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1. Introduction. The present paper is the second of a sequence of three

papers concerned with the isoperimetric problem of Bolza in parametric form.

The first paper(') is concerned with certain properties of the Weierstrass

¿-function that will be useful in the present paper and in the one to follow.

The third paper will be concerned with a sufficiency theorem conjectured by

McShane(2). In the present note is found an extension of the theorem of

Lindeberg and related results. This theorem is an obvious extension to the

parametric case of a similar theorem given by Reid (3)(4) for the nonparamet-

ric case and is an immediate consequence of the arguments used by Reid in

an expansion proof for the parametric problems which has not been pub-

lished as yet. The approach to this theorem here given is different from that

given by Reid. Moreover the theorem is stated so as to bring out a condition

of uniformity that simplifies the applications of the theorem.

Among the many consequences of the theorem of Lindeberg and a related

theorem is the equivalence of the sufficiency theorems for the problems of

Mayer and Bolza, a result that does not appear to have been established com-

pletely heretofore. It is shown moreover that the sufficiency theorem for the

isoperimetric problem of Bolza can be obtained from those for the problem

of Bolza without isoperimetric conditions. It is also pointed out that the

sufficiency theorems for parametric problems can be obtained from those for

the nonparametric problems. In addition to further results of similar nature,

we give in the last section a result that will be useful in the paper to follow.

This result is the only part of the present paper that is explicitly used in the

next paper and is based on the results given in §§2, 3,.4, 5, 11 below.

2. Hypotheses and notations. The problem of Bolza as formulated in the

first paper is that of finding in a class of arcs
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THEOREM OF LINDEBERG

C: a\       y\t) (t1 = / á t2; h = 1, •

satisfying a set of conditions of the form

(2.1) <pß(a, y, y)=0

(2.2) y'(/i) = P»,        y<(*2) - r«(a),

(2.3) P(C) = r(«) + f f(a, y, y)dt = 0
J c

one which minimizes the function

(2.4) 7(C) = g(a)+  f f(a,y,y)dt.
J c

The hypotheses, notations and terminology described in the first paper(6) will

be used throughout. Thus, an arc C is denoted by

C: a, y(t) (t1 g t g t2);

it is admissible if it satisfies equations (2.1), (2.2), and (2.3). As before we

assume that we have given an admissible arc

C0: a0, yo(t) (t1 g tg t2)

of class C" that does not intersect itself and along which the matrix

\\<pßAao,yo(t),yo(t)]\\

has rank m on tH2. Throughout this paper it will be assumed that there exists

a set of continuous multipliers

(2.5) l°^0,       I',       m?(a,y)

such that the function

(2.6) F(a, y, p) = l°f(a, y, p) + l'f (a, y, p) + mß(a, y)<Pß(a, y, p)

¿-dominates L(p) = \p\ and f'(a, y, p) near Co on 35, where 35 is the set of

admissible elements (a, y, p) having cj>ß(a, y, p) =0. In other words there exists

a constant b>0 and a neighborhood 35o of Co relative to 35 such that the in-

equalities

(2-7) EL(p, q) è bEF(a, y, p, q),

(2.8) \Ef(a,y,p,q)\gbEF(a,y,p,q) (a = 1, • • ■ , s)

hold whenever (a, y, p) is in 35o and (a, y, q) is in 35. Here and elsewhere Eh

is the Weierstrass ¿-function

En(a, y, p, q) = H(a, y, q) — q'Hpi(a, y, p)

(6) M. R. Hestenes, loc. cit. §2.
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for an admissible function H(a, y, p). As was seen in the preceding paper this

assumption is equivalent to the assumption of nonsingularity together with

the strengthened condition of Weierstrass. By Theorem 4.3 of this first paper

we can suppose further that b and 35o have been chosen so that one also has

(2.9) | E«fl(a, y, p, q) \ S bEF(a, y, p, q) (ß _ 1, . . . , m)

whenever (a, y, p) is in 35o and (a, y, q) is in 35.

In the following pages we shall be interested in studying the properties

of the function

(2.10) J(C) = G(a) +   f F(a, y, y)dt
•J c

where F(a, y, p) is given by (2.6) and

(2.11) G(a) = l°g(a) + l°g°(a).

It is clear that

J(C) = l°I(C) + l'I'(C) + f m*(a, y)d>ßdt

and hence that

(2.12) J(C) = PI(C)

for every admissible arc C. Thus if the constant /°>0, a study of the function

J(C) is equivalent to the study of the function 7(C) provided we restrict

ourselves to admissible arcs.

We shall have frequent occasion to use the integral

(2.13) L(C) =   f L(y)dt=   f \y\dt
J c J c

determining the length L(C) of C. Similarly the symbol H(C) will be used to

denote a function of the form

(2.14) H(C) =6(a)+ f H(a,y,y)dt
J c

where 0(a) is continuous and H(a, y, p) is admissible. We shall be interested

only in the case in which H is ¿-dominated by F. Accordingly we shall sup-

pose the constant b and the set 35o described above have been chosen so that

(2.15) I EH(a, y, p, q) \ ^ bEF(a, y, p, q)

whenever (a, y, p) is in 350 and (a, y, q) is in 35.

Let p{(a, y) (i = 0, 1, ■••,«) be a set of functions of class C having

[a, y, P(a> y)] on £° when (a, y) is on C0 and satisfying the conditions
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(2.16) <pß[a,y,p(a,y)]=0 (ß = 1, • • ■ , m)

on a neighborhood of C0. With the help of these functions the function J(C)

can be written as the sum

(2.17) J(C) = J*(C) + ¿*(C)

where

(2.18) J*(C) =   G(a) +   f FAa, y, p(a, y)]dyi,
** c

(2.19) ¿*(C) =   f EF[a, y, p(a, y), y]dt.
J c

We propose to study the properties of J(C) by studying the properties of

J*(C) and EF*(C). In like manner we have

(2.20) L(C) = l\c)+E*l(C),

(2.21) H(C) = H*(Q + E*H(C).

In view of the relation (2.7) one has

(2.22) El(C) g bE*F(C)

for every arc C in a neighborhood $ of Co in ay-space satisfying the differential

equations <pß = 0. Similarly if (2.15) holds as stated, we have

(2.23) | EH(C) | á bEt(C)

for every arc C in % along which <pß = 0.

3. Three lemmas. An essential part of the results to be obtained is a direct

consequence of the three lemmas to be described in this section. The first

lemma is the following:

Lemma 3.1. Let 8(a), B*(a, y) be continuous functions and set

H*(C) = 8(a) +  f B\a, y)dy\
J c

Given a constant e'>0 there exists a constant 5>0 and a neighborhood % of Co

in ay-space such that if Ci is a subarc of Co the inequality

(3.1) | H*(C) - H*(Ci) | < e' + e'E*F(C)

holds for every arc C in g satisfying <pß = 0 and having its end values \y(tx), y(t2) ]

in the ô-neighborhood of those belonging to G.
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It is clear from continuity considerations that if the lemma is true when

6(a) =0 it is true when 6(a) f^O. We shall accordingly assume that 6(a) =0.

Obviously we can assume that ah = 0 (A = l, • • • , r) on C0, that is, a0* = 0.

In fact we can suppose that

(3.2) p°(a, y) = 1,        p<(a, y) = 0 (i > 0)

and that yo*(0 — 0 (i >0) on Co- This result can be brought about by observing

that a neighborhood % of Co in ay-space can be simply covered by the solutions

(3-3) a\        y\t, a, b\ • • • , 6«)

of the equations yi = pi(a, y). The family (3.3) contains Co for (a, b) =(0, 0)

and has continuous derivatives with respect to t, b1, • • • , bn with a non-

vanishing determinant. If gi is taken sufficiently small the variables

y°, • • • , yn can be replaced by the new variables y° = i, y1=b1, ■ • • , yn = bn.

For these new variables p° = l, p1 — • • ■ =p" = 0 as desired. By virtue of

Theorem 4.4 of the first paper, an inequality of the form (2.7) still holds.

Suppose now that the simplifications described in the last paragraph have

been made and set x=y°. The curves C in which we are interested are then

of the form

a\        x(t),        y\t) (t1 á t g t2; i = 1, • • • , «)

and satisfy the differential equations <pß(a, x, y, x, y) —0. Moreover H*(C) with

6(a) =0 takes the form

H*(C) =   f B°(a, x, y)dx + B*(a, x, y)dyi.
J c

The inequality (2.7) implies that

(x2 + yW2 - xú bEF(a, x, y, 1, 0, x, y)

provided <pß(a, x, y, x, y) = 0. For an arc C in a neighborhood % of C0 satisfying

<pß = 0 one has by integration

(3.4) L(C) g x(t2) - *(/») + bE*(C) = ikf + bEt(C)

where M is chosen so that x(/2) — x(tx) <M. Given a constant e' >0 choose a

constant €>0 so that

(3.5) e(l + M)<t',       €ff<t'.

We can suppose that g has been chosen so small that the functions B< are

defined and continuous on its closure. Then there exist functions D*(a, x)

having continuous derivatives and satisfying on g the condition

| Dl(a, x) - B\a, x, 0) | < «/4« (i = 1, • • • , «).
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We now define (with * = 1, • • • , n)

dDi
D°(a, x, y) = B\a, x, 0) + yi-»

dx

Hi(C) =  f D°dx + D*dy*,
J c

H2(C) =  f (B°- D°)dx + (Bi - D*)dy*
J c

so that

(3.6) E*(C) = Ei(C) + H2(C).

By virtue of the definitions of the functions D°(a, x, y), D'(a, x, y) =D*(a, x)

(t = l, • • • , n) we can diminish the neighborhood g of Co still more so that

the inequalities

I Bk(a, x, y) - Dk(a, x, y)\ < e/2» (k = 0, 1, • • • , «)

hold on %. Consequently the relation

| (B° - D°)x + (B< - D^y11 < t(x2 + fy^l*

is also valid on % and hence one has

(3.7) | H2(C) | < eL(0

for every arc C in g. By construction one has

dDO/dy* = dD'/dx,       dD{/dyk = 0 (t, k = 1, • • • , «)

on g. It follows that Hi(C) is an invariant integral and is accordingly a con-

tinuous function of the end values (a, x1, y\ x2, y2) of C. If we regard points

of Co as subarcs of C0 there is, by continuity, a constant 5 > 0 so small that

the relation

(3.8) | Hi(C) - Hi(Ci) | < e

holds for every pair of arcs G, C such that G is a subarc of Co and the end

values of C are in the 5-neighborhoods of those of G. Consider now a subarc

G of Co and let C be an arc along which <pß = 0 and having its end values in

the 5-neighborhood of those of G. Using the relations

| H*(Q - H*(G) | ^ | 7Ji(C) - ffi(Ci) | + | Ht(Q \

which hold because of the relations (3.6) and H2(Ci) =0, it is found by thelise

of (3.8), (3.7), (3.4) that

| H*(C) - B*(Ci) | á « + *L(C) g e(l + M) + tbE*F(C).



78 M. R. HESTENES [July

This result combined with (3.5) gives us the desired relation (3.2) provided

we diminish ^ so that \a\ < ô in %.

Lemma 3.2. Given a constant e'>0 there exists a constant 5>0 and a'neigh-

borhood § of Co in ay-space such that if G is a subarc of C0 and C is an arc in ¡$

along which d>ß = 0 and having its ends in the b-neighborhood of those on G, then

(3.9) - e' + (1 - e')E*F(C) g J(C) - 7(G) ^ e' + (1 + e')E*F(C).

For let o, g be related to e' as described in the last lemma with H*(C)

= J*(C), where J*(C) is given by (2.18). The lemma now follows from Lemma

3.1 and the relation

(3.10) J(C) - /(G) = J*(C) - /(G) + E*(0

which holds by virtue of (2.17) and the relation EF*(Ci) =0.

Lemma 3.3. Let H(C) be defined by (2.14) and suppose H is E-dominated

by F near Co on 35. Let b be a constant effective as in (2.15). Given a constant

f'>0 there exists a constant ô>0 and a neighborhood % of Co in ay-space such

that the inequality

(3.11) | H(C) - H(Ci) | á ¿ + (b + e')EF(C)

holds when G is a subarc of Co and C is an arc in {$ with its end values in the

b-neighborhood of those of G and along which <pP = 0.

This result follows from Lemma 3.1 with the help of (2.22) and the relation

H(C) - H(Ci) = H*(C) - H*(Ci) + E*H(C).

4. An analogue of the theorem of Lindeberg. The following two theorems

are basic. They are essentially extensions of similar theorems given by Reid(6)

for the nonparametric case. They differ from those given by Reid in that the

neighborhood g and constants p, 5 can be chosen so as to apply uniformly for

all subarcs G of Co.

Theorem 4.1. Suppose that H(a, y, p) is E-dominated by F(a, y, p) near

Co on 35. Given a constant e > 0 there exist positive constants b, p and a neighbor-

hood g of Co in ay-space such that given a subarc G of Co, the inequality

(4.1) | H(C) - H(Ci) | < €

holds for every arc C in $ satisfying the differential equations <j>ß = 0, the in-

equality

(4.2) ¿*(C);gp,

and having its end values [y^1), y(t2)] in the b-neighborhood of those on G.

(«) W. T. Reid, loe cit. §4.
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In order to prove this result let b be a constant effective as in (2.15) and

choose positive constants e', p such that

(4.3) «' + (b + e')p < e.

Choose $ and 5 related to e' and Co as described in Lemma 3.3. The relation

(4.1) then follows from (4.2), (3.11), and (4.3).

As a second result we have the following analogue of the theorem of

Lindeberg.

Theorem 4.2. Given a constant v>0 there exist positive constants 5, pi and

a neighborhood g of Co in ay-space such that the following statements are true :

Let G be a subarc of Co and let C be an arc in % along which <j>ß — 0 and having

its end values [y^1), y(t2)] in the h-neighborhoods of those on C\. Then

(4.4) J(C) > I(Ci) - n-

If C satisfies the condition (4.2) with p=pi we have

(4.5) 1(C) < I(Ci) + v.

If C satisfies the condition

(4.6) ¿*(C) â: 2V,

then

(4.7) J(C) > KCi) + r.

In order to prove this result select e' and pi to be positive constants satis-

fying the following conditions

(4.8) e'<r,,        r, < - «' + (1 - €02n,        e'+ (1 + e')pi < v.

Choose 5 and 5 related to e' and Co as described in Lemma 3.2. The relation

(4.4) follows from (3.9) since e'<r], e'<l, and ¿P*(C)^0. The relation (4.5)

follows from (4.2) and the last inequalities in (4.8) and (3.9). Finally (4.7)

follows from (4.6), (3.9), and the second inequality (4.8).

5. Consequences of the theorem of Lindeberg. The results described in

the last section have many important consequences. One of the most signifi-

cant of these consequences is given in the following theorem.

Theorem 5.1(7). Given a constant €>0 there exist positive constants 5, r\ and

C) Added in proof. This theorem is a consequence of the following more general result which

follows readily from the inequality (4.4) and the concept of ¿-dominance.

Theorem. // L and H are E-dominated by F near C<¡ on 35, there is a positive constant b such

that given a constant r¡ >0 there is a constant S >0 and a neighborhood g of Co in ay-space such that

if Ciis a subarc of Co the inequality J{C)—J{C\) ^b\H{C)—H(Ci)\ —r¡ holds for every arc C in J

satisfying the differential equations <f? = Q and having its end values in the ¡-neighborhood of those

on Ci.
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a neighborhood $5 of Co in ay-space such that if G is a subarc of Co the inequality

(5.1) j 77(C) - H(Ci) | < «

holds for every arc C in % satisfying the differential equations d>ß = 0, the in-

equality

(5.2) J(C) á 7(G) + v

and having its end values [y^1), y(t2)] in the b-neighborhood of those of G-

For let 5, °, P be related to e and 77(C) as described in Theorem 4.1.

Diminish % and ô so that they are related to ■q—p/2 and 7(C) as described

in Theorem 4.2. Consider now an arc C related to a subarc G of Co as de-

scribed in the theorem. If the relation (5.1) failed to hold, then, by Theorem

4.1, we would have

E*F(C) > p = 2n.

By Theorem 4.2 the relation (4.7) would hold, contrary to our assumption

that (5.2) held. This proves the theorem.

The last theorem can be restated as described in the following corollary.

Corollary. Given a constant e>0 there exist positive constants b, rj and a

neighborhood % of Co in ay-space such that, if G is a subarc of Co, the inequality

(5.3) 7(C) > 7(G) + v

holds for every arc C in 5 satisfying the differential equations <f>ß = 0, the in-

equality

(5.4) | E(C) - H(Ci) | £ e,

and having its end values [yf,/1), y(t2)] in the b-neighborhood of the end values

ofCi.

In case we require the subarc G of Co described in Theorem 5.1 to be

the whole arc C0 and we require the arc C to satisfy the end conditions (2.2)

so as to be admissible, then the region g described in Theorem 5.1 can be

taken so small that the end values of C are in the o-neighborhood of the end

values of Co prescribed in Theorem 5.1. Moreover 7(C)=/°7(C) and J(C0)

= l"I(Co). By virtue of Theorem 5.1 we have accordingly the following result.

Recall that an admissible arc is one that satisfies equations (2.1), (2.2), and

(2.3).

Theorem 5.2. Given a constant e>0 there exist a constant w>0 and a neigh-

borhood g of Co in ay-space such that the inequality

(5.5) | 77(C) - H(Co) | < «

holds, for every admissible arc C in % satisfying the conditions
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(5.6) J(C) = l°I(C) g l°I(Co) +V = /(Co) + V-

In case /° = 0 the inequality (5.6) is always satisfied. Hence we have the

following corollary.

Corollary. Suppose the constant Io appearing in the definition of J(C) is

zero. Then given a constant e > 0 there exists a neighborhood ^ of Co in ay-space

such that the inequality (5.5) holds for every admissible arc C in %.

By taking H(C) =¿(C) in Theorem 5.2 one obtains readily the further

results for arcs satisfying equations (2.1), (2.2), and (2.3).

Theorem 5.3. Suppose there exists a neighborhood gi of Co in ay-space and

a constant e>0 such that the inequality J(C) >J(Co) holds for every admissible

arc Cj^Co in %i satisfying the condition

(5.7) | L(C) - ¿(G) | < a,

then there exists a neighborhood 5 of Co in ay-space such that the inequality

J(C)>J(Co) holds for every admissible arc Ct^Co in %.

6. A remark concerning sufficiency theorems. Let C* be any arc which

does not intersect itself, satisfies the differential equations <j>ß = Q and contains

Co as a subarc. If F ¿-dominates L near C* on 35 and C0 is a minimizing arc

for the problem formulated in §2 then there is a neighborhood ^ on C* such

that J(C) s^J(Co) for every admissible arc C in g. This result is given in the

following theorem. One should observe that the arc C* need only satisfy the

conditions described above and can differ appreciably from Co not only in

length but in that, apart from the subarc C0, it need not satisfy the Euler-

Lagrange equations associated with our problem. As before, admissible arcs

are those that satisfy equations (2.1), (2.2), and (2.3).

Theorem 6.1. Let C* be an arc having the properties described above and

suppose that L=\p\ is E-dominated near C* on 35 by the integrand F of J(C).

If there is a neighborhood %i of Co such that J(C)>J(Co) for every admissible

arc Ct^Co in %i, then there is a neighborhood g of C* such that J(C)>J(Co)

for every admissible arc C^Co in $.

In order to prove this result choose a constant e>0 and a neighborhood

% of C* so small that an admissible arc in g satisfying the condition

(6.1) | ¿(C) - ¿(Co) | < e

must be in gi. Let C* play the role of Co in Theorem 5.1 and select H(C)

=¿(C). Then by Theorem 5.1 with Co, G replaced by C*, Co we can select

constants 5, r¡ and diminish % so that the inequality (6.1) holds for every ad-

missible arc C in g satisfying the condition

(6.2) J(C)gJ(Co)+v
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and having the end values of C in the 5-neighborhood of those of Co. By virtue

of the continuity of the end conditions (2.2) we can diminish % further so

that the end values of every admissible arc C in % lie in the ¿-neighborhood

of those belonging to Co. If an admissible arc C in % satisfies the condition

(6.2), then (6.1) holds by Theorem 5.1. By virtue of our choice of e and g it

follows that C is in gi and hence that 7(C) >7(Co) provided C^ Co. From this

result it is seen that we have 7(C) >7(Co) for every admissible arc Cj^ Co in %.

It is interesting to observe that although the hypotheses of our theorem

require that the arc Co be an extremal, the extension C* of C need not be an

extremal. An extremal is an arc of class C" satisfying the Euler-Lagrange

differential equations

d
— Fpi = Fyi, <j>ß = 0.
at

In the following corollary the arcs G, C0 play the roles of Co, C* in Theo-

rem 6.1.

Corollary. Let G be a subarc of Co and suppose there is a neighborhood

Si of G in ay-space such that the inequality 7(C) > 7(G) holds for every arc

Cy^Ci in $i having the same end values [a, y(tx), y(t2)] as G and satisfying the

differential equations <bß = 0. There exists a neighborhood g of Co in ay-space

such that the inequality J(C)>J(C{) holds for every arc C^Ciin % having the

same end values [a, y(tx), y(t2)] as G and satisfying the differential equations

4>ß = 0.

The hypotheses in the corollary are satisfied when G is an extremal for

7(C) having on it no pairs of conjugate points. In fact the result still holds

in this case when G is replaced by a neighboring extremal as described in the

following theorem.

Theorem 6.2. Let G be a subarc of Co and suppose that G is an extremal for

7(C) having on it no pairs of conjugate points relative to the class of differentially

admissible arcs. There exist a constant b > 0 and a neighborhood % of Co such.

that if G is an extremal in % with end values [a, y(tx), y(t2) ] in the b-neighborhood

of those on G, the inequality 7(C) >J(C2) holds for every arc C^C2 in % whose

end values [a, y(tx), y(/2)] coincide with those on C2 and along which <pß = 0.

The complete proof of this result will not be given here. The theorem can

be established by an argument like that used in the proof of the last theorem

together with an application of Hahn's Lemma. This lemma states that if G

is a nonsingular extremal satisfying the condition of Weierstrass and having

on it no pairs of conjugate points, there is a constant 5 >0 and a neighborhood

5i of G such that if G is an extremal in gi with end values [a, y(tx), y(t2)]

in the 5-neighborhood of those on G, then the inequality J(C)>J(C2) holds

for every differentially admissible arc C^C2 in gi having the same end values
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[a, y(tr), y(t2)] as C2. This lemma can be established by an argument like

that used by Bliss(8) for the nonparametric problem of Bolza.

Theorem 6.2 is an extension to the problem of Bolza of a result given by

Birkhoff and Hestenes(9) and later by Karush(10). The method here outlined

is simpler than the ones used previously.

Theorem 6.3. Suppose that Co is an extremal. There exist successive points

Pu • • • , Pkon Co and a neighborhood of Co in ay-space such that the inequality

J(C)>J(Co) holds for every arc C^G in g satisfying 4>ß = 0, having the same

end values [a, yty1), y(t2)] as Co, and having Pi, • • • , P* as successive points

on C.

To prove this result select the points Pi, • ■ • , Pk so as to divide Co into

subarcs that are minimizing arcs in the class of subarcs joining its end points

and satisfying <f>ß = 0. This can be done because the distance between pairs of

points conjugate to each other has a positive lower bound. The theorem then

follows readily from Theorem 6.1 applied to each subarc of Co.

The result described in Theorem 6.3 is not the most general theorem Of

this type that can be stated. In order to obtain these generalizations one is

led to the study of index theorems. These theorems will not be developed in

this paper.

7. Further consequences of the theorem of Lindeberg. Many of the ap-

plications of the theorem of Lindeberg are consequences of the following

analogue of Theorem 5.1.

Theorem 7.1. Given a constant e>0 there exist positive constants S, n and

a neighborhood ^ of Co in ay-space such that if C is an admissible arc in 5 satisfy-

ing the condition

(7.1) J(C) g J(Co) + r,

the inequality

(7.2) | H(C) - H(Ci) | < e

will hold if G is a subarc of Co and C is a subarc of C having its end values in

the 6-neighborhood of those on G.

For choose %, 5, p, v=p/2 related to e as described in the proof of Theo-

rem 5.1. Choose G, C, C as described in Theorem 7.1. If the inequality (7.2)

failed to hold, then we would have EF*(C')>p = 2ri, by Theorem 4.1. Since

(8) G. A. Bliss, The problem of Bolza in the calculus of variations, Ann. of Math. (2) vol. 33

(1932) pp. 261-274.
(8) G. D. Birkhoff and M. R. Hestenes, Natural isoperimetric conditions in the calculus of

variations, Duke Math. J. vol. 1 (1935) pp. 198-286.

(10) W. Karush, Isoperimetric problems and index theorems in the calculus of variations, Dis-

sertation, The University of Chicago, 1940.
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EF is non-negative along C we would have EF*(C)^EF*(C) >2r\. By Theorem

4.2 we would have 7(C)>7(C0)+»7, contrary to our assumption that (7.1)

held. This proves the theorem.

One of the immediate applications of the last theorem is to be found in

the next theorem. In this theorem the function Hk(C) is of the form

(7.3) 77*(C) = 6k(a) +  f ' E\a, y, y)dt (k = 1, • • • , q)
J ti

where 0*(a) is continuous on dt and 77*(a, y, p) is an admissible function that

is ¿-dominated by F near Co on 35. With each admissible arc

C: a\        y\t) (t1 Ú t ^ t2)

we associate a set of q functions zh(t) defined by the equations

z"(t) = 6"(a) +  f   Hk[a, y(t), y(t)]dt       (k = 1, • ■ • , q).
J ¡i

We can now prove the following theorem.

Theorem 7.2. Let W.be a neighborhood of the elements (a, y, z) on Co. Given

a constant e>0 there exists a constant r¡>0 and a neighborhood jj of Co in

ay-space such that if C is an admissible arc in 5 satisfying the condition

(7.4) 7(C) g /(G) + V

then the elements (a, y, z) on C are in 5D? and

(7.5) | E"(C) - Hk(Ca) | < e (k = 1, • ■ • , q).

In order to prove this result we may suppose that e has been chosen so

that an element (a, y, z) in the 2ge-neighborhood of those on Co is in 5DÎ.

Choose g, 7], b (5<e) related to e and each of the functions H(C)=Hh(C)

as described in Theorem 7.1. Diminish g so that it is in the 5-neighborhood of

the points (a, y) on Co and so that the end values of every admissible arc C

in g are in the 5-neighborhoods of those on Co- Consider now an element

(â, y, z) on an admissible arc C in %. Let C be the subarc of C joining the ini-

tial point of C to the point (â, y) on C. Then zk=Hh(C). By virtue of our

choice of % there is a point (d0, yo) on Co in the 5-neighborhood of (â, y).

Let G be the subarc of Co joining the initial point of Co to the point (ä0, yo).

Then the element (do, yo, zo) on Co determined by (do, yo) is such that

ë0*=77*(G). If C satisfies the condition (7.4) we have, by Theorem 7.1,

\zk-zko\=\ h\C) - Hk(Ci) I < e (k = 1, • • • , q).

Since 5<e, this result implies that the element (â, y, z) is in the 2gt-neighbor-

hood of the element (d0, yo, z0) on Co and hence is in 2)?. This proves the theo-

rem.



1946] THEOREM OF LINDEBERG 85

Corollary 1. If there exists a neighborhood dit of the elements (a, y, z) on

Co and a constant e>0 such that the inequality J(C) >¿(Co) holds for every ad-

missible arc Ct^Co which satisfies (7.5) and whose elements (a, y, z) are in SDî,

then there exists a neighborhood g- of the points (a, y) on Co such that the inequal-

ity J(C)>J(Co) holds for every admissible arc C^Coin g.

This result is equivalent to the further corollary:

Corollary 2. Let bk be the value of zk(t2) on an arc C. If there exists a neigh-

borhood dt of Co in (a, b, y, z)-space such that the inequality J(C) >J(Co) holds

for every admissible arc Ct^Co whose elements (a, b, y, z) are in dt, then there

exists a neighborhood % of Co in ay-space such that the inequality J(C) >J(Co)

holds for every admissible arc Ct¿ Co in %.

8. Isoperimetric versus non-isoperimetric problems. The result obtained

in the last section can be used to show that the sufficiency theorems for the

isoperimetric problems can be obtained from those for the non-isoperimetric

problems. To this end observe that if one sets

z'(t) = g'(a) +  f  f[a, y(f), y(t)]dt (o- = 1, • • • , s)
J ti

then the problem here given is equivalent to finding in the class of arcs

a\       y'(t),       z'(t) (t1 gtg t2)

satisfying the conditions

^(a, y, y) =0,        z' - f(a, y, y) = 0,

yKt1) = T"(a),       z'(f) = g'(a),       y'(t2) = Ti2(a),       z'(fi) = 0

one which minimizes

KC) = g(a) + f   f(a, y, y)dt.

This problem is a non-isoperimetric problem. The sufficiency conditions, as

usually stated, are equivalent for the two problems. However neighborhoods

are not equivalent since given a neighborhood 5D? of C0 in ayz-space it is not

in general possible to find a neighborhood 5 of Co in ay-space such that every

admissible arc C in % has its elements (a, y, z) in Wl. Thus the concept of a

proper strong relative minimum is not the same for the two problems. The

gap between these two concepts is bridged by the results described in the last

section. Under the sufficiency theorem, as usually stated, one can be assured,

by the theory for the non-isoperimetric problem of Bolza, that there exists

a neighborhood SDÎ of Co in ayz-space such that the inequality

(8.1) J(C) = l°I(C) > ¿(Co) = ¿°/(G)
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holds for every admissible arc C^G with elements (a, y, z) in 5TJÎ. Moreover

these conditions imply that the hypotheses on which Theorem 7.2 is based

are satisfied. It follows from the corollary to Theorem 7.2 that there is a neigh-

borhood ft of Co in ay-space such that the inequality (8.1) holds for every

admissible arc C^G in ft. It is clear from (8.1) that if our problem is to be

nontrivial the multiplier /° must be different from zero and hence can be

taken to be unity. The method of proof just described is an obvious extension

to parametric problems of a similar method used by Reid for nonparametric

problems.

9. Parametric problems versus nonparametric problems. The purpose of

the present section is to show that the sufficiency theorems for the parametric

problems can be obtained from those for the nonparametric problems by the

use of Theorem 7.2. To this end let 77(a, y, p) be an admissible function of

class C" that is positive on 9Î and that is ¿-dominated by F near Co on 35.

For example, H = L(p) = \p\ is such a function. If p°>0 for every element

(x, y, p) in 9Î, then H = p° also has this property. The latter case arises when

the problem at hand is already a nonparametric problem but is phrased as a

parametric one.

The problem at hand is unaltered if we require the parameter t of our arcs

to be chosen so that the conditions

H[a, y(t), y(t)] - 1 = 0,        t1 = 0

are satisfied. The parameter / for each arc is then uniquely determined. If

we set o=i2, then on each arc C we have the set of

(9.1) a,       b,       t,        y(t) (P^tSt2)

in (a, b, t, y)-space. Our problem is therefore equivalent to that of finding

among arcs C of the form (9.1) satisfying the conditions

<t>« = H(a, y, y) - 1 = 0,        <j>ß(a, y, y) = 0,

t1 = 0,        y%fi) = T^a),        t2 = b,        y\t2) = Ti2(a),

I'(C) = g'(a) +  f    f(a, y, y)dt = 0

one which minimizes the integral

7(C) = g(a) +  f   f(a, y, y)dt.

We shall suppose that Co is such an arc. Then there is a neighborhood 9Î of

Co in (a, b, t, y)-space such that the inequality

(9.2) 7(C) > /(Co)
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holds for every (nonparametric) admissible arc Cs^Co whose elements

(a, b, t, y) are in dt. We make the additional assumption that Ias¿0. We

can accordingly suppose /° = 1. Then (9.2) is equivalent to the condition

(9.3) ¿(C) > ¿(Co).

Setting

z(t) = J    H(a, y, y)dt

it is seen that when H = 1 and t1 =0 we have z=t. The hypotheses of Corollary

2 to Theorem 7.2 are accordingly satisfied. There exists accordingly a neigh-

borhood % of Co in ay-space such that the inequality (9.3) and hence also

(9.2) holds for every admissible arc C^G in ft, as was to be proved.

10. The problem of Mayer versus the problem of Bolza. In the present

section we shall assume, for convenience, that Io = 1. It is our purpose to show

that in this event the sufficiency theorems for the problem of Bolza are a con-

sequence of those for the problem of Mayer. The problem of Mayer is the

special case of the problem here considered in which f=f^0. As is well

known the problem here considered is equivalent to the following problem of

Mayer : Given a class of arcs

C: ah,        hk,        y\t),        zk(t) (t1 g t g t2; k = 0, 1, • • • , s)

satisfying the conditions

0*(a, y, y) = 0 (ß.- 1, • • • , m),

f(a, y, y) - z° = 0,    f(a,_y, y) - z' = 0     (a = í, ■ ■ ■ , s),

yi(tV) = r¿i(a)i    s*(;i) = 0j    ynfl = Ti2(a),    z"(t2) = b",  ,

I'(C) = g'(a) + b' = 0 (a = 1, • • • , s)

to find one which minimizes the sum

KC) = g(a) + b\

The equivalence of this problem with the problem described in §2 is seen at

once if one observes that

ft ft

dt,V) =  f'fdt,       z'(t) -  f f

b° =  f fdt, b' =   f  fdt.

We shall suppose that under this transformation Co is a minimizing arc for

the problem of Mayer just described. Then there is a neighborhood dt of Co

in (a, b, y, z)-space such that the inequality
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(10.1) 7(C) >/(Co)

holds for every admissible arc C^G with elements (a, b, y, z) in 9?, Since

/° = 1 we have J(C) = 1(C). Consequently the hypotheses of Corollary ,2 to

Theorem 7.2 are satisfied and the inequality (10.1) holds for every admissible

arc C^Co in a sufficiently small neighborhood ft of Co in ay-space.

We have just shown that if Co is a minimizing arc for the transformed

problem, which is a problem of Mayer, then it is a minimizing arc for the origi-

nal problem. The sufficiency conditions usually given are invariant under the

transformation here used. It follows therefore that with the help of Theorem

7.2 the sufficiency theorems for the problem of Bolza can be obtained from

those for the problem of Mayer.

11. Further results. In Theorem 7.1 it was shown that if J(Q is close to

/(Co) and C, G are subarcs whose end values are close, then /7(C) is close

to 77(G). The following theorem is concerned with conditions on 77(C) which

imply that if 7(C) is close to /(Co), and 77(C) is close to 77(G), then the sec-

ond end value of C will be close to that of G provided their initial end values

are close.

Theorem 11.1. Suppose that the integrand H(a, y, p) of 77(C) is E-domi-
nated by F near Co on 35 and that H(a, y, p) is positive along Co. Then given a

constant p>0 there exist positive constants e, r¡ and a neighborhood ft of Co in

ay-space such that if C is an admissible arc.in ft satisfying the condition

(11.1) /(C) á /(Co) + v

and C, G are subarcs of C, Co having the same initial points as C, Co and satisfy-

ing the condition

(11.2) | 77(C) -/7(G) | <«,

then the end values of C are in the p-neighborhood of those of G.

In order to prove this result let b be a positive constant such that

L(p) ^bH(a, y, p) on C0. Let p be a positive constant and choose e>0 such

that 46e<p. Let ft, 5, r¡ be related to e as described in Theorem 7.1.

Diminish 5 so that 25 <p. Diminish ft so that ft lies in the 5-neighborhood of

Co and so that if C is an admissible arc in ft its end values lie in the 5-neighbor-

hood of those on C0. Consider now arcs C, C, G chosen as described in the

theorem. Let G be a subarc of Co whose initial point coincides with that of

Co and whose final end point is in the 5-neighborhood of the final end point

of C. Then by Theorem 7.1 we have

| /7(C) - 77(G) | < e.

It follows that

| /7(G) - 77(G) | á | S(G) - /7(C) | + | B(C) - //(G) | < 2e.
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Inasmuch as L(p) ^bH(a, y, p) on Co we have

| ¿(G) - ¿(G) | á b \H(Ci) - H(C2) | < 26« < p/2.-

In view of this result and our choice of G it follows that the end values of C,

G are in the (p/2)-neighborhood of those on C2. The end values of C are ac-

cordingly in the p-neighborhood of those on G as was to be proved.

As an application of Theorem 11.1 we have the following theorem.

Theorem 11.2. Suppose each admissible arc C has been given the representa-

tion

C: a,        y(t) (0 á t á 1)

such that \y(t)\ =L(C) for almost all values of t onOgtgi and let Co be defined

by the set

C0: a0,       yo(t) (0 g / g 1).

If L is E-dominated by F near Co on 35, then given a constant p>0 there is a

constant r¡ > 0 and a neighborhood % of Co in ay-space such that the inequality

(11.3) I y(0 - yo(0 I < p (Oáíái)

holds for every admissible arc C in % satisfying the condition (11.1).

For choose e, r¡, % related to p and H(C) =L(C) as described in the last

theorem. Diminish n and g so that they are related to e and H(C) =L(C) as

described in Theorem 5.2. Consider now an admissible arc C in jj satisfying

the condition (11.1). By Theorem 5.2 we have

(11.4) | ¿(C) - ¿(Co) | < e.

Let C, G be the subarcs of C, Co determined by the range O^frgi1 of the

parameter t. Since |y(/)| =¿(C) we have L(C')=fiL(C). Similarly ¿(G)

= fiL(C0). We have accordingly

| ¿(C) - ¿(G) | = t11 ¿(C) - ¿(C„) | < fit =g €,

by (11.4). It follows from Theorem 11.1 that the end points of C are in the

p-neighborhood of those of G and hence that the inequality (11.3) holds with

t = fi. This proves the theorem.

12. The function K(C, Co). It will be convenient at this time to study

some of the properties of a function K(C, Co) that will be useful in the suffi-

ciency theorem given in a forthcoming paper. The results here given are of

interest in themselves apart from their applications to be made later.

In order to define K(C, Co) we shall suppose that each admissible arc C

has been given the representation

C: a,        y(t) (0|i|l)
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such that for almost all values of / on 0 ^ t ^ 1 we have

(12.1) |y(/)|=7(C).

The arc Co, in particular, has the representation

C0: ao,        y0(0 (0 á I á 1)

such that

(12.2) | yo(t)\ =L(Co).

We define K(C, Co) by the formula

(12.3) K(C, Co) = | a - ffo |2 + max | y(t) - y0(t) |2 +  f    | y(t) - y0(<) \2dt.
OgtSl •'0

Our principal result is given in the following theorem.

Theorem 12.1. Given a constant e>0 there exist a neighborhood ft of Co in

ay-space and a constant r¡ >0 such that the inequality

(12.4) K(C,Co) < e

holds for every admissible arc C in ft satisfying the condition

(12.5) 7(C) =/(Co) + r,.

In order to prove this result we can suppose without loss of generality

that the functions p'(a, y) described in §2 have been chosen so that

| p(a, y) | = 7(C„).

This result can be brought about by replacing p{(a, y) by k(a, y)pl(a, y),

where k=L(Co)/\p\, an operation that is permissible because of the homo-

geneity properties of admissible functions 77(a, y, p). To each arc C there is

accordingly associated a vector function

p(t)= p[a,y(t)\ (Ogíál)

of the parameter t such that

(12.6) \p(t)\=L(Co).

Because of the relations (12.6) and (12.2) the vector p0(t) associated with C0

is identical with yo(t). With the help of the law of the mean applied to the

difference

p(t) - p0(t) = p[a, y(t)\ - p[a0, yo(t)\

it is seen that there is a constant M such that the inequality

| p(t) - po(t) | g M[ | a - ao \ + | y(t) - y0(t) | ]
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holds for every admissible arc C in a neighborhood 5i of Co in ay-space. Using

this result and the relation

| y(t) - yo(t) | á | y(t) - p(t) | + | p(t) - p0(t) |

it follows readily that one can select a number N so that

K(C, Co) ^ N(Ki + K2)

where

Ki = | a - a012 + max  | y(t) - y0(t) \2,
Ogíál

K2 = f   | y(t) - p(t) \2dt.
J 0

We observe further that because of the identity

W-p\2= [\q\  - \p\)2 + 2\p\EL(P,q)

and the relations (12.1) and (12.6) one has

K2 = [¿(C) - ¿(Co)]2 + 2¿(C0)¿!(C).

It is clear from these relations between K, Ki, K2 that the inequality (12.4)

will hold if we show that % and 77 can be chosen so that given an arc C in %

satisfying the condition (12.5) one has

(12.7) \a- a0\2 <e/4tN,

(12.8) \y(t) - y0(t)\2<e/4N,

(12.9) I ¿(C) - ¿(Co) |2 < e/42V,
*

(12.10) 2L(Co)EL(C) < í/4/V.

The inequality (12.7) is obtained by a suitable choice of g\ The condition

(12.8) can be satisfied by virtue of Theorem 11.2 with 4iVp2 = e. The condition

(12.9) can be satisfied by virtue of Theorem 5.2 with H(C)=L(C). In order

to show that v and % can be diminished further so that (12.10) holds we first

select r¡ so that

(12.11) 16NL(C0)bv < e

where b is the constant appearing in (2.7). Let g be related to r¡ as described

in Theorem 4.2. Diminish % further so that the end values of an admissible

arc C in % are in the 5-neighborhood of those of Co prescribed in Theorem 4.2.

Then by the last statement of Theorem 4.2 and the relation (12.5) we have

E*F(C) < 2V.
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It follows from (2.22) and (12.11) that

8NL(Co)E*L(C) á &NL(Co)bEÎ(C) á l6NL(C0)bv < «.

Thus (12.10) holds and the proof of Theorem 12.1 is complete.

Theorem 12.2. Consider a sequence of admissible arcs {Cq} converging to Co

in the sense that given a neighborhood ft of Co in ay-space, there is an integer qo

such that if q>qo then C„ is in ft. If

lim sup/(C,) ^ /(Co)

then

lim K(Ca, Co) = 0, lim J(Cq) = /(Co)

and

lim 77(G) = S(Co)

if the integrand H(a, y, p) of 77(C) is E-dominated by F(a, y, p) near Co on 35.

This result follows readily from Theorems 12.1, 4.2, and 5.1.
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