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1. Introduction. Boole [2, p. 4l](J) pointed out a close analogy between

ordinary algebra and the "algebra of logic," now called Boolean algebra.

Both have operations of addition and multiplication which are commutative

and associative; both have a 0 for addition and multiplication and a 1 for

multiplication; in both, multiplication is distributive on sums.

The connection was first made precise by Stone [5]. Stone defined a

"Boolean ring" asa ring in which aa=a, and showed that this implies a-\-a = 0

and ab=ba. He showed that by simple constructions, one could transform

Boolean algebras into Boolean rings and vice versa.

Stone and most earlier authors (see Huntington [3]) used commutative

and associative laws. In a remarkable paper [4], Newman based his develop-

ments entirely on distributivity, the existence of complements, and the prop-

erties of 0 and 1. Every such distributive, complemented algebra is the direct

sum of the Boolean subalgebra of elements satisfying a-\-a=a, and the (not

necessarily associative) Boolean subring of elements satisfying(2) a-\-a = Q.

During lectures on Boolean algebra, but using stronger postulates, G. D.

Birkhoff independently discovered Newman's decomposition theorem. Our

discussion of this in the summer of 1944 led to the results presented below.

As Newman's postulates are independent (cf. J. London Math. Soc. vol. 17

(1942) pp. 34-47 and vol. 14 (1944) pp. 28-30), we have been unable to
weaken them. However, we have been able to make large parts of his argu-

ment much shorter and simpler, at the cost of a weak additional postulate

(P3' below), added to those of his Theorem lb. We show that one need only

apply Boole's method of expansion [2, p. 151], systematically.

We first show (§2) that the postulates are left-right symmetric by a new

and simple argument. We then show (§3) that the existence and properties

of "even" elements follow from more general considerations than those of

Newman, and give (§4) a simplified proof of his decomposition theorem. In

§5, we give a new set of postulates for distributive lattices; in §6, we give an
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P) Numbers in brackets refer to the Bibliography at the end of the paper.

(2) It is easily shown that any "idempotent" ring (in which aa = a for alio) satisfies a +a = 0

and ab = ba; the proof of [5] applies to the nonassociative case. Conversely, in any such ring,

o + l is a complement of a. Finally, any idempotent and commutative multiplication table for

basis-elements defines an idempotent ring (cf. L. E. Dickson, Algebras and their arithmetics,

Chicago, 1922, p. 22); the idempotence follows from the binomial theorem and commutativity.

3



4 G. D. BIRKHOFF AND GARRETT BIRKHOFF [July

entirely novel approach to postulates for Boolean algebras and (associative)

Boolean rings. Finally, in §7, we show that in addition to the "metamathe-

matical" principles of duality and left-right symmetry, only three postulates

are needed for Boolean algebras and three for distributive lattices—but that

two are not quite enough.

2. Postulates; first deductions. Consider any system with two binary op-

erations which satisfies the following postulates:

PI. a(b+c) -ab+ac. PI'.  (a+b)c=ac+bc.

P2.   31, such that ai =a for all a.

P3.   30, witho+0 = a. P3'. 0+a = a.

P4. To each a corresponds at least one a', such that aa' = 0 and a-\-a' = 1.

That is, multiplication is distributive on sums, we have a multiplicative right-

unit, an additive zero, and right-complements. We shall now show that multi-

plication is idempotent, that complementation is involutory and unique, that

right-complements are left-complements, that the multiplicative right-unit is

also a left-unit, and that the additive zero is also a multiplicative zero. The

postulates which are superfluous in each proof are listed to the right of the

statement of the result.

Tl. aa=a. (Cf. [4, p. l].) (without PI', P3').

Proof. a=ai =a(a-\-a') =aa+aa' =aa + 0=aa.

T2.  (a')'=afor all a and (a')'. (Cf. [4, p. 3].)

Proof.
(a')' = 0 + (a')'(a')' by P3', Tl

= a'(a')' + (a')'(a')' = (a' + (a')')(a')'

= \(a')' = (a + a')(a')' = a(a')' + 0 by P4

= 0 + a(a')' = aa' + a(a')' = a(a' + (a')')

= a-1 = a.

Remark. Without using P2, we have shown that (a')' =a(a')' =a-l.

Corollary 1. a'a=0 and a'a = \.

Corollary 2. If ab=ac=0 and a + b=a+c = l, then b = c; complements

are unique.

For if a ' is any complement of a, b = ( (a ') ') ' = c.

Corollary 3. 1 -a =<z, for all a.

Proof. 1 -a = (a+a')a=aa+a'a=a + 0=a.

T3. a0 = 0-a = 0, for alia.

Proof.   0=aa'=a(a' + 0)=aa'+a0 = 0+a0=a0,   and   0=aa'= (0+a)a'
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= 0a'+aa'=0a'+0 = 0a', all without using P2. But by T2 every element is

a complement; hence 0a'=0 for all a implies 0a = 0 for all a.

Corollary. 7/0 = 1, then 0 = 0+0 = 0+a0 = 0+a-l =a-l =a; hence all

elements are equal.

Remark. By T2, Corollary 1, which is symmetric to P4, and T2, Corol-

lary 3, which is symmetric to P2, we now have complete left-right symmetry

in the properties of addition and multiplication.

An easier way to guarantee this would of course be to substitute the com-

mutative laws ab=ba and a + b=b+a for PI' and P3'.

3. Even elements. We now define 1 + 1=2, 2+2=4, and call the left-

multiples yl of 2 even elements. This is the opposite of Newman's usage. We

note that by PI, P2 and Tl alone, 4 = 2 + 2=2-1+2-1 =2(1 + 1) =2-2 = 2;
also, by definition, 4 = (1+1) + (1 + 1).

T4. An element x is even if and only if it is additively idempotent: x-\-x=x

(without PI', P3').

Proof. Clearly y2+y2=y(2 + 2) =y2; conversely, if x=x+x, then x=xl

+*-l=*(l+l)=;c2.

T5. Any multiple xt or ux of an even element x is even.

Proof. If x=x+x, then xt = (x+x)t = xt+xt and ux=u(x+x) = ux+ux ior

all t, u.

T6. The correspondence x—*x-\-x=x2 is an idempotent endomorphism; that

is, (x+y)2=x2+y2, (xy)2 = (x2)(y2), and (a:2)2=:e2 (without P3').

Proof. By PI', (x+y)2=x2+y2. Again, (x2)2=x2+*2=x(2 + 2) =x2 by
PI, P2, Tl. Finally, by PI, PI', P2, Tl

(*2)(y2) = (x + x)(y + y) = (x + x)y + (x + x) y = (xy + xy) + (xy + xy)

= ((xy)2)2 = (xy)2.

It is a corollary of T6 that the even elements form a subalgebra, in which addi-

tion is idempotent.

We remark that T4-T6 not only do not require P3', but only require

P3-P4 insofar as they are needed to prove Tl. That is, T4-T6 are valid in

any system with idempotent multiplication and a right-unit, in which the

distributive laws PI—PI' are valid. These considerations are developed further

in §7.

4. Direct decomposition theorem. Now let 2' denote the right-comple-

ment of 2, so that 2-2' = 0, 2 + 2' = 1 ; we shall call the left-multiples of 2',

odd elements. Using the results of §2, it is easy to obtain a direct decomposi-

tion theorem.
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T7. The odd elements are the additively nilpotent elements. More precisely,

the conditions x=y2', x=x2', #+:*;= #2=0 are equivalent.

Proof. If x+x = 0, then x=x(2 + 2') = #2+*2' = 0+x2'=x2'. If x=x2',

then x=y2' trivially, all without P3. Finally, y2'+y2'=y(2' + 2')=y(2'-2)
=3*0 = 0 by T2, Corollary 1, and T3. We remark that T7 follows if we have a

right unit 1, a right-additive and right multiplicative zero, right distributivity,

and left-complements.

T7'. Any multiple of an odd element is odd.

Proof. If x-\-x = 0, then xt+xt = (x+x)t = 0t = 0, and ux+ux = u(x+x)

= «•0 = 0 for all t, w, by PI, PI', T3.

T8. Any system satisfying PI, PI', P2, P3, P3', P4 is the direct union of
the subalgebras of even and odd elements.

Proof. Consider the correspondences z—»(22, 22') = (x, y) and (x, y)—>x-\-y.

If x is even and y is odd, then

(x + y)2 = x2 + y2 = (* + x) + 0 = x by PI, T7, P3,

(x + y)2' = x2' + y2' = (x + x)2' + y = y by PI, P3',

since (x-{-x)2' —x2'-\rx2' =x(2'-\-2') =xQ — Q. Conversely, for any z, z2 is even

and z2' odd, and 2 = 2-1 =z(2 + 2') =2-2+22'. Hence the correspondences are

one-one and reciprocal. Further, (2+21)2 =22-f-Zi2 and (2+21)2' =22'+Zi2';

hence addition is component-by-component. Finally,

(x + y)(xi + yi) = (xxi + xyi) + (yxi + yyi) by Pl-Pl'

= (xxi + 0) + (0 + yyi) as shown below

= xx! + yyi by P3-P3'.

(To show that xyi =yxi — 0, note that xyi and yxx are both even and odd by T5,

T7'; while if u is both even and odd, then w = w+w = 0 by definition and T7.)

Hence multiplication is also component-by-component, xxi being even and

yyi odd by T5, T7'.
We can now prove that the even elements form a Boolean algebra, while the

odd elements form a (not necessarily associative) ring, in which multiplication

is commutative and idempotent. But as we have nothing to add to Newman's

proof, we shall not repeat his argument(3).

5. Postulates for distributive lattices. Instead, we shall give a new proof

that the even elements form a Boolean algebra, which will yield as a by-

product a new set of postulates for distributive lattices. By confining our-

selves to even elements, we have the additional postulate

(s) One can show successively 0 + 1 = 1+0, 0+6 = 6+0, l+(l+c) = (l + l)+c, l + (i+e)

= (l+6)+e, o + (6+c) = (o+6)+c; the trick is to right-multiply respectively by 0+0', 6+6',

c+c', 6+6', a+a' and expand. Cf. [4, p. 260].
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P5. a-\-a = a.

Using this, we can show

T9. o+1-l+o-l.

Proof. By P2-T2, Pl-Pl', Tl, T4 = P5, and P3', we have

a + 1 = (a + l)(a + a') = (aa + la) + (aa' + 1«')

= (a + a) + (0 + a') = a + a' = 1.

By symmetry (§2), we get l+a = l.

We shall now show that any system which satisfies Pl-Pl', P2-P2', Tl,

and T9 is a distributive lattice with 1. It is a corollary that the even elements

in any system satisfying Pl-Pl', P2, P3-P3' and P4 form a Boolean algebra

(complemented distributive lattice). We shall prove the usual postulates for

a distributive lattice as a chain of identities.

T10. a+a = a.

Proof. By P2, T9, PI, Tl, and with P5, we have a =ol = a(a + l) =aa+a-l

= a-\-a.

Til. abJra=a-\-ab=a-\-ba=ba-{-a=a.

Proof, a+a-1 =a(& + l) = aô+al = ab-]-a. The other proofs are entirely

similar.

T12. a(a + b) =a(b+a) = (a+b)a = (b+a)a =a.

Proof. a(a-\-b) = aa-\-ab=a-\-ab = a, by PI, Tl, Til. The other proofs are

entirely similar.

T13. a+b=b+a.

Proof. By T12, PI, PI', T12, we have

a + b = a(b + a) + b(b + a) = (a + Z>)(ô + a)

= (a + 6)6 + (a + ¿)a = 6 + a.

T14. a[(a+6)+c] =a, b[(a+b)+c] =b, c[(a + b)+c] =c.

Proof. By PI, T12, and Tl, we have

a[(a + b) + c] = a(ö + Z>) + ac = a + ac = ö,

ö [(a + b) + c] = b(a + b) + be = b + be = b,

c[(a + 6) + c] = c(a + b) + cc = e(a + Z>) + c = c.

T15. a+(6+c) = (a + 6)+c.

Proof. a+(&+c)=a[(a + &)+c] + (è[(a + 6)+c]+c[(a + 5)+c])  by T14.
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By PI', this is [a + (b+c)][(a + b)+c]. By left-right symmetry, this can be

shown to be (a-\-b)-\-c.

T16. a+bc = (a+b)(a+c) and ab+c = (a+c)(b+c).

Proof. By Pl-Pl', Tl, T12, T15, and Til, we have

(a + b)(a + c) = a(a + c) + b(a + c) = a + (¿>a + Jc)

= (a + ia) + be = a + ¿>c.

The other identity follows by symmetry.

We now define the dual of an identity to be the equality obtained from it

by interchanging addition and multiplication. Thus Pl-Pl' and T16 are

dual; Tl and T10 are dual; Til and T12 are dual. Since the proofs of T13

and T15 involve only these laws, it follows that dual proofs can be made to show

T17. ab=ba.

T18. a(bc) = (ab)c.

But Tl, T10, T17, T13, T18, T15, T12, T13, and Pl-Pl' are the usual
postulates for a distributive lattice; this completes our demonstration.

Remark. 1. Since the postulates for a distributive lattice are self-dual, it

follows that T16, P3-P3', a0 = 0a = 0, and T10 are postulates for a distribu-

tive lattice with zero.

Remark 2. Just after T12, we can easily show that the conditions a-\-b=a,

b-\-a=a, ab = b, and ba = b are all equivalent to each other—and hence define

a = & in a self-dual manner. We can show a^a, that a^b and b}Za imply

a = b. But we need T15 or T18 to prove transitivity.

6. Subdirect decomposition theorem. We shall now use an entirely differ-

ent and shorter argument to characterize the most general direct union of a

Boolean algebra and an associative Boolean ring.

Theorem. The most general algebra satisfying Pl-Pl', P2-P2', P3, P4,

and P6, (ab)c = (ac)(bc), is a direct union of a Boolean algebra and an associa-

tive Boolean ring.

Proof. Each identity is valid in every homomorphic image of an algebra A,

if it is valid in A. It is also valid in the direct union A @B, if it is valid in A

and B individually. Hence it is valid in any subdirect union (in the sense of

[l ]) of algebras in which it holds. It follows, by the principal conclusion of

[l], that all consequences of these identities which hold in every subdirectly

irreducible algebra satisfying them, hold in every algebra satisfying them.

But now observe that (by definition) every correspondence x—*xa of an

algebra A is an endomorphism, if and only if Pi', P6 hold.

Lemma 1. Any algebra which satisfies Pl-Pl', P2-P2', P3, P4, P6, and

contains an element a not 0 or 1, is subdirectly reducible.
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Proof. Since the correspondences x—*xa, x^>xa' are endomorphisms (PI',

P6), the correspondence x—>(xa, xa') is a homomorphism of A onto a sub-

direct union. Since xa=ya and xa'= ya' imply (P2, P4, PI)

x = xl = x(a + a') = xa + xa' = ya + ya' = y(a + a') = yl = y,

this homomorphism is an isomorphism. Again, by Tl, aa=a and by P2',

la=a (a9¿l), while a'a' =a' and la'=ö' similarly, where a' = l would imply

0=aa' =al=a, contrary to hypothesis. Hence both endomorphisms deter-

mine proper congruence relations, and A is subdirectly reducible.

Lemma 2. The only algebras consisting of 0 and 1 which satisfy Pl-Pl',

P2-P2', P3, P4, P6 are the Boolean algebra of two elements and the Boolean ring

of two elements.

Proof. By P2, P2', P3, we have

(1) 01 = 10 = 0,    1-1 = 1,    0 + 0 = 0,    1 + 0=1.

Since 0 + 0 = 0, 0'cannot be 0 and must be 1. This gives, by P4,

(2) 0+1 = 1.

Again, 0-0 = 1 would imply the contradiction

1 = 0-0 = (10)0 = (10)  (00) (by P6) =01 = 0;

hence 0-0 = 0. The only sum or product not determined is 1 + 1; the possibili-

ties 1 + 1=1 and 1 + 1=0 give the two cases mentioned in Lemma 2.

Corollary. Any algebra satisfying Pl-Pl', P2-P2', P3, P4, and P6 is a

subdirect union of Boolean algebras and Boolean rings of two elements.

It is a further corollary that addition and multiplication are commutative

and associative, and indeed that all the results of §§2-4 hold.

Remark 1. We can replace P2' by 0a = 0 in the preceding argument: in the

proof of Lemma 1, 0a'=aa'=0, where 0^a, and (a')(a')' = 0 = 0(a')', where

a' = 0 would imply a=<z+a'=<z + 0 = l, hence x—>(xa', x(a')') subdirectly re-

duces A. In Lemma 2, 1-0 = 0 is lost in (1); but since 1-1 = 1, 1'^ 1, hence

l'=0and 1 0 = 1  l'=0 still holds.
Remark 2. Thus replacing P3' in §2 by P6 and P2' or 0a=a effectively

guarantees that the odd elements form an associative ring; otherwise it has no

effect.
Remark 3. We can prove analogous results for systems satisfying PI, P2,

P3', T9, P6, ab+c = (a+c)(b+c), (a + c) + (b + c) = (a+b)+c and the com-

mutative law of multiplication. By assumption, the correspondences x—>xa

and x—»#+a are endomorphisms, for all a. Again, a = (1 • l)a = (laj(la) =aa.

It follows that if xa =ya and if x+a =y+a, then
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x = xl = x(l + a) = x + xa = xx + xa = #(a: + a) = a;(y + a)

= xy + cca = yx + y« = y(x + a) = y (y + a) = y.

Thus the correspondence x—>(xa, x+a) is a isomorphism. Again ía=aa and

0+o=a=a(l + l) =a+a; hence any system containing an a¿¿0, 1 is sub-

directly reducible. And the only system of 0 and 1 satisfying our postulates

is a distributive lattice.

7. Self-dual and symmetric postulates; counterexamples. We have al-

ready observed that the laws of Boolean algebra are left-right symmetric for

addition and multiplication (§2, Remark), and self-dual under interchange of

addition and multiplication (§5, Remark 1). Thus they are invariant under an

octic group of symmetries(4). The same remark applies to distributive lattices.

This suggests introducing the group of symmetries on the postulates as a

"metamathematical" postulate, and seeing how few other postulates are re-

quired. It is evident that the following three are sufficient for Boolean algebra:

PI. a(b + c)=ab+ac. P2. a\=a. P4. a+a' = l.

For we get PI, PI', P2, P3, P3', P4 immediately, and from Tl, by dualization,

we get a-\-a=a.

This easy success suggests trying to see whether PI, P2, and their trans-

forms under the octic group of left-right symmetries and duality do not con-

stitute a sufficient set of postulates for a distributive lattice. In fact, one can

prove directly that

1 = 0 + 1 = (0-1) + 1 = (0 + 1)(1 -+1) = 1(1 -f- 1)

= 1-1 + 1-1 = 1 + 1,

by the dual-symmetric P3' of P2, P2, the dual-symmetric of PI, P3' again,

PI, and P2 respectively. Multiplying through by a (using P2), and dualizing,

we get idempotence:

(1) a + a = a,       aa = a.

Furthermore, consider the "free algebra" generated by 0, 1, a. Let s, *i, sz, ■ ■ ■

denote generically sums of terms 1 and a, and p, pi, p2, • • • denote dually

products of terms 0 and a. We can prove by induction that all elements other

than 0, 1, a are such sums or products.

Indeed, from the cases s = l and 5= a, it follows by induction since

a(s+si)=as+asi and a+a=a that

(2) as = sa = a,   whence   a -\- p — p -\- a = a,

(4) This is in accordance with the philosophic principle that "The final form of any sci-

entific theory T is (1) based on a few simple postulates, and (2) contains an extensive ambiguity,

associated symmetry, and underlying group G, in such wise that . . . T appears nearly self-

evident in view of the Principle of Sufficient Reason." (G. D. Birkhoff)



1946] SYSTEMS LIKE BOOLEAN ALGEBRAS 11

by duality. We shall now prove that

(3) sp = ap = pi (s ^ 0, 1).

Indeed, ap=ap, (s + l)p = sp+p=ap+pp (by induction and (1)) =(a+p)p

= ap by (2), and (s+s')p—sp+s'p=ap+ap (by induction) =ap by (1).

This completes the proof of (3). By duality, we get

(4) s + p = s + a = si (i F« 0, 1).

Since 5+j = 55=í and p-\-p—pp=p, we have a homomorphism of the "free

algebra" onto the system with five elements 0, 1, a, s, p and the rules of opera-

tion described by PI, P2, (l)-(4) and their left-right symmetric and dual

transforms. This self-dual and symmetric image algebra however satisfies PI,

P2; hence PI, P2 and their transforms do not constitute a set of postulates for

distributive lattices. (Though by §5, PI, P2, and T9 and their transforms do.)

An even more simple counterexample consists of two elements: 0 = 1 and a,

with identical addition and multiplication tables given by:

00 = 0 + 0 = 0,

0a = a0 = 0 + ö = a + 0 = aö = a + a = a.

In this system, addition and multiplication are idempotent, commutative,

and associative; all distributive laws hold; 0 is an additive and 1 a multi-

plicative unit; a is a multiplicative zero and additive unity. Moreover by

forming the direct product of it and the Boolean algebra of two elements, we

can make O^l.

It would be interesting to determine what were the different elements of

the form s and p in the "free" self-dual and symmetric algebra generated by a

(with 0 and 1) subject to PI and P2.

It would also be interesting to determine the independent subsets of the

postulates (for distributive lattices) generated by Pi, P2, T9 and their trans-

forms under the octic group of left-right symmetries and duality.
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