 52 (1942) pp. 344-379.
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7(C) - /(Co) è min (e, e | C, Co |2),

where | C, Co | is a suitably defined metric for the class of arcs under consid-

eration. This new inequality enables one to obtain an analogue of Osgood's

theorem as a corollary to our sufficiency theorem. One of the interesting fea-

tures of the method here used is that it is applicable without modification to-

isoperimetric problems, that is, the method is the same for a problem with iso-

perimetric side conditions as for one without isoperimetric side conditions.

The method used is essentially the one used by McShane in order to establish

a sufficiency theorem for a weak relative minimum and later extended by

Myers(4) in order to establish a sufficiency theorem for a semistrong relative

minimum for the nonparametric problem of Lagrange.

The results given in these three papers are applicable to the nonparametric

case as well as to the parametric case.

2. Preliminary definitions and lemmas. The present section will be de-

voted to a description of some of the hypotheses, definitions and notations

that will be used in the three papers. We shall use the following notations

a = (a1, • • ■ , a'),       y = (y\ y\ ■ ■ ■ , yn),       y = (y°, y1, ■ ■ ■ , yn),

P = (P°, P\ • • • , Pn),        q = (?°, q\ ■ ■ ■ . <7n).

If k is a real number, then kp = (kp°, kp1, • • ■ ,kp"). Repeated indices in a

term denote summation with respect to that index. The length (£*£') 1/2>

where * = 0, 1, • • • , «, of the vector p will be denoted by \p\. We distinguish

between the symbols \p\, ¡p*]- The latter denotes the absolute value of the

ith component pl of p. Similar remarks hold for the symbols \a\, \ah\, \y\,

|y'|, and so on.

We suppose that we have given an open set SR of (r+2«+2)-dimensional

points (a, y, p) j¿ (a, y, 0) with the property that if (a, y, p) is in 5R so also is

(a, y, kp) for every positive number k. An element (a, y, p) will be called ad-

missible if it is in 3Î. By an admissible subregion 9?o of SR will be meant one such

that if (a, y, p) is in $K0 so also is the element (a, y, kp) (k>0).

By an admissible function H(a, y, p) will be meant a real single-valued

function on 9Î that satisfies the homogeneity condition

(2.1) H(a, y, kp) = kH(a, y, p) (k > 0)

on 3Î, is continuous, and has continuous first and second derivatives with re-

spect to the variables p°, • • • , p". As a consequence of the relation (2.1) one

has on $R the well known identities

(2.2) E = p<Epi,       pm^i = 0 (i, j = 0, 1, • • • , n),

(*) F. G. Myers, Sufficient conditions for the problem of Lagrange, Duke Math. J. vol. 10

(1943) pp. 73-97.
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and the homogeneity relations

Hpi(a, y, kp) = Hpi(a, y, p),

Hpipi(a, y, kp) = k^Hpip^a, y, p),

where k>0. These relations will be used freely.

It will be understood throughout that the functions/(a, y, p),f"(a, y, p),

<pß(a, y, p) appearing in the formulation of our problem are admissible func-

tions of class C" on SR. The functions g(a), g°(a), Ta(a), Ti2(a) are assumed

to be of class C" on 3Î.

An element (a, y, p) in dt will be said to be differentially admissible if

<pß(a, y, p)=0 (ß = l, • • • , m). It is clear from (2.1) that the class of all

differentially admissible elements form an admissible subregion of dt. This

subregion will be denoted by 35.

Consider now a rectifiable curve C in ay-space having an absolutely con-

tinuous representation

(2.4) a, y(t) (t1 ^ t g t2),

the components a = (a1, ■ ■ • , ar) being constants. By virtue of our conven-

tions y(t) .represents the set y°(t), yl(t), • • • , yn(t). Their derivatives

y°(0> jl(t), ' ' ' i y"(0 exist almost everywhere on tH2 and define a vector

y(t). At the points where y(t) is not defined we set y(t) = (0, • • • , 0). We shall

consider throughout only the rectifiable arcs (2.4) for which the element

(a, y(t), y(t)) is in dt for almost all values of t on tH2. By an admissible arc C

will be meant an arc (2.4) of this type satisfying the differential equations

(1.1), the isoperimetric conditions (1.3), and the end conditions (1.2).

We shall center our attention on a particular admissible arc

Co: a0, yo(t) (t1 ^ t ^ t2)

of class C". It will be assumed throughout that Co does not intersect itself

and that the matrix

||<V(«o, yo(t), yo(t))\\ (fi - 1, • •• , m; i - 0,1, • • • , »).

has rank m on tH2. An element (a, y, p) will be said to be on Co if there is a

constant k >0 and a value / on tH2 such that

a = a0,        y = yo(t),       p — ky0(t).

By a neighborhood of the elements (a, y, p) on Co will be meant an admissible

subregion dto of dt containing the elements (a, y, p) on Co in its interior. It

will be convenient to designate such a neighborhood by the phrase "a neighbor-

hood dto of Co." Similarly by a neighborhood 35o of Co relative to 35 will be meant

the set of all differentially admissible elements in a neighborhood dto of Co.

The assumption that the arc Co is of class C" is made only for convenience.

In the first two papers it would be sufficient to assume that Co is of class C.
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In the third paper the conditions imposed on Co imply that it is of class C". 
It is for this reason that we make our initial assumption that Co is of class C". 
Similar remarks hold regarding our assumptions concerning the functions 
f,fr, cpfJ, g, gr, Til, Ti2. 

The following lemma will be useful. 

LEMMA" 2.1. There exist n-m admissible functions cp'Y(a, y, p) (-y =m+1, 
... , n) of class C" such that the determinant 

(2.5) I p' I (i = 0, 1, ... , n; a = 1, ... , n) cf>;, 
is different from zero on Co. Moreover the equations 

(2.6) I rl = cl pi, cpfl(a, y, r) = 0, cp'Y(a, y, r) = cp'Y(a, y, p) + v'Y 

have solutions ri(a, y, p, v, c) of class C" ona neighborhood of the values 
(a, y, p, v, c) = (a, y, p, 0, 1) on Co. The solutions satisfy the homogeneity con-
ditions 

ri(a, y, kp, k'll, c) = kri(a, y, p, 'II, c) (k > 0). 

The first statement in the lemma has been established by Bliss(6). The sec-
ond statement follows from implicit function theorems. 

3": Weak E-dominance. The present paper is concerned primarily with 
the properties of the Weierstrass E-function. In this section will be found a 
description of certain properties of this function that will be useful later. Most 
of these properties are well known. 

By the Weierstrass E-function E, associated with an admissible function 
F will be meant the function 

(3.1) E,(a, y, p, q) = F(a, y, q) - q'Fp'(a, y, p). 

In view of the relations (2.1) and (2.3) we have 

(3.2) E,(a, y, kp, k'q) = k'E,(a, y, p, q) (k > 0, k' > 0). 

As a consequence of these relations it is clear that we can at will restrict 
ourselves to normed sets (a, y, p) and (a, y, q). that is, to sets for which I pi = 1 
and Iql =1. 

The E-function 

(3.3) EL(P, q) = L(q) - qipi/L(p) " 

associated with the integrand 

(3.4) L(p) = I pi = (pipi)1/2 

(I) Bliss, The problem of Mayer with variable end points, Trans. Amer. Math. Soc. vol. 19 
(1918) pp. 312-313. 
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of the length integral will play a dominant role in this paper. It is easily seen

that

(3.5) 0 < EL(p, q) á 2L(q) (q^kp,k>0).

Moreover we have

(3.6) JWzV > 0 (z^Pp),

as can be seen from the identity

1
Lpipizh1 =-(z'pi - z1'pi)(ziP' - zip*).

lL

Let F and H be admissible functions and let EF and Eh be the correspond-

ing ¿-functions. The function F will be said to weakly E-dominate H near Co

on 35 if there is a neighborhood 35o of C0 relative to 35 and a constant £>>0

such that the inequality

(3.7) \EH(a,y,p,q)\£bEF(a,y,p,q)

holds for every pair of elements (a, y, p) and (a, y, q) in 35o. Similarly if an

inequality of the form (3.7) holds for every pair of elements (a, y, p) and

(a, y, q) on a neighborhood 9îo of Co, then F will be said to weakly E-dominate

H near Co on dt. It is clear that F weakly ¿-dominates iJ=0 near Co on 35 if

and only if the inequality

Ep(a, y, p,q)^0

holds for every pair of elements (a, y, p), (a, y, q) on a neighborhood 35o of Co

relative to 35.

In order to prove certain consequences of weak ¿-dominance we shall

make use of the following well known result.

Lemma 3.1. If the inequality

(3.8) EF(a, y, p, q) è 0

holds whenever (a, y, p) is on Co and (a, y, q) is a differentially admissible ele-

ment on a neighborhood dto of those on Co, then the inequality

(3.9) Fptpjz'zi^O

holds on Co, subject to the conditions

(3.10)- zl<bßpi = 0,       z* ?¿ pp\

The inequality (3.9) subject to the conditions (3.10) in general does not

imply the inequality (3.8). These inequalities are however equivalent in case

F is nonsingular on Co relative to <£x, ■ ■ • , <j>m, that is, in case the determinant
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F pi pi   4>p*

<t>li      0
(i,j = 0, 1, • • • , »)

(ß, f - 1, • ■• • , «)

has rank n+m on Co. This result is a consequence of the following:

Theorem 3.1. Given an admissible function F the following conditions are

equivalent.

I. The inequality

(3.11) Fpipiz'z' > 0

holds on Co subject to the conditions (3.10).

II. The function Fis nonsingular on Co relative to cp1, • • • , <f>m and the in-

equality (3.9) holds on Co subject to the conditions (3.10).

III. The function Fis nonsingular on Co relative to <£x, • • • , <f>m and weakly

E-dominates H=0 near Co on 35.

IV. The function F weakly E-dominates L=\p\ near Co on 35.

V. Every admissible function H is weakly E-dominated by F near Co on 35.

VI. There is a constant c such that the inequality

(3.12) F^-zV > 0 (z^Pp)

holds on Co for every setz^pp, where F* is the admissible function (6)

(3.13) F* = F + (c/L)W.

VII. There is an admissible function F* of the form (3.13) that weakly

E-dominates L near Co on R.

The equivalence of the first three conditions is well known. The equiva-

lence of the last two follows from the equivalence of the first and fourth for

the case when there are no side conditions <pß = 0. We shall accordingly restrict

our attention to conditions IV, V, VI. Because of the homogeneity properties

(2.3) we can suppose throughout that the vectors p and z occurring in (3.9),

(3.11) and (3.12) satisfy the relations

(3.14) #%*-0,        |*|-1.        \p\ = 1.

In this case the condition z^pp is automatically satisfied and hence need

not be considered in the arguments given below.

Suppose now that IV holds. Setting G = F—bL (b>0) it follows from IV

that b can be chosen so that the inequality

Eo(a, y, p, q) = EF(a, y, p, q) - bEL(p, q) è 0

holds whenever (a, y, p) and (a, y, q) are on a neighborhood 35o of Co relative

to D. Let QF be the Legendre form

(«) Cf. W. T. Reid, loc. cit. p. 679.
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QF = QF(a, y, p, z) = Ffipjz'z'

for ¿and denote the corresponding forms for G and L by Qa and Ql respec-

tively. Using Lemma 3.1 we see that the inequality

0 ^ Qo(a, y, p, z) = QF(a, y, p, z) - bQL(p, z)

is satisfied whenever (a, y, p) is on Co and the relations (3.10) and (3.14)

hold. Since Ql>0 on this set it follows that QF>0 also. Consequently condi-

tion IV (and hence also V) implies condition I.

We shall show next that condition I implies condition V and hence also

condition IV. Let S be the set of points (a, y, p, z) having (a, y, p) on Co and

satisfying the conditions (3.10) and (3.14). By I we have QF>0 on S. Con-

sequently if H is an admissible function there is a constant b0 à 0 such that

QF — bQ;n>0 on S provided \b\ ^b0. Consequently if we set G = F—bH we

have Qo>0 on S whenever \b\ ^b0. Since I implies III, the inequality

Ea'(a, y, p, q) = EF(a, y, p, q) - bEu(a, y, p, q) ^ 0

holds whenever |Z>| ̂ ba and (a, y, p), (a, y, q) lie in a suitably chosen neigh-

borhood 35o of Co relative to 3). It follows that condition I implies condition V

and hence IV.

It remains to show that condition I is equivalent to condition VI. To this

end let T be the set of points (a, y, p, z) with (a, y, p) on Co and satisfying

(3.14). Set H=4>f>d>l)/L. Since <j>» = 0 on T we have

n        J J   v '
\¿H  =   <Ppi<PpiZ Z

on T. Consequently (2» = 0if and only if 0sP«'zi = O, that is, if and only if

(a, y, p, z) is on the set S described in the last paragraph. It follows that on S

the Legendre form QF* = Qf+cQh for the function F* = F-\-cH is equal to

QF. Hence condition VI implies condition I. Conversely if condition I holds,

then QF>Q on S, that is, on the subset of T on which Qh = 0. Since QF and

Qh are continuous functions on T with Qh^Q there is a constant h>0 such

that QF>0 at all points of T having QH<h. Choose c so that ch>m, where

— m is the minimum value of QF on T. For this value of c we have QF* =QF

-\-cQh>0, as desired. Condition VI is therefore implied by condition I. This

completes the proof of Theorem 3.1.

4. Dominance and ¿-dominance. An admissible function F will be said

to dominate a second admissible function H near Co on 3) if there is a neighbor-

hood % of Co in ay-space and a constant b>0 such that the inequality

(4.1) \H(a,y,p)\^bF(a,y,p)

holds for every set (a, y, p) in 3) with (a, y) in %. If b and % can be chosen so

that the inequality (4.1) holds for every set (a, y, p) in 9Î having (a, y) in g,

then F will be said to dominate H near Co on 3Î.
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An admissible function F will be said to E-dominate an admissible function

H near Co on 35 if there is a neighborhood 35o of Co relative to 35 and a constant

b>0 such that the inequality

(4.2) | EH(a, y, p, q)\ g bEF(a, y, p, q)

holds whenever (a, y, p) is in 35o and (a, y, q) is in 35. If this inequality holds

whenever (a, y, q) is in dt and (a, y, p) is in a neighborhood 9îo of Co, then F

will be said to E-dominate H near Co on dt.

Relations between dominance and ¿-dominance are given in Theorem 4.1.

Theorem 4.1. Let F and H be admissible functions. If F dominates L = \p\

and E-dominates H near Co on 35, then F dominates H near Co on 35. Conversely,

if F dominates H and E-dominates L near Co on 35, then H is E-dominated by F

near Co on 35.

The proof of this result will be given in the next section. Taking F = L one

obtains the following corollaries.

Corollary 1. A n admissible function H is E-dominated by L near Co on 35

if and only if it is dominated by L near Co on 35. If H=Q on 35, then H is E-domi-

nated by L near Co on 35. Every admissible function H of the form

H(a, y, p) = \ß(a, y, p)<j>ß(a, y, p)

is E-dominated by L near Co on 35.

Corollary 2. Suppose that dt is the set of all elements (a, y, p) ^ (a, y, 0)

whose components (a, y) are in a region in ay-space. Then every admissible func-

tion H is E-dominated by L near Co on dt.

Corollary 3. Suppose F dominates and E-dominates L near Co on 35. Then

an admissible function H is E-dominated by F near Co on 35 if and only if F

dominates H near Co on 35.

A further result of this type is given in the following theorem.

Theorem 4.2. // F is an admissible function that E-dominates L near Co

on 35, there is an admissible function of the form

G(fl, y, p) = D*(a, y)p{

such that F — G dominates and E-dominates L near Co on'S). In fact if along an

extension of Co in 35 the functions Fp*(a, y, p) have continuous derivatives with

respect to arc length then G can be chosen to be the integrand of an invariant in-

tegral.

The hypothesis in the last statement of the theorem is satisfied, for ex-

ample, when there is an extension of Co that is an extremal. It also holds when

Pis of class C".
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This theorem will be established in the next section. The principal theo-

rem in this paper is the following:

Theorem 4.3. An admissible function Fis nonsingular relative to 4>l, • • • ,</>"*

and E-dominates 01, • • ■ , <pm near Co on 3) if and only if L = \p\ is E-domi-

nated by F near Co on 3).

The proof of this result will be given in §6 below. For the case in which

there are no side conditions <fo = 0 this result can be stated in the form given

in the following corollary.

Corollary 1. The function L is E-dominated by F near Co on 9Î */ and only

if the determinant \ Fp*pi | has rank « on Co and there is a neighborhood 9îo of

Co such that the inequality

(4.4) EF(a, y, p, q) è 0

holds whenever (a, y, p) is in 3îo and (a, y, q) is in 9Î.

Theorem 4.4. Suppose that Fis of the form

F(a, y, p) = [g'Ha, y)pip']1'2,

where g''(a, y)iri7r/ is a positive definite quadratic form. Then F dominates and

E-dominates L near Co on 8Î. Moreover an admissible function H is E-dominated

by F near Co on 3) if and only if it is dominated by F near Co on 3).

For in this case the inequality (4.4) holds for all (a, y, p) and (a, y, q)

on 9î. Moreover the determinant | ¿Pv| has rank «. It follows from the last

corollary that L is ¿-dominated by F near Co on 9Î. The last statement fol-

lows readily from the fact that each of the two functions F and L dominates

and ¿-dominates the other.

5. Proofs of Theorems 4.1 and 4.2. As a first step observe that since the

derivatives ¿p», Hp< are positively homogeneous of order zero in p, there is a

neighborhood 9Î0 of Co and a constant c > 0 such that the inequalities

I F^a, y, p)q* \ ^ cL(q), | Hpi(a, y, p)q* \ è cL(q)

hold whenever (a, y, p) is in 9t0- Using the relations

| H(a, y, q) | g | E„(a, y,p,q)\+\ q'H^a, y, p)\,

I EH(a, y, p, q) \ £ \ H(a, y, q) \ + | q'HAa, y, p) |

one obtains the first two of the inequalities

(5.1) | H(a, y,q)\-è\ E„(a, y, p,q)\+ cL(q),

(5.2) | EH(a, y,p,q)\^\ H(a, y,q)\+ cL(q),

(5.3) F(a, y, q) :g EF(a, y, p, q) + cL(q),

(5.4) EF(a, y, p, q) g F(a, y, q) + cL(q),
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which hold whenever (a, y, p) is in dto and (a, y, q) is in dt. The last two can

be established in a similar manner.

Suppose now that F dominates L and ¿-dominates H near Co on 35. Then

there is a neighborhood 35o of Co relative to 35 and a constant b such that

(5.5) L(q)ébF(a,y,q),

(5.6) \ EH(a, y, p, q)\ -g, bEF(a, y, p, q)

hold whenever (a, y, p) is in 35o and (a, y, q) is in 35. We can suppose that 35o

is interior to 9îo. By the use of Lemma 2.1 it is seen that we can select a

neighborhood % of Co in oy-space such that if (a, y) is in % there is a value p

such that (a, y, p) is in 35o- Consider therefore an element (a, y, p) in 35o with

(a, y) in g and select any value q such that (a, y, q) is in 35. Using (5.1), (5.6)

and (5.4) we see that

| H(a, y,q)\g bEF(a, y, p, q) + cL(q) g bF(a, y,-q) + (b + l)cL(q).

It follows from (5.5) that

(5.7) \H(a,y,q)\=VF(a,y,q)

where b' —b-\-b2c-\-bc. Consequently ¿dominates if near Co on 35, as was to

be proved.

Suppose conversely that F dominates H and ¿-dominates L near Co on 35.

Let S be a neighborhood of Co in (a, y)-space and b' be a constant chosen so

that the inequality (5.7) holds for every set (a, y, q) in 35 with (a, y) in g.

By Theorem 3.1, parts IV and V, the function F weakly ¿-dominates H

near Co on 35. We can accordingly select a constant ¿>>0 so that (5.6) holds

whenever (a, y, p) and (a, y, q) are in a neighborhood 35i of Co relative to 35.

Choose a neighborhood 35o of Co whose closure is in 35i and whose compo-

nents (a, y) are in %. According to our hypothesis that L is ¿-dominated by F

we can diminish 35o if necessary so that there is a constant b" for which the

inequality Eh(p, q) gb"EF(a, y, p, q) holds whenever (a, y, p) is in 35o and

(a, y, Q.) is in 35. Since the closure of 35o is interior to 35i we can select another

constant c'>0 effective as in the relation

(5.8) L(q) Ú c'EL(p, q) g c"EF(a, y, p, q) (c" = c'b")

when (a, y, p) is in 35o and (a, y, q) is in 35 but not in 35i. Consider now a set

(a, y, P) in 35o and select q so that (a, y, q) is in 35. If (a, y, q) is in 35i then

(5.6) holds. Suppose therefore that (a, y, q) is not in 35i. Combining the rela-

tions (5.2), (5.7), (5.3) and (5.8) we obtain

I EH(a, y, p,q)\g b'F(a, y, q) + cL(q)

g b'EF(a, y, p, q) + CiL(q)       (ci = b'c + c)

=: c2EF(a, y, p, q) (c2 = b' + Cic").
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Consequently (5.6) holds in this case also provided b^c2. It follows that H

is ¿-dominated by F near Co on 3) and Theorem 4.1 is proved.

In order to prove Theorem 4.2 we shall make use of the following lemma.

Lemma 5.1. Let B¡(a, y) be a set of continuous functions having continuous

derivatives with respect to arc length along an extension of Co in 3). There exist

functions D{(a, y) of class C which coincide with Bt(a, y) along Co and which

satisfy the relations

(5.9) dDi/dyi = dDj/dy* (i, j = 0, 1, • • • , »).

In the proof we can suppose that Co is part of the y°-axis since this can

be brought about by a nonsingular transformation of class C". Under this

transformation the vector B( is to be transformed covariantly. Moreover this

transformation can be carried out so as to preserve arc length along Co.

Setting x=y° we then have Co given by the set

ah = 0,       0 g x ^ i,       y■ = 0 0' = 1, • • • , «).

The given functions B{(a, x, y) are such that Bi(0, x, 0) have continuous

derivatives. Set

Dj(a, x, y) = Bj(0, x, 0) (j - 1, • • . , «)

D0(a, x, y) = B0(0, x, 0) + yidDj/dx.

It is clear that Di = Bi along Co and that

dDo/dy' = dDj/dx,        dDj/dyk = dDk/dy' = 0 (j, k = I, ■ ■ ■ , «).

This proves the lemma.

We are now in position to prove Theorem 4.2. To this end let pi(a, y)

be functions of class C such that (a, y, pi(a, y)) is in 3) when (a, y) is in a

neighborhood g of Co and is on Co whenever (a, y) is on Co. If 5 is taken suffi-

ciently small, the fact that L is ¿-dominated by F implies the existence of a

positive constant c such that

FF(a, y, p(a, y), q) ^ cEL(p(a, y), q)

holds when (a, y) is in g and (a, y, q) is in 3). Setting

Bi(a, y) = Fpi(a, y, p(a, y)) - cLpi(p(a, y))

it is seen that this inequality takes the form

(5.10) F(a, y, q) - Bi(a, y)q* è cL(q).

Since ¿f=¿f-g this proves the first statement in Theorem 4.2.

In order to prove the last statement in the theorem observe that the func-

tions Bi(a, y) have continuous derivatives with respect to arc length along an

extension of Co. Select functions D{ related to 5¿ as described in Lemma 5.1.
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Diminish g so that

\D- B\ <c/2

on %. Hence if (a, y) is in % and (a, y, q) in 35 we have, by (5.10),

F(a, y, q) - Btf = cL(q) - (Dt - Bt)q* è (c/2)L(q),

as was to be proved.

6. Proof of Theorem 4.3. If L is ¿-dominated by F near Co in 35, then

01. • • * i <t>m are ¿-dominated by F near Co on 35, by virtue of Corollary 1 to

Theorem 4.1. From Theorem 3.1 it follows that F is nonsingular on Co rela-

tive to (p1, • • ■ , <pm. Theorem 4.3 will be established if we show conversely

that L is ¿-dominated by F near C0 on 35 whenever tp1, • • • , <pn are ¿-domi-

nated by F near Co on 35 and F is nonsingular on Co relative to 01, ■ • • , <pm.

In the remainder of this section we shall assume therefore that F is non-

singular on Co relative to <£\ • • • , <¡>m and that there is a constant &>0 and

a neighborhood 35i of Co relative to 35 such that the inequality

(6.1) EF(a,y, p, q) ^ b \ E^(a, y, p, q) | = b | q<ppi(a, y, p) \

holds whenever (a, y, p) is in 35i and (a, y, q) is in 35. By virtue of Theorem 3.1

the function F weakly ¿-dominates L near Co on 35. Hence we can suppose

that 35i and b have been chosen so that the relation

(6.2) EF(a, y, p, q) ^ bEL(p, q)

holds whenever (a, y, p) and (a, y, q) are in 35i.

Theorem 4.3 will be established if we show that after suitably diminishing

b (keeping ¿>>0) we can select a neighborhood 35o of Co relative to 35 and in-

terior to 35i such that (6.2) holds whenever (a, y, p) is in 35o and (a, y, q)

is in 35. Suppose this choice cannot be made. Then given a constant 6'>0

and a neighborhood 35o of Co in 35i the inequality

EF(a, y, p, q) < b'EL(p, q)

holds for a suitably chosen set (a, y, p, q) with (a, y, p) in 35o and (a, y, q) in

35—35i. Because of the homogeneity properties of EF and ¿¿ this set can be

chosen so that \p\ =\q\ =1 and hence such that El(P, q)ú2. There exists

therefore a sequence

(at, yk, pk, qk) (k = 1, 2, • • • )

converging to a set (a0, Vo, po, Ço) having the following properties:

(6.3) (ak, yk, pk) in 35i, (ak, yk, qk) in 35 — 35i, (a0, y0, po) on C0,

(6.4) | pk | =   | qk | = | po | = | Co | = 1,

(6.5) lim EF(ak, yk, pk, qk) = 0.
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The set (a0, yo, 2o) need not be in 35. By the use of (6.1) and (6.5) it is seen that

(6.6) qo<t>pi(ao, yo, po) = 0.

Consider now the functions r*(a, y, p, v, c) described in Lemma 2.1. If €

is sufficiently small the functions

rk(v, c) = r\ak, yk, pk,v, c)       \ »| < e, | e — 11 < «

will be well defined for large values of k and will converge uniformly to

r'o(v, c) = r(a0, yo, po, », c).

Moreover the elements

(ak, yk, rk(v, c)),       (a0, yo, r0(v, c))

will be in 3)i. By (6.1) and (6.5) we have

lim inf {EF[ak, yk, rk(v, c), qk] — EF(ak, yk, pk, qk)} è 0
i-00

and hence, by the definition of EF,

lim q\[FPi(ak, yk, pk) — Fpi(ak, yk, rk(v, c))] ^ 0.

It follows that

(6.7) qo[Fpi(aB, y0, po) - FPt(a0, yo, r0(», c))] è 0.

If q0 = — po this relation can be written in the form

(6.8) EF(a0, yo, r0(v, c), p0) á 0.

For c = \, v?¿0 we have |r0| =1, r0y¿po and (6.2) holds with (a, y, p, q)

= (öo, yo, ro(v, 0), po), contrary to (6.8). Hence qo?¿ —po- We now select

c = \ po + eq0\, V = ^(ao, yo, po + eq0) — <f>y(a0, yo, po)

where <py are the functions defined in Lemma 2.1. Let r(e) be the correspond-

ing values of r'(v, c). Then r(0) =p0 and by Lemma 2.1

I *(e) | = | Po + eqo \,

<t>P(a0, yo, r(e)) = 0,       4>y(a0, yo, r(e)) = ^(ao, yo, po + eqo).

Differentiating these relations with respect to e and setting c = 0 we find that

the derivative r,* of ri satisfies the relation

i  i i   i
por, = poqo,

re<j>Pi(ao, yo, po) = 0,        (r, — qo)<¡>pi(a0, yo, po) = 0.

Hence by (6.6) we have
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'.(0) = Co.

Consider now the function

Q(e) = qo[Fpt(ao, y0, po) - Fpi(ao, yo, r(e))].

We have Q(0) = 0 since r(0) =p0 and Q(e) = 0 by (6.7). It follows that Q'(0) = 0.
Since r,'(0) =3o* this gives

0 = Ô'(0) = - qlqoFp*p>(ao, yo, po).

Since F weakly ¿-dominates L near Co on 35 and qo 7* ± po we have by Theorem

3.1 and (6.6)

qlq'oFp*pi(ao, yo, po) > 0.

This contradiction completes the proof of Theorem 4.3.

7. Further theorems on ¿-dominance. The following theorem is of in-

terest.

Theorem 7.1. Let r'(a, y) be a set of w+1 continuous functions satisfying

the equations

(7.1) <p*[a, y, r(a, y)] = 0

and having the set [a, y, r(a, y) ] on Co whenever (a, y) is on Co- The function

L = | p\ is E-dominated by F near Co on 35 if and only if there is a neighborhood

% of the points (a, y) on Co and a constant b>0 such that the inequality

(7.2) EL(r(a, y), q) Ú bEF(a, y, r(a, y), q)

holds for every set (a, y, q) in 35 with (a, y) in %.

In order to establish this result suppose first that % and b can be chosen

so that the inequality (7.2) holds whenever (a, y) is in % and (a, y, q) is in 35.

By an argument like that used in the proof of Theorem 3.1 it can be seen

that the inequality (7.2) implies condition I of Theorem 3.1 and hence that F

weakly ¿-dominates L near Co on 35. Hence there is a neighborhood 35i of Co

relative to 35 and a constant bi > 0 such that the inequality

(7.3) EL(p, q) g biEF(a, y, p, q)

holds whenever (a, y, p) and (a, y, q) are in 35i.

As a next step in the proof of Theorem 7.1 we write EF(a, y, p, q) in the

form

(7.4) EF(a, y, p, q) = EF(a,y, r(a, y), q) + Q(a, y, p, q)

where

(7.5) Q = q'lFp^a, y, r(a, y)) - Fpi(a, y, p)}.
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Suppose now that L is not ¿-dominated by F near Co on 33. Then there exist

a sequence of pairs of elements (ak, yk, pk), (ak, yk, qk) in 35 converging to a

pair (ao, yo, po), (a0, yo, qo) such that (a0, yo, po) is on Co and

(7-6) | pk\ = | ff* | = | r(ak, yk) \,

(7.7) EF(ak, yk, pk, qk) < (l/k)EL(pk, qk).

By (7.6) it follows that po = r(ao, yo) and hence by (7.5) that

lim Q(ak, yk, pk, qk) = 0.
*■=»

Combining this result with (7.4) and (7.7) we obtain the inequality

limsup£F(ff*, y*, r(ak, yk), qk) ^ 0.
*=»

As a consequence of this relation we have, by (7.2), Eh(r(ao, yo), qo) =0 and

hence also qo = r(ao, yo)=po- For large values of k the elements (a*, y*, pk)

and (ak, yk, qk) accordingly will be in 35i and will satisfy the relations (7.3)

and (7.7). This is impossible. The criterion stated in the theorem implies that

L is ¿-dominated by F near Co on 35. The converse is immediate and the

theorem is established.

Theorem 7.2. Suppose that F weakly E-dominates L near Co on SR. Then L

is E-dominated by F near Co on 35 if and only if there is a neighborhood dii of

Co and a constant b > 0 such that the inequality

(7.8) EL(p,q)^bEF(a,y,p,q)

holds whenever (a, y, p) is in 9îi and (a, y, q) is in 35.

In order to prove this result let r'(a, y, p) be a set of continuous functions

defined on a neighborhood 9îo of C0 such that the set (a, y, r(a,. y, p)) is in 35

and coincides with (a, y, p) when (a, y, p) is on Co. The existence of such func-

tions is established by the use of Lemma 2.1. As before we write

(7.9) EF(a, y, p, q) = EF(a, y, r(a, y, p), q) + Q(a, y, p, q)

where Q(a, y, p, q)=qi[Fpi(a, y, r(a, y, p)-Fpi(a, y, p)].

Suppose now that L is ¿-dominated by F near Co on 35 and that the in-

equality (7.8) failed to hold as stated. Then there would exist a sequence of

pairs of elements (a*, y*, pk), (ak, yk, qk) converging to elements (a0, yo, po),

(a0, yo, qo) such that (ak, yk, qk) is in 35,

| pk | = | ?* | = 1, lim r(ak, yk, pk) = po,
*=»

(7.10)
EF(ak, yk, pk, qk) < (l/k)EL(pk, qk) g 2/k.

Using (7.9) it follows that
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lim s\ipEF(ak, yk, r(ak, yk, Pk), qk) ^ 0.

Since L is ¿-dominated by ¿near Co on 35 and the element (a*, y*, r(ak, yk, pk))

is in 35 this relation can hold only in case

lim EL[r(ak, yk, pk), qk] = EL(p0, ?o) = 0,

that is only in case qQ=po- For large values of k the elements (ak, yk, pk) and

(ak, yk, qk) are in an arbitrarily small neighborhood dti of Co and satisfy the

relations (7.10). But this is impossible when F weakly ¿-dominates L near

Co on dt. The inequality (7.8) therefore holds as stated. The converse is im-

mediate and the theorem is established.

8. A consequence of ¿-dominance. It was seen in Theorem 3.1 that an

admissible function F weakly ¿-dominates L near Co on 35 if and only if it

can be modified on the set dt — 35 so that it weakly ¿-dominates L near Co

on dt. This result is also valid for ¿-dominance, as can be seen by the use of the

following theorem.

Theorem 8.1. Let F be an admissible function that E-dominates L near Co

on 35. There exists an admissible function F* of the form

(8.1) F* = F + 6(a, y, p)<p?<p?

which E-dominates L near Co on dt. The function 8(a, y, p) satisfies the homo-

geneity condition

(8.2) 8(a, y, kp) = k~ld(a, y, p) (k > 0)

on dt and can be chosen to be of class C°°.

In order to establish this result we can suppose, by Theorem 3.1, that F

has been modified so that F weakly ¿-dominates L near Co on dt. By virtue

of Theorem 7.2 we can select a neighborhood dti of Co and a constant c>0

such that the inequality

(8.3) EF(a, y, p, q) ^ cEL(p, q)

holds whenever (a, y, p) is in dti and (a, y, q) is in 35 or in dti. Select admissible

regions dt2, SK3, • • •   such that the closure of dt¡ is in dt¡+i and such that

dt = dti + dt2 + ■ ■ • .

Let dto be a neighborhood of Co whose closure is in dti. By virtue of (8.3)

there is a constant c'>0 such that the inequality

(8.4) EF(a, y, p, q) > 2c'

holds for normed sets (a, y, p) and (a, y, q) having (a, y, p) in 3îo and (a, y, q)

in 35 but not in 9îi. By continuity there is for each integer jàl a constant
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o,->0 such that (8.4) holds subject to the conditions

(8.5) (a, y, p) in SRo,    (a, y, q) in %m - &/,   | # | = | g | = 1,

(8.6) 4¿>(a,y,qW(a,y,q) ^5j.

Choose a constant b¡ so that the inequality

(8.7) EF(a,y,p,q)^bj

holds whenever (8.5) is satisfied and let c¡ be a positive constant such that

(8.8) b¡ + Cjhj > 2c' (y not summed).

Let 0,-(a, y, £) be a function of normed sets (a, y, p) of class c°° such that 0,=O

on 9î,-_i, 0j è 0 on 9Î,-, 0,- = 1 exterior to 9Î,. For an arbitrary set (a, y, p) on 9Î

we define 8¡ by the formula

0/a, y, #) = L-ieXff, y, p/L) (L = \p\).

The function 0 defined by the sum

(8.9) 6(a,y,p)=cfii(a,y,p)

can be shown to have the properties described in Theorem 8.1. It is well de-

fined on dt since at most j'+l of the terms in (8.9) are different from zero on

9Î,-. The relation (8.2) holds. Moreover

(8.10) 6 ^ Cj on m3+i - Sly (j è 1).

Since 0 = 0 on 9Î0 the ¿-function for the function F* given by (8.1) is expressi-

ble in the form

(8.11) EF'(a, y, p, q) = EF(a, y, p, q) + 6(a, y, q)<p(a, y, qW(a, y, q)

whenever (a, y, p) is in 9îo- Consider now normed sets (a, y, p) and (a, y, q)

in 3Î with (a, y, p) in 9Î0. If (a, y, q) is in 9?i, then (8.3) holds with F replaced

by F*. Suppose therefore that (a, y, q) is in 9t,+i—3Î,- (j^\). If the inequality

(8.6) holds, then by (8.4) and (8.11) we have

(8.12) EF'(a, y, p, q) > 2c' è c'EL(p, q).

If (8.6) fails to hold, then by (8.7), (8.8), (8.10), (8.11) it is seen that (8.12)
still holds. Hence F ¿-dominates L near Co on 9Î, as was to be proved.

Combining this result with Theorem 4.3 we have the following corollary.

Corollary. If F is nonsingular on Co relative to d)1, • • • , <pm and E-domi-

nates d)1, • • ■ , <f>m near Co on 35, then there exists a function F* of the form (8.1)

that E-dominates L near Co on 9Î.

If in the proof just given we set c' =0, one obtains the following:

Theorem 8.2. Let F be an admissible function such that at each element
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(a> y, P) in & neighborhood dti of those on Co the inequality

EF(a, y, p,q)>0

holds whenever (a, y, q) is in 35 or in dti and (q)9È(kp) (k>0). There exists a

function F* of the form (8.1) such that at each element (a, y, p) in a neighborhood

dto of those on Co one has

EF'(a, y, p,q)>0

whenever (a, y, q) is in dt and (q) ^ (kp) (k>0).

9. The strengthened condition of Weierstrass. We now return to the

study of the problem described in the introduction. The functions/(a, y, p),

f'(a, y, P), <Pfi(&, y, p) are admissible functions of class C". We form the func-

tion

(9.1) F(a, y, p, X, M) - X0/ + Hf + mV-

The arc Co

a0, yo(t) (h St t ü h)

will be said to satisfy the strengthened condition Ils of Weierstrass with a set of

multipliers

(9.2) X°,X-, aß(t) (<r- 1, • •• ,í;/3= 1, ••• ,m)

if the following conditions hold: The multipliers Xo, X* are constants and

Xo^0; the multipliers p.ß(t) are continuous functions of t on tit2; at each ele-

ment (a, y, p, X, n) in a neighborhood N of those on Co (Xo being held fast)

having (a, y, p) in 35 the inequality

(9.3) E(a, y, p, X, n, q) è 0

holds whenever (a, y, q) is in 35. Here

E = F(a, y, q, X, M) - q^A*, y, p, X, ¡i).

The arc Co together with the set of multipliers (9.2) will be said to be non-

singular if the determinant

F pipi   <ppi

4>lt      0

(i,j = 0, 1, • • • , n)

(ß, y - 1, • • -, m)

has rank m-\-n on Co.

Theorem 9.1. Let Io, l, mß(a, y) be a set of continuous functions such that

on Co we have

(9.4) Io = Xo,        /' = X',       m?[ao, y0(t)] = nß(t)
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where the multipliers on the right are given by the set (9.2). The arc Co together

with the multipliers (9.2) is nonsingular and satisfies the condition II# of Weier-

strass if and only if the admissible function

(9.5) F[a, y, p, I, m(a, y)\

E-dominates the functions L=\p\ and f° (ar = 1, • • ■ , s) near Co on 35.

In order to prove this result let F*(a, y, p) be the function (9.5). We have

the identity

¿(a, y, p, X, ii, ?) = EF*(a, y, p, q)

+ (X' - l')Ef(a, y, p, q) + Gu" - »ífl)¿^(a, y, p, q).

Suppose now that Co together with the multipliers (9.2) is nonsingular and

satisfies the condition 11^ of Weierstrass. Then F* is obviously nonsingular

on Co relative to d>1, • • ■ , d>m. Moreover by virtue of condition 11^ there is a

neighborhood 35o of Co relative to 35 and a constant b>0 such that the left

member of (9.6) is positive whenever (a, y, p) is in 35o, (a, y, q) is in 35 and

| X' - l°(a, y) | ^ b, | p? - m?(a, y) | ^ b.

It follows from (9.6) that ¿F* è & | £/" I > EF*^b\E<)ß\ in this event. Conse-

quently/' and <pß are ¿-dominated by F* near C0 on 35. By Theorem 4.3 the

function L= \p\ is also ¿-dominated by F* near Co on 35.

Suppose conversely that L and /" are ¿-dominated by F* near Co on 35.

Then, by Theorem 4.3, F* is nonsingular on Co relative to </>', • • • , <j>n and

consequently Co and the set (9.2) are nonsingular. Moreover by the same theo-

rem the functions <pß are ¿-dominated by F* near Co on 35. By the use of the

identity (9.6) it is seen that the condition 11^ holds for Co and the multipliers

(9.2). This completes the proof of the theorem.

Theorem 9.2. Let pi(a, y) be a set of continuous functions such that the set

[a, y, p(a, y) ] is on Co when (a, y) is on Co and such that

4fi[a, y, p(a, y)] = 0 (ß=l,---,m)

on a neighborhood of Co- Let Io, l, mß(a, y) be a set of continuous multipliers

satisfying the conditions (9.4) on Co- Then Co and the set of multipliers (9.2)

are nonsingular and satisfy the condition Un if and only if there is a neighbor-

hood g of Co in ay-space and a constant b > 0 such that the inequality

FL[p(a, y),q] ^ bE[a, y, p(a, y), I, m(a, y), q]

holds for every element (a, y, q) in 35 with (a, y) in %.

This result is obtained by combining Theorems 9.1 and 7.1.

Theorem 9.3. Let F(a, y, p) be a function of the form
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(9.7) F(a, y, p) = l'f + l'f + m?(a, y)&

where Io ̂  0, /" are constants, and mß(a, y) are continuous near Co- Let H(a, y, p)

be a second admissible function of the form

(a, y, p) = Pf + X'(a, y)f + p?(a, y)&

where \'(a, y) and uß(a, y) are continuous near Co- If L = | p \ andf' are E-domi-

nated by F near Co on 35, then the function H is E-dominated by F near Co on 35.

This result follows readily if we write H in the form

H = F + F*

where

F* = (X" - l')f + (ßß - mß)4>ß.

Suppose now that L, f' are ¿-dominated by F near C0 on 35. Then by Theo-

rem 4.3 the functions <f>ß are ¿-dominated by F near Co on 35. Consequently

F* is also ¿-dominated by F near Co on 35. The same is true for F and hence

also for H, as was to be proved.

Corollary 1. If a function F of the form (9.7) with l">0 E-dominates L

andf' near Co on 35, then f is E-dominated by F near Co on 35.

Corollary 2. Let /°^0, /", mß(a, y) be a set of continuous multipliers such

that the function F(a, y, p) defined by (9.7) E-dominates L—\p\ andf" near Co

on 35. If J°, l', mß(a, y) is a second set of continuous multipliers such that

Jo = /oj       Ja- « i*t       fnß(a, y) = m?(a, y)

on Co, then

F(a, y, p) = 1°/ + ï'f + mß(a, y)<pß

also E-dominates L near Co on 35. Moreover an admissible function H(a, y, p)

is E-dominated by F(a, y, p) near Co on 35 if and only if it is E-dominated by

F(a, y, p) near Co on 35.
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