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1. Introduction. Suppose P is an integral domain having a finite number

of non-associated primes pi, • ■ • , pn, and suppose further that any element

of R can be expressed as a product of primes. We are interested in the possible

structure of P, and in particular in its multiplicative structure. If factoriza-

tion is unique, then (modulo units) we simply have the free multiplicative

semigroup with generators pi, • • • , pn- If factorization is not unique, there

are relations among the p's. However the fact that P must submit to addition

as well as multiplication serves to eliminate most of the relations which are

a priori possible. For example, re = 2 is impossible, and for re = 3 we must have

(modulo units) pip2 = pl, and cyclically.

The present paper originated in an attempt to obtain analogous results

for larger values of re. After a preliminary reduction to the case of a local ring,

we are able to settle completely the case where re is prime: the multiplicative

structure is unique and generalizes the result cited above for re = 3. Moreover

we obtain a number-theoretic criterion which is necessary and sufficient for

the existence of such rings.

The investigation of the more difficult case of composite re is still in prog-

ress. The results will be presented in a subsequent paper.

2. Reduction to a local ring. The letter R will always denote an integral

domain with unity element satisfying the conditions:

(a) Every element of R can be expressed as a product of prime elements.

(b) There are but a finite number of prime elements in P.

By a prime element of P is meant a non-unit which cannot be factored

into non-units. A non-unit p is certainly prime if its principal ideal (p) is

prime; but this condition is not necessary. Indeed, if (p) is a prime ideal for

every prime element p, then factorization is unique.

Condition (a) is satisfied if R is Noctherian—that is, if the ascending chain

condition holds for the ideals of R; but this chain condition is not necessary,

as is shown by the example of a polynomial ring in infinitely many variables.

Condition (b) means of course that the number of non-associated primes

is finite. An example of a ring satisfying this condition (as well as (a)) is the

set of all rationals which can be written with denominator not divisible by

any of a given finite set of prime integers. This ring, however, is trivial in

the sense that factorization is unique and there is nothing to study in the

multiplicative structure. Nontrivial examples will be given later.
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It is perhaps of interest to see first what can be accomplished by very

simple arguments. Suppose that factorization in P is not unique; then there

exists a prime p such that (p) is not a prime ideal. If P is any prime ideal(x)

containing (p), then P must contain a second prime q. Now p+q is in P and

is therefore a non-unit. However p+q is divisible by neither p nor q; hence P

must contain a third prime r. We have thus shown that non-unique factoriza-

tion requires the presence of at least three primes in P. Suppose P has exactly

three primes, p, q, r, all necessarily in one prime ideal. Then qr+p is a non-

unit and is not divisible by q or r ; it must be divisible by p. Hence so is qr, and

we have qr=apa where a is a unit and a an integer not less than 2. Similarly

rp=ßqb, pq=yre. Multiplying and cancelling, we obtain a=b = c = 2. This

uniquely defines the multiplicative structure of P modulo units. That this

ring can actually arise is shown later (Theorem 13).

The treatment of rings with four or more primes requires a deeper dis-

cussion which we initiate with the following theorem.

Theorem 1. Two maximal ideals of R cannot have a prime element in com-

mon.

Proof. A maximal ideal is prime and therefore has a basis of prime ele-

ments. It follows that there are only a finite number of maximal ideals: say

Mi, • • • , M\. Suppose the prime r is in MiC\Mi. Since Mi is not contained in

any of il72, • • • , Mh, it contains an element—and hence also a prime ele-

ment—not in any of these. Let pi, • • • , pk (k>0) be those primes not in

any of M2, • ■ • , Mh, hence in Mi. Let ai (2^i^h) be in Mi but not in Mi,

and set a =a2 • • • o*. Then a is in Mi(~\ ■ ■ ■ C\Mh but not in M\. The element

a+pi • • • pk is in none of the maximal ideals, and so must be a unit a. Since r

is not one of the pi, ra = rJJ_pi+ra is not divisible by any pi, hence neither is

ra, hence neither is c =W^pi+ra. But cG^7i, and so must be divisible by some

prime, necessarily in M¡ with j j¿ 1. This implies IJ^»,-G Af,, j ?*1, which is im-

possible.

Remark. Theorem 1 may fail in rings with an infinite number of primes.

For example, in the ring of integers with ( —5)1/2 adjoined, the maximal

ideals (3, 44(-5)1/2) and (3, 4-(-5)1'2) share the prime 3.

(') At this juncture and at several later points, we are using the fact that any proper ideal

is contained in a maximal (and hence prime) ideal. This is generally (that is, in the absence of a

finiteness condition) proved with the aid of the axiom of choice, but in the present context all

necessary cases are covered by the following : a proper ideal A which is maximal in the set of all

those generated by prime elements is a maximal ideal. To prove this, we note that if A is not maxi-

mal, then there is an element c not in A such that (c, A)j±R. If c = /»i • • • pm, pi prime, then

Pv&A,hence (A,pm)=R, so that (A,pi • • • pm-i) ^R- Successively reducing m in this way, we

arrive at a contradiction. Since it is evident that every prime ideal in R has a basis of primes,

it follows that every prime ideal is contained in a maximal ideal. From the above statement

it follows that every prime element—hence every non-unit—is contained in a maximal ideal.
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We next show that any non-uniqueness of factorization already takes

place within the individual maximal ideals.

Theorem 2. Let Mi, • • • , Mb be the maximal ideals of R, and suppose ai, b¡

are products of primes belonging to Mi, such that ai • • • ab = h ■ • • bn. Then

ai and bi are associates.

Proof. The element a2 • ■ ■ an+bi is not in any of the maximal ideals, and

so must be a unit a. Similarly b2 • ■ • bk-\-ai is a unit ß. This leads to ccai=ßbi,

as desired.

The following theorem is fundamental for the developments to follow.

Theorem 3. // the maximal ideal M in R has re primes (re>l), then every

element of Mn~1 is divisible by every prime of M.

Proof. Let x be a product of « — 1 primes of M, and suppose it is not divisi-

ble by the prime p in M. Form a sequence Xi, • • • , xn-i by deleting successive

factors of x: thus Xi=x and xn-i is a prime. Then each *,•+/> is in M and so

must be divisible by a prime of M, necessarily other than p or xn-u We have

only re —2 primes with which to account for re —1 quantities; hence two of

them, say Xi+p and x¡-{-p (i<j), are divisible by the same prime q in M.

Hence x,—xí=Xj(1—Xí/xj) is divisible by q. But 1— Xi/x¡ is not in M and so

is a product of primes not in M. By Theorem 2, x,- is divisible by q, which

gives the absurd conclusion that p is divisible by q.

An immediate corollary is(2) the following:

Theorem 4. All prime ideals in R are maximal.

Proof. Let P be a prime ideal contained in the maximal ideal M. Suppose

P contains the prime p, and q is any prime in M. Then by Theorem 3, p\ gB_1,

whence q GP and P = M.

To establish the chain condition in P We first prove the following theorem.

Theorem 5. From any sequence {#,} ¿re P it is possible to select a sub-

sequence {yi} such that y,|y,+i.

Proof. Write Xi=xn ■ ■ ■ Xih, where xa = \ or a product of primes in the

maximal ideal M,-. Suppose xu is a product of re,- primes of Mi. If the re,- are

bounded, some combination of primes must occur an infinite number of times.

If they are unbounded, it follows from Theorem 3 that we can find a sub-

sequence of {xn} with each element dividing its successor. In either case we

have a sub-sequence {z,} of {xi} whose Mi-components are successively di-

visible. We may now extract a further sub-sequence from {z<} such that each

(') This theorem is easily proved independently of Theorems 1-3. If P^M, let «Zi, • • • , 2»

be the primes in M not in P, and let p be a prime in P. Then p-\-q\ • • • qm must be divisible

by a prime in M, which is impossible.
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Jl72-component divides its successor. After h steps, we have the desired sub-

sequence {y.}.

It is an immediate consequence of Theorem 5 that there cannot exist an

infinite sequence {a,-} with the ideal (oi, • • • ,aT) always properly contained

in (ai, • • • , ar+i). Hence we have the following theorem.

Theorem 6. R is Noetherian, and so is a semi-local ring in the sense of

Chevalley(3).

The following theorem shows that it is essentially possible to reduce to the

case of a local ring.

Theorem 7. Let M be a maximal ideal in R, and Rm the quotient ring of R

with respect to M. Then Rm is a local ring satisfying conditions (a) and (b),

and its prime elements are just those primes of R which lie in M.

Proof. Let pi, • • • , pn be the primes of P, and pi, • • • , pm those which

lie in M. If o/cGPaí, where a, cÇ.R, c(£M, write a=aJJj_1/»,*(<), where a is

a unit and h(i) a non-negative integer. Then

a/c = Lc-1ñp<ÍÍ))Up-lÍ).
\ i-m+l /   i=l

Since the term in parenthesis is a unit in Rm, every element of Rm is (up to a

unit) a product of pi's, i = i, • ■ • , m. Thus no element of Rm other than

pi, • • • , pm can be prime. Moreover the latter are prime; if, for example, pi

is not prime, we have pi = bd-1£J%>-2piHi), where b and d are in P but not in M.

Multiplying by d, we obtain a contradiction of Theorem 2.

In conjunction with Theorem 2, Theorem 7 reduces the study of the multi-

plicative structure to the case of a local ring. Specifically, the multiplicative

semigroup (modulo units) of P is the direct product of the corresponding

multiplicative semigroups of the Rm's. There remains however a question

which the authors have not investigated : can arbitrary local rings (each with

a finite number of primes) be combined into a semi-local ring?

3. Properties of local rings. Throughout the remainder of the paper P will

denote a local ring without zero-divisors which contains just n ( — 3) prime

elements. As observed in §2, the fact that P is Noetherian implies that every

element of P factors into prime elements. Thus P satisfies conditions (a) and

(b) of §2.
We shall denote by M the unique maximal ideal consisting of all non-units,

and by K the residue class field R — M. The difference group M—M2 may be

regarded as an P-module which is annihilated by M; hence M— Af2 may be

(3) Cf. [l ]. The definitions and fundamental results on local rings which we shall use in

this paper can be found in [2] or [3]. Numbers in brackets refer to the bibliography at the

end of the paper.
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taken to be a vector space over K. It is easy to show [2, pp. 56-57] that a set

of elements ai, ■ • ■ , ak will generate M if and only if the corresponding

elements in M—M2 generate this space over K, and that these latter elements

are linearly independent over P if and only if no proper subset of {ai, • • • ,ak]

generates M. Thus if k is the dimension of M— M2 over K, then k is also the

number of elements in any minimal set of generators of M. We must have

k > 1, since if k = 1 then re = 1.

The nonzero elements of M—M2 arise from elements of M not in M2,

and such elements must be prime and hence of the form api, where a is a unit,

and pi, • • • , pn are the primes of P. Every one-dimensional subspace of

M — M2 thus arises from some pi not in M2, so that the number of such sub-

spaces is at most re. It follows that K is finite; the number of its elements will

always be denoted by TV.

If an element of R is divisible by each of pi, • • • , pn, we shall say that it

is universally divisible, or briefly that it is universal; a set of elements will be

said to be universal if all its elements are. In this terminology, Theorem 3

asserts that Mn~1 is universal. (This result will incidentally be considerably

sharpened in the paper to follow.)

Theorem 8. // k is the dimension of M—M2, then

(1) (TV* - 1)/(N -l)Sn,

with equality holding if and only if M2 is universal. If there is a prime in M2,

then

(2) (Nk+1 - 1)/(N - 1) S n.

Proof. Since M—M2 is of dimension k over a field of N elements, it has

TV*—1 nonzero elements, hence (TV* —1)/(7V—1) one-dimensional subspaces;

(1) then follows from a remark above. If M2 is not universal, then there exist

primes pn, pi, pi such that phpi is not divisible by p¡. Hence if phpi-\-pj is

divisible by pi, then l^j, p¡ and pi cannot give rise to distinct one-dimensional

subspaces, and so strict inequality holds in (1). Conversely, if strict inequality

holds, then there exist primes p¡ and pi (jt^I) such that ap,-\-bpiÇ.M2, where a

and b are in P, but not both in M. If, say, a is a unit, then apj+bpi cannot be

divisible by pi, and M2 is not universal.

Suppose there is a prime q in M2. Let pi, • • • , pm be a set of primes giving

rise to the m = (Nk — l)/(N— 1) one-dimensional subspaces of M—M2, and

let «i, - • ■ , «jv be a set of representatives in P of the elements of K. None of

the Nm elements pi+Ujq (ISiSm, ISjSN) is in M2, hence they are all

prime. If any two were associates, we would have ph-\-uiq=a(pi+Ujq), a a

unit. Since ph — cepiG.M2, we must have h = i and a = 1 (mod M). It follows

that (ui—au,)q is divisible by pi, so that ui—aUj and hence also ui — u¡ is a

non-unit, whence l=j. Thus we have Nm non-associated primes not in M2,

so that
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N(Nk - l)/(N - 1) + 1 fi »,

and (2) follows.

It is to be noted that we always have N^n — 1, and that the extreme case

N = n — 1 entails that k = 2 and M2 is universal.

Whether or not there exist rings with a prime in M2 is a question that has

not yet been settled. It follows from (2), and the fact that k and N are at

least 2, that such a ring must have at least seven primes. Since we shall prove

below that M2 is universal when « is prime, the lower bound becomes « = 8.

We shall continue this discussion in the second paper; but we remark that at

the moment our best result has ruled out the possibility of a prime in M2 for

« = 8or 9.

Since P is a local ring, it is known [2, p. 59] to admit a unique "comple-

tion." The following theorem shows that, for multiplicative purposes, we may

without loss of generality pass to this completion.

Theorem 9. The completion R* of R has no zero-divisors and has exactly

the same primes as R does.

Proof. Let M* be the maximal ideal of P*, so that M* = R*-M. By Theo-

rem 3, M"CR-pi, hence M*nCR*-pi for i=i, •••,«. We show that every

a* in R* is the product of a unit in P* and of p's. This will be shown by induc-

tion on h, where a*£Af*\ a*Ç£M*h+x. The case h'=0 is trivial, so we assume

h ä; 1. Since a* £Af*, there is ana £ M such that a* =a (modAf*n). Now a is di-

visible by some pi, aÇ^R-pi, hence a*(E.(R*-a, M*n)QR*-pi. Thus a* = b*pi,

and since b*Ç£M*h, the induction assumption applied to it gives the factoriza-

tion for a*.

This factorization shows that P* has no "zero-divisors and that its primes

lie among pi, • • • , pn- Moreover these latter are prime; if pi were not prime,

we would have pi£E.R*■ pip¡T\R = R-pip,-, which is absurd.

For later use we insert at this point the following theorem.

Theorem 10. There exist N primes qi, • ■ • , qw such that qi\xq¡for every

i, j and for every x£M.

Proof. Let h be the integer for which Mh is not universal but J17*+1 is,

and suppose yÇE.Mk is not divisible by the prime q. Let Ui, • • • , uN-i be

representatives in P of the nonzero elements of the residue class field K. Let r,-

be a prime divisor of y+u¡q. It is impossible that r< and r¡ (i ?±j) be the same,

for then r,| (ui — u,)q; since Ui — u¡ is a unit, r,- and q would be associates, a

contradiction. Multiplying y+utq = ri • • • by a non-unit x, we find that

fi\xq. Thus we have N— 1 distinct primes which divide xq for any x £ M. Let

us denote any of these primes by an (N— l)-valued function/(g).

It is clear that each rt-, like q, is a non-divisor of y. Hence the/ operator

may be applied to them in turn, and in general/ may be indefinitely iterated.

We now assert that it is possible to find k distinct primes qi, • • • , g* (¿ è N)
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with qi+i =f(qî) (¿ = 1, • • • , k — 1) and qi=f(qk). For the denial of this asser-

tion permits us to construct an infinite chain {s,} of distinct primes, with

Si=f(s,-i), as follows. Take Si=q, and suppose Si chosen for i<m. Of the

TV—1 primes given by f(sm-{), we can choose one distinct from the TV—2

primes sn-if+u • • • , s„-.2; this is our choice for sm. Moreover sm must be dis-

tinct from Sj lor jSm — N, for otherwise Sj+i, • • • , sm would be the desired

set of q's. Thus the process of selecting primes sm can be continued indefinitely,

contradicting the finiteness of the number of primes.

Now any multiple of g by a non-unit is a multiple of f(q) by a non-unit;

hence the cyclic closure under/ of the set qu • • ■ , qk leads to g<|*g/ for any

i,j, and any xGM. The first TV of the g's provide a set of the kind required

in the theorem.

4. A decomposition of semigroups. Let S be a commutative semigroup,

that is, a system with a commutative and associative multiplication such that

xy =xz implies y = z. It is known that S can be embedded in a certain smallest

group G, called the quotient group. Assume further that S has a unity ele-

ment 1, but no other units—that is, xy = 1 implies x =y = 1. Let M be the set

S with 1 omitted and V the set of elements a oí G with aMQM, a~xMQM;

clearly F is a subgroup of G. If p is a prime of S (an element whose only fac-

torization in S is p-1), and v is any element in F, then pv is a prime; for a fac-

torization pv=xy would lead to p=x(yv~x). Thus a coset mod F of a prime

consists exclusively of primes.

Suppose now that S contains exactly re primes pi, • • • , pn, and that any

element of S can be factored into a product of p's. Then it follows from the

above that s, the order of F, must be a divisor of re. The primes split into

t = n/s cosetsoi s each,say as pi,- (i = l, • • • ,t;j = \, • • • , s). For any fixed ¿,

the set {pu/pu} is precisely the group F. In particular, if s = n, the elements

{Pi/Pi} constitute V, and S is completely determined as the direct product

of F and the infinite cyclic semigroup generated by pu It is to be observed

that 5 = re characterizes the case where M2 is universal, that is, where the

product of any two primes is divisible by any third prime.

Let us now apply these results to the case where S is the multiplicative

semigroup of R, reduced modulo units. Let qu • • • , qw be a set of primes

whose existence is guaranteed in Theorem 10. Then each q,/qi is readily seen

to be a member of F, and we have that s, the order of V, is at least TV. In

summary we may state the following theorem.

Theorem 11. The re primes split into t sets of s each (s^N):pa (¿ = 1, • • •, t ;

j = i, • • • , s), such that for any fixed i the set {pu/pn} forms a multiplicative

group modulo units. The case M2 universal is characterized by s = n, 1=1, and

in that case the set {pj/pi} (j< = 1, • • • , re) forms a multiplicative group modulo

units.

In the special case where re is prime, s\n and s^N}z2 imply that 5= re.

Hence we have:
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Corollary. When « is prime, M2 is universal.

5. The case of M2 universal. Let P be a local ring with primes pi, ■ • ■ , pn

in which M2 is universal. The latter condition implies that if y£Jl72, then

any pi divides y, and in fact y/pi^M. Let T be the set of all a/p where a£ ilf

and p is a fixed prime ; T is clearly a ring containing P, and M is a proper ideal

in T. Hence if a/p is a unit in T, then a/p^M, a^M2 and a=api, a a unit

in P. Conversely, every element api/p is a unit in P, since by Theorem 11

the pi/p form a multiplicative group modulo units (of P). It follows that M

consists precisely of all non-units of T. Every proper ideal of T, being thereby

contained in M, is an ideal in P and hence is finitely generated. Thus T is a

local ring, and since M=p-T is principal, it is a discrete valuation ring. In

fact T is the integral closure of P, for clearly T = R[pi/p, • • • , pn/p], and

pi/p is integrally dependent on P since, by Theorem 11, (pi/p)n is a unit in P.

Let L be the residue class field T—M. Since residue classes of P pass in

their entirety into residue classes of T, we may suppose that L contains

K = R—M. Let Po, Po, Po, 7,o De tne multiplicative groups of units of R, T,

K, L respectively. The group P0 has a natural homomorphism on Lo, which

in turn is homomorphic to Lo/Ko- The resulting homomorphism of Po on

Lo/Ko has Po as its kernel. For P0 consists of elements api/p (aC.Ro) ; if such

an element maps on the identity of Lo/Ko, then its map in P0 is in P0- Hence

there is a unit ß in P0 such that api/p— ß(E.M, api—ßp(E.M2. Since p divides

every element of M2, it must divide pi, so that p — pt and c*/»,7^»GPo. Thus

To/Ro=.Lo/K0. Since Po/Po is isomorphic to the group of pi/pi, mod units,

the order of Lo/Ko is n, which equals (Nk — i)/(N— 1) by Theorem 8. Since K0

contains N— 1 elements, Z,0 contains Nk — i, and [7_:P] =k. Moreover Lo/Ko,

and hence Po/Po, is cyclic. Collecting these facts we have :

Theorem 12. Let R be a local ring with primes Pi, • • • , pn and a residue

class field of N elements, and suppose M2 is universal. Then the multiplicative

structure of R is determined by the fact that the set {pi/pi} forms a cyclic group

under multiplication, modulo units. If R is complete and not of characteristic

zero, then R is uniquely determined.

It remains to prove the final statement. Let Pi be another complete local

ring with the same « and N and with M\ universal. We observe that the valu-

ation ring T is complete [2, p. 68] and has the same characteristic as its resi-

due class field, which contains Nh elements. The same can be said of the

valuation ring Pi determined by Pi, k being the same in both cases since it is

determined by « and N. The residue class fields are thus isomorphic and hence

so are T and Pi [5]. This isomorphism between T and Pi will carry P into Pi

since we can characterize P within T in an invariant way. Namely, we assert

that R consists of all elements x(E.T such that xN =x (mod M). For this is

clearly satisfied if x £P. Conversely suppose the congruence holds. Then the

residue of x is in K, hence x=a (mod M) where a(E.R, and x£P.
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The uniqueness asserted in Theorem 12 fails if P is allowed to have char-

acteristic zero. For it is well known that the corresponding T is not uniquely

determined if it has characteristic zero. Indeed it is easy to construct an infi-

nite number of non-isomorphic rings P in this characteristic unequal case.

A sort of converse of Theorem 12 holds, and it assures us of the existence

of a class of nontrivial rings with re primes.

Theorem 13. // TV is a power of a prime integer, and re = (TV* — 1)/(7V—1),

k^2, then there exists a local ring with re primes, with a residue class field of TV

elements, and with M2 universal.

Proof. The construction is suggested by the above characterization of P

within T. Let P be a field of TV* elements and let [4, Theorem 2] T be a dis-

crete valuation ring with L as residue class field. Now L contains a (unique)

subfield K of TV elements. Let R consist of all elements of T whose residues are

in K; R is clearly a ring. The set M of all elements of P with residue 0 is an

ideal, and all non-units of T are in M. Also all non-units of P are in M. For

if a^R, a(£M, then a is a unit in T, and the residue of a~1 is in K; hence

a~1Ç.R, and a is a unit in P. Thus M is the ideal of non-units in P.

Let p be the prime element of T. The multiplicative group P0 of nonzero

elements of L has (TV* —1)/(TV—1) =re cosets mod K0; from each we pick one

element, and then we select representatives 0i, • • • , 0» oí these in T. Let

pi = 6ip. Clearly each piÇzM, and we show next that each a CM is a product

of pi's. Now a=apm, a a unit in T,m~^\. Hence also a = 6pp™~1, 0 a unit in T.

It is then sufficient to show that Op/pi is a unit in P for some ¿. But

6p/pi = 0/0i, and from the definition of the 0,'s, it follows that for some ¿,

$/6i has residue in K. Thus the primes of P lie among the p's. That they are

all primes, and non-associated—that is, that no pt/pj can be in R-—follows

from the fact that no 0,/0j- can have residue in K. Thus P has just re primes.

For any h, i,j, phpi/pj(E.R, so that M2 is universal.

As a result of this theorem, it is seen that it is a purely number-theoretic

question to determine what values of « and TV admit rings with M2 universal.

It should be noted that re does not uniquely determine TV, for example,

31 = (5'-l)/(5-l) = (26-l)/(2-l).
In particular, the study of rings with a prime number of primes is now

entirely number-theoretic. The smallest prime with no corresponding ring

is 11. The following table shows the possible values of « less than 1000, and

the corresponding TV:

re       3     5     7     13      17     31     31      73      127     257     307     757

TV      2     4     2       3      16       2        5        8 2      256        17        27.

Both the Mersenne numbers 2* —1, and the Fermât numbers 22"'-(-l playa

role in this connection: the former for TV = 2, the latter for k = 2, TV = 22"\
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Thus the question of whether there exist an infinite number of rings with a

prime number of primes is intimately connected with famous unsolved prob-

lems of number theory.
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