
ON THE ERGODIC THEOREM
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Introduction. The purpose of this note is to show that for transformations

in a Lebesgue space L(S) (where 5 has finite measure) of the type Tf=f(<pt)

(where <p is a map of .S into all or part of itself, not necessarily one-to-one and

not necessarily measure preserving) the pointwise convergence of

Tn(f,t)=-Ttf(<t>"t)

is a consequence of its mean convergence and that its mean convergence is

equivalent to the statement

Y.\<t>->e\SK\e\, «=1, 2, •--,

where K is independent of the measurable set e in 5 and d>~"e is the set of those

tÇiS for which <£"/£«. We have also proved an analogous theorem for a meas-

urable w-parameter semi-group of transformations in S. This result, for re = 1,

is as follows: the pointwise convergence (almost everywhere) of

— fyf(pH)d\, f<=L(S),
y Jo

is a consequence of its mean convergence which is equivalent to the statement

<j>~-xe j S My | e |, lim sup My <   °°.
y Jo y—► »

Our methods are closely related to a combination of those of F. Riesz(x),

K. Yosida(2), S. Kakutani(3), and H. R. Pitt(4). The basic principle used to

get the pointwise convergence is due to S. Banach(6).

The discrete case. Let |e| be a countably additive measure defined for
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(6) S. Banach, Sur la convergence presque partout des fonctionnelles linéaires, Bull. Sei.
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the sets e in a Borel field J of subsets of a set S. We suppose that S G J and

\S\ < ». The symbol L(S) will be used for the Banach space of real summable

functions on 5. The symbol <j> will be used for a mapping of 5 into itself and

we shall assume

(D ¿ses,
(2) 4>-leG7ifeej,
(3) \d>-xe\ =0 if |e| =0.

Here the symbol <p~xe stands for the set of all /GS for which cptÇie. It is not

assumed that d> is one-to-one. Let P be a transformation in the linear class of

real functions on S defined by Tf = g, g(t) =f(<pt). In general when dealing

with transformations on function classes we shall find it convenient to use the

symbol T(f, t) for the value of Tf at the point t. Thus Tif, t) =f(<pt).

Theorem 1. The first two of the following statements are equivalent and either

one implies the third.

(4) There is a constant M such that

— E I <t>"e | =S M | e |, e G J, n = 1, 2, • • • .
n ,„0

(5) For every f(E.L(S) we have Tf(E.L(S) and

I     71-1

— E P/ converges in L(S).
«   »-0

(6) For every f in L(S) the limit

lim — E/(*'0
71—>«     «     y=0

exists for almost all tÇzS.

Lemma 1. The following three statements are equivalent.

(a) Iff(=L(S)then TfGL(S).
(b) T is a continuous linear operator in L(S).

(c) There is a constant K such that \d>~xe\ =K\e\, eÇiJ.

To see that (a) implies (b) it will suffice to prove that T is closed(6). Let

/"-»/■ P/n-*g hi £(5). There is a subsequence fni with /"«(f)-►/(/), P(/ni, /)

=fni((pt)—*g(t) almost everywhere in S. Since |</>-1e| =0 if | e| =0 (3) we have

fni(à>t)—>f(d>t) for almost all t. Thus Tf = g in L(S) and so T is closed and hence

continuous. If T is continuous there is a constant K such that | Tf\ ^P|/|.

If we let/ be the characteristic function of a set eÇfJ the preceding inequal-

ity yields (c). Hence (b) implies (c). Assuming (c) and letting/(/) =Ea«V'(e>> 0

where e< are disjoint sets in J and \p(e) is the characteristic function of e, we

have

(6) S. Banach, Théorie des opérations linéaires, Warsaw, 1932, p. 41.
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I r/1 - f I Mt) | dt s ZI ««I I fi« \sK\f\.
J s

Thus T is continuous on a dense subset of L(S). Let T be the unique continu-

ous extension of T to the whole space L(S). Choose a sequence/" of step func-

tions (finitely-valued measurable functions) such that /"—*f in L(S), fn(t)

-»/(0. T(Sn, t)-*T(f, t) for almost all tGS. Clearly f (/», /) =/"(</>/)-*/(<*>/) for
almost all / and so T(/, /) =/(</>/) almost everywhere. This proves that

Tf(E.L(S) and shows that (c) implies (a).

Occasionally in what follows we shall write P„/for (l/n)J**ZnT'f. We shall

always use the symbol ^(e) for the characteristic function of e.

Lemma 2. The transformation T is a continuous linear operator in L(S) with

| P„ | bounded if and only if (4) holds.

Suppose that T is a continuous linear operator in L(S) with | Tnf\ S M\f\,

/£L(S). By placing f~^p(e) in this inequality we obtain (4). Conversely using

(4), first with re = 2, we find that |<£-1e| S(2M— 1) |c| which shows in view

of Lemma 1 that T is a continuous linear operator in L(S). If/is a step func-

tion defined by the equation/(/) =^,ct,Tf/(ei, t), with e¿ disjoint, we have

I Tnf\ S Z I «< | — £ f P(ei, <t>>t)dt

-El«.|-2lrv.|ssir|/|.
re ,_o

Since Tn is continuous in L(S), | P„| ^M.

A set LoQL(S) is said to be weakly compact if for every sequence/"£Zo

there is a subsequence fn< and an/£Z,(5) such that x*fn<—*x*fior every linear

functional x* defined on L(S).

Lemma 3. A set Lo(ZL(S) is weakly compact if and only if there is a constant

K such that |/| SK,f(E.Lt, and

lim    I f(t)dt = 0 uniformly for / G /-o-
|«|-K>   j ,

The proof of this lemma has been given elsewhere(7).

Lemma 4. Statements (4) and (5) are equivalent.

Assuming (5) we see first by Lemma 1 that T is a continuous operator in

L(S). The convergence of T„f implies (using the principle of uniform bounded-

ness(8)) that | P„| is bounded. Hence from Lemma 2 we conclude that (5)

(7) N. Dunford, A mean ergodic theorem, Duke Math. J. vol. 5 (1939) pp. 635-646.
(8) S. Banach, loc. cit. p. 80.
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implies (4). We now assume (4) and let £0 (£i) be the set of fÇzL(S) for which

the sequence {PrJ"} is weakly compact (convergent). It is clear that £o, £i

are linear manifolds in £(5) with £iC£o and that (since (4) implies the

boundedness of | Tn\ ) £i is closed. It is also clear from Lemma 3 that every

bounded function in £(5) belongs to £0 and hence £o is dense in L(S). Thus

to prove (5) it will suffice to show that £0C£i. Let SDî be the set of g(E.L(S)

for which Pg = gand 9Î = (7—P)£(5). Since Tng = g for gG'SR, ¡T„\ is bounded

(Lemma 2), and P„(7-P)/=(l/»)(7-P")/->0, we see that c(9*)SW = 0 and
SDî©c(9î)C£i (where c(9?)is the closure of 9Í). Now let/G£oand choose «,-and

g^L(S) so that Tnj—*g weakly. Since (I—T)Tnj—>0 we have g = Tg = Tng

GÜJ*. The vector h=f—g is in c(3i). To see this we suppose the contrary and

pick a functional x* with x*h = l, x*3i = 0. Since (I—T")h = (I—T)h

+ (I-T)Th+ ■ • • 4(7-P)P»-1ÄG9* we see that x*h=x*Tnh=x*Tnh,
« = 1, 2, • • • , and hence that 1 =x*h=x*Tnih=x*T„J—x*g—>0, a contra-

diction. Thus we may say that an arbitrary /G£o is of the form g+h where

gG2)*, hEcOSl). Since 2)î©c(9î)C£i we have proved that £0C£i and com-
pleted the proof of the lemma. During the course of this proof we have es-

tablished the fact that if (4) holds then

(7) 2»©c(9í)=£(5)
which will be needed later.

Lemma 5. Let a >0, m ^ 1, r„ ^a, w = 0, 1, • • • , and

1 p~1
l.u.b. — E r'+n ^ ", « = 0, 1, 2, ••• .

0<p¿m   p   ,_„

Then
I     7.-1

lim inf — E r» ̂  <*•

Fix n >m, «o = 0, and pi such that 0 <pi^m and E^li^'+no è**pi. Let

«i=/»!and choose pi such that 0 <p2^m and^2?J01r,+ni'^.api. Let n2 = pi+pt

and choose p¡ such that 0<p3^m and Yl^-olry-^n1'^ap3. Continuing in this way

we arrive at an integer q such that n — m^n,¿n, «9=E<-i£»'> 0 <pi^m,

YX¿r,+n{-i^api(i = \, ■ ■ • ,g).Thus

1 Ç» 1    "ÍC1 an, /        m\

«   r-O «      »-0 « \ « /

which proves the lemma.

For the statement of the next lemma it will be convenient to introduce

the following notation : /„= TJ, fm(t) =Lu.b.osnsmfn(t), f(t) =I.u.b.0s»o/n(0,

el = £t[fn(t)>a], e„ = limBw£, e = Et[f(t)= oo]. Clearly 7„(7)î/,i), enJea

= £«[/(<) >«], and ea\e.

Lemma 6. If (4) holds then for every f£L(S) the corresponding set e has

measure zero.



542 NELSON DUNFORD AND D. S. MILLER [November

We may and shall assume that/(/)^0. Fix the integer m^ 1 and the posi-

tive number a. Define

h g(t) = *(«:, o/o) + «*(£, o.
where \p(e) is the characteristic function of the set e. In view of Lemma 4

there is a continuous linear operator E in L(S) with Tnh—Œh, A£L(S). Note

that if OSh(t) Sf(t) then OSK(t) Sfn(t) and 0SE(h, t) SE(f, t) for almost all
t(ES, and hence | Eh\ S \ Ef\. This fact together with (*) gives

(**) |Pg| 3s|P/|+«|23«KO|.

Now /(/) Sfm(t) from which it follows that /(/) Sg(t) and hence that Jm(t)

Sgm(t). If for some integer re and i£5we have <£"/(Ee™, then gm(<£"/) Si/m(0n/)

>ct. On the other hand if 0"/GC then gm(<j>nt)^g(<pnt) =a so that gm(<P"t)^a,

t(ES, « = 0, 1, • • • . We may thus apply Lemma 5 with rn = g(<b"t) to see that

lim inf„,„g„(/) Set. It follows at once from (**) and Fatou's lemma that

a | 51 S lim   f gn(t)dt = | Eg \ S | Ef\ + <* \ Ep(ê") \.
n—*»   J s

Since ¡[¡(ë™)—*\p(ëa) and E is continuous we see from the above inequality,

by letting wî—> oo, that | S\ Sot-1] Ef\ +1 Etp(ëa) \. By letting a—»oo we obtain

|S| s\Ep(e)\. Since 0^(<?, t)Sl we have 0SE(p(e), /)^1 almost every-

where and hence |Ep(e)\s\S\ which proves that |Ep(e)\ = \S\. Thus

EW(ë), 0-1 almost everywhere on 5. Now 1 =P(1) =E(¿(e), t)+E(p(e), t)
almost everywhere and hence E(\p(e), Z)=0 almost everywhere, that is,

Ep(e) =0. Now since
re-1- 1 1

/~M   = -/«+l(0   - -f(t)
re «

we see that /£e if and only if «/>/£e. This gives eC#_1eC<? and hence e=<p~le

=<p~"e, v=\,2, • • • . Thus we have

/>      J   n—1 J   n—1— Z *(e)(P't)dt = lim — Z U"
3    re   rso n—»«   re   y=o

which completes the proof of Lemma 6.

Let M(S) he the complete linear metric space of real finite measurable

functions on 5 with (f,g) = \f-g\ where |/| =/s|/(/)|<i//(l + |/(/)|).

Lemma 7. Let AOA2D ■ ■ ■   be denumerable sets of elements and for each

7 G A] let Ty be a continuous linear transformation from L(S) to M(S). If

(a) forf^L(S),l.u.h.y(=Ai\Ty(f,t)\ < 00, for almost all /£ 5, and

(h) for each f in a dense set in L(S)
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lim sup T'Y(j, t) = lim inf T'Y(j, t), 1M almosl all t E S 
• 'Y.EA.. • 'Y,EA .. 

then 
(c) the equation appearing in (b) holds for every fEL(S). 

This lemma is due essentially to S. Banach(I). The proof given here is due 
to S. Mazur and W. Orlicz(lO) and the formulation which is a bit more com-
plicated than that of Mazur and Orlicz is a modification of one suggested by 
Federer. The more complicated formulation is not necessary for the discrete 
case of the ergodic theorem discussed here but will be convenient in the dis-
cussion of the case of a flow dependent on a continuous parameter. 

Let 'Yh 'YI, . •. be an enumeration of the elements in A1. Let V,,(j, t) 
=l.U.b.J:';m:.; .. 1 T'Ym(j, t) I. It is clear that V" is a continuous function on L(S) 
to M(S) and that V,.j- Vf, fEL(S), where V(j, t) =l.u.b.,EAll T,(j, t)l. Let 
L", k=l, 2,"', be the set of fEL(S) for which I (l/k)v,J1 ~E/2, 
n = 1, 2, .... Since V,J converges for every fEL(S) we have L(S) = 'L,L". 
Since the functions V" are continuous the set L" is closed and hence by the 
Baire category theorem there is a ko and a sphere with center fo and radius 
1'>0 which is contained in L",. This means that 

n = 1, 2, ..• ; I II ~ 1', 

and hence 

I II ~ 1'; n = 1,2, ...• 

Thus if lJ=r/ko we have 

I V,.f I = I :0 V"kol I ~ E, n "" 1,2, ... ; I II ~ el, 

and I vII ~E, III ~ lJ. Let W be defined on L(S) to M(S) by the equation 

W(j, t) = lim sup T 'Y(j, t) - lim inf T ,(j, t); 
• 'YEA.. .. 'YEA .. 

then I We!, t) I ~ 2 V(j,t) and hence I wII ~ 21 vII ~ 2e, I vII ~ lJ. Thisshowsthat 
Wis continuous at the origin. But it is easily verified that I W(!, t) - W(h, t) I 
~ W(f-h, t) and hence I Wf- whl ~ I W(f-h) I, which shows that W is 
everywhere continuous. By the hypothesis (b), WI=O for f in a dense set in 
L(S) and so Wf=O for all fin L(S), which proves the lemma. 

LEMMA 8. Let Ti, i=l, 2, ... ,be a continuous linear operator on L(S) to 
M(S). If 

(.) See footnote 5. 
(10) S. Mazur and W. Orlicz, 'Oller Folgen Zinearer Operationen, Studia Mathematica vol. " 

(1933) pp. 152-157. 
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(a) /or/£L(S), l.u.b. is¿<«,  | P»(/, 01 < °° for almost all /£5, and
(h) for fin a dense subset of L(S) the lim uaTi(f, t) exists almost everywhere

onS,

then

(c) for every fÇ_L(S) the lim.^^r.-f/, /) exists almost everywhere on S.

This is a corollary of Lemma 7 and may be proved by taking A„ in Lemma

7 to be the set of all integers ¿ èï re.

Lemma 9. Statement (4) implies statement (6).

By Lemma 6, l.u.b.„| Tn(f, t)\ < oo for almost all / and hence for every

f£L(S) the sequence f(<pnt)/n=f(t)/re-(I-T)Tn(f, t) is bounded almost

everywhere. On the other hand, /(<£"/)/re—»0 if / is a bounded function. Thus

Lemma 8 shows that Tn(h, t) converges almost everywhere for every h oí

the form (I—T)f, that is, for every &£9(c. Clearly Tn(g, t)=g(t) converges

almost everywhere for every g£9J?, that is, every g for which Tg=g. Thus

Tn(f, t) converges almost everywhere for/£$Dî + 9,î. Such/ are by equation

(7) dense in L(S) and hence the desired conclusion follows from Lemma 6 and

Lemma 7.

This completes the proof of Theorem 1.

The case of a continuous flow. Here R will stand for those points

(Xi, • • • , Xn) in Euclidean re-space for which X< èO, ¿ = 1, • • • , re, and for

brevity we write X for (Xi, • • • , X„). For each X£P there is a transformation

<bx on 5 which satisfies (1), (2), (3), and

(8) <p+>t = «¿y*.    <t>°t = t, tes;\,ueR,

(9) for every e£7 the set of points (X, /) £PX-S for which <pH Geis a meas-

urable subset of RXS.

(10) If the dimension re 5:2 it is assumed that #xeCe, X£P, for every set

e £7 with the property that <t>xë(Zê, X£P.

The postulate (9) will assure (Lemma 10) the (X, /) measurability of

f(4>H) for every/£P(S) and in particular the X measurability of |#-xe| for

e£7. Thus all integrals appearing in the theorem to follow are Lebesgue in-

tegrals. We shall use the symbol C(y) for the cube composed of those X£P

for which 0^X;^y, ¿=1, • • • , re, the symbol Ty(f, t) for (l/y")fc(y)f(<t>xt)d\,
and Tyf for the function T7(f, ■).

Theorem 2. The first two of the following statements are equivalent and either

one implies the third.

(11) For y >0 there is a constant M7 with lim sup7<00M7 < oo

ö«(i

— I       ¡ p-xe | d\ S My | e \, y > 0, e £ J.
ynJc(y)
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(12) IffGL(S) then TyfGL(S), y>0, and the limT.»Pr/ exists in L(S).
(13) For every fÇHL(S) the limT<00Pr(/, t) exists for almost all t£S.

Lemma 10. For every f£L(S) the function f(d>H) is measurable in (X, /) on

the product space RXS.

Statement (9) proves the lemma in case/is the characteristic function of

a set eG7- Thus the lemma is valid for step functions. Now for an arbitrary

non-negative function f(£L(S) we may choose a nondecreasing sequence /„

of step functions with fn(t) —*f(t), tG.S. Since

00

e [f(4>H) > a] = e e [/»(*xo > «]
(X.I) 1   (X.O

we see that f(4>H) is measurable on RXS.

Lemma 11. For every y >0, Ty is a continuous linear operator in L(S) with

lim sup7..w| PT| < oo if and only if (11) holds.

If Ty has the required properties, (11) follows from the inequality

| Tyf\ ^ | Ty\ \f\ by placing /=^(e), the characteristic function of e, and ap-

plying the Fubini theorem. Conversely assume (11) and let/(0 =Ea«vH*<i 0»

Then

I Tyf\ =  f  | Ty(f, t) | dt = E I «<l — f      I 4>-yet\d\ S My\f\.

For an arbitrary non-negative f(E.L(S) choose a nondecreasing sequence of

step functions/« with/„(i)—»/(2), ¿G«S. Then by Lebesgue's theorem for mono-

tone sequences we have

\Tyfn\-> fdt-f     f(4>H)d\
Ja    ynJC(.y)

and since |Py/n| ^ Af7|/n| —»il7T|/|, we have the desired result. The above

argument shows that fsdtfccy) \f((j>H) \ dX exists finite for every y >0 and every

/G£(5). Thus by the Fubini theorem we have the following lemma.

Lemma 12.7/(11) holds then for every f£L(S) the function f(d>H) is integrable
over Sy.C(y), y >0, andf(<j>H) is integrable in X on C(y), y >0,for almost all

/G5.

Lemma 13. If (11) holds then lim7,00Pr(7-Pro)/=0 for every y0 >0 and

everyfeL(S).

In view of Lemma 11 we have lim sup7,M| Ty(I— PT0) | < oo and so it will

be sufficient to prove that Ty(I— Tyo)f—»0 iff is a non-negative bounded func-

tion, say 0^f(t)=K, t£S. Let h(t)=f(t)-Tya(f, t), then
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Ty(h, t) = —— f       dkf       [f(<j>'t) - f(<f+>t)]dv
(yyo)" J C(y0)       Jciy)

= 7—— f      d\\ f f(4>'t)dv - f f(Vt)dX
(yyorJciyo)    Lv¿x JBx J

where Ax = C(y)-C(y)(K-\-C(y)), Px = (X+C(7))-C(y)(X-i-C(7)), and
X+C(y) consists of all vectors of the form X+/x where p(E.C(y). The integrals

Ja\, Jb\ appearing above are continuous positive functions of X on C(y0) and

will assume maximum values at certain points Xi, X2 in C(yô) (Xi, X2 may of

course depend upon y). Thus

(14) I Ty(h, /) I S — f    f(pt)dv + — f    f(Vt)dy,
yJAM ynJBXt

andso|PTÄ|^P|5| (|ilM| +|PXj|)/y"-^0.

Lemma 14. Statements (11) and (12) are equivalent.

If (12) holds then by the principle of uniform boundedness we must have

lim supT<00| PT| < 00 and hence Lemma 11 gives (11). Conversely assume (11)

orequivalentlylim sup^«! P7| < ». Let Z0 consist of those /£P (S) for which

the set TyJ, for every sequence 7,—» 00, is weakly compact in L(S). Just as be-

fore we see (Lemma 3) that the bounded functions in L(S) are in P0 and

hence that L0 is dense in L(S). Let Pi consist of those/£Z(5) for which the

limTJ.MPT/ exists in L(S). Since lim supr..«,| PT| < 00 we conclude that Pi is a

closed linear manifold in L(S). Clearly L1C.L0 and so to prove (12) it will be

sufficient to show that Z0CPi- Let/£Po and choose y<—» «>, g£L(S) such

that TyJ-+g weakly. Let 3JI consist of those g G.L(S) for which Tyg=g, 7 > 0,
and let 31 be the linear manifold determined by all vectors of the form

(/— T7)f, y >0, /£Z(5). Now TyTyif—*Tyg weakly and hence, by Lemma 13,

x*(g— Tyg) =limix*Tyi(f— Tyf)=0, which shows that g£5Dî. The vector
h=f—g is in c(3l), for if x* is any functional vanishing on 31 we have

x*f=x*Tyf, y >0, and hence x*f=x*g, x*h = 0. Thus we have shown that

every/£Z0 may be written as f=g+h where g£SDî and A£c(9î). Clearly

Lemma 13 together with the fact that lim sup^cl PT| <oo implies that

Tyh—r0 for every hÇ_c(3ï) and so P0CP1 which proves the lemma. We have

incidentally established the fact that if (11) holds then

(15) L(S)=3Jl@c(3l).

Lemma 15. Let y\ >0 be defined for almost all X£C(7o). Then among the

cubes X-f-C(7x) there are a finite number which are disjoint and whose union has

measure exceeding Knyô where Kn is an absolute constant depending only on the

dimension « of R.
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This is analogous to a covering theorem due to N. Wiener(u) and the

proof may be made by following Wiener's argument.

Lemma(u) 16. Let a >0, ß >0, r(X) ^0 and integrable on every C(y). Fur-

thermore, for almost all X Ç£R, let either

(i) r(X) £ a

or

(Ü)

Then

l.u.b. — f     r(\ + n)dfi à a.
0<-,S/3 ynJc(y)

lim inf — f      r(X)¿X ̂  aKn
7->»    ynJc(-,^

îfÂere P„ «5 /Ae absolute constant of Lemma 15.

Since for almost all XGP,

l   r
lim — I       r(X 4 m)^m = »"(X),
X-0 T'Jf.,,,7"^c(t)

we may assume that (ii) holds for almost all XGP: Let e >0 and choose y>ß*

Then for almost all XGC(y—/3) there is a y\ with 0<yx^ß and

/r(X 4 m)^ ^ (« — «)y*.
C(7X>

By Lemma 15 there are points X,GC(y—j8)', * = 1, • • • , k, with (X,-f-C(7x,))

•(Xi4C(7xi))=0, tVjand

E|C(yxJ.)| = E7x"èP„(7-«n .
/-l ;-l

Now

k

— f      r(\)d\ ̂ —if        r(\j + ß)dß
ynJc(y) y" ¡-i J c.(Tx3)

= - E (« - *)yy = Kn(a - e)(y - «"/t".

By letting y—* <x> we obtain

lim inf — f      r(X)dX è P»(« - t)

(u) N. Wiener, TAe ergodic theorem, Duke Math. J. vol. 5 (1939) pp. 1-18.

(") This lemma was proved in the 1-dimensional case by H. R. Pitt, loc. cit.
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and since e > 0 was arbitrary the proof is complete.

The next two lemmas will employ the following notation

fy(t)    =    Ty(f,   /), /„(/)    =    l.U.b.   fy(t), /(/)     =    l.U.b.   /,(/),
<Ky£ß 0<7<oo

e = £ [f(t) = oo ], ei = £ [lim sup/T(/) = » ],
t t     ?-"»

e„ = 6 [/?(/) > «], ea =  lim e„.
Í 0-

Clearly ««lima-.a.ea.

Lemma 17. Pe//£/,(5),/(/)k0. PAe« 0xe,Cci,^_xciCci/orX£P.

The proof of this lemma is the only place where (10) is used. Let t&i; then

Afo-0 = A f       /(*'0<7" á fl + —Va+mW.

where |/u| = maxis<s„|/ii|, and so <¡>"SiCei, ju£P, which shows that 0~"CiC«i.

Statement (10) gives (for re5:2) 0"eiCci- Now let re = 1 and let /£d. We have

1   C y+p
fy(rt)   =  /,(/)   +  — f(<b't)dp   -   Cy,

7    J  y

where e^ =y~1fof(<f>'t)dv—»0 as 7—»«». Thus 0"/£ei and «¿"CiCci, m£7?.

Lemma 18. // (11) AoWs then for every /£/,(£) /Ac corresponding set ei has

measure zero.

Let P/be the point in Z(5) which in view of Lemma 14 exists and satisfies

Tyf—>Ef. Clearly (Lemma 11) E is a bounded linear operator in L(S) with

|P| SM. We may and shall assume that /(/) =0. Fix a>0, /3>0 and define

g(t) -M, t)f(t) +o4(èt, /). Then Eg = Ety(ei)f) + aP^(gf) and since
QS>K<&, t)f(t)Sf(t) we have |Pg| g|P/| +a|P^(ê£, /)|. By Lemma 12, for
almost all / £5, f(<f>H) is integrable in X on C(y) and hence for almost all / £5

lim - f     f(4t+H)du = f(<bH)
y-oynJ C(y)

for almost all X. Therefore for almost all /££ we have f(<t>H) Sjß(<t>xt) for

almost all X. From this fact and from the definition of g we see that for

almost all t,f(<pH) Sg(4>Kt), for almost all X. As a result of this inequality for

almost all /£5 either </>x/£e£ and gs(<pH) ^Jß(4>H) ^a or «¿x/£g£ and g(<j>H)

=a. In Lemma 16 take r(X) =g(</>x/) and by that lemma we conclude that for

almost all /£5, lim infT„oogT(0 =Pn«, and so by Fatou's lemma

a|S|P„ glim \gy\ =\Eg\ s\Ef\+a\Ep(¿)\.
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Dividing by a and letting first j8—» oo and then a—* oo we get

(16) 0 < | S\ P« S | EKjg) | S M| *(*) | = M| ï|.

Thus the set ?of points ¿GS where/(i) < oo has positive measure. Now this

enables us to show that | ei\ =0. Suppose to the contrary that | Ci| >0. Since

(Lemma 17) d^eiQei, <P~xeiClei, \(E.R, we may apply the whole theory as de-

veloped for S to Ci and obtain from (16) the contradiction 0 < | ei| Kn S M\ evS\
= 0.

Lemma 19. If (11) holds then for every f(=L(S) and 7oGP and h(t)=f(t)
~fyo(t) we have \imy^Jiy(t) =0for almost all t(E.S.

In view of Lemma 13 it will be sufficient to prove that limY hy(f) exists

almost everywhere. We have, from Lemma 18, that lim supT.„| h~,(t) \< oo for

almost all iG*5. From (14) we have for positive bounded functions/ and

hence for all bounded functions / that limy^.„hy(t) =0, ¿G-S. Let A m consist of

all rational numbers y ^m. For every /G£(5) the function hy(t) is defined

and continuous in 7 for almost all t and hence, for every/G£(5), sup^gimhy(t)

= supy¡¡mhy(t) and infrgi„ÄT(/) =inf y¿mhy(t) for almost all t£S. The desired

conclusion then follows from Lemma 7.

Lemma 20. If gQ.L(S) and T7g=g for every 7 >0 then there is a null set
SoCSsuch thatgy(t) =g(t),y>0, t£S-S<>.

By hypothesis there is for each 7 >0 a null set 5(7) such that gy(t) =g(t),

t£S—S(y). Let So=^,S(y) where the sum is taken over all rational 7. Then

Zy(t) =g(t) for ¿GS—So and all rational 7. The desired conclusion follows from

the fact that gy(t) is continuous in 7 for every / where it is defined.

Lemma 21. Statement (11) implies statement (13).

It is seen from (15), Lemma 19, and Lemma 20 that for every/in a dense

set in L(S) (that is, for/ in 5DÎ49Î) the limT fy(t) exists almost everywhere.

Also for every/G£(5) (Lemma 18) we have lim supv.«|/7(/) | < 00 for almost

all /GS. Thus by taking Am in Lemma 7 to be the rational y^m we have

for every/G£(*S)

lim sup fy(t) = lim  inf fy(t),
m   T<EAffl m    yGi-m

for almost all /. Since fy(t) is continuous in 7 for every t where it is defined as

a Lebesgue integral the sup and inf appearing above may be taken over all

7 ^wt. This proves the lemma.

Lemma 14 and Lemma 21 together prove Theorem 2.
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