ON THE ERGODIC THEOREM

BY
NELSON DUNFORD AND D. S. MILLER

Introduction. The purpose of this note is to show that for transformations
in a Lebesgue space L(S) (where S has finite measure) of the type Tf =f(¢t)
(where ¢ is a map of S into all or part of itself, not necessarily one-to-one and
not necessarily measure preserving) the pointwise convergence of

1 n—1
To(f, 8) = — 20 f#)
7 ym0
is a consequence of its mean convergence and that its mean convergence is
equivalent to the statement

n—1
> leve|l = Klel, n=1,2---,
=0

where K is independent of the measurable set ¢in S and ¢¢ is the set of those
tES for which ¢’t&e. We have also proved an analogous theorem for a meas-
urable n#-parameter semi-group of transformations in S. This result, for =1,
is as follows: the pointwise convergence (almost everywhere) of

1 7
— [ 1@ re Ls),
Y Yo
is a consequence of its mean convergence which is equivalent to the statement
1 k4
—f | 672e| < M, ] e, limsup M, < o.
Y 0 y—®

Our methods are closely related to a combination of those of F. Riesz(?),
K. Yosida(?), S. Kakutani(?), and H. R. Pitt(*). The basic principle used to
get the pointwise convergence is due to S. Banach(%).

The discrete case. Let |e| be a countably additive measure defined for
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the sets e in a Borel field ¥ of subsets of a set S. We suppose that SE¥ and
|S | < . The symbol L(S) will be used for the Banach space of real summable
functions on S. The symbol ¢ will be used for a mapping of S into itself and
we shall assume

(1) ¢SCS,

(2) p~lecFifec,

(3) |¢~te] =0if |¢| =o0.
Here the symbol ¢—!¢ stands for the set of all tE.S for which ¢tEe. It is not
assumed that ¢ is one-to-one. Let T be a transformation in the linear class of
real functions on S defined by Tf=g, g(t) =f(¢t). In general when dealing
with transformations on function classes we shall find it convenient to use the
symbol T°(f, t) for the value of Tf at the point ¢. Thus T'(f, t) =f(¢t).

THEOREM 1. The first two of the following statements are equivalent and either
one implies the third.
(4) Thereis a constant M such that

ln—l
— > | ¢7ve| = M| e, eEF,n=12---.
n

r=0

(5) For every fEL(S) we have TfEL(S) and

1 n—1

— 3" T’f converges in L(S).

N y=0

(6) For every f in L(S) the limit

1 n—1
lim — 3 f(¢"0)
n—o N =0

exists for almost all tE S.

LeMMA 1. The following three statements are equivalent.
(@) If fEL(S) then TfEL(S).

(b) T is a continuous linear operator in L(S).

(c) There is a constant K such that |¢~'e| <K|e|, e€F.

To see that (a) implies (b) it will suffice to prove that T is closed (). Let
f*—f, Tfr*—>g in L(S). There is a subsequence f*¢ with f*(¢)—f(t), T(f*, ¢t)
=fri(¢t)—g(t) almost everywhere in S. Since ldf“el =0if |e| =0 (3) we have
fri(pt)—f(pt) for almost all t. Thus Tf =g in L(S) and so T is closed and hence
continuous. If T is continuous there is a constant K such that | Tf| < K|f].
If we let f be the characteristic function of a set e the preceding inequal-
ity yields (c). Hence (b) implies (c). Assuming (c) and letting f(£) => a(e;, t)
where e; are disjoint sets in ¥ and ¥/(e) is the characteristic function of e, we
have

(%) S. Banach, Théorie des opérations linéaires, Warsaw, 1932, p. 41.
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1771 [ | fo0 |t < E il | 67| < K 51

Thus T is continuous on a dense subset of L(S). Let T be the unique continu-
ous extension of T to the whole space L(.S). Choose a sequence f* of step func-
tions (finitely-valued measurable functions) such that fr»—f in L(S), f(t)
—f(t), T(f~ )>T(f, t) for almost all tES. Clearly T'(f*, t) =f*(¢t)—f(¢t) for
almost all ¢ and so T'(f, ) =f(¢t) almost everywhere. This proves that
TfEL(S) and shows that (c) implies (a).

Occasionally in what follows we shall write T,.f for (1/%)D_3-3 T’f. We shall
always use the symbol ¥(e) for the characteristic function of e.

LeEMMA 2. The transformation T is a continuous linear aperator in L(S) with
| Tu| bounded if and only if (4) holds.

Suppose that T is a continuous linear operator in L(.S) with l Taf l =M I f | ,
FEL(S). By placing f=y(e) in this inequality we obtain (4). Conversely using
(4), first with n=2, we find that |¢“e| s(2M-1) |e| which shows in view
of Lemma 1 that T is a continuous linear operator in L(S). If f is a step func-
tion defined by the equation f(f) =Y aa(e;, £), with e; disjoint, we have

{1 1
ITof| £ 2| - > stlf(ee, ¢rt)dt
=0

ln—l
= EIml;Eolr'e-l =M|fl|.

Since T'» is continuous in L(S), | T.| S M.

A set LoCL(S) is said to be weakly compact if for every sequence frEL,
there is a subsequence f*¢ and an fEL(S) such that x*f*i—x*f for every linear
functional x* defined on L(S).

LeEMMA 3. A set LoC L(S) is weakly compact if and only if there is a constant
K such that |f| SK, fELo, and

l‘1112’ f .f(t)dt = 0 uniformly for f € L,.

The proof of this lemma has been given elsewhere(?).
LEMMA 4. Statements (4) and (5) are equivalent.

Assuming (5) we see first by Lemma 1 that T is a continuous operator in
L(S). The convergence of T'f implies (using the principle of uniform bounded-
ness(®)) that | T j is bounded. Hence from Lemma 2 we conclude that (5)

(") N. Dunford, 4 mean ergodic theorem, Duke Math. J. vol. 5 (1939) pp. 635-646.
(8) S. Banach, loc. cit. p. 80.
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implies (4). We now assume (4) and let Lo (L1) be the set of f&EL(S) for which
the sequence {T of } is weakly compact (convergent). It is clear that Lo, Ly
are linear manifolds in L(S) with L,CL, and that (since (4) implies the
boundedness of | Ta|) Li is closed. It is also clear from Lemma 3 that every
bounded function in L(S) belongs to Ly and hence L, is dense in L(S). Thus
to prove (5) it will suffice to show that LyCL;. Let I be the set of gEL(S)
for which Tg=gand = (I —T)L(S). Since T,g=gforg&EM, l T,.l is bounded
(Lemma 2), and T.(I—-T)f=(1/n)(I—T")f—0, we see that ¢(N)M =0 and
M P c(N) CL, (where ¢(N)is the closure of N). Now let f& Loand choose n;and
gEL(S) so that T, f—g weakly. Since (I—T)T,f—0 we have g=Tg="T,g
EM. The vector h=f—g isin ¢(N). To see this we suppose the contrary and
pick a functional x* with x*2=1, x*RN=0. Since I-T"h=(I—-1)k
+{I-T)Th+ - - - +(I-T)ThEN we see that x*h=x*T h=x*T,k,
n=1, 2, - - -, and hence that 1=x*h=x*T,h=x*T, f—x*g—0, a contra-
diction. Thus we may say that an arbitrary fEL, is of the form g-+#% where
g2EM, hE€c(N). Since MBc(N) CL, we have proved that LyCL; and com-
pleted the proof of the lemma. During the course of this proof we have es-
tablished the fact that if (4) holds then
(7) Mdc(N)=L(S)

which will be needed later.

LEMMAS. Leta >0,m 21,7, 2a,n=0,1, - - - ,and
1 2=
- rin 2= @, =4y 14"
ol<1:sl)mpzr+ P n=0,1,2
Then

n—1
lim inf-l—z:r, Za
n—w 7 y=0
Fix n >m, n,=0, and p; such that 0 <py<m and D_"3'7,1n, Sap:. Let
m1=p; and choose p such that 0 <p, <m and »_21! Trim =02, Let no=p14pa
and choose ps such that 0 <ps; <m and }_%'7, .., = aps. Continuing in this way
we arrive at an integer ¢ such that n—m<n,<n, n,=2 {_,p;, 0 <p:<m,

Ztsl’vi—w—xga?' (=1, ---,9.Thus
ln— 1 ne—1
—Ynz= Zr,z—'za(1—— ,
7 y—0 n y=0 n n

which proves the lemma.

For the statement of the next lemma it will be convenient to introduce
the following notation: fo=TWf, fu(t) =l.u.b.ogngmfa(t), F(t) =1.u.b.ogncwf(?),
ea=E.[fu(t) >, ea=lim,..e% e=E.[f(t)= =]. Clearly F.()1f(t), iTe,
—8. [f(t) >e], and e. |e.

LEMMA 6. If (4) holds then for every fEL(S) the corresponding set e has
measure zero.
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We may and shall assume that f(¢£) = 0. Fix the integer m=1 and the posi-
tive number a. Define

*) g() = ¥lea, Df(E) + ap(@, 9),

where {/(e) is the characteristic function of the set e. In view of Lemma 4
there is a continuous linear operator E in L(S) with T,h—Ek, h&L(S). Note
that if 0 SA(t) <f(¢) then 0 =S h,(t) <fa(t) and 0= E(h, t) S E(f, t) for almost all
tES, and hence | Ek| <| Ef|. This fact together with (*) gives

(**) | Eg| <| Ef| + o| Ey(e)].

Now f(t) =f.(f) from which it follows that f(£) <g() and hence that fa(f)
<gn(t). If for some integer # and €S we have ¢ Ce™, then gn(¢™t) = fm(d™t)
>a. On the other hand if ¢" €&} then gn(p™) = g(d™t) =a so that ga(¢™)2a,
teS,n=0,1, - - - . We may thus apply Lemma 5 with r, =g(¢"t) to see that
lim inf,..g.(f) . It follows at once from (**) and Fatou’s lemma that

af S| = lim fsgn(t)dt= |Eg| < | Ef| + a| Ev(ea) |.

Since ¢(&")—yY(€.) and E is continuous we see from the above inequality,
by letting m— o, that I S| <a~!| Ef| +| E¢(2.)| . By letting a— we obtain
ISI = lExI/(é')I. Since 0<y/(¢, t) <1 we have 0SE(Y(&), t) =1 almost every-
where and hence |Ey(8)| =|S| which proves that |EY(?)| =|S|. Thus
E@Y(2), t) =1 almost everywhere on S. Now 1=E(1)=E®Y(2), ) +EW¥(e), ?)
almost everywhere and hence E(Y(e), £)=0 almost everywhere, that is,
Ey(e) =0. Now since

1 1
s Jarr(t) = — 1)
n n

fa(9?) =

we see that tE€e if and only if ¢¢Ce. This gives eCep~'eCe and hence e=¢'e
=¢~’e,v=1,2, - - - . Thus we have

n—1

1 1 n—1
0=|Epe)| =lim | — X (e)(d)dt = lim — 3| ¢7e| =] e],
noo Jg N om0 now N ymo

which completes the proof of Lemma 6.
Let M(S) be the complete linear metric space of real finite measurable

functions on S with (f, g) = If—gl where Ifl =fslf(t)|dt/(1+|f(t)|).

LEMMA 7. Let A\2DA;D - - - be denumerable sets of elements and for each
YEA, let T, be a continuous linear transformation from L(S) to M(S). If

(a) for fEL(S), Lubgen| Ty(f, t)| < =, for almost all tE S, and

(b) for each f in a dense set in L(S)
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lim sup T,(f, £) = lim inf T,(f, ¢), for almost all t € S
n 7EA, n 1EA,
then

(c) the equation appearing in (b) holds for every fEL(S).

This lemma is due essentially to S. Banach(®). The proof given here is due
to S. Mazur and W. Orlicz(*?) and the formulation which is a bit more com-
plicated than that of Mazur and Orlicz is a modification of one suggested by
Federer. The more complicated formulation is not necessary for the discrete
case of the ergodic theorem discussed here but will be convenient in the dis-
cussion of the case of a flow dependent on a continuous parameter.

Let 41, 2, - + - be an enumeration of the elements in A,. Let V.,(f, )
=lub.agmsga| Tya(f, £)|. It is clear that V, is a continuous function on L(S)
to M(S) and that V,f—Vf, fEL(S), where V(f, t) =L.u.b,e | T,(f, £)|. Let
Ly, k=1, 2,---, be the set of f&EL(S) for which l (1/k) V,.fl <e¢/2,
n=1, 2, - - -. Since V,f converges for every f&EL(S) we have L(S)=) L;.
Since the functions V, are continuous the set L; is closed and hence by the
Baire category theorem there is a k¢ and a sphere with center f, and radius
r >0 which is contained in L, This means that

1 €
_Vn(f0+f)‘§_, n=l,2,---;|fl§r,
ko 2
and hence
1 1 1
—Vaf | S| Valfo+ 1) +I—ano Se¢ |flSrn=1,2---.
kO ko ko
Thusif § =7/k¢ we have
: 1
[Vl =[5, kot | S =125 00 S8,
0

and | Vf| <e, |f| 8. Let W be defined on L(S) to M(S) by the equation
W(f, t) =lim sup T,(f,#) — lim inf T,(f, ¢);

n vEAn n 7EAn
then | W(f, t)| <2V(f,t) and hence | Wf| 2| Vf| <2¢,| Vf| < 8. Thisshowsthat
W is continuous at the origin. But it is easily verified that l W(f,t)—W(h,t) |
SW(f—h, t) and hence | Wf—Wh| <|W(f—h)|, which shows that W is
everywhere continuous. By the hypothesis (b), Wf=0 for f in a dense set in
L(S) and so Wf=0 for all f in L(S), which proves the lemma.

LeMMA 8. Let T, 1=1, 2, - - «, be a continuous linear operator on L(S) to
M(S). If

() See footnote S.

(1) S. Mazur and W. Orlicz, Uber Folgen linearer Operationen, Studia Mathematica vol, 4
(1933) pp. 152-157.
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(a) for fEL(S), Lu.b. 15ice | Ti(f, t)| < o for almost all tES, and

(b) for f in a dense subset of L(S) the lim ., Ti(f, t) exists almost everywhere
on S,
then

(c) for every fEL(S) the lim;..Ti(f, t) exists almost everywhere on S.

This is a corollary of Lemma 7 and may be proved by taking A, in Lemma
7 to be the set of all integers 7 Zn.

LEMMA 9. Statement (4) implies statement (6).

By Lemma 6, Lu.b..| Tu(f, £)| < o for almost all ¢ and hence for every
FEL(S) the sequence f(¢"t)/n=f(t)/n—(I—T)T.(f, t) is bounded almost
everywhere. On the other hand, f(¢")/n—0 if f is a bounded function. Thus
Lemma 8 shows that T'.(k, ) converges almost everywhere for every k of
the form (I—=T)f, that is, for every hERN. Clearly T.(g, t) =g(f) converges
almost everywhere for every gE IR, that is, every g for which Tg=g. Thus
T.(f, t) converges almost everywhere for fEM+N. Such f are by equation
(7) dense in L(S) and hence the desired conclusion follows from Lemma 6 and
Lemma 7.

This completes the proof of Theorem 1.

The case of a continuous flow. Here R will stand for those points
(M, * ¢+, Aa) in Euclidean #z-space for which A\; 20, i=1, - - -, n, and for
brevity we write X for (A4, + - -, N,). For each AER there is a transformation
¢* on S which satisfies (1), (2), (3), and

(8) ¢A+”t = ¢x¢“tn % = ¢, te S; A€ R,

(9) for every e€ ¥ the set of points (A, £) ERX.S for which ¢p*tEe is a meas-
urable subset of RXS.

(10) If the dimension #» 22 it is assumed that ¢*¢Ce, AER, for every set
eE ¥ with the property that ¢*¢Cé AER.

The postulate (9) will assure (Lemma 10) the (N, £) measurability of
F(@*) for every fEL(S) and in particular the N measurability of |¢“"e| for
¢ J. Thus all integrals appearing in the theorem to follow are Lebesgue in-
tegrals. We shall use the symbol C(y) for the cube composed of those AER
for which 0S\; Sy, =1, - « -, n, the symbol T,(f, ) for (1/v")[enf(¢*t)aN,
and T,f for the function T,(f, -).

THEOREM 2. The first two of the following statements are equivalent and either
one implies the third.

(11) For v >0 there is a constant M, with lim sup,y..M, < «
and

1 .
; c()|¢"e|d)\§M.,|e|, v>0,e€ ¥
y
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(12) If fEL(S) then T, fEL(S), v>0, and the lim,.,T,f exists in L(S).
(13) For every f&L(S) the limy..Ty(f, t) exists for almost all tES.

LEMMA 10. For every fEL(S) the function f(¢*t) is measurable in (\, t) on
the product space RXS.

Statement (9) proves the lemma in case f is the characteristic function of
a set e€ 7. Thus the lemma is valid for step functions. Now for an arbitrary
non-negative function fEL(S) we may choose a nondecreasing sequence fa
of step functions with f,()—f(¢), tES. Since

€ [f(¢) >a]l = 2 € [fa(¢") > a]

(W) 1 )
we see that f(¢*t) is measurable on RXS.

LemMaA 11. For every v >0, T, is a continuous linear operator in L(S) with
lim sup.,.,,l T.,I < o if and only if (11) holds.

If T, has the required properties, (11) follows from the inequality
IT.,fl s | T, | f| by placing f=y(e), the characteristic function of e, and ap-
plying the Fubini theorem. Conversely assume (11) and let f(£) =) _aa(e, 8).
Then

1
|7l = [ 170l e s Slal — [ |ovalans sl
8 Y v e
For an arbitrary non-negative f&L(S) choose a nondecreasing sequence of
step functions f, with f,.(£) —f(¢), tES. Then by Lebesgue’s theorem for mono-
tone sequences we have

1
Tofa|l— | dt— M)A\
| Tafal fs 'vﬂfa(,,f("’ f)

and since | T,fa| £ M,|fa] = M,|f|, we have the desired result. The above
argument shows that [sdtfc(y) | f(p*t) | d\ exists finite for every ¥ >0 and every
JEL(S). Thus by the Fubini theorem we have the following lemma.

LeMMA 12. If (11) holds then for every fE L(S) the function f($p>t) is integrable
over SXC(v), v >0, and f(Pp*) is integrable in X on C(v), v >0, for almost all
tES.

LeEMMA 13. If (11) holds then limy..To(I—T,)f=0 for every vo >0 and
every fEL(S).

In view of Lemma 11 we have lim supy..| Ty(I—Ty)| < « and so it will
be sufficient to prove that T, (I —T,,)f—0 if f is a non-negative bounded func-
tion, say 0=<f(¢) <K, tES. Let k(t) =f(t) — To,(f, t), then
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1
T,’ h, = a\ 4\ A4 dy
(9 (vyo* f clnw) cm ) = f&p)]
1
= dx » y — » v |,
(rro)™ Y e [ Axf(d’ he fof(sb 0 ]

where A\=C(Y)—C(Y)A+C(), Ba=QA+C()—CHA+C()), and
A+ C(v) consists of all vectors of the form A+u where u € C(y). The integrals
Ja,, [5, appearing above are continuous positive functions of X on C(v,) and
will assume maximum values at certain points A1, Az in C(7o) (A1, A2 may of
course depend upon 7). Thus

1 1
(14) EXCTIER f S fB 10

and so | Twk| K|S| (| An| +|Brs|) /y*—0.
LEMMA 14. Statements (11) and (12) are equivalent.

If (12) holds then by the principle of uniform boundedness we must have
lim sup,..| Ty| <  and hence Lemma 11 gives (11). Conversely assume (11)
or equivalently lim sup,..| T,| < . Let L, consist of those f& L(S) for which
the set T,,.f, for every sequence y;— =, is weakly compact in L(S). Just as be-
fore we see (Lemma 3) that the bounded functions in L(S) are in L, and
hence that L, is dense in L(S). Let L, consist of those fEL(S) for which the
lim, ..., T,f exists in L(S). Since lim sup,..| Ty| < © we conclude that L, is a
closed linear manifold in L(S). Clearly LiCL, and so to prove (12) it will be
sufficient to show that L,CL,. Let fEL, and choose y;— «, g&L(S) such
that T, f—g weakly. Let I consist of those g EL(S) for which T,g=g, ¥ >0,
and let M be the linear manifold determined by all vectors of the form
(I-Tyf,v>0, fEL(S). Now T,T, f—T,g weakly and hence, by Lemma 13,
x*(g—T,g) =limx*T,,(f— T,f) =0, which shows that g&M. The vector
h=f—g is in ¢(N), for if x* is any functional vanishing on N we have
x*f=x*T,f, v >0, and hence x*f=x*g, x*h=0. Thus we have shown that
every fELy, may be written as f=g-+k where gEIM and EEc(N). Clearly
Lemma 13 together with the fact that lim supy..|7T,| <« implies that
T,h—0 for every h&c(RN) and so LyCL, which proves the lemma. We have
incidentally established the fact that if (11) holds then

(15) L(S) =MD c(N).

LEMMA 15. Let v\ >0 be defined for almost all N\E C(v,o). Then among the
cubes N+ C(v») there are a finite number which are disjoint and whose union has
measure exceeding K.vs where K, is an absolute constant depending only on the
dimension n of R.
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This is analogous to a covering theorem due to N. Wiener(!!) and the
proof may be made by following Wiener's argument.

LEMMA (1) 16. Let >0, 8 >0, r(\) =0 and integrable on every C(y). Fur-
thermore, for almost all N ER, let either

@ r\) 2 e
or
(ii) Lu.b. —!- r(\ + p)dp = a.

<ys8 YV e
Then

1
lim inf — r(A\)d\ = aK,,
1o Y*J o)

where K, is the absolute constant of Lemma 15.
Since for almost all AER,
1
lim — r(X + wdu = r(N),
=0y J ey

we may assume that (ii) holds for almost all A&ER: Let € >0 and choose v >8.
Then for almost all A& C(y —pB) there is a v with 0 <y, =8 and

f rO\ 4 w)dp = (@ — 7
C(7))

By Lemma 15 there are points \i&C(y—8), i=1, - « +, k, with s+ C(ma))
-\ C(ny)) =0, i%jand

k k
Slcn) =Xz Ky — 8" .
jum1 =1

Now

Ll ozt rout i

T Jem 7" =1 e
1 k " n
g F E (a - e)‘Yx, ; K’l(a - G)(‘y - ﬁ) /‘.y"
=1 '

By letting y— « we obtain

1
lim inf — r(A\)d\ = Ky(a — ¢€)
e Y e
(1) N. Wiener, The ergodic theorem, Duke Math. J. vol. 5 (1939) pp. 1-18.
() This lemma was proved in the 1-dimensional case by H. R. Pitt,loc. cit.
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and since € >0 was arbitrary the proof is complete.
The next two lemmas will employ the following notation

f‘r(t) = T‘V(fv t)v fﬂ(t) = l'“‘b‘ f’l(t)v f(‘) = l°u'b' f'v(t)'
<y Sp

<<
c=8[.f(t)= °°]v e1=€[limsupf.,(t)= °°]’
¢ t -
=E[fot) >al, = lime
¢ B
Clearly e=1lim op€a.

LeMMA 17. Let fEL(S), f(£) = 0. Then ¢p*e1Cer, ¢e1Ceifor \ER.
The proof of this lemma is the only place where (10) is used. Let tE2&;; then

f@rhdy (1 + ﬂ)"mw»

1
S = —
v Y

s+C(1
where | pl =maxig ;s,.l u;I , and so ¢*& C &, uER, which shows that ¢—*e,Ce;.
Statement (10) gives (for n=2) ¢#e;Ce. Now let n=1 and let ¢Ce;. We have

1 y+u
1) = 10+ — [ g@iar = e,
Yy

where €, =y~1[4f(¢"t)dv—0 as y— . Thus ¢**Ee; and ¢p*e;Cer, uER.

LemMA 18. If (11) holds then for every fEL(S) the corresponding set e, has
measure zero.

Let Ef be the point in L(S) which in view of Lemma 14 exists and satisfies
T,f—Ef. Clearly (Lemma 11) E is a bounded linear operator in L(S) with
| E| £ M. We may and shall assume that f(f) 0. Fix «>0,8>0 and define
£() = ¥(e, f(®) + (&, ). Then Eg=EW(A)f) + aEY(#) and since
0=<y(é, t)f(t) <f(t) we have |Eg| <|Ef| +a| EY(EE, t)|. By Lemma 12, for
almost all tES, f(¢™) is integrable in A on C(vy) and hence for almost all tES

lim — f(@)dp = f(#)
0 Y"J ¢y

for almost all \. Therefore for almost all :€S we have f(¢*) <fs(¢™) for
almost all \. From this fact and from the definition of g we see that for
almost all ¢, f(¢*t) S g(¢*t), for almost all N. As a result of this inequality for
almost all tES either ¢*Cef and gs(p*t) =fs(¢*) =a or $ME2E and g(p™)
=a. In Lemma 16 take r(A) =g(¢*¢) and by that lemma we conclude that for
almost all €S, lim inf,..g,(f) = Kaa, and so by Fatou's lemma

a| S| Ku S lim | g| = | Bg| S| Bf| + | B0 |.
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Dividing by « and letting first 8— » and then a— © we get
(16) 0<|S| K. x| Ep(e)| s M| (@) = M|e].

Thus the set & of points €S where f(f) < ® has positive measure. Now this
enables us to show that |e;] =0. Suppose to the contrary that |e,| >0. Since
(Lemma 17) ¢*e;Cey, ¢e1Cei, AER, we may apply the whole theory as de-
veloped for S to e; and obtain from (16) the contradiction 0 < | e:| K < M| e:2]
=0.

LeMMA 19. If (11) kolds then for every fEL(S) and vo&R and k(t) =f(t)
—fxo(t) we have lim,..h,(t) =0 for almost all tE S.

In view of Lemma 13 it will be sufficient to prove that lim, A4, (f) exists
almost everywhere. We have, from Lemma 18, that lim supy..| 4,(?) |<  for
almost all tE€S. From (14) we have for positive bounded functions f and
hence for all bounded functions f that lim...k,(£f) =0, tES. Let A . consist of
all rational numbers 4 Zm. For every fEL(S) the function A,(¢) is defined
and continuous in v for almost all £ and hence, for every fEL(S), sup,c a,kq(2)
=SUpy2mhy () and inf,e 4, by (t) =Inf 2k, (t) for almost all tES. The desired
conclusion then follows from Lemma 7.

LeMMa 20. If gEL(S) and T,g=g for every v >0 then there is a null set
SoC.S such that g, () =g(t), vy >0, tES—S,.

By hypothesis there is for each ¥ >0 a null set S(y) such that g,(¢) =g(¢),
tES—S(y). Let Sy=2_S(v) where the sum is taken over all rational 4. Then
2,(t) =g(t) for t&S—Syand all rational y. The desired conclusion follows from
the fact that g, (?) is continuous in 4 for every ¢ where it is defined.

LeEMMA 21. Statement (11) implies statement (13).

It is seen from (15), Lemma 19, and Lemma 20 that for every f in a dense
set in L(S) (that is, for f in M+N) the lim, f,(¢) exists almost everywhere.
Also for every fEL(S) (Lemma 18) we have lim supy..|fy(t) | <  for almost
all t&€S. Thus by taking A, in Lemma 7 to be the rational y=m we have
for every fEL(S)

lim sup f,(¥) = lim inf f,(4),
m yEAm m yEAm

for almost all ¢. Since f,(t) is continuous in v for every ¢ where it is defined as
a Lebesgue integral the sup and inf appearing above may be taken over all
4 2m. This proves the lemma.

Lemma 14 and Lemma 21 together prove Theorem 2.
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