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1. Introduction. The present paper is the last of a sequence of three papers

on the isoperimetric problem of Bolza. The first paper was concerned with

certain properties of the Weierstrass ¿-function. The second paper dealt with

the Theorem of Lindeberg and its consequences. The present paper is con-

cerned with a proof of a sufficiency theorem for a strong relative minimum

conjectured by McShane(x). The corresponding theorem for a weak relative

minimum was established by McShane and his method was used by Myers(2)

to obtain sufficient conditions for a semistrong relative minimum for the non-

parametric problem of Lagrange. Moreover Myers showed that these condi-

tions were sufficient for a strong relative minimum when the integrand of the

integral 1(C) to be minimized had certain special properties. Using an exten-

sion of the methods devised by McShane and Myers we establish a sufficiency

theorem for a proper strong relative minimum in which an estimate is given

of the difference 1(C)— /(Co) for the arcs C under consideration. This added

feature enables one to obtain analogues of the theorem of Osgood as a corol-

lary to our sufficiency theorem. Another interesting feature of the method

here used is that it is applicable even when isoperimetric conditions are pres-

ent. The methods used heretofore for problems in which isoperimetric condi-

tions are present usually involved a transformation of the problem or involved

the theory of broken extremals. Throughout the paper it was found that many

of the ideas which play a prominent role in the field theory are also useful

in the proofs here given.

2. Hypotheses and preliminary definitions. The problem with which we

are concerned is that of finding in a class of arcs

C: a\        y\t) (t1 g t g t2; h = 1, • • • , r; i = 0, 1, • • • , n)

satisfying conditions of the form

(2.1) tf(a, y, y) = 0 (ß = 1, • • • , m < n),

(2.2) yKt1) = T^a),        ?(ñ = T'2(a),

Presented to the Society, September 13, 1943; received by the editors November 9, 1945.

0) E. J. McShane, Sufficient conditions for a weak relative minimum in the problem of Bolza,
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for relative minima, Amer. J. Math. vol. 66 (1944) pp. 170-198.

(*) F. G. Myers, Sufficient conditions for the problem of Lagrange, Duke Math. J. vol. 10

(1943) pp. 73-97.
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(2.3) I'(C) = g'(a) +   f f(a, y, y)dt = 0
J c

one which minimizes the function

(2.4) 7(C) =g(a)+  f f(a,y,y)dt.
J c

The notations and terminology described in the first paper (3) will be used

throughout. In particular arcs will be written in the vector form

C: a,        y(t) (fi g t ^ I2)

and an admissible arc is a rectifiable arc having an absolutely continuous

representation C such that for almost all values of t on tH2 the element

[a, y(t), y(t)] is admissible and satisfies the equations (2.1), (2.2\ and (2.3).

We center our attention on a particular admissible arc Co of class C" with

a representation

C0: ao,        y0(t) (t1 ^ t ^ t2)

of class C" such that yo^^O. It is assumed that C0 does not intersect itself

and that the matrix ||<£V'|| has rank m on Co. By a variation y will be meant

a set of constants and absolutely continuous functions

y: ah,       ^(t) (fi ^ t g t2; h = 1, • • • , r; i = 0, 1, • • • , n)

whose derivatives 7j*(i) are integrable together with their squares. Here too

we shall use the vector notation

a, v(t) (t1 èt^ t2).

A variation y will be said to be differentially admissible if it satisfies the differ-

ential equations

(2.5) $V a, r,, ,)) = ¿„„a   + <p%r¡(t) + <i>W(t) = 0

for almost all values of t on fi^t^t2. In this equation the arguments in the

derivatives of <bß are [ao, yo(t),,yo(t)]. By an admissible variation y will be

meant one that is differentially admissible and satisfies the conditions

(2.6) ij(í) = r»a, V(t) = Tha,

(2. 7) l[(y) = gla   +  j   * ¿(t, a, r¡, v)dt = 0,
J 'i

where ¿", T®, g"h are the derivatives of Tn(a), Ti2(a), g"(a) with respect to

ah at a=a0and

(3) M. R. Hestenes, The Weierstrass E-function in the calculus of variations, Trans. Amer.

Math. Soc. vol. 60 (1946) pp. 51-71. This paper will be referred to as the "first paper."
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(2.8) \p (t, a, v, t) = fahct  + fyii) + fpiT ,

the arguments in the derivatives of/' being [a0, yo(0> yo(0]- An admissible

variation y will be said to be essentially null if it is of the form

(2.9) a   = 0,        v\t) = p(t)yo\t) (t1 £ t á t2).

In this case p(tl) =p(t2) =ni(t1)=ini(t2)=Q by virtue of the condition (2.6).

Consider now a set of multipliers

(2.10) Io â 0,        1°,       mP(a,y)

of class C on a neighborhood of Co. The multipliers 1°, I' are constants. Set

(2.11) F(a, y, p, I, m) = l"f + l°f° + «*V,       G(a, I) - Z°g + ¿'g'-

The function

(2.12) 7(C) = G(a, I) + f F [a, y, y, I, m(a, y) ]dt

has as its first variation along Co the function

(2.13) Ji(y) = Gha» +   f ' [Fa*ah + *>< + />}<]<«.

In this expression the derivatives of G and F are to be evaluated along C0.

Here GA is the derivative of G with respect to ah. It is well known that the

condition

7!(y) = 0

holds for every variation y satisfying the end conditions (2.6) if and only if Co

satisfies the Euler-Lagrange equations

(2.14) — Fpi=Fy<,       ^ = 0
at

and the transversality conditions

(2.15) Gh + Fpi(t) TÏ - Fpi(t) Th +  f ' FJl% = 0.

Here F^t1) and Fpi(t2) denote the values of ¿p.- at the initial and final end

points of Co.

In order to define the second variation J2(y) of J(C) along C0 we define

2 £2 by the formula

20(«, a, r,, t) = /V^V + 27'ï,V')iT,' + Fp'^trV
(2.16)

+ Fahakahak + 2Fa"viahvi + 2Fahp¡ahiri,
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where the derivatives of F are evaluated along C0. We also set

(2.17) bu - Gu + FA?) Tkh - FXt1) TÍ\

where the subscripts h, k on G, T'1, Ta denote derivatives with respect to

oth, ofr evaluated at a=ao- As before Fpi(fi) and Fpi(t2) are the values of ¿p<

at the end points of G. The function

(2.18) J2(y) = Wa* +  f    20(1, a, ij, v)dt
J ,i

is called the second variation of ¿(C) along Co.

3. The conditions A, B, A' and 73'. Following the notations used in the

earlier papers we shall denote by 35 the class of all differentially admissible

elements (a, y, p), that is, all admissible elements (a, y, p) such that

<f>ß(a, y, p) = 0. Associated with each admissible function H (a, y, p) we have

the Weierstrass ¿-function

(3.1) EH(a, y, p, q) = H(a, y, q) - q'H^a, y, p).

Let F(a, y, p) and H(a, y, p) be admissible. The function H(a, y, p) will be

said to be E-dominated by F(a, y, p) near Co on 35 if there is a constant o>0

and a neighborhood 35o of Co relative to 35 such that the inequality

(3.2) \EH(a,y,p,q)\-èbEF(a,y,p,q)

holds whenever (a, y, p) is in 35o and (a, y, q) is in 35.

The arc Co will be said to satisfy the condition A with a set of multipliers

(3.3) Io ̂  0,        l',       mß(a,y)

if the following conditions hold: the functions mß(a, y) are of class C on a

neighborhood of Co; the Euler-Lagrange equations (2.14) and transversality

conditions (2.15) hold with F(a, y, p, I, m(a, y)) and G(a, I) defined by (2.11);

the function 7¿=0 is ¿-dominated by F(a, y, p, I, m(a, y)) near Co on 35. If

in addition the functions L(p) = |^>| andf "(a, y, p) (<r = l, • • • , s) are ¿-domi-

nated by F(a, y, p, I, m(a, y)) near Co on 35, then Co will be said to satisfy the

condition A' with the set of multipliers (3.3). In this event the functions

<f>ß(a, y, p) (ß= 1, • • • , m) are also ¿-dominated by F(a, y, p, I, m(a, y)) near

Co on 35, as was seen in Theorem 4.3 of the first paper.

The arc Co will be said to satisfy the condition B if for every admissible

variation y that is not essentially null, there is a set of multipliers (3.3) with

which Co satisfies condition A such that the inequality ¿2(7) >0 holds, where

¿2(7) is the second variation (2.18) of the function ¿(C) determined by these

multipliers. If in condition B we require that the multipliers (3.3) satisfy the

condition A' with Co then Co will be said to satisfy the condition B'.

Lemma 3.1. If Co satisfies condition B and there is a set of multipliers (3.3)
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with which Co satisfies condition A', then Co satisfies condition B'. Conversely

if Co satisfies condition B', then it satisfies condition B and there is a set of multi-

pliers (3.3) with which it satisfies condition A'.

For suppose C0 satisfies condition A' with the multipliers Io, P, mß(a, y)

and let y be an admissible variation that is nonessentially null. If Co satisfies

the condition B there is a set of multipliers (3.3) with which Co satisfies con-

dition A such that /20y)>O. For a sufficiently small positive constant b the

arc Co will satisfy condition A' with the multipliers

i° + bï°,       I' + bï",       m*(a, y) + bmß(a, y)

and the second variation of the function J(C) determined by these multipliers

remains positive on y. Hence Co satisfies condition B'. The converse follows

from the fact that there exists an admissible variation y that is not essentially

null(<).

Lemma 3.2. If Co satisfies condition A' with a set of multipliers (3.3), then

Co satisfies condition A' with every set of multipliers

(3.4) P,        1°,       mß(a,y)

of class C such that

¡o = l\       I« = V,       m»(a, y) = mß(a, y)

on Co- Moreover for every admissible variation y we have J2(y)=J2(y), where

J2(y) and J2(y) are the second variations on Co of the functions J(C) and /(C)

determined by the multipliers (3.3) and (3.4) respectively.

This result is readily verified with help of Corollary 2 to Theorem 9.3 of

the first paper and the fact that oif = 0on Co and $ß = 0 for admissible varia-

tions.

Corollary. In the conditions A' and B' for Co only multipliers of the form

(3.5) l",       l',       mß(y)

need be considered. This is also true in condition B provided Co satisfies condi-

tion A' with a set of multipliers (3.5).

Throughout the present paper we shall have occasion to use a special

function K(C, Co) which can be defined as follows: Let the arcs C and C0

be represented in the forms

C: a,       y(t) (0 á * 3k 1)

C0: öo,       yo(t) (0 g t á 1)

such that almost everywhere on O^igl one has

(«) E. J. McShane, loc. cit. p. 363.
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| y(t) | = ¿(C), | yoO) | = ¿(Co),

where ¿(C) is the length of C. The function K(C, Co) is defined by the formula

(3.6)   K(C, Co) = | a - a0 \2 + max | y(t) - yQ(t) \2 +  f    \ y(t) - y0(t) \2dt.
ogigi Jo

Concerningthis function we have the following useful result which was estab-

lished in the second paper (5).

Lemma 3.3. Suppose that Co satisfies the condition A' with a set of multi-

pliers (3.3) and let \Cq\ be a sequence of admissible arcs converging to Co in

the sense that given a neighborhood g of G in ay-space there is an integer q0

such that when q^qo, then Cq is in %. If the function J(C) determined by these

multipliers is such that

lim sup J(Cq) ^ ¿(Co)
Q= «

then

lim K(Cq, Co) = 0.
q= do

In the proofs of Theorems 4.1 and 4.2 given below it will be convenient

to assume that the functions Tn(a), Ti2(a) appearing in the end conditions

(2.2) are linear. This can always be done since our problem is clearly equiva-

lent to that of finding in the class of arcs

C:        a\      b\      c\      y<(t) (fi S (á t2; h = 1, • • • , r; i = 0, 1, • • • , n)

satisfying the equations

*"(*. y, y) - 0 (ß = l, ■ ■ ■ , m < n),

y\fi) = b1,        y\t2) = c\

I'(C) = g'(a) +  f f(a, y, y)dt = 0 (<r = 1, • • • , s),

j-H+i(Ç) = 7-ii(0) _ bi = o,

7«+"+i+2(C) = Ti2(a) - ci = 0

one which minimizes the integral

1(C) = g(a) +   f f(a, y, y)dt.
J c

It is easy to see that conditions A' and B' for Co are equivalent in the two

(6) M. R. Hestenes, The theorem of Lindeberg in the calculus of variations, Trans. Amer.

Math. Soc. vol. 60 (1946) pp. 72-92. This paper will be referred to as the "second paper."
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cases as well ás the concept of strong and weak relative minima. We shall

accordingly assume that end conditions (2.2) are linear whenever it is con-

venient to do so.

4. The sufficiency theorem. The principal theorem in the present paper

can be stated as follows:

Theorem 4.1. // the arc Co satisfies condition B' as well as those described

in §2, then there is a neighborhood of Co in ay-space and a constant e>0 such

that the inequality

(4.1) 1(C) - /(Co) è min [e, tK(C, G)]

holds for every admissible arc C in ft, where K(C, Co) is defined by (3.6).

This theorem is an extension of one conjectured by McShane(6) and is an

immediate consequence of the following theorem for an arc Co having the

properties described in §2.

Theorem 4.2. Suppose the arc Co satisfies condition A' with a set of multi-

pliers

(4.2) Ia ^ 0,        V,       mP(a,y)

and that the conclusion described in Theorem 4.1 fails to hold. Then there exists

an admissible variation 70 that is not essentially null such that given any set of

multipliers (4.2) with which Co satisfies condition A the second variation J2(yo)

of the function J(C) determined by these multipliers has J2(yo) ^0.

If the conclusion of Theorem 4.2 holds, then Co cannot satisfy condition

B'. On the other hand if Co satisfies condition A' with a set of multipliers

(4.2) and the conclusion of Theorem 4.2 fails to hold, then Co satisfies condi-

tion B and hence also condition B', by virtue of Lemma 3.1. Thus for an arc

Co that satisfies condition A' with a set of multipliers (4.2), Theorems 4.1

and 4.2 are equivalent.

The next seven sections will be devoted to the proof of Theorem 4.2 and

hence of Theorem 4.1. As a consequence of Theorem 4.1 we have the following

analogue of a theorem of Osgood.

Theorem 4.3. // the arc Co satisfies the condition B' as well as those given

in §2, there is a neighborhood ft of Co in ay-space such that given a neighborhood

fti of Co interior to ft there is a constant p > 0 such that the inequality

(4.3) 1(C) - /(Co) > p

holds for every admissible arc Cinft that is not in ft\.

For let ft and e be chosen as described in Theorem 4.1 and let fti be a

(6) Loc. cit. p. 346.
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neighborhood Co interior to %. From the definition of K(C, Co) it follows that

there is a positive constant r such that the relation

K(C, Co) > t

holds for every admissible arc C not in fjj. Choose p so that p<e, p<er. The

inequality (4.3) then follows from (4.1).

5. The variation y0. In §§5-11 it will be assumed that the hypotheses of

Theorem 4.2 hold. It will also be assumed that the functions Ta(a) and

Ti2(a) appearing in the end conditions (2.2) are linear. In view of the remark

at the end of §3 no generality is lost by this assumption. Since the conclusion

of Theorem 4.1 fails to hold there is for every integer q an admissible arc Cq

in the (l/g)-neighborhood of Co in ay-space such that the inequality

(5.1) 7(G) - 7(C„) < min [l/q, (l/q)K(Cq, Co)]

holds. Since K(Co, Co) =0, this inequality could not hold with C3 = G. Hence

Ca^Co. Throughout the proof of Theorem 4.2 we shall suppose that the arcs

Cq (q = 0, 1, 2, • • • ) have been given the representation

Cfl: aq,        yq(t) (0 g t = 1; q = 0, 1, • • • )

such that

(5.2) | yq(t) | = ¿(G) («7-0, 1, •••)

for almost all values of t on 0 ^t g 1. Here L(Cq) is the length of Cq. The repre-

sentation

Co: ao,       yo(t) (0 g t g 1)

of Co is of class C" on 0 gi g 1.

Lemma 5.1. The sequence {Cq\ of admissible arcs described above can be

chosen so that

(5.3) lim aq = a0, lim yq(f) = y0(0 uniformly on    (0 | / ^ 1),

(5.4) lim yq(t) = y0(t) almost uniformly on    (0 g / g 1),

(5.5) lim kq = 0, 0 < kq < 1,
ff = 00

where kqis the positive root of the equation

kq = 7sT(G, Co) = \ aq — a0\ + max | ys(/) - y0(t) \
osisi

(5.6)

+ f  I y«W - yo(t) \*dt.
J o
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In order to prove this result let

l" = 0 or 1 ;       V,       mfi(a, y)

be a set of multipliers with which Co satisfies condition A' and let J(C) be

the corresponding function (2.12). Then either J(Cq)=I(Cq) or else J(Cg)

= /(C0)=0. In either event we have by (5.1)

(5.7) /(G) - /(Co) =g min [l/q, k¡/q],

and hence

lim sup /(G) ^ /(Co).

By Lemma 3.3 it follows that linig,,«, £, = 0. We can accordingly suppose that

kq<l. The condition (5.5) therefore holds. From (5.5) and (5.6) it is seen that

(5.3) holds. Moreover

lim   f    | yq(t) - yo(t)\2dt = 0,

and hence lima_œ yq(t) = yo(t) in measure on 0 g t ^ 1. A subsequence, which we

again denote by {Cq\, accordingly has the property (5.4). This proves the

lemma.

In the sequel it will be assumed that the sequence {Cq} has been chosen

so as to have the properties described in Lemma 5.1. As a further result we

have the following lemma.

Lemma 5.2. For every set of multipliers

Ia = 0 or 1,        l",        mß(a, y),

the corresponding function J(C) defined by (2.12) satisfies the relation

(5.8) /(G) - /(Co) á k\/q (ff = 1, 2, ■ • • ).

This result follows at once from the relations (5.7), (5.5), and J(C) =l°I(C).

Lemma 5.3. The variations

yq: a„ = (aq - a0)/kg,        Vq(t) = (yq(t) - yo(t))/kq (O^/^l)

satisfy the condition

(5.9) | aq\2 + max  | Vq(t) |2 +   f    | rjt(t) |2 = 1.
oáisi J 0

Consequently, we can select the sequence \Cq\ so that there exists a variation

7o: ao,        Vo(t) (0 g t ^ 1)

satisfying the conditions
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(5.10) lim aq = a0,        lim r¡q(t) = r¡0(t)       uniformly on   O ^ í ¿ 1,

(5.11) f    |ijo|2di g liminf   f    \ r,q\2dt ̂ 1.
J o a = oo     J o

Finally if g(t) is summable together with its square, then

(5.12) lim   f  g(t)(r¡q - r,o)dt = lim   f   g(0(ij, - 40)^ = O
J—»    »/ if J=eo    «/   Jf

/or ei>ery measurable subset M of 0 gf g 1.

The relation (5.9) follows from (5.6). It has been shown by McShane(7)

that the condition (5.9) implies the existence of a subsequence of {yq}, which

we again denote by {73}, and a system 70 such that (5.10) holds. Moreover

he showed that the functions r¡oi(t) are absolutely continuous and have de-

rivatives that are integrable together with their squares. The system y0 ac-

cordingly is a variation. We shall show later that y0 is an admissible variation.

The relations (5.11) and (5.12) were also established by McShane(8) and

Myers(9).

In what follows it will be assumed that the sequence {Cq} has been chosen

so as to have the properties described in Lemmas 5.1 and 5.3.

As a further result we have the following lemma.

Lemma 5.4. The variations yq (g = 0, 1, • • • ) satisfy the variational end

conditions (2.6). Moreover for every set of multipliers l0^0, l", mß(a, y) with

which Co satisfies condition A we have

Ji(yd =0 (q - 0, 1, ... )

where ¿1(7) is given by (2.13).

6. Three lemmas. The curves Cq and yq have associated with them vec-

tors pq(t) and irq(t) which we shall now define. Since the matrix ||<£p.-|| has

rank m on Co one can select(10) a set of functions p*(a, y) of class C" satisfying

the equations

(6.1) <pß[a, y, p(a, y)] = 0 (ß = 1, • • • , m)

and having the elements [a, y, p(a, y)] on Co when (a, y) is on C0. Because

the functions <pß are positively homogeneous in p of order one, the functions

p\a, y) can be replaced by functions of the type k(a, y)pi(a, y). We can and

shall therefore suppose that these functions have been chosen so that

(7) Loc. cit. pp. 353-355.

(8) Loc. cit. pp. 354-356.

(») Loc. cit. p. 88.

(10) See Lemma 2.1 of the first paper.
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(6.2) \p(a,y)\  =L(Co),

where 7(G) is the length of C0. By virtue of this choice of p(a, y) and the

parametrization of Co we have

yo(t) = p[a0, yo(t)].

We can now prove the following lemma.

Lemma 6.1. The vectors pq(t), irt(t) defined by the formulas

p\(t) = p(aq, yq(t)) (q = 0, 1, • • • ),

tÔ(î) = p'^(ao, yo(t))ao + p'yi(a0, yo(t))vo(t),

r\(i) = (pq(t) - pl(t))/kq (Ç = 1, 2, • • • )

satisfy the relations

(6.3) <pP(aq, yq(t), pq(t)) = 0, | pq(t) | = /(Co), 0|/^1,

(6.4) lim pq(t) = po(t) = yo(t) uniformly on   0 á t ¡£1,
q= oo

(6.5) lim irq(t) = iro(t) uniformly on    0 Sí t _í 1.
0=00

The relations (6.3) follow from (6.1) and (6.2). The relation (6.4) is a

consequence of (5.3). An application of Taylor's theorem to the difference

P'K yq(t)\ - ¿'[«o, yo(t)]

yields a formula of the form

wq(t) = Ahq(t)aq + B)q(t)n[(t)

where

A\q=  I    p\h[ao + 6(aq — a0), y o + 6(yq — y0)]d6,
J o

53a ■  I    il>'[«o + 6(aq — ao), yo + 6(yq — yo)]dd.
Jo

Using the relations (5.3) and (5.10) it is found that the equation (6.5) holds.

By a similar application of Taylor's theorem and the relations (5.3),

(5.10), (6.4), (6.5) one obtains the following lemma.

Lemma 6.2. If <p(a, y, p) is a function of class C, then

..    <*>k> y At), pq(t)\ - <t>[a0, yo(t), po(t)] , /A      /Al
lun- = $[¿, a0, yo(t), T0(t)\
»='• kg

uniformly on 0 ^ t g 1, where
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(6.6) $(<, a, v, ir) = <Pahah + 4vV + «V"'".

the arguments in the derivatives of' <p being [ao, yo(t), yo(í)]-

Applying this result to the functions <pß(a, y, p) we have by virtue of (6.3)

the following corollary.

Corollary. The variation 70 satisfies with ir0(t) the equations

(6.7) «*[*, cto, vo(t),iro(t)] =0,

where $ß is the variation (6.6) of' <pß.

As a further result we have another lemma.

Lemma 6.3. If Biq(t) (q = 0, 1, • • • ) are continuous functions such that

(6.8) lim Biq(t) = Bio(t) uniformly on   0 á t Ú 1,
g=oo

/Ae» /or every measurable subset M of 0 ¿ / :S 1 owe Aas

(6.9) lim   I    5<3(ij3 - *q)dt =   I    J5<o(4Ô - iro)dt.
5=00   1/ Af J if

In order to prove this result observe first that by virtue of (6.8) and (6.5)

we have

5=»   ./ m

It remains therefore to show that

lim    I     Biqrqdt =   j     Bioir0dt.
î=oo   J if J M

(6.10) lim   f    Biqiiqdt=  í    BioñUt.
f"B   J M J M

To this end observe that

(6.11) f   Biqr¡qdt=  f   Bioi)%qdt+  f   (Biq - Ba)iUt.
J M J M J M

By the inequality of Schwarz and (5.9) we have

I j   (Biq - Bio)r,qdt     £ [ J"    I 7i3 - Tio |2d/l I J    | r,q \'dt\

^  f    \Bq- Bo\*dt.
J 0

It follows from (6.8) that the last term in (6.11) converges to zero. By virtue

of (5.12) we have
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lim Bior)qdt =   I     Bioiiodt.
i = oo    J if J M

It follows from (6.11) that (6.10) holds and Lemma 6.3 is established.

7. Properties of H(C, M). Consider an admissible arc C parameterized

on 0^/gl so that \y\ =L(C). Given a measurable subset M of 0^/gl, a

function 6(a) of class C and an admissible function 77(a, y, p) of class C we

define 77(C, M) by the formula

H(C, M) = 6(a) +  f   //(a, y(i), ?(*))#.

Similarly using the functions p{(a, y) chosen in the last section we set

H*(C, M) = 6(a) +  f   Hpi[a, y(t), p(a, y(t))]yi(t)dt,
J M

E*„(c, M) = f ¿*[a, y(0, M y(0). y(Wt-
J M

We have accordingly

(7.1) H(C, M) = H*(C, M) + £^(C, ikf).

Finally we define Hi(y, M) by the equation

Hi(y, M) = 6awh +  T   {/7a*aA + 11^ + Hp^'Jrfi,
7 M

where the derivatives of 6(a) and H(a, y, p) are evaluated along Co. When

M is the interval Oáfjgl, the values 77(C, AO, 77*(G Af), ¿ff*(C, Af),
77i(7, Af) will be denoted respectively by /7(C), 77*(C), ¿**(C), 77i(y). These
notations are consistent with the ones used earlier and equation (7.1) takes

the form 77(C) =/7*(C)+¿*-(C).
As a first result we have the following lemma.

Lemma 7.1. The relation

v    g*(C5. M) - 77*(G, M)(7.2) lim —-= /ZiOyo, Af)
S=oo kq

holds for every measurable subset M of 0 ^t ^ 1.

In order to prove this result observe that the integrand of H*(Cq, M) can

be written in the form

E(aq, yq, pq) + (y* - pq)Hp<(aq, yq, pq).

By virtue of Lemma 6.2 we have
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0(0,) - 6(ao) »
lim- = Oah{ao)ao,
i=oo kq

(7.3)
fir(a3, y3, pq) - H(a0, yo, po)      TT     & ,   _    < ,   „     <

lim-= F0»a   + Hu¡t]o + flp'Xo
fl= oo Kq

uniformly oh M. Here the arguments in the derivatives of H are [a0, yo(t),

y0(t)]. Since yo*(t) = poi(t) it follows from the definitions of nql and ir,* that

(7.4) (y\~ p\)/kq = (v\-ir\) (o=l, 2, •••).

An application of Lemma 6.3 with Biq=Hpi(aq, y3, pq) yields

lim —I    (y, — pl)Hpi(aq, yq, pq)dt = J    (170 — ir'0)Hpi(ao, yo, po)dt.
«=oo   kqJ M J M

If we combine this result with (7.3) it is readily seen that (7.2) holds. This

proves Lemma 7.1.

Lemma 7.2. For every set of multipliers

(7.5) 1° = 0 or 1,        /',       m?(a, y)

with which the arc Co satisfies condition A, the corresponding functions J(C),

J*(C), E*(C) satisfy the relations

J(Cq) - ¿(Co) ¿*(C3) - ¿*(C0) 1     *
(7.6) lim ——-— = lim ——-—- = lim — ¿*(C3) = 0.

J=00 kq «—« kg 3 = 00    kq

In order to prove this result recall that

¿(G) = /(G) + ¿*(G).

Since y0(i) =po(t) we have ¿/(Co) =0 and hence ¿(G) =¿*(G). Consequently

/(G) - ¿(C„) = J*(Cq) - J*(Co) + ¿*(C3).

Moreover by Lemma 7.1 and the relation ¿1(70) =0 given in Lemma 5.4 we

have

¿*(G) - ¿*(Co) ,   N
lim- = /i(to) = 0.
« = oo kq

By virtue of (5.8) we have accordingly

¿(G) - ¿(Co) 1   *
lim sup- = lim sup— EF(Cq) ^ 0.

«-CO kg i=«> kq

From this result it follows that the lemma will be established if we show that
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1      *
lim inf — ¿*(G) ^ 0.

«=•>    kq

Since kq>0 it is sufficient to show that there is an integer qo such that when

o>ffo we have

(7.7) EF(Cq) =   f l EF [aq, yq(t), pq(t), yq(t)]dt ^ 0 (q ^ q0).
Jo

In order to establish this inequality recall that by virtue of our hypothesis

there exists a neighborhood 35o of Co relative to the class 35 of differentially

admissible elements (a, y, p) such that the inequality

EF(a, y, p, q) 2: 0

holds whenever (a, y, p) is in 35o and (a, y, q) is in 35. By virtue of the relations

(5.3), (6.3) and (6.4) we can select q0 such that when q^q0 we have (aq, yq(t),

pq(t)) in 35o- Moreover since Cq is admissible the elements (aq, yq(t), yq(t))

are in 35 for almost all values of t on O^/^l. It follows that when ff^ffo the

integrand appearing in (7.7) is non-negative for almost all values of t on

Q&tá 1. The inequality (7.7) accordingly holds and Lemma 7.2 is established.

Lemma 7.3. Let F(a, y, p) — Pf-\-l'f''-\-mß<pß he the admissible function de-
termined by a set of multipliers (7.5) with which Co satisfies condition A. If

H(a, y, p) is E-dominated by F(a, y, p) near Co on 35, then

,.    B(Cq, M) - //(C„, M)
(7.8) hm-= Hi(yo, M)

f"> kq

for every measurable subset M of O^t^l.

In order to prove this result observe that since H(a, y, p) is ¿-dominated

by F near Co on 35, there is a constant o>0 and an integer o0 such that when

g>ffo the inequality

I E„[aq, yq(t), pq(t), yq(t)] | á bEF[aq, yq(t), pq(t), yq(t)]

holds for almost all values of t on 0 ^t g 1. This result follows from (5.3), (6.3),

(6.4) and the definition of ¿-dominance. We have accordingly

| ¿*/(G, Af) | ^  f    | EH(aq, yq, pq, yq) \dt
•J M

è  I     I EH(aq, yq, pq, yq) | dt
J o

g b I    EF(aq, yq, pq, yq)dt = bE*F(Cq).
Jo
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Combining this result with (7.6) it is seen that

(7.9) lim — E*„(Cq, M) = 0.
«-•0    kq

Using (7.1) together with the relation EH*(Co, M)=0 we have the further

formula

(7.10) H(Cq, M) - //(Co, M) = E*(Cq, M) - H*(CB, M) + E*H(Cq, M).

The relation (7.8) follows readily from (7.10), (7.2) and (7.9). This proves

Lemma 7.3.

8. Admissibility of 70. The purpose of the present section is to establish

the following lemma.

Lemma 8.1. The variation 70 described in §5 is admissible and satisfies the

equation

(8.1) yo(t)r¡a(t) = constant

for almost all values of tonO^t^l.

In order to prove this result select F(a, y, p) as described in Condition A'

for Co. .Then L(p) = \p\, f'(a, y, p) are ¿-dominated by F(a, y, p) near C0

on 35. In fact by Theorem 4.3 of the first paper the functions <pß(a, y, p) are

also ¿-dominated by F(a, y, p) near Co on 35. Consequently if we select

H(C, M) -  f  tf(a, y, y)dt

then H(Cq, M) =/f(G, AO =0 and by Lemma 7.3

f   &(t, ao, v, i)dt = 0

for every measurable subset M of O^i^l. Hence

$0(i, ao, r?0(<), Vo(t)) = 0

for almost all values of t on O^i^l, that is, the variation 70 is differentially

admissible.
In order to show that 70 is also admissible let M be the interval O^i^l

and choose 77(C, Af)=/'(C). We then have 77(C3, Af) =I°(Cq) =0 (q = 0,
1, • • • ) since G is admissible. Moreover 77i(7, Af) is identical with the first

variation /1"(7) of I°(C) on Co. It follows from (7.8) that /iff(7o) =0. Further-

more by Lemma 5.4 the variation y0 satisfies the variational end conditions

(2.6). The variation 70 is therefore admissible, as was to be proved.

It remains to show that the relation (8.1) holds To this end we select
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H(Cq, M)=  f  L(yq)dt =  f   | yq\ dt = L(Cq)t,
•/ o " o

the last equality holding by virtue of our parametrization of C3. We then have

Lpi(yo)vodt = I    yôi7*o<#.
o ¿(Co) •/ o

Moreover by Lemma 7.3

¿(G) - ¿(Co)
Hi(yo, M) = í lim-— •

a—» kq

Consequently

C*   i i i(cq) - ¿(Co)
(8.2) I    yoiiodt = ¿¿(G) lim ——-— ■

¿o <i=w *«

The equation (8.1) follows from (8.2) by differentiation. This proves Lemma

8.1.
Setting t = 1 in (8.2) one obtains the formula

(8.3) lim
.    ¿(G) - ¿(Co)
■%-m   -

kq ¿(C

i    r1 i i
— I   yWodt,
[Co) J 0

a result that will be found useful in §11.

9. Second order terms. In the following lemma we are concerned with

the second variation J*(y) of the functions

¿*(C) = G(a, l)+ f Fp<(a, y, p(a, y), I, m(a, y))dy\
J c

where F and G are the functions (2.11) determined by a set of multipliers

/.° = 0 or 1, l', mß(a, y) of class C with which Co satisfies the Euler equations

(2.14) and the transversality condition (2.15). This second variation J*(y)

is given by the formula

(9.1) ¿*(y) = bhkahak +  f    {2 ü(t, a, tj, x) + 2(,j* - ir*) M*. «, V, ir) } dt
J 0

where ir* denotes the variation of p'(a, y) along Co. We shall be interested only

in the case when 7=70- In this event ir*=ir0*(/).

LemMa 9.1. Under the hypotheses described above we have

J*'(Cq) - ¿*(G) *
(9.2) lim ,„ = 2-^(70).

K
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In order to prove this result it will be convenient to denote F(a, y, p, I, pi)

by F(a, y, p, m). We introduce the following notations

mq(t) = m(aq, yq(t)) (q = 0, 1, 2,- ■ ■ ),
ß ß h ß i

(9.3) ßo(t) = ma*(aa, yo(¿))a.o + mvi(ao, yo(t))vo(t),

¿(t) = (mq(t) - ml(t))/kq (ff = 1, 2, • • • ).

By the use of (5.3), (5.10) and Taylor's Theorem we have

ß ß ß  ,        ß
(9.4) lim mq(t) = mo(t),        lim tiq(t) = p0(¿)

9=oo q = oo

uniformly on O^/^l.

Because of the relation F = piFpi the integrand of J*(Cq) can be written

in the form

(9.5) F(aq, yq, pq, mq) + (y\ - p\)Fpi(aq, yq, pq, mq).

Since <f>ß = 0 along Cq we have F(aq, yq, pq, mq) =F(aq, yq, pq, m0) and hence

by Taylor's Theorem applied to the latter function
_j    2

(9.6) F(aq, yq, pq, mq) = F(a0, yo, po, mu) + kqFu + 2   £,¿25

where

(9.7) Fiq = Fa»aq + Fvir,q + Fpit,*,

and

(9.8) lim F2q(t) = 2Q(t, a0, vo(t), w0(t))
3—00

uniformly on O^i^l. Similarly

(9.9) Fpi(aq, yq, pq, mq) = Fp<(a0, y0, po, m0) + kqBiq,

where

(9.10) lim Biq(t) = fiT.(/, a», vo(t); w0(t))

uniformly on 0¡5*2.1. Using the relations (9.6), (9.7), (9.9) and

yo   =   p0, Vi—   Pq   =   K(Vq  ~  T«)

it is seen that the integrand (9.5) of J*(Cq) takes the form

¿(ao, yo, £o, Wo) + kq{Fahaq + Fy¡vq + Fp<r¡q}

+ 2~^{F2î + 2(4q - Tq)Biq}.

Finally, setting G(a)=G(a, I), we have

(9.12) G(aq) = G(oo) + kßAao)al + 2-1^2a
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where

»JfcA*
(9. 13) lim G23   = Ga>>al>Ctoao  =   bhkOtoOtO,

,= 00

the last equality holding because of the linearity of the functions Ta(a) and

Ti2(a). Because of the relation (9.19) and the formula (9.11) for the integrand

of ¿*(C3) we have

(9.14) ¿*(C3) - ¿*(C„) = Mi(75) + 2-1*,¿23

where ¿1(7) is the first variation (2.13) of ¿(C) and

¿*3 = G2q + f   \F2q + 2(vq - %q)Biq)dt.
J 0

In view of Lemma 5.4 we have ¿1(7,) =0. Moreover by virtue of (9.8), (9.10),

and (9.13) we have

lim ¿23 = ¿2(70).
Q— 00

Combining this relation with (9.14) and ¿i(y3)=0 we see that (9.2) holds,

as was to be proved.

As an interesting consequence of the result just proved we have the follow-

ing lemma.

Lemma 9.2. If H (a, y, p) is an admissible function of the form

H = 8(a, y, ¿)¿V

where 8 is of class C", then

lim kq    Í    EH(aq, y3, pq, yq)dt = 0.
3=oo       J 0

In order to prove this result observe that the only properties of ¿(C) used

in the proof of the last section were that its first variation ¿1(7) on Co van-

ished for every admissible variation 7. The function ¿(C) = fcHdt also has

this property. Hence Lemma 9.1 is applicable in this case also. Moreover,

since <^ = 0on Co we have in this event

2Q(t, a, v, ir) = 8&(t, a, V, ir)&(t, a, r,, ir).

Hence by (6.7) and Lemma 9.1 we have

¿*(G) - ¿*(Co) *
lim ——-^ = 2-1J2(y0) = 0.
,= 00 k2

The lemma follows from this relation, the equations ¿(C3) =¿(G) =0, and

the familiar formula ¿(C3) -¿(G) =¿*(CS) -J*(Co)+EF(Cq).
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Lemma 9.3. There exists a constant N>0 such that

(9.15) 0 ^ lim inf k~¡*E*L(Ct) ^ lim sup jC¿*(G) < N.
g=j ao q= ao

For suppose the multipliers /° = 0, l', mß(a, y) have been chosen as de-

scribed in Condition A for Co. Then by the use of the inequality (5.8), the

equation

¿(G) - ¿(C„) = ¿*(G) - J*(Co) + ¿*(G),

and the limit (9.2), it is seen that

(9.16) 2_1¿t(7o) + lim sup k~*EF(Cq) ̂  0.
fa 00

By hypothesis ¿ is ¿-dominated by F near Co on 35. Hence there exists a

constant 6>0 such that

¿!(G) ^ bE*F(Cq)

for large values of q. Consequently by (9.16) we have

(9.17) lim sup *7'¿t(C3) g-¿2(yo).
«=oo 2

Since ¿l*(C3)^0 this proves the lemma.

10. A property of EF*(C). The proof of Theorem 3.1 will be completed in

the next section. In the proof we shall make use of the following lemma.

Lemma 10.1. If F(a, y, p) is an admissible function that E-dominates 7¿ = 0

near Co on 35, then

-2 -i C 1 ....
(10.1) lim inf kq ¿*(G) è 2      1    Fpipi(vo - ir0)(i7o - irl)dt = °

a-oo «/ 0

where the arguments of the derivatives of F on the right are the values [a0, yo(t),

y0(t)] on C0.

In order to prove this result let M he a measurable subset on which the

sequence y3*(2) converges uniformly to yo*(0- F°r 2 sufficiently large we have

by Taylor's Theorem

(10.2) EF(aq, y3, pq, yq) = Aijq(t)(yq - p\)(yq - p[) (t on M)

where

If we set

Aiiq(t) =j     (1 - s)Fpipi[aq, yq, pq + s(yq - pq)]ds.
J o



1946] THE ISOPERIMETRIC PROBLEM OF BOLZA 113

(10.3) Aa(t) = 2-1i?fvk yo(0. yoW]

then

(10.4) lim Aijq(t) = Aij(t)
(-00

uniformly on Af. For convenience set

(10.5) ù = i\-*%q (ff = 0, 1,2, ■ ••).

By the use of (5.9) and (6.5) it is seen that

(10.6) f   | tq\2dt ¡g  f | Sq\Ht UN (q = 1, 2, • • • )
J M J 0

where N is a suitably chosen constant. It should be observed that by virtue

of equations (6.7) and the admissibility of 70 we have

(10.7) (&(ao, yo, po)ù = 0

almost everywhere on 0^¿¡S1.

Consider now the equation

f  AiJ/qdt=  f  AiJiCdt+ f   (Aijq - Aiùi&dt.

By virtue of the relations (10.4) and (10.6) the last integral has the limit zero

as g becomes infinite. It follows that

(10.8) lim inf   f   Aillât = lim inf   I    Ai¿¿'qdt.
5=00        J M e=4o        / m

Moreover by the use of (5.12) and the definition (10.5) of £e* it is seen that

lim   I    AißWqdt =  J    Aijtokodt.
I=oo   J if J if

We have accordingly

lim inf Aijfó'gdt =   J    Aijfóldt
(10.9) °="    Jm Jm

+ lim inf   f   Ai,(i - ío)(í« - Ú)dt.
a=oo J if

We are now in position to prove Lemma 10.1 for the case when

(10.10) /WiVè 0

along Co for every set £. Then the last term in (10.9) is non-negative. By the
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use of equations (10.2), (10.8), (10.9), and (10.4), it is seen that

lim inf kq    I    EF(aq, y„ />„ yq)dt è 2~   I    Fpipi^ôdt.
,= oo J ¡f J M

Since by hypothesis EF(aq, y„ pq, y,) ^0 almost everywhere on Ogi^l for q

sufficiently large, we have

lim inf kq 2¿*(C3) è 2 * f  Fpip,^o'dt.
,= oo ¿ M

Inasmuch as the sequence yq*(t) converges to yo*(i) almost uniformly on

O^t £1, it follows from our choice of M that this inequality also holds when

M is the interval 0&t£l. This proves the lemma for the case when (10.10)

holds.
Consider now the case when the inequality (10.10) holds on C0 subject to

the conditions <$£* = 0, the equality holding only when £ = pp. Then by Theo-

rem 3.1 in the first paper there is a function

F* = F +

such that the inequality (10.10) holds with ¿replaced by F*. Consequently

(10.11) lim inf k~2Et'(Cq) ̂ 2~X f  F^Ù-Ut è 0.
ß=oo •/ 0

But EFÎ(C) =Ef*(C)+Eh*(C), where H = 8<pß<f>ß. Hence by Lemma 9.2 the
first member of the relation (10.11) is equal to the first member of (10.1).

From (10.7) and the definition of F* it follows that the second members are

also equal. Hence Lemma 10.1 holds in this case also.

To prove the lemma as stated observe that our hypotheses imply that

(10.10) holds on Co for all solutions £ of the equations <$■£* = 0 on C0. The ad-

missible function

F* = F + e¿ (e > 0>

then has the properties described in the last paragraph. Consequently (10.11)

holds, that is

lim inf k~2[EF(Cq) + «¿Î(G)] ^ 2"1 f    (Fpipi + eLpip,)UÍdt.
,= oo o/  0

This equality must hold for all positive values of e. By the use of Lemma 9.3

k is seen that it must also hold when e = 0. This proves Lemma 10.1.

11. Completion of the proof of Theorem 4.2. We are now in position to

complete the proof of Theorem 4.2. As a first step let

(11.1) Io = 0 or 1,        l',       mß(a, y)
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be a set of multipliers with which Co satisfies condition A and let J(C) be the

corresponding function (2.12). As in §7 we write

J(C) = /*(C) + E*F(C)

and observe that E*(Co) =0 since y0 =po- We have accordingly

(11.2) /(G) - /(Co) = /*(G) - 7*(Co) + ¿*(G).

Using Lemmas 5.2 and 9.1 it is seen that

J(Cq)   — /(Co) —1   * —2    *
(11.3) lim sup—-^-= 2   /2(7o) + lim sup kq EF(Cq) ^ 0.

ff=oo Kq fl=oo

With the help of this relation we shall prove the following lemma.

Lemma 11.1. The variation 70 is not essentially null.

In order to prove this result suppose that 70 is essentially null. Then 70

is of the form

7o : al = 0,        r,o(t) = 6(t)y0(t) (Ogi^l)

where 0(0) =0(1) =0. Since |y0| =L(G) we have yo<yoi = 0 and hence

yoi7o = 0yoyo + oyoi'o = ¿7(G) •

Combining this result with (8.1) it is seen that 6 is a constant and hence

that 6 is linear in t. Since 0(0) =0(1) =0 we must have 0 = 0. Consequently

70 is of the form

70: oil = 0,       770 = 0 (0 ^ / g 1).

It follows that the quantity J*(yo) appearing in (11.3) is zero and since

E*(Cq) ^0 for large values of q we must have

lim Jfe72¿*(G) = 0.
fl = 00

Since we can suppose, by virtue of condition A' for Co, that the multipliers

(11.1) have been chosen so that F(a, y, p) ¿-dominates L(p) = | p\, it follows

that there is a constant b > 0 such that

E*L(Cq) g bE*F(Cq)

for large values of q and hence that

(11.4) lim kq2E*L(Cq) = 0.

This result also could be obtained from the inequality (9.17). Using the for-

mula (8.3) it is seen that
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(11.s) 1¡mr(c.)-x(c,)_o
«-•« kq

Consider now the identity

I % - PA* = \L(Cq) - ¿(Co) |2 + 2L(Co)EL(pq, yq)

which follows from the relations |y„| =¿(C,), \p„\ =¿(Co), and the formula

\p\EL(p,y) = \y\\p\ - y*/>*.

If the terms of this identity are divided by k2, then in view of the relations

(11.4), (11.5) and

yo = Po,      yq — pq= kq(r¡q — Tq)

it is found that

lim   j     |ij, - ir,|2áí = 0.

But

ir, | dt./| )}, - irq | dt =   I     | 17, | dt — 2 I    ir3(i73 - ir3)¿¿ —   I
o J 0 •'0 •'0

Hence using (6.5) and (6.9) we have

lim   f    U|2 = 0.
,= oo   J o

On the other hand by virtue of (5.9) and (5.10) with ao* = J7o< = 0 it is seen that

lim   f    U,|2=l.
,—oo    J  0

In view of this contradiction y0 cannot be essentially null, as was to be proved.

Lemma 11.2. If Co satisfies condition A with the multipliers (11.1) and ¿2(7)

is the second variation of the function ¿(C) determined by these multipliers, then

the inequality ¿2(70)^0 holds.

For by the use of Lemmas 9.1 and 10.1 and the formulas (11.2) and

/> 1 .        i
Fpipi(t]o — iro)(vo — ir0)dt

a

it is seen that

¿(G) - ¿(Co)
lim inf -Ï-2-l_i ^ 2-^2(70).

K
In view of (11.3) we have accordingly ¿2(70) ^0, as was to be proved.
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By virtue of Lemmas 8.1, 11.1 and 11.2 it is seen that the variation y0 has

the properties described in Theorem 4.2. This theorem is therefore established.

Theorem 11.1. Suppose that for every admissible variation y, that is not

essentially null, there exists a set of multipliers /° = 0, /", mß(a, y) with which Co

satisfies condition A' and for which the inequality J2(y) >0 holds, where J2(y) is

given by (2.18). Then there is a neighborhood ft of Co in ay-space containing no

admissible arc Ct* Co-

lt should be observed that the hypotheses of this theorem are satisfied

if we replace/(a, y, p) and g(a) by f=0 and g = 0, respectively. This is be-

cause / and g enter the hypotheses only in the combination l°f, l°g and Io is

zero anyhow. After this replacement we can assume that 1° = 1. Then by

Theorem 4.1 we can select a constant e>0 and a neighborhood ft of C0 in

ay-space such that

0 = 1(C) - /(Co) è min | t, eK(C, G) |.

Since K(C, Co) is not negative this implies that it is zero and hence that C is

identical with Co.

12. Sufficient conditions for a weak relative minimum. A theorem analo-

gous to Theorem 4.1 holds for a weak relative minimum. The arc Co will be

said to satisfy the condition A0 with a set of multipliers

(12.1) Z°èO,        l',       mß(a,y)

if the following conditions hold: the functions mß(a, y) are of class C; the

Euler-Lagrange equations (2.14) and the transversality conditions (2.15) are

satisfied along Co, the function F(a, y, p) given by (2.11) is such that

(12.2) ¿„V'xV'èO

holds along Co for all solutions tc of the equations </>pi7r* = 0. If in addition the

equality in (12.2) holds only in case iri = py0i, then Co will be said to satisfy

the condition Ao'.

We have the following theorem due essentially to McShane(u).

Theorem 12.1. Let Co be an admissible arc satisfying the conditions de-

scribed in §2 and having associated with it a set of multipliers (12.1) with which

it satisfies the conditions A0'. If for every admissible variation y, not essentially

null, there exists a set of multipliers (12.1) with which Co satisfies condition A0

and is such that J2(y)>0, where J2(y) is the second variation (2.18) of the corre-

sponding function J(C), then there is a neighborhood SRo of the elements (a, y, p)

on Co and a constant e > 0 such that the inequality

(12.3) 1(C) - /(Co) è tK(C, Co)

holds for every admissible arc C in 9io-

(") Loc. cit. p. 349.
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Here it is understood that an arc

C: a,        y(t) (fi S t á ñ

is in 9îo if the element [a, y(t), y(t)] is in dto for almost all values of / on

OgiiSl.
It should be observed that in Theorem 12.1 no generality is lost if the

condition A0 is replaced by condition A0'. This follows because if the multi-

pliers (12.1) are chosen related to Co and a variation y, not essentially null,

as described in the theorem, and if Io ̂ 0, I, m(a, y) is a set with which Co

satisfies condition A0', then for a suitably small constant o the arc Co will

satisfy the condition Ao' with the multipliers

Vs + bï°,       I' + b'l',       m?(a, y) + bmB(a, y)

and have ¿2(7) >0 for the corresponding second variation (2.18). Thus condi-

tion Ao' can be assumed to hold throughout. In view of Theorem 3.1 of the

first paper the corresponding function F(a, y, p, I, m(a, y)) weakly ¿-domi-

nates L(p) = I p\,/", <pß near Co on 35. Delete from 35 all the elements (a, y, p)

which are not in the neighborhood dto occurring in the definition of weak ¿-

dominance. On the remaining set, which we again call 35, the functions ¿,/*

and <pß are ¿-dominated by F near C0. Consequently, by Theorem 4.1 we can

diminish dto, if necessary, so that the inequality

7(C) - /(Co) è min  | e, eK(C, G) |

holds for every admissible arc C in 9î0, « being a suitably chosen positive con-

stant. If 9îo is taken small enough we have K(C, Co) <1, so that (12.3) holds.

This proves Theorem 4.1.

As an analogue of Theorem 4.3 we have the following theorem.

Theorem 12.2. // Co satisfied the hypotheses described in Theorem 12.1,

there is a neighborhood dto of the elements (a, y, p) on Co suck that for every

neighborhood g of Co in ay-space there is a constant p > 0 such that the inequality

(12.4) 1(C) - /(Co) > p

holds for every admissible, arc Co in dto having on it a point (a, y) that is not in %.

For let dto and e be chosen as described in Theorem 12.1. For a given %

choose p so that 2p is the greatest lower bound of eK(C, Co) for all arcs C

in dto that are not in %. Clearly p>0. The relation (12.4) then follows from

(12.3) and the relation eK(C, G) >p.

This proves Theorem 12.2.

The University of Chicago,

Chicago, III.


