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Introduction

Garrett Birkhoff [l](') has shown that every complemented modular lat-

tice of finite dimension is the direct union of lattices associated with projec-

tive geometries of finite dimension. The present paper is an attempt to

generalize this characterization to the case of complemented modular lattices

and projective spaces in general, with no restriction on the dimensionality.

There is one respect in which the infinite-dimensional case is more compli-

cated than the finite-dimensional case. The general projective spaces we con-

sider are atomic; they contain points or atoms. Consequently the lattices

associated with them are atomic. But complemented modular lattices need

not be atomic, as is shown by the example of continuous geometries. Our pro-

cedure is to show that every complemented modular lattice determines a

complete atomic complemented modular lattice in which it is imbedded. This

extension to an atomic lattice is accomplished by the use of maximal dual

ideals. The resulting atomic lattice is then shown to be the direct union of

irreducible projective spaces of a particular kind. The final characterization

theorem we obtain states that every complemented modular lattice is the

subdirect union of projective planes and irreducible projective coordinate

spaces. A projective coordinate space is determined by an arbitrary cardinal

number (its dimension) and an arbitrary division ring.

This result is not as neat as Birkhoff's characterization theorem, since it

involves subdirect unions instead of direct unions. On the other hand, the

preliminary step of imbedding the original lattice in an atomic lattice (a step

which is not needed for finite-dimensional lattices, which are atomic)

promises to be of use in connection with the theory of continuous geometries.

Continuous geometries have no points, lines, or planes. It seems to have been

assumed further that it is not possible to introduce points, lines, and planes

into a continuous geometry in a reasonable way. Such an assumption would

be incorrect. The introduction is not only possible, but it has the advantage

that it allows one to associate a division ring with the continuous geometry by

the method of von Staudt. This should lead to a simpler coordinatization of

continuous geometries than the coordinatization by regular rings used by von
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Neumann [14]. I have not yet been able to show, however, that the atomic

lattice determined by a continuous geometry is irreducible, or that the divi-

sion ring associated with a continuous geometry is unique.

The present paper is divided into two parts. Part I deals with general

projective spaces. These result from merely omitting some of the postulates

for projective geometries given by Veblen and Young. In particular the postu-

late which restricts the dimensionality is omitted. It is remarkable how little

difference the omissions make. The lattice of subspaces of a projective space is

still complete, atomic, complemented, and modular, even in the infinite-

dimensional case. The von Staudt coordinatization goes through also in the

general case.

Part II deals with complemented modular lattices, and in particular with

the theory of lattice ideals. The principal results are the imbedding theorem,

and the theorem that with the obvious definition of collinearity, the maximal

dual ideals of a complemented modular lattice are the points of a projective

space.

Part I. Projective spaces

By a projective space we shall mean any system of elements called points

and of sets of points called lines which satisfy the following two postulates A

and B due to Veblen and Young [13]. (Points which are on the same line are

said to be collinear.)

Postulate A. Two distinct points are on one and only one line.

Postulate B. // the points P, Q, and R are not collinear, while the points

P, Q, X and Q, R, Y are collinear, and if X and Y are distinct, then there is a

point Z such that P, R, Z and X, Y, Z are each collinear.

Postulate A states that two distinct points determine a line, while postu-

late B states that two distinct lines of a plane determine a point.

Definitions. If a line contains only two points, it will be called degenerate.

If a projective space contains any degenerate lines it will be called reducible;

otherwise it will be called irreducible. Given any collection K of mutually dis-

joint projective spaces, a new projective space called their direct union may

be defined as follows: The points of the direct union D are all the points of

the different spaces that make up the collection ; the lines of D consist of all

the lines of these spaces, and in addition all degenerate lines which can be

formed by taking two points, one from each of two distinct, and hence dis-

joint, spaces of the collection K. It is easily verified that D satisfies the postu-

ates A and B, and is therefore a projective space.

1. Decomposition into irreducible spaces. The following theorem is due

to Garrett Birkhoff [2] and was proved also by Karl Menger [10].

Theorem 1. Every projective space is either irreducible, or is the direct union,

in a unique way, of irreducible projective spaces.
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Proof. Let us call two distinct points P and Q of the projective space S

equivalent, and write P~Q, if the line PQ is not degenerate (that is, if it con-

tains at least three points). It is easily seen from postulates A and B that this

relation of equivalence is symmetric, reflexive, and transitive. Hence it deter-

mines a partition of the space 5 into disjoint equivalence classes. It is then

easy to verify that these equivalence classes are irreducible projective spaces,

whose direct union is S, unless 5 itself is irreducible, in which case there is

just one equivalence class. Conversely, if 5 is the direct union of irreducible

projective spaces, then two points of S are equivalent if and only if they are

in the same irreducible space. Hence the decomposition of S into irreducible

spaces is unique. These irreducible spaces are called components of S.

2. The lattice of subspaces. With each projective space we now associate

a lattice in the usual way.

Definition. A set of elements of a projective space S is called a subspace

of 5 if it contains all points collinear with any two of its points. It follows that

any subspace of a projective space is itself a projective space. In particular a

set consisting of a single point is always a subspace.

Theorem 2. The collection of all subspaces of a projective space is a complete

lattice, if the lattice order relation is taken to be the relation of set inclusion be-

tween subspaces, and the operation of lattice meet is taken to be the operation of

set intersection.

Proof. It is sufficient to show that the set intersection, or common part,

of any collection, finite or infinite, of subspaces of a projective space is itself

a subspace. But this follows immediately from the definition of subspace.

3. The join theorem. The lattice meet of two subspaces is their intersec-

tion. It will now be shown that the lattice join of two subspaces is their join

in the sense of projective geometry.

Theorem 3. If A and B are two distinct and non-empty subspaces of a projec-

tive space S, then the lattice join A KJB in the lattice of all subspaces of S consists

of all points on lines of S which contain two distinct points, one from A and one

from B.

Proof. Consider first the case where S is irreducible. The join AKJB is

the smallest subspace of 5 containing both A and P. Hence A \JB necessarily

includes the set / consisting of all points on lines joining points of A to differ-

ent points of P. If J is itself a subspace, it must coincide with A KJB, which

is to be proved. Hence we must show that J contains all points collinear with

two of its points. Let Cs be any point of 5 collinear with two points Ci and

Cj of J. Then Ci is collinear with points Ai and Pi of A and B, and C2 is col-

linear with points ^42 and P2 of A and P. It must be shown that C3 is collinear

with points A3 and B3 of A and P. If the four points .41, Pi, Ai, P2 are coplanar

(that is, if they lie in the subspace determined by three of them), it follows
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directly from postulate B that either line .<4iG or line PiG contains points of

both A and P.

Otherwise the four points .4i, Pi, A2, P2 determine an ordinary projective

three-space S3, and the conclusion follows from well known properties of such

a three-space (for instance, see Veblen and Young, Projective geometry, vol. 1,

pp. 20-25). For the planes AiA2C3 and PiP2Cs of S3 intersect in a line L which

contains the point G and which meets the line AiA2 in a point .4s and which

also meets the line PiP2 in a point P3. Hence G is collinear with points A3.

and B3 of A and B respectively, which was to be proved.

The case where the space S is reducible can be treated in a similar way.

If the seven given points Ai, Pi, G, ^42, P2, G, and G are distinct, it follows

from the transitivity of the equivalence relation that they all lie in the same

component of S, and the proof is as before. On the other hand, if there are

any coincidences among the seven points, the conclusion follows directly from

postulate B. In other words, this case can be handled by plane geometry,

without the use of theorems about three-space. This completes the proof.

4. The second join theorem. The join of an infinite number of subspaces

has also a simple characterization.

Theorem 4. In the lattice of subspaces of a projective space S, the join of an

infinite collection K of subspaces of S consists of all points which belong to the

joins of finite subcollections of K.

Proof. The set of points described in the statement of the theorem is a

subspace of S, since a point collinear with points of two finite joins P and P'

is a point of their join FKJF', which is itself a finite join. It is clearly the

smallest subspace which includes all subspaces of the collection K, and is

therefore the join of K.

5. The lattice of subspaces is complemented and modular. To show that

the lattice of subspaces is complemented requires the use of Zorn's lemma,

although modularity is proved as in the finite-dimensional case.

Theorem 5. The lattice L of all subspaces of a projective space S is comple-

mented and modular.

Proof. To prove modularity, it must be shown that (X\JY)f~\Z^X

yj(YC\Z) provided X^Z, where X, Y, and Z are subspaces of S. Let u be

any point of (JU Y)C\Z; then u is in ZW F and also in Z. By the join theo-

rem, u is collinear with points x and y of X and Y. Now u is in Z, and x is

also in Z since X^Z. Hence y, being collinear with x and u, is also in Z, since

Z is a subspace. Therefore y is in YC\Z. Consequently u is collinear with a

point x oi X and a point y of YC\Z. Hence u is in X^J(YC\Z), which was to

be proved.

We now show that the lattice L of subspaces of S is complemented. Let A

he any subspace of S. If A is the entire space S, then it has a complement.
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namely the empty subspace of 5. Otherwise there are points, and hence non-

empty subspaces of S, which are disjoint from A. Consider the collection K

of all subspaces of 5 which have no point in common with A. By Zorn's

lemma, the collection K contains a maximal subspace P. For if H is any sub-

collection of K the members of which are simply ordered by set inclusion,

then the set union of all sets of 77 is also in K, since it is disjoint from A and is

also a subspace of 5. We shall show that this maximal element B is a comple-

ment of A.

It is clear that A (~\B = 0, since B is in K. To prove that A and P are com-

plements, it must also be shown that A\JB=S. However, if A WP were dis-

tinct from S, there would exist a point P of S not in A KJB. Then B\JP would

be disjoint from A, and B would not be maximal in K. For if B\JP contained

a point Q of A, then by the join theorem Q would be collinear with P and a

point P of P. Then P would be collinear with points Q of A and R of B, hence

P would be in the subspace A \JB, contrary to assumption. This contradiction

completes the proof.

6. Projective coordinate spaces. We shall now show how to construct an

irreducible projective space PS(a, D) of arbitrary dimension a, with coordi-

nates from an arbitrary division ring D.

Let a be any cardinal number, let T be a set of elements of cardinal num-

ber a, and let t be a variable ranging over the set T. Let D be any division

ring. We shall call a function d(t) a coordinate function if:

(1) the function d(t) is defined over the set T.

(2) The functional values of d(t) are in the ring D.

(3) The function d(t) is not identically zero, but d(t) =0 except for a finite

set of values of t.

Here the symbol 0 stands for the zero element of the ring D.

If d(t) is a coordinate function, and r is any nonzero element of the ring 77,

then rd(t), obtained by multiplying all the functional values of d(t) on the left

by r, is also a coordinate function.

If d(t) is a coordinate function, then we shall define the point P of the

space PS(a, D) belonging to the function d(t) to be the set of all coordinate

functions rd(t), where r is in D and ry*0. Since D is a ring, it is clear that P

belongs likewise to all the other coordinate functions of the set P, and that P

is determined by any one of its coordinate functions.

Three points P, P', P" of PS(a, D) will be called collinear if they have

coordinate functions d(t),d'(t), d"(t) respectively such that d(t)+d'(t)+d"(t)
= 0.

Theorem 6. The space PS(ct, D) is an irreducible projective space.

Proof. If we define a line to be the set of all points collinear with two dis-

tinct points, it is easy to see that postulate A for projective spaces is satisfied.

To show that postulate B is satisfied, let P, P', P" be three noncollinear
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points with coordinate functions d(t), d'(t), d"(t) respectively, and let Q with

coordinate function rd(t)+r'd'(t) be on line PP', and Q' with coordinate

function r'd'(t)+r"d"(t) be on line P'P". If Q and Q' are distinct, r and r"

are not both zero. Then rd(t) —r"d"(t) is not identically zero, and is therefore

the coordinate function of a point Q" which is on line PP" and also on line

QQ''. Hence postulate B is satisfied.

The projective space PS(ot, D) is irreducible, since the line joining the

distinct points P and P' with coordinate functions d(t) and d'(t) always con-

tains at least a third point P" with coordinate function d(t) —d'(t).

7. Coordinatization of projective spaces. It has been shown in Theorem 6

that every projective coordinate space PS(a, D) is an irreducible projective

space. We now consider a sort of converse of this theorem. Is every irreducible

projective space a coordinate space PS(ct, D) ? Obviously not, since it is well

known that there exist projective planes which are peculiar and cannot be

coordinatized by rings [9]. With this single exception, however, a converse of

Theorem 6 can be proved. The proof is complicated, since it involves the in-

troduction of a coordinate system into an infinite-dimensional space.

Theorem 7. Every irreducible projective space is either a projective plane or is

isomorphic to a projective coordinate space PS(a, D).

Proof. Suppose S is an irreducible projective space which is not a projec-

tive plane. We shall now define what is meant by an independent set of points

of S. A finite set of points of S is said to be independent if no point of the set is-

in the join of the other points of the set. An infinite set of points / of S is-

said to be independent if every finite subset of / is independent. Referring to

the second join theorem (Theorem 4) it is seen that a set of points, finite or

infinite, is independent if and only if it is true that no point of the set is in the

join of the other points of the set.

In order to construct a coordinate system in S, we need to have a maximal

independent set of points of S, to serve as the vertices of a coordinate simplex.

It follows from Zorn's lemma that such a maximal independent set of points

of S exists. For consider the collection K of all independent sets of S. The set

union of any linearly ordered subcollection H of the collection K is clearly an

independent set, and is therefore in K. The hypothesis of Zorn's lemma is

verified, hence the conclusion holds, namely, that there exists a maximal set

T in K, that is, a maximal independent set T of points of S.

Let a be the cardinal number of the set P. We shall call a the projective

dimension of the space S. If a is finite, it is one greater than the ordinary

dimension of S.

Select a particular point t0 of T. The set complement T—to has a join Ha

in the lattice of subspaces of S. It is easily verified that Ho is a complement

of the subspace to in this lattice. Furthermore 7/0 is a maximal element of the

lattice, and is called a hyperplane.
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Since the points of T are to be the vertices of a coordinate simplex, we

wish the lines to^Jta joining /0 to the other points ta of T to be coordinate

axes. Hence it is necessary to set up a scale on each such line. We first select

arbitrarily on each line to^Jta a third point ta' distinct from f0 and t„. This

is possible since the space 5 is irreducible. Call tá the unit point of line

to^Jta. Let h be a particular point of T distinct from t0. The plan is to set up

a scale on line to^Jh, and then to project this scale onto the lines t0KJta so that

unit points correspond, and so that the point h corresponds to point /„.

Let tí be the unit point of line to^Jta. We may now define a division ring

D whose elements are all the points of the line t0KJti except point h, in such

a way that t0 is the zero element of D, t{ is the unit element of D, while h

is the "infinite point" of the line. This can be done by the method of von

Staudt (see Veblen and Young, Projective geometry, vol. 1, pp. 141-167) pro-

vided 5 contains a projective three-space S3 containing the line to^Jh. Except

in the trivial cases where S consists of a single line or of a single point, S will

contain such a three-space, since by assumption 5 is irreducible and is not a

projective plane.

This division ring is the ring D of the space PS(ct, D) we are to construct.

It determines a coordinate system on the line to^Jh, whereby to each point P

of the line to^h other than h there is assigned as coordinate the point P

itself, considered as an element of the ring D.

We now set up also on each other coordinate axis toOta a scale or coordi-

nate system by means of a perspectivity projecting the points of toUh, and

hence the elements of the ring D, onto the points of the line to^Jta, so that the

point h goes into the point /„, while the unit point tí goes into the unit point

/„'. This perspectivity has its center at the point (tAJta)í\(tí\Jtá), which is

in the hyperplane 770.
Now let P be any point of S not in 770. By the second join theorem, P is

in the join of a finite independent subset Tn of points of T which we shall

call the points to, h, • • ■ , tn. We wish to assign a coordinate function d(t) to

the point P, where / ranges over the set T, and the function d(t) takes values in

the ring D. We define d(t) to be zero if t is not one of the points to, • • • , tn.

We define d(t0) to be 1, the unit element of the ring D. If i is one of the sub-

scripts 1, 2, ■••,«, we define d(U) to be the coordinate on /0V7/¡ of the point

(i, U tAJ . . - KJ /,-_! UPU ti+i U---UOA(ioU h).

In other words, we assign to each point in the finite-dimensional projective

space determined by the finite set Tn a set of coordinates in the usual way.

On the other hand, if P is any point of the hyperplane 770, then P is in

the join of a finite independent set of points h, &,•••, tn of T other than i0-

Let Q be any point of the line to<JP other than to or P. Since Q is not in 770,

a coordinate function d(t) has already been assigned to it. In terms of this

coordinate function d(t) of the point Q, we define a coordinate function d'(t)

for the point P so that d'(t0) = 0, while d'(t) =d(t) if t is distinct from t0.
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In this way every point of S has a coordinate function assigned to it. By

multiplying each such coordinate function d(t) on the left by all nonzero ele-

ments r of the ring D, we get a set of coordinate functions of the form rd(t),

which set is by definition a point of the projective coordinate space PS(ct, D).

Thus each point of the space S has been set into correspondence with a point

of the space PS(a, D). It remains to show that this correspondence between

projective spaces is an isomorphism.

To show this, let P, Q, and R be three distinct points of the space S. They

lie in the join /of a finite number of points h, h, ■ ■ ■ , tn of the maximal

independent set T. This subspace / is an ordinary projective space of finite

projective dimension re, and our coordinate functions were assigned to points

of J in the same manner that ordinary projective coordinates would be as-

signed to these points, considered as points of J rather than of S. Hence the

condition, in terms of coordinates, that the three points P, Q, and R be col-

linear in S is the same as the condition that the corresponding points of

PS(a, D) be collinear. Likewise distinct points of / have linearly independent

coordinates in J, and hence have disjoint sets of coordinate functions assigned

to them in PS(a, D).

This shows that the spaces S and PS(a, D) are isomorphic, and completes

the proof of Theorem 7.

Corollary. Every projective space is either a projective plane, or a projective

coordinate space PS(a, D), or a direct union of spaces of these two types.

Part II. Ideals in complemented modular lattices

It has already been shown (Theorem 5) that the lattice of subspaces of

a projective space is complemented and modular. We now wish to show that

every complemented modular lattice determines a projective space ïn whose

lattice it is imbedded. To do so we shall first imbed the given complemented

modular lattice in an atomic lattice by the use of ideal theory. We first derive

some results concerning atomic lattices. In dealing with lattices we shall as-

sume a familiarity with Garrett Birkhoff's book Lattice theory, and we

shall make use of the notation and terminology of that book.

8. Atomic lattices. By an atom or point of a lattice with a zero element

is meant a minimal nonzero element, that is, an element that covers the zero

element. A complemented modular lattice will be called atomic if correspond-

ing to every nonzero element A of the lattice there exists at least one atom P

such that PSA. By the representative set r(A) of an element A of a comple-

mented modular atomic lattice L is meant the set of all atoms P of L such that

PSA.

Theorem 8. Every element A of a complemented modular atomic lattice is

the join of the elements (atoms) of its representative set r(A).

Proof. If A is the zero element of the lattice, its representative set is
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empty, and the join of the elements of this empty set is A, by the usual con-

vention. Otherwise A is ore upper bound of the elements of r(A). We must

prove it is the least upper bound. Suppose it is not; let B be an upper bound

and B <A. Since the lattice is complemented and modular there exists a rela-

tive complement C of P in A ; then A =B\JC, PnC=0, C^O. Since the lat-
tice is atomic, there is an atom P such that PSC Then PSA, since CSA.

Hence PÇ_r(A), and PSB, since P is an upper bound of the elements of r(A).

But this is impossible since BC\C = 0. This completes the proof.

9. The representation of complemented modular atomic lattices by sets.

The following theorem generalizes some well known results on Boolean alge-

bras.

Theorem 9. The representative sets of a complemented modular atomic lat-

tice L form a lattice isomorphic to L, with set inclusion as the lattice order rela-

tion, and set intersection as the operation of lattice meet.

Proof. We first show that r(AC\B) =r(A) /\r(B), where the symbol A de-
notes set intersection (or logical product). If the atom P is a member of

r(AC\B), then by definition PSAC\B. Hence PSA and PSB; it follows
that PGr(A) and P&(B), and hence PE[r(A) Ar(B)]. Conversely if
PG.[r(A) Ar(B)], then PSA and PSB; hence PSAC\B and PEr(Ar\B).

We next show that r(AKJB) is the least upper bound relative to set inclu-

sion of r(A) and r(B) in the collection of representative sets. This will prove

that the collection is a lattice, homomorphic to L. Suppose then that r{A\JB)

is not least upper bound of r(A) and r(B) in the system of representative sets.

Then there exists a representative set r(C) such that r(A)Qr(C) and

r(B)C.r(C), but such that r(A\JB)Qr(C) is false. Hence there is an atom P

such that PSA\JB is true, but PSC is false. But r(C) contains all atoms of

r(A) and r(B), since it is an upper bound of these sets; hence A SC and

BSC since by Theorem 8, A and P are respectively the joins of all elements of

r(A) and r(B). Hence C^A\JB and PSC since PSAKJB, contrary to as-

sumption.

This shows that the lattice L and the lattice of all its representative sets

are homomorphic. It remains to show that they are isomorphic. Suppose that

A and B are distinct elements of L; it must be shown that r(A) and r(B) are

distinct. It follows from Theorem 8 that A is the join of all elements of r(A),

and B is the join of all elements of r(B). Hence if r(A) and r(B) were identical,

then A would be identical with P. This contradiction completes the proof.

10. The lattice of dual ideals. By a dual ideal I of a lattice L is meant a

non-empty set of elements of L such that the lattice meet Ai\B of two ele-

ments of L is in / if and only if both A and B are in /. A dual ideal / is said to

be maximal if it is not the entire lattice and if the only dual ideal with more

elements than / is the entire lattice. A dual ¡deal / not the entire lattice is

said to be prime if whenever the lattice join A KJB is in /, then either A or B

is in /. Ideals in modular lattices have already been studied by Garrett
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Birkhoff, Dilworth, Gorn, and others [l, 5, 8]. Ideals in Boolean algebras and

in distributive lattices have been studied by M. H. Stone [11, 12]. It is inter-

esting to note that in Boolean algebras the notions of maximal ideal and

prime ideal coincide, while in merely distributive or modular lattices they do

not. In distributive lattices it is the prime ideals that are most important,

while in complemented modular lattices the maximal ideals are of greater im-

portance, since prime ideals may not even exist.

Theorem 10. The collection D(L) of all dual ideals of a lattice L is a com-

plete lattice which is modular when L is modular, provided the operation of lat-

tice join IKJJ in D(L) is taken to mean set intersection, and the relation of lattice

inclusion I^J is taken to be the superset relation 7D7.

Proof. To show that 77(7.) is a complete lattice, it is sufficient to verify

that the set intersection of any collection of dual ideals is again a dual ideal.

That 77(7,) is modular when L is modular was proved by Dilworth [5]. The

reversal of what might seem the more natural lattice order relation in D(L)

is merely a matter of convenience and not of necessity. It is adopted also by

Dilworth. No originality is claimed for Theorem 10, which is listed as a theo-

rem as a matter of convenience.

11. Principal dual ideals. If A is an element of a lattice L, then the set

of all elements P of L such that A gP is a dual ideal which is called a principal

dual ideal, and is denoted by [A],

Theorem 11. The collection of all principal dual ideals of a lattice L is a

sublattice of the lattice of all dual ideals of L, and is isomorphic to L.

The proof of this theorem will be omitted, since it follows well known

lines and does not involve anything essentially new.

12. The extension of a dual ideal to be maximal. The following theorem is

a generalization of a result of M. H. Stone concerning ideals in Boolean alge-

bras [7,11].

Theorem 12. If Lis a lattice with a zero element, then any dual ideal I of L

which is neither maximal nor identical with L can be extended to be maximal.

Proof. We use Zorn's lemma. Since I is not the entire lattice, 7 does not

contain the zero element of L. Let K be the collection of all dual ideals J of L

such that (1) 7 is a subset of J, and (2) J does not contain the zero element.

The union of any subcollection of ideals of K which is linearly ordered by set

inclusion is clearly an ideal which satisfies (1) and (2) and is therefore in K.

Hence the hypothesis of Zorn's lemma is satisfied, and the conclusion follows,

namely that K has a maximal element. This maximal element is a maximal

dual ideal containing 7 as a subset, whose existence was to be proved.

Corollary. The lattice of all dual ideals of a complemented modular lattice

is complete, atomic, and modular.



462 ORRIN FRINK, JR. [November 

This follows from Theorems 10 and 12. In particular, it follows from Theo-
rem 12 that the lattice of all dual ideals is atomic, since in this lattice maximal 
dual ideals are atoms, and every element can be extended to be maximal, 
therefore every element includes an atom. Unfortunately, the lattice 'of all 
dual ideals of a complemented modular lattice is not necessarily comple-
mented. For example, let L be a continuous geometry. Then L has no atoms 
(points), likewise no maximal elements (hyperplanes). The lattice D(L) of all 
dual ideals of L has atoms (namely maximal dual ideals), but these atoms 
have no complements in D(L). For, such a complement would be a minimal 
dual ideal. These do not exist, for if I were a minimal dual ideal, and A an 
element of I, then the principal dual ideal [A] would be a subset of I. Since 
I is minimal, it would coincide with [A). Hence the element A would be maxi-
mal in L; but L has no maximal elements. 

To be sure, one could consider the dual concept of the lattice D(L), 
namely the lattice of all ideals (multiplicative ideals) instead of dual ideals. 
Among these would be found maximal ideals, which would serve as comple-
ments of maximal dual ideals, if both kinds of ideal could be combined in a 
single lattice. 

In this paper a simpler procedure will be followed in order to imbed a 
complemented modular lattice L in a larger complemented modular lattice 
which is also complete and atomic. It will be shown that the maximal dual 
ideals of L constitute the points of a projective space, when the notion of 
collinearity is defined in a suitable way. The subspace lattice of this projec-
tive space is then complete, atomic, complemented, and modular, and con-
tains a sublattice isomorphic to L. 

13. Collinearity and the projective space of maximal dual ideals. If P 
and Q are two distinct maximal dual ideals of a complemented modular lat-
tice L, then the join (that is, the set intersection) PVQ of P and Q in the 
lattice of all dual ideals of L will be called the linear ideal determined by P 
and Q. By the line PQ determined by P and Q will be meant the set of all 
maximal dual ideals R of L such that R~PVQ. Maximal dual ideals will be 
called collinear if they are on the same line. 

Note the important distinction between the linear ideal PVQ and the 
line PQ. The former is a dual ideal; the latter is a set of dual ideals. 

THEOREM 13. The maximal dual ideals of any complemented lattice are the 
points of a projective space. 

Proof. It must be shown that postulates A and B for projective spaces 
are satisfied for the system whose points are all the maximal dual ideals of a 
complemented modular lattice L, if the notion of line is defined as above. 

Postulate A states that two distinct points are on one and only one line. 
It is clear from the definition of line that two distinct maximal dual ideals P 
and Q are on at least one line, namely the line PQ. Suppose now that R is a 
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point of the line PQ distinct from the points P and Q. We wish to show that

the line PR is identical with the line PQ. This follows from the fact that the

lattice D(L) of dual ideals is modular (Theorem 10). Consider the linear ideals

PVJQ and PUR. By hypothesis RSPUQ, hence PUP S PWÇ. But P and Q,
being atoms, cover the zero element of D(L). Since the lattice is modular,

PVJQ covers P. Since P^PUP^PWG and P and R are distinct, it follows
that PKJQ=PUR, and hence lines PQ and PR are identical. It follows that

any two points of a line determine the line, and hence postulate A is satisfied.

The proof that postulate B is satisfied is based on the fact that, in a modu-

lar lattice, if the elements X and Y are distinct and both of them cover the

element A, then the element XU Y covers X and Y; while if A covers X

and Y, then X and Y cover XH Y (Garrett Birkhoff, Lattice theory, p. 34).

Suppose the hypothesis of postulate B holds; then P, Q, R are not col-

linear, but P, Q, X and Q, R, Y are collinear, and X and Y are distinct. It

must be shown that lines PR and X F intersect in a point. This is equivalent

to showing that the element (P^JR)n(XVJY) of the lattice D(L) is not the

zero element. Now it follows from the covering properties of modular lattices

just described that we have in turn:

(1) PVJQ covers X,
(2) QVJR covers F,

(3) PUQVJR covers PKJR,
(4) PWQUP covers XU F,
(5) PVJR covers (PUR)n(XVJY).

It follows from (5) that (P^JR)i\(X^JY) is not the zero element, since it is

covered by PVJR, which in turn covers the elements P and R, which are not

zero. This is assuming the elements P and P are distinct. In the contrary

case the conclusion follows easily. This completes the proof of Theorem 13.

14. Representative sets and the imbedding theorem. It has just been

shown that every complemented modular lattice determines a projective

space. By Theorem 5 the lattice of all subspaces of this projective space is

complete, atomic, complemented, and modular. We now wish to show that

the original lattice is imbedded in this lattice of subspaces.

If A is any element of the complemented modular lattice L, then by the

representative set r(A) of A will be meant the set of all maximal dual ideals P

of L such that A is an element of P. This is related to the notion of representa-

tive set defined in (8) for atomic lattices. In fact, if we pass from the original

lattice L to the lattice D(L) of all dual ideals, which is atomic with maximal

dual ideals for atoms, then the representative set of an element A oí L accord-

ing to the definition just given is identical with the representative set of the

principal dual ideal [.4] of D(L) according to the definition of (8). Note that

by Theorem 11 the lattice of all principal dual ideals of L is isomorphic to L.

It might be thought that the desired result would now follow from Theo-

rem 9, which states that an atomic complemented modular lattice is iso-
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morphic to the lattice of its representative sets. Unfortunately the lattice

D(L), though atomic and modular, is not necessarily complemented, and

Theorem 9 does not apply to it. We also wish to show not merely that the

representative sets of elements of L form a lattice isomorphic to L, but also

that this lattice is a sublattice of the lattice of subspaces of the projective

space determined by L.

Note that if A is the zero element of L, its representative set is empty,

while the representative set of the unit element 7 of L is the set of all maxi-

mal dual ideals.

Theorem 14. The representative sets of elements of a complemented modular

lattice L form a lattice isomorphic to L. This lattice is a sublattice of the lattice

of all subspaces of the projective space S determined by L.

Proof. Note that any representative set r(A) is a subspace of the projec-

tive space 5, the points of which are the maximal dual ideals of the lattice L.

For if P and Q are any two distinct points (maximal dual ideals) oír (A), then

the linear ideal PUQ is the set intersection of ideals P and Q, and the lattice

element A, since it is a member of both P and Q, is also a member of PKJQ.

Hence if R is any point collinear with P and Q, then PVJQ is a subset of P.

Hence.4 isa member of P, and P is a member of r(A). There fore r(A) is a

subspace, since it contains all points collinear with two of its points.

Since representative sets are subspaces of the projective space S, the lat-

tice operations of meet and join are defined for them. It will now be shown

that the correspondence between elements A of L and their representative

sets r(A) preserves the lattice operations of meet and join. It can be seen that

r(A)C\r(B) =r(AC\B). For the maximal dual ideal P is an element of the

representative set r(AC\B) if and only if P is an element of both r(A) and

r(B), since by definition of representative set, this is equivalent to saying that

Af~\B is a member of P if and only if both A and P are members of P, which

follows from the definition of dual ideal. This is because the lattice meet of

the subspaces r(A) and r(B) is their intersection.

To show that the correspondence preserves the operation of lattice join

is more difficult. First note that r(A)KJr(B) ^r(AVJB). For if P is a point of

r(A)KJr(B), then by the join theorem (Theorem 3) P is collinear with points

Q and P of r(A) and r(B) respectively. Hence the linear ideal QKJR is a subset

of P. It follows that AVJB is an element of P, and P is a member of r(AKJB).

Next it must be shown that r(AKJB) £r(A)\Jr(B). This means, according

to the join theorem, that if the point P is a member of the representative set

r(A\JB), then P is collinear with points Q and P of the representative sets

r(A) and r(B) respectively. It may be assumed that neither A nor P is a

member of P, for in that case the conclusion follows. We may further assume

that AC\B = 0, since otherwise A may be replaced by the relative comple-

ment 4' of P in AKJB.
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Since P, as well as the points Q and R which we seek, is a member of the

lattice of all dual ideals D(L), we now consider the principal dual ideals [.4 ],

[B], and [.i4WP] which are also in D(L), rather than the elements A, B,

and A\JB, which are in L. Since PS [A\JB], it follows that the dual ideal

([P]VJP)n[.4] is not the zero element of D(L), since otherwise both [B]

and [7J]WP would be distinct relative complements of [.4] in [AUP], which

is impossible in a modular lattice. For we have: [.4]W([P]UP) = [^4UP],

[A]\J[B]=[AKJB], and [A]C\[B] = 0.
Hence by Theorem 12 the ideal ( [B]KJP)r\ [A ] may be extended to be a

maximal dual ideal Q. It follows that A is a member of Q, and QS [B]KJP.

Consider now the ideal (PVJQ)i~\ [B]. If this were the zero element of D(L),

then both P and PKJQ would be distinct relative complements of [P] in

[B]\JP, since we would have [B]\J(P\JQ)=[B]KJP, and [B]i\(P^JQ)
= [B]C\P = 0. But this is impossible in a modular lattice since [P] and

[P]UP are distinct. Hence [B]C\(P\JQ), since it is not zero, is a maximal

dual ideal which we may call R, such that RS [B], Hence P is a member of

r(B), and P is collinear with points Q and R of r(A) and r(B) respectively,

which was to be proved, since it can be seen that P, Q, and P are collinear.

This completes the proof that the lattice operations correspond in the

original lattice L and in the lattice of representative sets. It remains to show

that the correspondence is one-to-one and hence an isomorphism, or in other

words that if A and B are distinct, then their representative sets r(A) and

r(B) are distinct. Suppose A and B are distinct; then either A^ACsB, or

B?^AC\B. By symmetry we may suppose the former, that is, Aj¿AC\B.

Since L is complemented and modular, there exists in L an element A ' which

is a relative complement of A(~\B in A, that is, such that A'\J(Ar\B) =A,

while A T\ (A f\B) =AT\B=0. This element A 'is not the zero element of L,

since otherwise A =A'\J(AC\B) =A(~\B, contrary to assumption. Hence it

follows from Theorem 12 that A ' is an element of some maximal dual ideal P.

Then P is a member oír (A), but not of r(B), since otherwise A T\B = 0 would

be an element of P, which is impossible since the zero element is never a

member of a maximal dual ideal. It follows that r(A) and r(B) are distinct,

which was to be proved. This completes the proof of Theorem 14.

15. Characterization of complemented modular lattices. We have now

shown that every complemented modular lattice determines a projective

space (Theorem 13) in whose lattice of subspaces it is isomorphically im-

bedded (Theorem 14). Projective spaces have been characterized in the corol-

lary to Theorem 7 as direct unions of projective planes and projective

coordinate spaces PS(ct, D). This leads to a characterization of complemented

modular lattices as complemented sublattices of direct unions of the subspace

lattices determined by projective planes and projective coordinate spaces.

(It is easily verified that the subspace lattice of a projective space which is

the direct union in the sense of this paper of irreducible projective spaces is
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isomorphic to the direct union, in the sense of abstract algebra or lattice

theory, of the subspace lattices of those spaces.) This result is most con-

veniently described in terms of the notion of subdirect union due to Garrett

Birkhoff [3]. An abstract algebra (in particular a lattice) A is said to be a

subdirect union of the collection K of algebras (lattices) if A is a subalgebra

(sublattice) of the direct union of the members of K.

Theorem 15. Every complemented modular lattice is a subdirect union of the

subspace lattices of projective planes and irreducible projective coordinate spaces

oftypePS(a,D).

16. Conclusion. There are several questions that naturally suggest them-

selves in connection with these results. One of them is the following: if a

complemented modular lattice is irreducible (not a direct union), is the pro-

jective space of maximal dual ideals determined by it also irreducible? If not,

what additional conditions on the lattice are needed to insure the irreducibil-

ity of this projective space? This is of interest in connection with the co-

ordinatization of complemented modular lattices and in particular of con-

tinuous geometries, since if the corresponding projective space is irreducible,

it determines a unique division ring (unless it is a projective plane).

The results on projective spaces, in particular the characterization Theo-

rem 7, suggest similar results concerning generalized affine spaces. Other

definitions of projective coordinate spaces suggest themselves. In particular

one may omit the condition that the coordinate functions d(t) vanish

except for a finite number of values of the argument t.

Another question is, to what extent does the principle of duality hold in

projective spaces of infinite dimension, and in particular in the spaces

PS(a, D) ? The complements or duals of points are hyperplanes, and it is

natural to consider the dual projective space whose elements (points) are

these hyperplanes with the natural definition of "collinearity" or linear de-

pendence. It is interesting to note that this dual space is not dually isomorphic

to the original space in the infinite-dimensional case, and in fact may even

be of different dimensionality (cardinal number a).
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