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1. Introduction. A recent article [l] treated the characterization of func-

tions in L2(—w, it) which are odd, periodic of period 2ir, and such that \f(nx)}

is orthonormal(l). Part of the present paper is devoted to these questions also.

However, with the exception of a few results given in sharper form here than

in [l ] the theorems obtained are new in content. Largely due to the exploita-

tion of different methods, it has been possible to develop new aspects and to

make significant advances over previous results. The theory of the main prob-

lem is now well integrated, and the general features clearly defined. Our meth-

ods extend to cognate problems. We need only cite the results obtained in §9

on an important problem.

As partial illustration of the remarks above, we give an abbreviated sur-

vey of some of the results obtained. The numbers refer to sections. In (2)

we show that, in general, theorems proved heretofore for 4>(z)Ç£K' are valid

also for <p(z)ÇzKu. Moreover, if <p(z)£:Kü the convergence abscissa of the

Dirichlet expansion lies to the left of R(z) =0. In (3) we establish the basic

necessity conditions for <p(z)Ç.K. In (4), besides other results, we generalize

Theorems 7.4, 10.3 and 10.7 of [l]. In (5) the central theorem ior<p(z)GK'

is that finiteness of base implies <p(z) is a quasi-elementary solution. A weak

extension to the case of nonfinite bases is included. If <p(z) £P', then the ele-

ments of the base of cardinal number a may be replaced by those of any other

base with cardinal ß, ßSct. In (6) we give a key theorem covering necessary

and sufficient conditions for a solution in terms of the associated Dirichlet

series. In (7) we establish a close relationship between Watson transforms and

solutions of our main problem. For solutions in K' or solution with a one-

element base, the correspondence is exact. In (8) we give two types of con-

structive examples for which P(z)=0 is a natural boundary for a solution

in K. In (9) we turn to a new problem, namely that of the completeness of

sequences {f(nx)\ in 1.2(0; —ir, ir) where orthogonality restrictions are

waived. Our most interesting results are perhaps Theorems 9.7 and 9.8, for

the situation covered is quite outside the range of the Paley-Wiener ideas.

This is supported by an example. In (10) we give a general setting to the ques-

tions concerning us in the first 8 sections. A special case is that of ^2anan+k = Sot-

There is an isomorphism with solutions in K for a one-element base. For this

special situation stronger statements can be made than in the general case.
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A number of open problems, connected with completing and extending the

ideas of this paper, are mentioned in the remarks.

We mention some of our principal conventions. The terminology is con-

sistent with that of [l]. We write [f(x), g(x)] for Tt-~xflrf(x)g(x)dx and the

norm, ||/(*)||, is [f(x),f(x)]xl2. We indicate the Hubert space of odd functions

in Li(—ir, ir) by 72(0; — ir, it). Unless explicit statement is made to the con-

trary, functions of x are understood to be periodic of period 27r and in

72(0; — 7T, 7r). We use O.N. as an abbreviation for orthonormal. We shall deal

with functions of the real variable/0*")~2an sin nx with real sequences {an}

and with the Dirichlet expansion <p(z) ̂ ^ann~z. We say here that f(x), {an},

and <f>(z) are associated. Compactness of exposition is obtained by using the

same class symbol for each type of entity. Thus K is (a) the class of all

(odd)(2) functions f(x) which are periodic of period 2ir and satisfy I, (b) the

class of all sequences {an} £/2 satisfying II, (c) the class of all <f>(z) whose

coefficients an are in (b). Besides the sequence spaces h and h we use a sub-

set Uofli consisting of sequences {an} for which T^a»«iv converges uniformly.

We write K' for the subclass of K for which {an} £/i and Ku for the subclass

of K for which {o„} £E U. Evidently KU^K'. We sometimes refer to the mem-

bers of these classes as solutions. We abbreviate "almost periodic" in the sense

of Bohr to a.p., and "almost everywhere in the (Lebesgue) measure sense,"

to a.e. We express

Lt^—(    \Q(s + it)\2dt
21    J —T

by M{Q(s+it)}. The symbol (r, s) denotes the G.C.D. of the integers r and 5

and r\ s indicates that r is a divisor of s. We make the convention that a, =0

if t is not an integer. Let 5 be a subset of the positive integers. If every ele-

ment of 5 can be expressed in the form

where l(j) is a non-negative integer and the {pj] are primes, we say that 5

has the base {/>,}. The terms "finite base" and "nonfinite base" are then clear.

If an vanishes except for « in a set with the base [pj}, we say ja»j has the

base {pj} ; similarly we refer tof(x) or <p(z) as having this base.

The main part of the paper may be read without previous knowledge of

[IJ. There are, however, certain relations which play a central role in both

papers. These are repeated below with the same number designation used

fa[l].

I [f(nx),f(mx)] = 5nm.

(') This is not a necessary restriction, cf. [1, footnote 1}.
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II

III

A quasi elementary solution <¡>(z) has the form

M~'(i + èM')/(i + X>í»7"

where re,|j = l, • • • , TV is an ascending sequence of integers, M is a multiple

of the L.C.M. of the re,'s, {h,\j = 1, • • • , TV} is a real finite sequence and the

denominator does not vanish for P(z)^0. This is formally a somewhat less

restrictive definition than that given in [l]. If TV = 1 we have an elementary

solution.

2. The class Ku. In our previous work special significance was attached

to the case {an} £P'. It turns out that the basic theorems for this class re-

tain their validity when K' is replaced by Ku. The reason for this is that the

associated Dirichlet series represents an a.p. function for P(z)=0 and the

combination properties of almost periodic functions prove sufficient to sup-

plant the more restrictive requirement of absolute convergence.

Lemma 2.1. //J^»«-*' converges uniformly, then ~^tann~' converges uni-

formly for R(z) =0.

An application of Abel's theorem along conventional lines to the series

23(ann~')n~u leads to a proof.

Theorem 2.1. The relation [an] Ç.KU implies and is implied by {an} G U

and 122«««"! =1-

Evidently <j>(it) =^,a„n~u is a.p. It follows that <j>(it)(p( — it) is also a.p.

[2, p. 6] and has the generalized Fourier series

00

2-1   E    ((»/»)" + (<m/n)-*>) X) akmakH = 1.
(m,»)-l Jfc=l

Hence <p(it)4>( — it) — i is a.p. with a null generalized Fourier expansion. Ac-

cordingly, \<f>(it)\ =1 [2, p. 27].
For the reverse implication we observe that, in view of the uniqueness

property of generalized Fourier expansions of a.p. functions, the relation

d>(it)(f>(—ii) = 1 guarantees the satisfaction of relation II.

Theorem 2.2. Necessary and sufficient conditions that <f>(z) Ç.KU are (a) <f>(z)

is meromorphic, (b) <f>(z) admits a Dirichlet expansion converging uniformly for

R(z) ^ 0, and (c) III ¿5 satisfied.

In view of Theorem 2.1 the demonstration of the present theorem may

7 . akamk/„ = Snm.

P(z)p(- z) = 1.

)
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be patterned in an obvious way on that given for the analogous theorem with

Ku now replacing K' [l, Theorem 3.2].

The following simple theorem answers a question concerning the conver-

gence abscissa raised in the first remark on page 355 of [l].

Theorem 2.3. If {a„} Ç_KU (or K') then the uniform convergence abscissa

for the associated Dirichlet series is to the left of R(z) =0.

We have

X) ann~' | < «, R(z) è0.

In view of Lemma 2.1 and Theorem 2.1 it is easy to see that, for some

positive 8, \d>(s+it)— <p(it)\ <l/4 and therefore

| <t>(s 4 it) | > 1/4

for all / and 0^s = S. Accordingly, if we bear in mind Theorem 2.2, <p(z) is

meromorphic and

| d>(s 4 it) | < 4

for — ô = s^ô. Thus </>(z) is regular and bounded for R(z)^ —¿5, and hence

by Bohr's extension of Schnee's theorem [3, p. 445] the Dirichlet series con-

verges uniformly for R(z) > — 5.

3. Basic necessity conditions. The following theorem plays a central role

in the developments of this paper.

Theorem 3.1. If<f>(z)ÇE.K then for R(z)>0, <p(z) is a regular function with

a uniformly convergent Dirichlet series and |#(z)| ál.

Consider the Toeplitz matrix [4] associated with d>(z) .This is defined as

T =

fli  a2  a3.

0    «i 0   a2 0 • • • •

i 0   0   ai 0   0   ai ■

where the «th row has the first « — 1 elements 0, the «th is au the next » — 1

are 0, then an o2, then « — 1 zeros followed by 03, and so on. If we write T' for

the transposed matrix it is clear from the relations II that TT' is the unit

matrix
1

0
1

1

Thus T is a "right unitary" matrix [5, p. 154] and hence has the bound 1.
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According to a theorem of Toeplitz [4], this implies that^(z) is regular and

\<t>(z) I ^1 in P(z)>0. Hence by the Bohr-Schnee theorem, the Dirichlet se-

ries for <p(z) converges uniformly for R(z) >0.

4. Uniqueness. The theorems of this section are of interest in themselves

and play a role in the sequel as well.

Theorem 4.1. //</>(z)£P and (a) <p(z) is uniformly continuous in R(z) èO,

(b) \<t>(it) I = 1, (c) <p(z) has no zeros in R(z) >0, and (d) <j>(z) has a nonvanishing

constant term in its Dirichlet expansion, then 4>(z)= ±1.

By virtue of (a) and (b),

I <b(s + it) [> 5, 5 > 0,

for 0 S s S e. In view of Theorem 3.1, <f>(z) has a uniformly convergent Dirichlet

expansion and is therefore a.p. for every i>0. Hence |</>(z)| has a positive

lower bound in 0SR(z)SN [2, p. 145], where TV may be taken arbitrarily

large. If 01 is the constant term in the expansion of </>(z), it is clear that

\<j>(z)\ > I oi[ /2 for R(z) ^ M. Hence 0<pS \ 4>(z)\ Sl,R(z)=0.
We define an inversion by

(4.01) w+ 1 = (z+ l)-1.

The half-plane P(z) ^0 maps into

(4.02) I w + 1/2 I = 1/2.

Write \p(w) for <p(z(w)). Then u=\og\yp(w) \ is harmonic inside the circle

of equation 4.02. Moreover, u takes on the boundary value 0 a.e. Since u is

bounded, it follows that it is uniquely determined [6, p. 74], and is actually 0

throughout the circle of equation 4.02. Hence |^(w)| =1 or \<p(z)\ =1 in

P(z)>0. It is well known that this implies <p(z) is a constant of modulus 1

[7, p. 120]. Hence <j>(z) = ± 1.
Remark. Conditions (a) and (b) cannot be replaced by a requirement that

<p(z) takes on its boundary values a.e. on R(z) =0.

Lemma 4.1. // |^(¿¿)| =1 a.e., ^(z) ¿5 analytic in P(z)>0 and takes on

boundary values a.e. on R(z)=0, and if <*> >M>|^(z)| >m>0 for R(z)>0,

thenip(z)=y, \y\ =1.

The proof is essentially that of the last part of the demonstration of Theo-

rem 4.1.

The following are in a sense generalizations of Theorem 10.3 of [l]. How-

ever, they are considerably stronger and the demonstration is quite different

from that of the theorem cited.

Theorem 4.2. The functions fp(x) andfp(x)/C, p a positive integer, cannot

both be numbers of K unless C = TV, TV an integer, and thenf(x) = +sin TV*.
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It is understood, of course, that the inclusion fp(x)/CÇ.K, p odd, is used

in the obvious sense of replacing odd function by even function in the charac-

terization of the class K. Herefp(x) =dpf(x)/dxp.

The case p = i corresponds to Theorem 10.3 of [l] with the important

generalization to functions in K rather than in K'. This theorem is a special

case of a more general theorem which we proceed to state and prove.

Theorem 4.3. If {an}(EK then {annr/C}, r>0, cannot be in K unless

| C| =Nr, N a positive integer, and then \ an \ = dns.

As usual, write d>(z) for the function associated with {an}. When

{annT/C} Ç.K it follows from Theorem 3.1 that <j>(z) has a uniformly conver-

gent Dirichlet expansion for R(z)> —r. Hence <p(z)Ç.Ku. In view of Theo-

rem 2.2 we know <f>(z) is meromorphic. There is no loss in generality in

assuming C positive. Since <f>(z — r)/C is associated with {annr/C} we have,

by Theorem 3.1,

(4.03) | <b(z - r) | g C, R(z) > 0.

It is clear from equation 4.03 that <p(z) has no poles on R(z) = —rand, in fact,

|*(a-r)/C| á i.

Observe now that

(4.04) | <t>(r -it) | = | <t>(it -r) I"1 è C~\

Since 4>(z)ÇzKu, we infer <p(z) is uniformly continuous in r — t = R(z) ¿r+t, for

some positive e. Hence, for some positive 5 and «',

(4.05) \d>(r - z) | è S, I R(z) \ £ e'.

Plainly equations 4.03 and 4.05 imply |*Kz)| is uniformly bounded in

R(z)> —r — t'. Since d>(z) is known to be meromorphic, we can assert <f>(z)

is actually regular in R(z) > —r — t'. Hence by the Bohr-Schnee theorem the

Dirichlet expansion oi<p(z) surely converges uniformly for R(z) ^—r. We see

now that the hypotheses of Theorem 2.2 are fulfilled by \p(z) =<p(z — r)/C and

so^(z) satisfies relation III. Then

\<t>(it-r)/C\ = 1.

Let

e(z) = c"rd,(z).

We have

| 6(z) | = 1, R(z) = 0, R(z) = - r.

The harmonic function « = log|ö(z)|  takes on the value 0 on s = 0 and
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s= — r. Hence, by successive reflections first in the line s = 0, then in the lines

s— ±r, then in the lines s = + 2r, and so on, we can continue u(s, t) harmoni-

cally. Thus «=0 for 5 = 0, +r, ±2r, ■ • • . Since <p(z)Ç,Ku we know \<p(z)\

has a positive lower bound in 0 = R(z) = —r. Accordingly, | u(s, t) | is bounded

for —rSsSO and hence u(s, t) is uniformly bounded for all values of s and t.

This implies that 10(z) | is uniformly bounded and hence by Liouville's theo-

rem 0(z) is a constant. Thus <p(z)=AC~'lr. Since <f>(z)(E.Ku it follows that

A = ± 1 and C=TVr, TV a positive integer.

Another result in this range of ideas follows.

Theorem 4.4. // {an} GK, oi^O, then {na„/C\n — 2,3, • • • } cannot be a

member of Kfor any choice of C.

Suppose to the contrary that {nan/C\n=2,3, • • • } ElK or, what is equiv-

alent,

<b(z - 1) - Oi

-c-eK-

We may parallel the argument used in the previous theorem to show that

actually {a„} EKU, that

|«#(i-IO|i(|c|+|oi|)-»,

and then that (<p(z— 1) —ai)/C satisfies relation III. Evidently

¿B(«)-oo0(z) — Lr(Z)*.k<I>(z — 1) = au

Hence from relation III, applied to (<j>(z — 1)—ai)/C,

(4.06) £a(.)^0(-*- 1) = *.

On the other hand it is plain that

LR(,)^x<b(— z — 1) = LRM^x<t>(— z) = l/au

This is in contradiction with the assertion of equation 4.06, whence we gain

the conclusion of the theorem.

The following theorem is a sharper form of Theorem 7.4 [l ].

Theorem 4.5. If {al] and {a2,} both belong to U then it is not possible

that \fi(mx),f2(nx)]=0 for all m and re unless either {a£} or {al} is a null

sequence.

There is no implication that either {a„} or {al} belongs to Ku. An

argument based on the a.p. property of 0i(¿¿) and <¡>2(it), similar in detail to

that used in the demonstration of Theorem 2.1, shows that

4>i(it)<t>2(- it) = 0.

Let L be a closed interval. Let d and 02 be the set of zeros in L of <f>i(it) and
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<p2(it) respectively. Then 0-AJ02=L. Since L is of the second category [8,

p. 13] there is a subinterval L'CL such that Oí =LT\Oi or 0Í =L'C\02 is

dense in L'.

Suppose 0[ has this property. Then by continuity <pi(it) =0 for all ¿£P'.

Evidently ^ajn-' is continuous in a region abutting on L' on the right, for

the series is obviously uniformly convergent. Hence application of the

Schwartz reflection principle yields a domain of analyticity including L' in

its interior. Accordingly, cf>i(z) vanishes in this domain and hence by analyti-

cal continuation d>i(z) vanishes for R(z) >0. Thus since <pi(it) = L„o+4>(s+it)

we have d>i(it) =0 for all t or {a\} is a null sequence.

We shall have use for the Fatou theorem [9] which we state in a general-

ized form: If \p(w) is regular and bounded in \w\ <1 then (a) at almost all

points on the circle \w\ =l,\J/(w) takes on boundary values ip(eie) for approach

in the wide sense and (b) \J/(w) converges in the L2 norm topology to i{/(eie) as

r—*l, that is to say

/»  2T

| xP(reiä) - yp(eie) \2d6 = 0.
o

Approach in the wide sense is understood to mean approach to the boundary

point exp id within a sector bounded by chords through this point. It is clear

that a conclusion corresponding to (a) is valid for the half-plane as well.

(Actually in our subsequent references we state our results for approach to

the boundary along normals, but it is understood that the approach in the

wide sense is permissible.) We remark also that a bounded regular function

in the half plane R(z) >0 is uniquely determined by the boundary values ap-

proached on a set of positive measure. This is essentially an easy conclusion

from a theorem of M. Riesz and F. Riesz [ll ]. We summarize the application

of these remarks to the special case of interest to us in a theorem.

Theorem4.6. If<f>(z) GP then (A)<f>(s+it) converges^) a.e. to<f>(it) as s—»04,

(B) <p(z) is uniquely determined by the values of <f>(it) on any set of positive

measure.

5. The quasi-elementary solution. The problems raised in this section are

perhaps of equal significance with the key result established in the first theo-

rem.

Since our present definition of a quasi-elementary solution is formally dif-

ferent from that used in [l ] we need the following lemma.

Lemma 5.1. A quasi-elementary solution belongs to Ku.

Let d>(z)=N(z)/D(z) where N(z) and D(z)   refer to the numerator and

(') There is, of course, no implication that 4>{il) is the value ol<f>{z) forz = ti. Indeed in gen-

eral, of course, the Dirichlet series does not converge for i?(z)=0.
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denominator in the representation of a quasi-elementary solution. Since D(z)

is a.p. for each s, s^O, and goes to 1 uniformly as R(z)^> oo it is easy to see,

just as in a similar situation treated in Theorem 4.1, that |77(z)| ^¿5>0 for

P(z)^0. Evidently D(z) is uniformly continuous for | R(z) | ^p,p>0. Hence,

for some positive e, D(z) ^ ¿5/2 for R(z) è — e. Thus <p(z) is a regular analytic

function with uniformly bounded modulus in R(z) ^ — e. Moreover <p(z) ob-

viously has a convergent Dirichlet series for large enough R(z). The Bohr-

Schnee theorem guarantees that this series is surely uniformly convergent

for R(z) s^O. Since <f>(z) plainly satisfies III, the proof is complete. It will ap-

pear later that actually the stronger assertion that <p(z) GP' is true.

Theorem 5.1. If<p(z) Ç_KU has a finite base, then <f>(z) is a quasi-elementary

solution.

We give the proof for a binary base, {/>,-|* = l, 2}. The extension to a

general finite base will be obvious. Let

Wi = pi   , pi > pi.

Then

(5.01) <b(z) = ¿2 a(k, »(pipi)"

becomes

F(wi, Wi) = 52a(k, l)wiWi,

where we write a(k, I) instead of an, n=p\p[.

In view of Theorem 2.3 the series for <p(z) converges for z = — y <0. Hence

the series for F(wi, w2) converges for Wi=pr"1- Accordingly the latter series is

absolutely convergent and defines an analytic function [11, p. 36] for

\wi\^\+eo<Pl.
Incidentally, the simple argument above shows that Kv and K' are identi-

cal for solutions with a finite base. Let S(d>) be the range of d>(z) for R(z) =0.

Similarly, S(F) is the range of F(Wi, w2) for | **»i| =1, | *©2| =1. According to a

result of Bohr's [3, p. 448], S(F) is the closure of S(<f>). Since the complex

numbers in S(<p) have absolute value 1, it follows that the complex numbers

in S(F) have absolute value 1 also.

We wish to show that in the region A, defined by

(5.02) | wi | = pT,        | *f21 = pT,       (1 4 «o)_1 < pT < 1 4 «o,

we have

(5.03) F(wi, Wi) = (F(w?, wi1))"1.

For this purpose we need to extend the argument given by Bohr for a previ-

ously quoted theorem [3, p. 448]. We remark first that in view of uniform
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convergence we can choose TV so large that, for R(z) consistent with equa-

tion 5.02,

23<*»w
JV+l

<8,
* *

5 >0, re = pip2*

Similarly

23a(^> k)wiw2
N+l

<Ô

for \wí\ =pr' or | a;,-1 =p\ in A. Let wi=pr*+it, w2—p2'+ir. Write p for log pi

and v for log p2. We define FN(wi, w2) and FN' (wi, w2) by

iV l    lc N -, it    k    -t irr I
FN(wi, w2) =  23 a(k> l)wiw2 = 23 a(kt l)(Pi'e ") (Pt'e   ) »

i,l-l i

FÍr(a»i, w2) =  23 «(*. 0(/>rV V (p7e")~ .
k.l-l

We define <¡>n(z) and 0i(z) by replacing t and r by the single variable h in

Pjv and Pat' respectively. By the classical Kronecker theorem on diophantine

approximation, for each positive number «5' we can choose h so that for some

integers a, b, \ (i-A)M+2ira| <d'/N, \ (r-h)v + 2wb\ <ô'/N. Accordingly

N

I 4>n(z) - FN(wu w2) I S 23 I o(*. «0 I (#i #« ) I « - « I.
1

á 2«'¿|a(*,0|(íÍ#l)~'.
(5.04)

Similarly

(5.05) | *»(«) - tf,(Wl, w0 | ^ 2&'¿ | a(fc, 0| (Pipi)'.
i

Choose ô' such that the right-hand side of equation 5.05, and hence the right-

hand side of equation 5.04 also, is inferior to S. Hence, since <j>(z)<p(—z) =1,.

we have for the case characterized in equation 5.02

| F(wi, w2) - (F(wi ,w2))    |

S | F(wu w0 - <b(z) | + | («(-s))"1 - (F(wT, wi1)'1 |

S | FN(wi, w2) - <pN(z) | + | F'n(wu w2) - <p'N(z) I + 43

S 65.

Since 5 is arbitrary, it is clear that we have established the assertion in equa-

tion 5.03 under the conditions of equation 5.02.
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Consider P(wi, c) with c fixed, where c=pi'+ia, (14«o)-1< \c\ <14«o- We

assert that F(wi, c) is a rational function of w. We remark first that F(wi, c)

may be continued by means of the relation

(5.06) F(wi,c) = (F(w~il,c~1))~1.

Indeed, for \w¡\ =p{, equation 5.06 is a consequence of equation 5.03. Then

since the left-hand side of equation 5.06 is analytic in (14«o)-1< | *fi|

<(14to), this equation holds for | Wi\ =1. On making use of an extension of

the Schwarz reflection theorem [7, p. 157] one can demonstrate precisely

as in a somewhat simpler situation treated previously (Lemma 3.1 of [l])

that an analytic continuation is indeed defined by equation 5.06. Suppose

now that wí is a singular point. Plainly \w{\ > 1 since we have already shown

that F(wi, Wi) is analytic for \wi\ <14eo- According to equation 5.06, if the

singularity were nonpolar, then F(wi, c~x) would have a singularity for

wi=(wí)~x. However, under the restriction on c and wi, F(wx, c) is analytic

at (wí)~x. Hence any singularities of F(w¡, c) in the extended plane must be

poles, and F(wi, c) is a rational function.

In a similar manner we can show that F(d, w2) is a rational function of w2

when d is restricted to some ring containing | wi\ =1 in its interior. We re-

capitulate the features significant for our purpose. For some positive e' and

with Di and 772 referring to the domains | î*^i — 11 <e' and |**»a—1| <e' re-

spectively, F(wi, w2) is analytic for **>iG7>i, w9^D2. Moreover P(oi, w2) is a

rational function of w2 for aiGPi and F(wx, a2) is a rational function of wi

for a2G772- These facts ensure that F(wi, w2) is a rational function of both

variables [11, Theorem 2, p. 238]. Therefore

(5.07) F(wi, Wi) = B(wi, Wi)/C(wi, wi),

where B(wi, w2) and C(wi, w2) are relatively prime polynomials. An important

property of these polynomials for the last stage of the proof is that, for

| Wi\ < 14«o, the zero curves of B(wi, w2) and C(wi, w2) are disjunct. This is a

consequenceof theanalyticityof P(wi,w2)in the domain cited, cf.,for instance,

the theorem of Weierstrass [ll, p. 197]. We infer then that | C(wi, w2)\ is

bounded from below by a positive constant in this domain.

It is now clear that equation 5.03 extends to all values of Wi and w2 by

analytic continuation. (It is understood, of course, that at possible singulari-

ties this equation is to be interpreted in the sense of equality of limiting

values along curves in correspondence through the generalized inversion with

respect to the origin, namely wi and **>2 replaced by wf1 and wïx.)

We observe that F(wi, w2) has no nonessential singularity of the second

kind at (wí, wi), \wí \ >(14«o)_1- Thus B(wu w2) and C(wi, wi) have no

common zeros in the domains Q\\ |w,| <14*o and Q2: |w,| >(14«o)-1.

On turning to <p(z) it is clear that we have shown that

<b(z) = B(z)/C(z)



1946] A CLASS OF SEQUENCES OF FUNCTIONS 489

where

(5.08) 2}(*)«23K¿. *)(#&)"*,

(5.09) C(z) = Z <l, r)(plp¡)~Z,

and both sums are finite with B(z) and C(z) relatively prime. We can dispose

of the case C(z) constant, immediately. Indeed, Theorem 2.2 of [l] shows

that B(z) must perforce be a constant also. If B(z) is constant, then III implies

00

23 c(l, r)(p\p2)' = 1/C(z) = £ gmm~\ | P(z) | S e.
tn-l

The uniqueness of Dirichlet expansions guarantees then that C(z) is a con-

stant also. Hence if either B(z) or C(z) is constant, <f>(z) = ± 1 and our theorem

is established. We may therefore assume that neither B(z) nor C(z) is con-

stant in the sequel.

In view of relation III

(5.10) B(z)/C(- z) = C(z)/73(- z) = q(z).

Evidently q(z) is single-valued. We observe that the range of B(z) or C(z) for

R(z)=s is dense in the range of B(wi, w2) or C(wi, w2) respectively for

I wi\ —pï'- In view of the italicized statement above, it follows that B(z) and

C(z) have no common zeros. Indeed Qi takes care of s SO and Q2 accounts

for í>0. It is impossible that B(z) have a zero in the left half-plane R(z) <0.

Otherwise, since

| «¿(z) | = | C(- z)/B(- z) | S 1, R(z) ^ 0,

we should have C(z) =0 for the same value of z. The possible zeros of q(z}

are, according to equation 5.10, common to B(z) and C(z). Hence q(z) is

zero-free in R(z)>—e. The possible poles of q(z) are at points for which

P( —z) =0. Hence q(z) has no poles for R(z) > — e.

Since</>(z)£/£', we know there are no zeros in |P(z)| St'<p, e'>0. Hence

B(z) does not vanish in R(z) Se'. Since

LRM^-x,B(z) = oo

it is easy to show that |P(z)| has a positive lower bound for R(z) Se'. The

argument is precisely that used in the first part of Theorem 4.1. Similarly

we can show that | C(z) \ has a positive lower bound in R(z) ^ — e'.

We now make the important observation that c(0, 0) =0. If not, F(wi, wt)

has a nonessential singularity of either the first (polar) or second kind at

(0, 0). Neither alternative is admissible.

Let M = p\p\ be the term of "highest degree" in B(z) in the sense that

P\p\>Pip\ for (j, k)y£(a, b), where comparison is made for all terms in B(z)

with nonvanishing b(k, l)'s. Then
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B(- z) = M*(d +  23 d(j, k)(pÍpk2/M)').
\ i+k>0 /j+k>0

Hence

q(z)M'=(c+ Z C(l, r)(pipr2)~l)/(d + 23 ¿(j, k)(pÍpl/M)").
\ J+r>0 / '      \ i+*>0 /

We now make use of the inferences concerning the positive lower bounds

of |P(-z)| and |C(z)| in -e'SR(z). Thus

LRM~xq(z)M* = c/d t¿ 0,

and then

(5.11) 0 < h S \q(z)M'\ S H < oo, R(z) ^ - £',

We observe that q(z) satisfies III and is analytic for R(z)^ — e'. It is then

apparent, in view of equation 5.11, that the hypotheses of Lemma 4.1 are

satisfied. Accordingly, there is a constant L such that

<7(z)M' = L, | L | - 1.

This is to say,

B(z) = LM-'C(- z).

Since <p(z) is real for real z-values, we conclude that the coefficients c(l, r) are

real and L = ± 1. Thus

<t>(z) = ± M~Yl + £ c(l, r)(pip2)')/(l + 23 eft otórY
\ l+r>0 / \ l+r>0 /

The denominator has a modulus bounded from below in R(z)^ —«'. More-

over it is manifest that M must be a multiple of the L.C.M. of {p[pT2}. Hence

<p(z) is a quasi-elementary solution and our proof is complete.

Theorem 5.2. //<£(z)£P' has the base {pn\n = \, • ■ • } then the Dirichlet

series -p(z), obtained by replacing pn by pn' where {pñ } is a set of not necessarily

distinct primes, belongs to K' also.

Thus suppose

(5.12) <b(Z) = 2>0i---- ,h)(plî ■■■ plir

has the base {pn}- Replace pT' by w< in equation 5.12. The resulting func-

tion is denoted by F{wn}. For R(z) =0 the range of <p(z) is dense in the range

of F{ wn | for | wn\ =1- Since <p(z) GiC it follows just as in the first part of the

proof of the previous theorem that the range of P{w„} for | wn\ =1 is a sub-

set of the unit circle in the complex plane. The arguments of the various wn's

can be given arbitrary values mod 2ir. Hence, for instance, taking the argu-
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ment of **>„ as log pn t rather than log pnt (where pn' = 1 is included) does not

affect the italicized property of the range set of P{wn}. This is readily seen

to imply the assertion of the theorem. In particular, every reduction of a

4>(z)(E.K' to a function on a finite base by identifying a suitable number of

pn's leads to a quasi-elementary solution.

Remark. In view of the last two theorems it is natural to raise the question :

If <¡>(z) GP' does <p(z) necessarily have a finite base ? A direct attack following

the lines of Theorem 5.1 meets difficulties which constitute interesting prob-

lems in the theory of analytic functions of an infinite number of complex

variables. Thus does a rational function PÍ**»n| permit the representation

C{wn}F{wn} =B{wn] where P[w„} and C{*fn} are entire functions whose

finite sections (wn = 0, n ^ N) or (wn =l,n^N) are polynomials ? Does a mero-

morphic function permit a representation of this sort where P {**>*} and

C{wn} are relatively prime entire functions? This is a generalization of Poin-

caré's problem for functions of a finite number of complex variables. The rep-

resentation of the general solution on a finite base, of the type of equation

10.07 for the one-element base, is another problem of prime importance. It

is closely related to a representation problem for functions of several complex

variables which take on boundary values of constant modulus on the (dis-

tinguished) surface {| *d,| =1}. The writer will present results in this direc-

tion in a later communication.

Theorem 5.3. If (a) d>(z)=A(z)/B(z)£:K', (b) ^4(z), B(z) are entire func-

tions with no common zeros in P(z) ^0, (c) B(z) has a Dirichlet expansion con-

verging uniformly for R(z)^0, (d) | M'A(z)/B(-z)\ =h>0 for R(z)^Q, then
d>(z) is a quasi-elementary solution.

In view of relation III it is easy to see that

ß(z) = A(z)/B(-z) = B(z)/A(- z)

and

li(z) JLt( — Z)   =   1.

Evidently B(z) is zero-free for P(z)^0 in view of conditions (a) and (b).

Hence p(z) is regular and zero-free in R(z) ^0. It is clear that the hypotheses

of Lemma 4.1 are satisfied by M'p(z). Accordingly

u(z) = LM-\ I £ I = I-

Hence

<b(z) = LM-°B(-z)/B(z).

Evidently (B(z))~x and B( — z) are a.p. for R(z) =0. If the expansion for B(z)

were not finite, then LM~uB(—it) would have terms in its expansion with

positive imaginary parts for some of the exponents. This would be true then
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oí<p(it), also. Such a contingency is barred by the fact that<Kz)£P'. Hence

B(z) has a finite expansion. The rest of the demonstration is obvious. It will

be noted that in particular we have shown that no <p(z) with an infinite basis

can satisfy the condition of the theorem.

6. Dirichlet series conditions. Our relations I and II are necessary and

sufficient conditions in terms of {f(nx)} and {a„} for a solution in K. Rela-

tion III is an analogous condition under the restriction <¡>(z) Ç_KU. The possi-

bility that relation III is actually effective for the general case is disposed of

by the examples of a later section. Nevertheless we are able to give necessary

and sufficient conditions in terms of the properties of the Dirichlet series and

thus complete our picture in an essential way. This is the contribution of the

theorem below.

Theorem 6.1. Necessary and sufficient conditions in order that <p(z) £P are

(a) |<Kz)| ^l>P(z)>0, (b) <p(z) has a uniformly convergent Dirichlet series for

R(z)>0 or (h') <b(z) has a Dirichlet expansion and is regular for P(z)>0,

(c) 23a?, = 1 or (c') L.^M{4>(z)} = 1.

We prove the theorem under conditions (a), (b), (c). The possibilities (b')

or (c') are easily shown to be equivalent to (b) or (c). That the conditions are

necessary is plain in view of Theorem 3.1. We need therefore consider the

sufficiency aspect alone.

The boundedness of |<Kz)| guarantees the existence of the following in-

tegral means:

(6.01) M{U(z)|2- 1} = l-2M{<Kz)} +M{|«¿(Z)|2}, R(z) >0.

According to a well known theorem [7, p. 307] we have

(6.02) 1 = 23 al = L.^o+M {<¡>(z)}.

The left-hand side of equation 6.01 is obviously non-negative. Hence, using

equation 6.02, we get

- 1 + liminf M{ |<Kz)|2} è 0,
s-»0+

- 1 +limsupM{ |<Kz) |2} è 0.
s->0-|-

Accordingly, in view of condition (a), the indicated limit inferior and limit

superior are equal and

Z..o+M{ |<Kz)|2} = 1.

Since4>(z) is an a.p. function for all s>0, so is \<f>(z) \2. Hence

(6.03) /..„+   23    (Ak,i(s))2 = Z.,o+M{ | p(z) \2} = 1,
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where

(6.04) Akj(s) = Y,akjau(j2kl)->.
3-1

We have

(6.05) I E <¿ - £ a»n~111 = ¿ <*»(i - »"*) + 2 E «n, í è0.
n-1 n-if+1

For arbitrary t, e>0, we can choose N and a positive ¿5 such that both sets

of terms on the right-hand side of equation 6.05 are inferior to e/2 for

0áí<5. Hence

(6.06) L.^o+A1,1(5) = !«! = Ai,i(0) = 1.

For p > 0, we choose a positive p, such that

(Ai,i(s))2 M-p

for all O-Oá/i. In view of equation 6.03 we have, then,

S   (Ak,,(s)r < p.

Accordingly

(6.07) 7.,„+1¿M(i) |=0, (*,/) = L « ^ L

An obvious application of the Schwarz inequality shows that Ak,i(0) exists

and that its series representation (equation 6.04) converges absolutely. A

simple argument then ensures, in view of equation 6.07 and the Abel theorem

for Dirichlet series [7, p. 291 ], that

00

(6.08) Ak,i(0) = £ ajkau =0, (k, I) = 1, kl * 1.
i-i

Since equations 6.06 and 6.08 assert that relation II is satisfied, our proof is

complete.

7. Unitary transformations. In §3 we showed that the sequence {an}(E.K

determines a transformation which is unitary on the right, although except

for the trivial case a„= ±*5i„ the transformation is not unitary. This result

suggests the possibility of utilizing the sequence {an} in other ways to define

a transformation which is actually unitary. We show below that in a fairly

general case, at least, this can be done.

Our first theorem yields another necessary condition for <f>(z) GP- In the

course of the proof we introduce a number of concepts that have later applica-

tion, and this makes the developments considerably longer than necessary for

this theorem alone.
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Theorem 7.1. If <p(z)Ç_K then the function^) <p(it) defined in Theorem 4.6

satisfies
<b(s + it) <b(it)

'"<*/ 1/2 - 5 - it     1/2 - it
dt = 0.

Write

(7.01) P(X) =   23 inn-1'2.
»>i/x

The following relations are valid for a range of s values to be specified pres-

ently :

i rr   <t>{s + it)
(7.02) Q(X, s) = l.i.m. —-'—\-u+u2+wdt>

r—»  2tJ-t 1/2 — s — it

.(7.03) <t>(s + it)/2~1 - s - it= l.i.m.    f    Q(\, s)X<i-1'2«7X.
A->»   Ja-1

We refer to Q(s, X) and <£(s+¿/)/2-1 —s —it as M transforms. The term is

used to indicate the connection with the Mellin transform where, however,

Q would be free of s. Our formulation preserves the relation to Fourier trans-

forms.

The spacesL2(0, oo) and L2( — », co) are equivalent [8, p. 180], and if E

is the linear homeomorphism connecting them, we write with an obvious in-

terpretation

£Li(0, «o) =¿,(- «o, «o),

P-^íí-   »,   oo)  =/2(0,   oo).

We say the linear operator P on L2( — oo, oo ) to P2(0, oo ) is essentially unitary

if PP is unitary. Similarly, the linear operator P' on L2(0, oo) to £j( —oo, oo)

is essentially unitary if E~1P' is unitary. The operator taking a function into

its M transform is essentially unitary. In particular,

1   c"\   *(*+«)    I2,
at.(7.05) j   (Q(s,\))2d\ = ^J

1/2 - j - ito

Since <£(z) Ç.K it follows from Theorem 3.1 that

<b(s + it)/2~1 - s - it G L2(- oo, oo), 0 < s < 1/2.

Hence equations 7.02 and 7.03 are valid for 0<i< 1/2 and Q(s,\)£L2(0, oo).

Write
N

<I>n(z) = 23 o-„n~'.
n-l

Then  the  M   transform   of 4>N(s+it)/2-1 — s — it exists as a function in
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P2(0, »o) for 0<5<l/2 and may be denoted by Qn(s, X). It is easy to verify

that

QN(s, X) = \-x ¿ ann-^2.
n>l/X

We have

(7.06)
/'

I 4>(s 4 it) - 4>N(s 4 it) I2
dl

1/2 - 5 - it

=  f    I E  ann— «   /((l/2-5)24/2)-¿/.
■J -oo   n=iV+l /

According to Theorem 3.1, the Dirichlet expansion for d>(z) is uniformly con-

vergent for j>0. Hence the limit as N—* oo of the left-hand side of equation

7.06 is 0. That is to say, <ps(s+it)/2~l — s—it converges to <p(s+it)/2~x — s—it

in the norm topology of P2( —«, oo). Since an essentially unitary operator is

plainly continuous in the norm topology, it follows that (?w(X, s) converges to

Q(\, s) in the norm topology of P2(0, oo). However, Qn(s, X) obviously con-

verges in the usual sense to 77(X)X*_l as N-* oo. We make use of the principle

that a mean P2 limit and an ordinary limit must be essentially the same, and

infer Q(s, X) =77(X)X-1 a.e.

Observe now that evidently

L.„o+H(\)\-x = H(\)/\.

We combine Fatou's lemma [7, p. 346] and equation 7.05 to get

f   (H(\)\-X)2d\ ̂  lim inf   f    | 7J(X)X—i^ciX
J 0 «-H)+       J 0

r " I   <t>(s+ it)    I2    ./
g lim inf   I-\dt/2v

(7.07) ^o+   Jo   |l/2-j-*<|    /

f"[          l I2     /
g lim inf   I      -\dt / 2t

«-*>+    Jo   11/2 - í - */1    /

^ 1.

Hence 77(X)AG72(0, oo). Obviously

(7.08) J"  (^)2(X' " 1)2¿X = /   (^Cm-1)^* - t))*d?.

Choose A, A >1, so large that fî(H(p-]))2dp<e. Thus

J   (H(u-x)(u-> - l))2du < 2«.
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We have

(7.09) f   (AGOG*"' - D)2^ = B f   (M- - 1)2¿M.
•/o "0

Plainly, for all positive sufficiently small values of s, the right-hand side of

equation 7.09 is inferior in value to e. Hence the left-hand side of equation

7.08 goes to 0 with 5—>0 + . That is to say, P7(X)X'-1 converges to P7(X)X-1 in

the norm topology of 71.2(0, °o) as s—>0 + . If we make use of the fact that

we are dealing with essentially unitary operators, it is then clear that

<p(s-\-it)/2~1 — s—it must converge to a function yp(it) in the norm topology

of L2( — oo, oo) and, moreover, \p(it) is the M transform of P7(X)X-1.

According to Theorem 4.6, <p(s-r-it)/2~1 — s — it converges a.e. in the usual

sense to <f>(it)/2-1—it as s—*0+. Hence, again making use of the identity of L2

norm and ordinary limits, we conclude that ^(¿2) = <¡>(it)/2~x—it a.e.

Theorem 7.2. If </>(z)£7T and if (a) the function <f>(it) shown to exist in

Theorem 4.6 has its modulus 1 almost everywhere, then

(A) ff(X)X-'ei,(0, oo), (B) f   (P(X)X-1)2<7X = 1,
J 0

/.nuuori.r»)   H(k\)H(l\)
' d\ = min (k, 0(1 - (*(l/2))2),

o *

(D) H(Kp)/\ is a self-reciprocal kernel defining a unitary transformation in
L2(0, oo).

Conclusions (A) and (B) follow directly from Theorem 7.1, equation 7.05,

and condition (a). The fact that \<j)(it)\ =1 a.e. and that //(X)X-1 is the M

transform of p(it) guarantee [12] that

f " H(k\)H(l\)
(7.10) I d\ =mm(k,l), k > 0, I > 0.

i/ o                A

The definition of Z7(X) makes clear that P7(X) =0(1/2) for X> 1. Thus the

left-hand side of equation 7.10 is

/.max(i-',r-i)     H(k\)H(lX) C°°
I d\ + <b(l/2)2 I d\/\2.

Jo X2 Jm«<lr*.r»)

Therefore

/•maxOt-M-l)   H(k\)H(l\)
(7.11) ' ¿X = min (fe, /)(1 - («Kl/2))2).

Jo                               X2



1946] A CLASS OF SEQUENCES OF FUNCTIONS 497

The relation in equation 7.11 is referred to by the letter W in the sequel.

Conclusion (D) is a consequence of (C) [12].

Theorem 7.3. If (a) d>(z) GPP or (b) <p(z) G-P, and <p(z) has a one-element

base, then the conclusions of the previous theorem are valid.

In case (a) it is evident that <p(it) is the value of <j>(z) for z=it. Hence

|<£(î/)| =1 by Theorem 2.2. For case (b) we refer to Theorem 10.3 of §10,

where it is shown that |<£(/¿)| =1.

Remark. In view of Theorem 7.3 it seems highly desirable to complete our

theory by deciding whether condition (a) in Theorem 7.2 is necessary. The

situation may perhaps be clarified by the following observation. If we make

use of relation II it is possible to show in a fairly straightforward manner

that, formally,

f   (H(\)\~x)2d\ = ¿( ¿ ann-x'2)
7 0 N-l\n=N /

(7.12) = X>„ 4 2        £        (»/»)m Z «.*»«*
n—1 (m,n)*=l,n<m fc—1

00

= i>: = i.

Obviously |#(îï)| ál a.e. Hence

r" 1   r"  \&M)\* 1  f"       1
(7.13) (P(X)X-1)2áX = —I d t g — I      -dt=l.

Jo 27rJ-a¡  1/4 4 t2 2irJ_„  l/4 + í«

Accordingly, if we can justify the formal rearrangements in equation 7.12,

or give criteria for this purpose, it would follow from equation 7.13 that

|#(t'0| =1 a.e. In this connection another relation may be noted, namely

2^A((Í7(X))2X~2) =Za» where we sum over the jumps of 77(X)X-1.

We are interested in the relation between property W and the class K.

The following theorem sums up some consequences of W.

Theorem 7.4. If (a) 77(X)X_1 satisfies relation W, then (A) ^2,ann~' is conver-

gent for R(z)>0, (B) |*(í+¿0| =O(\t\xi2),t->°°,0<s<l/2,(C)<p(s+it)/2-x
— s—it converges to <f>(it)/2~x — it, \ <p(it) \ = 1, a.e. in the norm topology of P2( — oo,

oo), (D) M{<f>(s+it)} exists for s>0, and (E) \<p(s+it)\ 2/((i/2-s)2+t2)"

belongs to7a( —oo, a») for a> 1/2 and 0<s<l/2.

Evidently

(7.14) f   (H(\)\-X)2d\ 5Ï  f   (H(ß-x)ß-')2dß + f   (H(ji-*)ß-)*dn.
J o J o J i

Since H(p~x) is constant on intervals of unit length, we infer it is uniformly
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bounded in absolute value. Hence the first integral on the right-hand side of

equation 7.14 is finite for 0^s<l/2. The second integral is a decreasing

function of 5 and hence is finite for s^O. Accordingly P7(X)X*_1G/'2(0, oo)

for 0 S s < 1/2. It is easy to show that

(7.15) f    | P(X)X-1Xi'-1/21 d\

exists for 0<s<l/2. A straightforward argument using H!f(p~1) then shows

that the M transform of Z7(X)X*_1 is<f>(s+it)/2~1 — s— it in this range. This is

essentially conclusion (A) of the theorem. Moreover, \<j>(s-\-it)/2~1 — s — it\ is

dominated by the integral in equation 7.15. This implies \<b(s-r-it)\ =0(\t\ )

t—* oo. The method used in demonstrating Theorem 7.1 shows <p(s-\-it)/2~1 — s

—it converges in the norm topology of Z2( —°o, oo) to <f>(it)/2~1 — it. The

central result of the Watson theory of general transforms guarantees that

|#(¿/)| =1 as a consequence of condition (a). Thus conclusion (C) is justified.

In view of equation 7.15, </>(s+¿0/2_1 — 5— it is analytic in 0<s<l/2

[13, p. 247 ] and accordingly <b(s-\-it) is analytic for 5 > 0. Moreover, for s suffi-

ciently large, 23anw_<*+i<) is uniformly convergent in t and hence is a.p. To-

gether with the italicized order relations on |<£(s-|-¿0|. these facts en-

sure that M{<p(z)} exists for s>0 [2, p. 164]. This is conclusion (D)

and implies, since we are dealing with ordinary Dirichlet series, that ac-

tually |<Ks-Hi)l =0(|i|1/2), <!->oo, s>0 [7, p. 307]. It is then plain that

\<t>(z)\2/\i/2-z\2aELi(- oo, oo), 0<5<l/2, for a>i. However, to show

a>l/2 is sufficient requires more precise analysis. Thus

/.

I *(J + it) |2      J
at

-T  ((1/2 - s)2 + t2)"

T

(7.16)

2 f   U(5 + it) |2 f — ((1/2 - s)2 + x2)-
Jo                         J t \dx

/,T \ d i i rx,
x — ((1/2 - s)2 + x2)-" — I     | <t>(s + it) \2dtdx

o     I dx | x J o

r°°\d i 1   rT ,
+ 2T\    \— ((1/2 - 5)2 + x2)-" — I     |*(i-M0

J t \dx \T J o
2dtdx.

We have shown that |<¡>(s+it)\ is bounded in any finite / interval and

M{<b(s+it)}, 5>0, exists. Hence (i/x)fo\(t>(s+it)\2dt<L<œ for all x. Ac-

cordingly the right-hand side of equation 7.16 is inferior to

4LT/((l/2 - s)2 + T2)" + 2L f   ((1/2 - s)2 + *»)—d*.
Jo

Since a> 1/2 the first term goes to 0 with P—> oo. The second remains finite.
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Hence the limit as P—> oo of the left-hand side of equation 7.16 exists and the

assertion in (E) is established. In a similar way we can show

If, ,
7,,H.o+7r.oo    sup   — I     | <b(s + it) \2dt à 1

o¿t¿T 2t J_(

where oo is now included as a possible value for the left-hand side.

Remark. In view of the next theorem one should expect that the W prop-

erty for 77(X)X-1 might imply some (if not all) of the hypotheses of Theorem

6.1, and certainly more than we have obtained above.

Theorem 7.5. If 77(X)X-1 satisfies W and (a) {an}GU or (b) {an} has a

one-element base, then {a„} G P.

It is not difficult to show that under the present hypotheses the function

4>(it), occurring in (C) of the previous theorem, is here ^2ann~u. In the case

of (b) we require Theorem 10.3 to establish this. Hence Theorem 3.1 yields

the assertion of the theorem.

8. Examples. An example was given in [l] of a solution with isolated

(essential) singularities on the axis of imaginaries. The question of the exist-

ence of a solution with R(z) =0 as a natural boundary was left open. For a

one-element base (and hence for a finite base) the existence of such a solution

can be asserted on the basis of the representation in equation 10.07, cf. §10. It

seems of interest, however, to treat a case with an infinite base directly.

Let Cm= {C"|« = l, 2 • • ■ } G¿2. It is convenient to define a partial norm

by (Zir-i01/2 = ||C||Ar. We proceed with the definition of 4>(z). Let

m

4>*>(z) = (Am 4 p7)/(l 4 Amp~m'),       d>m(z) = Ü <t>i(z)-
i

The coefficient sequence {a„} in the Dirichlet expansion of <pm(z) is denoted

by am. We require pm+i>N(m), where N(m) is subject to the restrictions

(8.01) IMU(m) è (2m - l)/2», N(m) > N(m - 1).

The pm's need not be primes.  We choose   {Am}   to satisfy  0<1— Am+i

<(N(m))-K Plainly

<C = Am(âTl), 1 á « ú N(m - 1).

Hence

||am+i _ a^rf^) á 1 - Am+i.

It is not difficult to show that

(8.02) \\am+' - am|U(m) g 2/m.
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In view of equation 8.02, for fixed TV,

(8.03) Lm,mt^K\\am - am'\\N = 0.

Now ||am|| = 1 and it is easy to see that equation 8.02 implies

/m-ocßn = a„, re = 1, 2, • • • .

This is to say, am converges weakly [8, p. 137] to aÇE.h- Plainly,

|| a - am\\Nlm) S 21 m.

Moreover, in view of equations 8.01 and 8.02,

NI = IMUo
="   |MU(m>  -  || « - «B|U<«>
è (2n - l)/2- - 2/m.

Therefore ||a|| è 1. We may interpret a and am as elements of the space of lin-

ear functionals (again k) over l2. We have then [8, p. 123]

||a|| S liminf ||a-|| = 1.
Ill—» »

Hence ||o|| =1 and therefore a is a reorrei limit as well [8, p. 140]. Moreover

a£P for the set of solutions in K is closed in l2 [l, Theorem 11.1 ].

We assert that for n > 0 and some choice of TV

00

pn(z) = n>íM
N

converges absolutely and uniformly in R(z) ^.v. Write

*,(«) - 1 + {A, - 1)((1 - p7)/(l + Ají')).

Choose M such that
-log \Ai\/\agpi <v, j>M^N.

This can obviously be done. For fixed z, R(z) ^n,

| (i - p7)/(i + AipT) | < i, y = i, 2,....
Since \Aj—1| <j~* it follows that

I *i(*) | = i+ r2.

The convergence of 23í-mJ~2 then guarantees the absolute and uniform con-

vergence of Pm(z), R(z)^r)>0. It is clear that

«>(«) = 2>««-* - <l>M~1(z)PM(z), R(z) è V,

and hence <j>(z) has zeros at
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- log I Ad flog Pi ± 2kri/log Pi. 
Asj-+ «J the lines, R{s) = -loglA,1 flog Pi, containing zeros approach R(s) =0 
and the vertical spacing of the zeros goes to O. Hence every point on R(s) =0 
is the limit point of values of s for which 4>(s) =0. Hence 4>{s) is not analytic 
at any point on R(s) =0. We state our results in the form of a theorem. 

THEOREM 8.1. The 4>(s) defined above is a solution with R(s) = 0 as a natural 
boundary. 

Remark. An interesting property of the solution constructed above is that 
a,;o!!O for ",=PI' (Actually much more is true as will appear presently.) Thus 
from equation 7.01 it follows that a:';o!!O for some i~N(m). For any l>m, 
since p,>N{m), 

_+1 .. 
~ I a~11 All IT (1- (N{j»-I) 

2 . 

~ I a~ II A 1 I /2. 
Since a:' converges to a, it is plain that a,;o!!O. The form of 4>/{s) indicates 
thata.!;o!!O, n=PI. Thusan;o!!O, n=Pi' 

The second example uses products of the form of the solutions given in 
[1, §13]. Its interest lies in part in the fact that here there are no zeros in 
R{s) >0. 

Let A .. be positive and inferior to m-Il• Let {n/} be a monotone increasing 
sequence of positive integers. We assert that .. 

4>{s) = exp - E A, coth (s{log ni)/2) 
1-1 

belongs to K and has R(s) = 0 as a natural boundary. 
Since Hmits of uniformly convergent series of a.p. functions are a.p., it 

is not difficult to see that 4>{s) is a.p. for R(s) >0. 
We have .. 

(8.04) I q,{s +it) 12 ......, exp - 2 E A,h,{s, t), 
1-1 

where 
-2. -12 -12 

h,{S, t) = {1 - n, )/({1 - n,) + 2n, sin (t(log n,)/2». 

We observe that .. .. 
(8.05) E A,h,{s, t) ~ 2{1 - m-,)-1 E A, ~ (1 - m-I )-1m-l. 

1-m+1 '-m+1 



502 D. G. BOURGIN [November

Let € = íw-1. The right-hand side of equation 8.05 is dominated by e provided

s is restricted to satisfy

(8.06) »1-U m7.

This gives a lower bound for s. An upper bound is obtained from the following

condition, which plays a role in our subsequent considerations:

(8.07) n'm - 1 S (irVf \

Plainly, equations 8.06 and 8.07 are consistent for large values of m.

Consider the subset of 0^/^7r/2 such that

(8.08) hm(s, t) < t.

This condition is surely satisfied if

sin* (/(log nm)/2) ^ (n'm - l)«f\
Obviously

sin 6 è 20/r, OSOS x/2.

Then, in view of equation 8.07 and the choice e — m~l, it is easy to see that

equation 8.08 is valid when / is restricted to satisfy

v/log nm > t è (m log Km)-1.

We remove intervals of length 2(wí log rem)-1 centered at the points

(8.09) t = 2fe7r/log nm, k=0,  ± 1, • • • .

Then, clearly, equation 8.08 holds for all t values foreign to the intervals re-

moved. Consider the set S(T): —TirStSTir. There are at most [T log nm]

values of / satisfying equation 8.09. Hence the measure of the set removed

is at most

2T [log «m]/rem log nm.

Evidently

rem — 1      re,- — 1
-=-> m > j, s > 0.
log nm        log «,-

We conclude that equation 8.08 holds with j replacing m,j<m, if

* 1/2 1/2
ir/log »j > < = ir((rem — \)m)   /(log nm log «,-)

or, in view of equation 8.07,

r/log re,- > / ^ (rei(log rem log n,)112)-1.

An argument, similar to that developed in the consideration of hm(s, t), shows
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that hj(s, t) <e,j<m, if we remove from S(T) a subset of measure at most

[27 log «m]/w(log nm log «,)1/2.

Hence the subset S'(T), S'(T)CS(T), for which hj(s, t)<e, 7 = 1, ■ ■ • , m,

has measure at least

2wT(l - (« log »„)-» ¿ (log n^A è 2^7(1 - (log fu)"1)-

For tÇzS'(T) we have

Y,Alhl(s,t) ^ ¿(ml")-1 ^ 2/m.
í=i .-i

Accordingly for /G-S'(P), and 5 satisfying equations 8.06 and 8.07, we have

(8.10) | 4>(s 4 it) |2 è e-«'"\

(8.11) 37{*(« 4 ¿0} ^ ^/m(l - (* log nm)~x).

As >»—» oo, the right-hand side of equation 8.11 goes to 1. It is well known that

M{d>(s+it)} is monotonie nondecreasing as s—»04- Since l/m = e—>0 im-

plies s—*04 we have shown that

L.,o+M{<t>(s+it)} £"1.

On the other hand, since A,(s, t) is non-negative, we have \d>(s+it) | á 1, s>0,

and therefore M{d>(s+it)} <1. Hence

7,.o+ÍI7{<í.(j4 it)} = 1.

It follows from Theorem 6.1 that d>(s+it) is a solution.

Suppose R(z) =0 is not a natural boundary. Then for some open interval,

F, on P(z) =0, 4>(z) is analytic. Accordingly

*(«0 = L.„o+4>(s + it), t£V.

The set Q= {t\t = 2kir/logni, k = 0, 41, ■ • • , Z = l, 2, • • • } is a denumer-

able dense set on R(z) =0. For tÇiVCsQ it is easy to see that

£..0+1 *(* 4 ii) | = 0.

Hence, by continuity, <p(it)=0 for /GF. Then Theorem 4.6 guarantees

<p(s+it)=0, s>0. This is plainly absurd.

It is of interest to show a little more, namely that for each p>0 there is a

set T, such that d>(s+it) converges uniformly as s—»04, t^T„, to a function

<f>(it) of modulus 1 and, with p. denoting the measure function,

n{T,C\ {t\ - T£ tg T}/2T = 0(P), r-^oo.

Since 5 is not restricted to a sequence of values, obviously something more
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than Egoroff's theorem is involved. In order not to complicate the develop-

ments, we prove our assertion under the restriction m<lk for some positive

fixed k.

Since <j>(s) is real we shall write (</>(z)/0(z))1/2 for exp ¿ arg <p(z). It is easy

to verify that with z = s-\-it, z'=s'-\- it,

l/4>(z)Y/2    Mz')Y'2l    « ,
(8.12) (-^-)     -(-—)       =|l-exp-¿0(ílS';¿)|,

I \<t>(z) / \(b(z')/     I

where

OO

S(s, s'; t) = 23 2Ai(n7' - n7)(n¡"~'' - 1) sin (/ log nt)/Di(s, t)Dt(s', t)
i=i

and

Then

(8.13)

Di(s, t) = (1 - m V + 2>»r sin" (/(log ni) 12).

8(s, s';t)\
00

S 23 I Mn7' - re7*)(l - rer^/W*" sin4 (/(log re,)/2) |.

Choose positive numbers «5 and y subject to 4S+y<l. Enclose each of the

points 27r£/log rej, k = 0, ±1, ±2, ■ • -, 7 = 1, 2, • • -, by an interval centered

at this point of length 2p/l1+l log nt. Denote the union of these intervals

by rp. Hence the measure of T„r\ { —TirStSTir} is less than pBT where

P is independent of p and T.

We have

| sin« (/(log «0/2) | ^ (p/*i1+iY, / € r,.

In view of our restrictions on 5, y, A¡, and n¡ we can choose s„ so that for

0<s'Ss<s„ we have

Ai(n7' - re7')(re!+'' - l)/2 sin4 (/(log re,)/2) < pfl~\ I = 1, 2, • • • .

Hence

(8.14) | 8(s, s'; t) | S cP.

Accordingly the left-hand side of equation 8.12 goes to 0 uniformly in t, t(£Fß

for every p > 0. Now it can easily be shown that \

,\/d>(z)\112     U(z')\ll2\

(8.15) U(«) -*(«')    S\4>(z)-<t>(z')\+\<b(z')\  (1^-)     -(^)      .
I \<i.(z) / \<t>(z')/     I

The argument for the first part of the discussion of this example and equa-

tion 8.15 show that the left-hand side of equation 8.15 goes to 0 uniformly
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in /, t€£Tp as 5—»04- That is to say, L.^o+<t>(s+it) =<piit) uniformly in t for

/Gr„and \<p(it)\ =1.
Remark. A gap theorem observation shows that if <p(z) (EK and has a finite

base then anam^0, for some pair nj^m, implies that |w| =1 is a natural

boundary for y,anwn. It seems likely that the second example above or some

modification would show that <p(z)£K is not sufficient. It is of interest to

remark that in his Theorem 14.1 of [l] the writer proved that for a class of

Dirichlet series including K the hypothesis anam?¿0 ensures a singularity at

w = \ for^On**»". The most interesting question, however, is whether all solu-

tions on a nonfinite base have R(z) =0 as the natural boundary.

9. Completeness of sets of functions. The systems in this section are of

the form {f(nx)}. All orthogonality relations are now waived.

As a preliminary to the main results of this section we remark that a wide

variety of completeness theorems may be obtained if one imposes analyticity

conditions on/(a:4iy), following the Szász idea [14] of associating the com-

pleteness problem with that of the zeros of certain integrals. We give a single

theorem to illustrate this aspect. Our result pivots on the use of Carlson's

theorem, but obviously wide generalization is possible according to the ana-

logues of Carlson's theorem employed. It will be observed that periodicity of

f(x) is no longer assumed.

Theorem 9.1. Suppose (a) /(0) = 0, (b) f(w) ,w=x+iy,isa regular analytic

function for R(w)^0, (c) /¡(0)?¿0 for all positive integers I, and (d)

\f(w)\ =0(ekM), k<l/2, for R(w)>0. Then {f(nx)} is complete in £2(0, 2x).

Let A(*)G£2(0, 2?r). Then

-1/ir J o
F(w) = - I      h(v)f(wv)dv

ir J o

vanishes for w = 0, 1, 2, • • • . Manifestly

a2T \1/!
I h(v) \2dv\    e2**M, R(w) > 0.

That is to say

| F(w) | = 0(e*l»l),     | y | -> oo, h = 2xk < 1/2.

Hence Carlson's theorem implies

F(w) h(v)vlfi(0)dv.
o

In view of (c) this implies that h(x) is orthogonal to all Legendre polynomials

and hence h(x) =0 a.e. Accordingly {f(nx)} is closed and thus is complete in

£2(0, 2ir).

We find the following conventions convenient: If {&„|« = 2, • • • } is a
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sequence belonging to h then

00

Bij = 73/.J = ¿_i bikbjk
k=i

where I = i/(i,j) and J=j/(i,j). The sequence {c$?

mizing sequence associated with F(x) and {gn(x)

« = 1, • • • , M} isamini-

! if

F(X)   -   23   Cngn(x) P(X)   -   21 Cngn(x)

for all choices of {c„|re = l, • ■ • , M} where now the norm is the general L2

norm.

We now establish two simple results of general interest. Let

f(x) G L2(0, - ir, t)

with
00

f(x) "»* sin x + 23 °n sin nx.

We say a sequence is minimal if no one of its members is in the closed linear

extension of the others.

Theorem 9.2. The sequence {f(nx)} is minimal.

Theorem 9.3. For a minimizing sequence we have

sin x - 23 c" f(nx) 1 i        M=    1 - Ci

Suppose the first theorem untrue. Then for some TV we must have f(Nx)

in the closed linear manifold spanning {f(nx)\n9éN}. Consider

00

f(Nx) - 'E'cif(ix) ~ 23 Ai sin Jx
í-i

where the prime indicates the term i = TV is omitted. If the squared norm of

the left-hand side can be made arbitrarily small, this must certainly be true

for Du where
N 2

Dn = 2>,-,

A,- = 23 cibui, h = 1.
l\i

Evidently, then, at least one c¡ differs from 0 for 1 SjSN—l. Clearly Dn is

non-negative and takes on its minimum for some finite c,- values which we de-

note by \c{ |j = l, • • ■ , TV—1}. Let k be the first index for which c/ is non-
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zero. Clearly it follows that DN is always at least c't2. This establishes the as-

sertion of the theorem.

For the second theorem we need only observe that the sequence {cn} is

defined by

Since

it follows that

sin x — 53 c„ f(nx), f(jx)    =0,

[sin x, f(jx)] = 0,

j = 1, • • • , M.

* 9* 1,

U     M II2 T M      M "1 M

sin x — 52 c» f(nx)      = I sin ac —  }£ c„ f(nx), sin ¡c    = | 1 — Ci  |.
1 II L 71 = 1 J

The result is of interest in that it suggests a criterion for completeness of

{f(nx)}.

Theorem   9.4.   If /(*)~sin x—^2„°_2bn sin nx  where   {*>„}G/2 and if

£<«'.,')-i|P».j| <1 then (A) {f(nx)} is complete in £2(0; —ir, ir).

If {cn\ n = 1, • • • ) GZ2 then it may be shown in a straightforward manner

that

(9.01) ^,Ck(f(kx) — sin kx)
*=i

2 N

^ E \ciCjBi.j\.
i,)'-l

We prepare for application of the Schwarz inequality by writing the right-

hand side of equation 9.01 in the form

i=l  ;'=1

Hence we have the bounds

N     N

d\ Bij\x'2Cj\ Bij\x'2

T,i:\cj\2\Bi,j\^j:(cn)2 sup simiaco.
i=l  ;=1 n=l lS)'<oo     i=l

We show now that, for arbitrary N,

(9.02)

Indeed let M be the L.C.M. of the integers 1, 2,

sup    E| Pi., | è   E   \Bi.A
l=;<oo     i-1 (i,j)=l

Bmi/t.M = Bmt/s.M =  Br,„

■ , N. Then

(r, s) = l;r, s = 1, ■ P.

Hence, for 7 = Af, all terms in the sum on the right-hand side of equation 9.02

are included in the sum on the left-hand side. On the other hand, we can show

that
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QO 00

(9.03) 231 tM s 23 |p,.,|.
»-1 C«'.J')-1

This follows from the observation that a term Bitj = Bi,j, IJ>\, can enter

at most two times in the left-hand sum. This term is counted exactly twice in

the right-hand sum. Obviously the term Pi,i is counted once in each sum. In

consequence of equations 9.02 and 9.03 we have

00 OO

(9.04) sup    23|£,-,i| =   23   \ Bt.il-
láí<=o    •=! «.0-1

That is to say,

/.AT-.«

JV

23 cn(f(nx) — sin nx)
n-l

2 «
2

=  0223¿n, OáKl.

Since {sin nx} is complete, it follows from a well known theorem due to

Paley and Wiener [15, p. 100] that {f(nx)} is complete in L2(0; —ir, t).

Corollary. Iff(x)~sin x —23»-2&»sm nxwith23»-2I &»| < 1 ̂ en {f(nx)}
is complete in L2(0; —w,w).

This is a trivial consequence of the inequality 23(»'.j>-i| Pi.j'I =^ (23T-2| bn\ )2*

Theorem 9.5. If f(x)^sin x— 23n-2^n sin nx and T is the Toeplitz matrix

for {bn\bi = 0}, then, if T is bounded by 0, O<0<1, the sequence {f(nx)} is
complete in L2(0; —t, t).

We observe that TT* is the matrix ((P,-,,)). Moreover, since T has the

bound 0 so has T* [5, p. 132]. Accordingly ((P,-,,-)) has the bound 02. This

implies [5, p. 123] the hypothesis of the Paley-Wiener theorem.

The following comments give proper perspective. The proofs are merely

indicated. If {f(nx)} is complete, then {f(nx)} is closed. Therefore

Pj^JIsin x-^n-ic^ñnx^l =0. Let
MM M

c    = (ci ,-•• ,cM, 0,0, ■■■ ).

Since {f(nx)} is minimal, it follows that

M
LM-nCn   = dn, » = 1, 2, ■ • •   .

Moreover

M

Pm(x) = sin * — 23 dnf(nx)
■t—i

is in the closed linear extension of {/0^)|/ = -^+li ' ' ' } (tnis 1S plainly

equivalent to orthogonality of $m(x) to sin jx, j = l, ■ ■ ■ , M) and {d„} is

uniquely determined. The idea of the proof occurs in rudimentary form in
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[16, Lemma l] but for complete covering theorems we need [17]. The se-

quence {dn} defined above will be referred to as a weak sequence. The Paley-

Wiener theorem implies in our case that for suitable {e„} G/2

P.W.: £iV-.o¡ sin x — E £nf(nx) = 0.

We can show that actually en = d„. The proof hinges on the observation that

the defining equation [15, Equation 29.23] determines e„ in terms of

{bj\j = 2, ■ ■ ■ , «} so that the orthogonality relations above are satisfied.

The remaining theorems of this section are more in keeping with the spirit

of the developments of this paper.

Theorem 9.6. 7//(ac)~sin x— En-2&n sin nx, {¿>B}G£7 and for some 6,

O<0<1, £Ar..ooE(i.j>=iPi.j cos(i(log i — log/)) ^62, then {f(nx)} is complete.

This theorem is connected with Theorem 9.5 since the boundedness of the

Toeplitz matrix implies boundedness of the associated Dirichlet series (with

the same bound) and this in turn implies the condition used in Theorem 9.6.

It would be sufficient to show the reverse implication. We develop a fresh

approach, however, which crystallizes the ideas underlying the remaining

theorems of this section.

Write
00 ¡

<p(it) = 1 - E Krr",      4>i(it) = 1 - E °nn-".
n=2 n— 2

The hypotheses of the theorem imply that <p(it) is continuous and

Ln~« E ô»M_i

Hence \<p(it) \ is continuous and bounded from below by a positive constant.

It is then easy to see that

(9.05) M{^(it)/4>(it)} g (1 - 6)-2M{4>l(it)} = (1 - 0)-2i: (K)2,
n-2

oo

(9.06) M{1 - 4>t(it)/4>(it) }=M{(4>(it))-x(d,(it) - Mit))} = (I - 6)~2 £ (6„)2.
n=!+l

Let

(«Kz))-1 = E enn~

Then {en} &2 since M{(d>(it))~1} ^ (1 -6)~2.

A little reflection shows that the corresponding relations in x are valid

when/¡(«ac) replaces n~'<p¡(z). Thus equation 9.05 implies
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23 *nfi(nx) G /2(0; — ir, ir),

where

fi(x) = sin x — 23 °n sin nx.
n=2

Moreover, according to equation 9.06, we have

sin x — 23 e*fi(nx) 23 en(f(nx) - fi(nx)) S(l- 6)-2  23 (¿n)2.
n-i+l

Obviously this has as a consequence

sin x — 23 e*f(nx) = 0.

This relation remains in force if x is replaced by kx, k = 2, 3, • • ■ . Hence

{sin nx\n=l, 2, ■ • ■ } is in the closed linear extension of [f(nx)}. Accord-

ingly {f(nx)} is complete in ¿2(0; —ir, ir).

An alternative proof along the same lines depends on the fact that, under

the hypothesis {bn} £11, we must have |23ñ-2&»«-"| SO'<l for all TV >TV0.

Hence we can use M{ 1 —<p(it)/<pi(it)} to give Pi+0o||sin x — T"!.?-1 ¿f(nx)\| =0.

The next two theorems are considerably sharper than Theorem 9.6 and

are out of the range of the Paley-Wiener type of result. In a sense these are

our strongest completeness results at least when bn?¿0 for incommensurable re

values alone. As an incidental, a simple algorithm is developed for determin-

ing the «7„'s although this is already implicit in the previous theorem. The key

to the advance over Theorem 9.6 lies in the following remark. In the latter

theorem we required D : the Dirichlet series and the mean M exist for (<£(¿/))-1.

The proof of Theorems 9.7 and 9.8 pivots on the observation that a formal

approximant, ypi(it), can be found which, in case D, converges to (<p(it))~l

or M(<£(¿/))-1 when the corresponding limits are taken and such that

Li^xM<p(it)\pi(it) may exist even when D is not satisfied. It is somewhat

surprising that the coefficient of <p(z) in equation 9.07 can be taken as \¡/i(z).

Theorem 9.7. // /(x)~sin x— 23T-2&n sin nx, {bn}(E.U, and if (a)
^2(.i,i)-iBi,jCOs(t(logi — logj)) <1 a.e., then {f(nx)} is complete in L2(0; —ir,ir).

We shall assume ¿»2 5^0 in the sequel. (The modifications required in the

case 62 = 0, • • ■ , ¿>,_i = 0, ft/T^O, are obvious.) Write

<t>(z) = 1-23 &»re-2.

Then
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OO OO        y      OO \   r

(<t>(z))-x = Es««- = £( E*»»-).
71=1 r-0 \ n=2 /

The expansions converge for sufficiently large R(z) values. It is easy to see

that

¡      /    °° \r /     M \l+l

(9.07) «we  Em-) - i - ( Em-)  •
r=0 \ n=2 / \ n=2 /

Since {bn} G U, \<p(it) — 1 [ ' is a.p. for all positive integers. Hence by the

Parseval identity [2, p. 28] the formal expansion as a Dirichlet series of either

side of equation 9.07 is valid for R(z) =0. The defining condition for a weak

{dn} sequence is now turned into a Dirichlet series relation. Thus we have

M

1 - <t>(z) E <*»»-

contains no terms in m~' for m = \, M. It is easy to see that

1 - <t>(z) Ë S»«-2
71=1

has the same property and hence we may take dn as g„. Observe now that if

the factor multiplying <p(z) on the left-hand side of equation 9.07 is expanded,

we get
00

v»   ¡ —z
LsgnU      ,
71=1

where

i
Ll^.„gn = d„.

However, we can make the more precise statement

Furthermore

gn = dn

E gnf(nx)

« = 1, ,2'

<   oo

in view of our remarks about the a.p. property of the expressions in equa-

tion 9.07.
Manifestly

oo 2

E M_ii    =  E   B<,i cos (/(log i - log;)).
n=2 (i,J)=l

This is almost everywhere less than 1. Therefore
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(9.08) MÍ(¿bnn-A \ -»0

monotonically with L—» œ. It may be verified at once that

CO 00

(9.09) sin x - 23 gnf(nx) = 23 hi sin jx
n-l j-2

where

¿Atf"'-Í¿M"'Y. £-/+l.
)=2 \ n-2 /

The squared norm of the left-hand side of equation 9.09 is, of course,

¿ró2 = M{(¿M-")}.

Hence we have shown that

ii„ sin x - 23 Znf(nx) = 0.

We have already seen that such a relation is tantamount to the assertion of

completeness of {f(nx)}.

Remark. We can easily verify that the sequence {en} in Theorem 9.6*is

actually the weak sequence {dn} and belongs to l2. However, this latter prop-

erty is no longer maintained in the theorem above. It seems likely that both

of the preceding theorems are valid when the condition {&„} (E U is weakened

Theorem 9.8. // f(x) = 1 — 23»-2&» sm nxt bjbu^O, jVTV, and if (a')
23o'.i)-i73.-.j cos(/(log i — log j)) S L then {f(nx)} is complete in L2(0; —ir, ir).

The case that only a single coefficient in {bn}, say b,-, differs from zero

must be excluded. Indeed, in this case one can show immediately that

| bj\ <1 is a necessary and sufficient condition for completeness.

The demonstration follows the pattern of the previous theorem. The one

new element is the proof that for a finite sequence condition (a') implies

condition (a) of Theorem 9.7. This is trivial. Indeed

(9.10) 23  Pa cos (/(log * - log j)) = 1

holds for a denumerable / set, T, at best. Suppose, for instance, that a finite

/-interval contains a nonfinite subset of T. Since the left-hand side of equation

9.10 is an entire function, when the restriction to real / values is dropped, it is

elementary that then equation 9.10 is an identity. That is to say, Pn = l and
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P</ = 0, ij>\. Then g(x) =En-2&n sin nx/(^2(bn)2)xn satisfies relation I.

However, this is impossible under our hypothesis bjbx9¿0. Indeed, The-

orem 2.2 of [l ] asserts that no finite collection of bn's containing at least two

nonzero members can satisfy relation I.

In the event that there are commensurable values of « for which ¿»„^O,

the following theorem may be stronger than any of our previous results.

Theorem 9.9. If f(x) =E"-i&» sin nx, *n=¿0, {bn}GU, and if <f>(z)
=ET-A>w— has no zeros for P(z)^0, then {f(nx)} is complete in £2(0; — ir, ir).

In view of the a.p. property of <p(z) it is easy to show that our hypotheses

imply that |<£(z)| has a positive greatest lower bound in R(z) ^0. Hence the

proof of the theorem can be carried through by making the obvious changes

in the demonstration of Theorem 9.6.

In the specialization to systems of the type {f(nx)} a result given by

Duffin and Eachus [18, Theorem D] amounts to the corollary to Theorem

9.4. The difference between Theorem 9.4 and the corollary may be made

apparent even in the case of just three non vanishing bn's.

If <p(z) = (l—b2~')m, m >1, Theorem 9.9 applies for all |¿»| <1, but none of

the other theorems go so far. The next example in its extreme form falls

under Theorems 9.7 and 9.8, but not under any of the other results. It illus-

trates several matters of interest: for one thing (a) an explicit estimate of the

degree of approximation is given. However, the main interest lies in two results

which cannot occur in situations covered by the Paley-Wiener theorem cited

supra. Thus even though {f(nx)} is complete, we show (b) the weak sequence

{dn} is not in l2 and (c) En-i^n sin nx is not convergent in the norm topology

of £2(0; — ir, ir).

We take

(9.11) f(x) = sin x — ¿»(sin 2x + sin 4x).

Then

d>(z) = 1 - b(2~' 4 2-2').

Manifestly

(9.12) | ¿(2-*' 4 4-*') \2L = | b |2i(2"<2 4 2-<"ä)2t.

The problem of computation is turned by the observation that

Af{i(2--14 4-i,)t}

is simply the constant term in the binomial expansion of the right-hand side

of equation 9.12. This is, of course,

| b \2LT(2L + \)/(T(L + l))2 = 0( | 2b | «£-»'*).
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Hence, with L = / +1,

(9.13)
*    t

= 0(\2b\iLLm)sin x - 23 gnf(nx)
n-l

and goes to 0 with I—* oo if and only if \b\ S1/2. The case b = 1/2 is compre-

hended by Theorems 9.7 and 9.8 alone. However, for negative b, the values

0> b > — 1 are available by Theorem 9.9.

With thef(x) of equation 9.10 and 6 = 1/2 we have

(9.14) | <Kt7) | ~2 = (3/2 - 2-1 cos (/ log 2) - cos (2/ log 2))~».

A simple argument depending on Taylor's formula shows immediately that

for some positive e there is a positive constant h independent of k such that

the right-hand side of equation 9.14 is larger than h(t — 2kir/log 2)~2,

k=0, ±1, • • • , for | / - 2/br/log 21 Se. It is then easy to see that M {(<p(it))~1}
= oo. Since | $(s +it) | has a positive lower bound for every 5 > 0 it is clear that

M{(<p(s+it))~1} exists and increases monotonically without limit as s—>0 + .

Observe now that
OO

M^s + it))-1} = 23 (dn)2/n2:
n-l

Hence {d„} (£l2. This is assertion (b).

The reader will verify that with dn written for the expected dm, m = 2n,

N

(9.15) sin x - 23 dnf(2nx) = dN+i sin 2N+1x + bdN sin 2N+2x
n=l

where

(9.16) b~1dn+2  =   dn+l + dn.

Hence we have

dn = [(b + (b2 + 4&)l/2)n+1 + (b- (b2 + 46)»/2)n+1]/((ô2 + 4ô)1/22n+1).

For & = l/2 we have ¿B = (2/3) (1 — ( — l/2)n+1). Hence the value of the squared

norm of the left-hand side of equation 9.15 approaches 5/9 and, of course,

23£-2<7n/(2nx) does not converge in the strong P2(0; — it, x) topology. This is

assertion (c).

10. A general formulation and a special case. We first give a general

setting of considerable interest for the questions occupying us throughout the

greater part of this paper. The latter part of the section takes up a particular

situation.

We restrict ourselves to L2(E). Thus consider sequences of the type

{/(X„*)}. Suppose {p(x)F(\nx)}, p(x)^0, is a complete orthonormal set of

functions in L2(E). Suppose too thatX„Xm=X(?re, re) where \(m, «)G {X,j. We

have then, assuming that all the elements in our analysis are real,
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and

[F(\nx),F(\mx)] = j (p(x))2F(\nx)F(\mx)dx = 5n.m,

00

f(x) ~ E <*nF(\nx),
71=1

[f(\jx), f(\kx)] = Y, anam[F(\i\nx), F(\k\mx)]

= E <xnccm8(\(j, n), \(k, m))

=  &j,k-

Here b~(M, N) = &m,n- (Generalizations to include complex function and pa-

rameter values are possible also.) The case treated in this paper and in [l ] is

that of

(a) XnAm = X„m.

Another "natural" case is that of

(b) X„Xm = Xn+m.

It is easy to see that this case leads to

E «n**n+t =  S0,/fc.
71 = 0

We show presently that this is essentially a special case of the theory al-

ready developed. No other cases will be treated in this paper.

Theorem 10.1. There is an isomorphism between the set of solutions of V

and those of 11 with a one-element base.

We understand by this isomorphism that there is a 1-1 correspondence

between the solutions referred to and also topological equivalence in l2. This

will be clear from the simple proof. For convenience denote solutions of V

in h by {aN} G7. Let p be a prime. Let n=pN, N = 0, 1, 2, • • • . Associate

the sequences {a„} and {an} according to the relations

(10.01) a„ = aN.

It is easy to see that if {a„}GPthen {c*w}G7. Conversely, {an} G7 implies

{a„} GP. Moreover the map defined by equation 10.01 is order-preserving

on the ordinals used as subscripts. Hence, plainly, the map is a topological

isomorphism.

Accordingly every result on sequences {an} €:K with a one-element base may

be paraphrased to yield a result concerned {ax} G7 (and conversely). From the

viewpoint of the associated functions, the relation is that between <f>(z)

= }p(p-') and d/(w) where w = p~z. Thus, for instance, relation III becomes
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d/(w)dy(w~x) = 1

and ilf{«|>(z)} is now

-J"| *(/«*») |»d».
Theorem 10.2. Let B be the class of all functions regular in \w\ <1 and of

modulus not greater than 1 there. Let Sn(w) be the sum of the first n terms of the

Maclaurin series. Then Sn(w) takes on its maximum value for a quasi-elementary

solution of J, namely

w»Kn(w-x)/Kn(w),       Kn(w) = ¿ (r(2i)/2'r(/ 4 l))w'\
i-i

This result is a well known theorem of Landau's [19, p. 26]. (Actually

the Landau theorem states the numerical value of the bound for | Sn(w) | and

does not mention Kn(w), but this function comes into Landau's proof.)

Remark. This theorem suggests the possibility of characterizing solutions

in K by extremal properties for more general bases.

Theorem 10.3. (A) If <p(z) = K has a one-element base, then L,^0+4>(s+it)

=<f>(it) exists and the limit function has the modulus 1 almost everywhere.

Let

(10.02) d>(z) = E «*#-"* = HP")-
AT=0

Then

(10.03) w = p~'

maps the strip 0^7m(z) <2ir/log p, P(z)^0, conformally onto the circle

\w\ SI.
Since <f>(z) is periodic with period 2ir/log p it is clear that ip(w) =Ei?-o0!Ar**>ir

is analytic with |^(*f)| <1 in \w\ <1. The Fatou theorem type of argument

leads, just as in the case of Theorem 4.6, to

L,.ii-(re«) = *(«•)       a.e.,

(10.04) \*(e»)\ ;g 1,

L,*.o+4>(s 4 it) = <f>(it)        a.e.

Now, however, we can make an advance by using the fact that

(10.05)       ^-f'\ *(«") \2de - E («iv)2 = E K)2 = i.
2lT J -t N-0 n-l

Evidently equations 10.04 and 10.05 imply
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(10.06) | p(e») | = 1       a.e.

and therefore
| <p(it) | = 1       a.e.

We have incidentally established that if \p(w) £/ then $(w) takes on boundary-

values of modulus 1 a.e. as r—*l.

Theorem 10.4. // <f>(z) has a one-element base, then a necessary and suffi-

cient condition that <£(z) £P is that H(X) satisfy W.

The necessity part is merely Theorem 7.3. To prove sufficiency we remark

first that the relation W implies that <t>(it) exists with | <£(*/) | = 1 a.e. Moreover,

in view of Theorem 7.4 (C), we easily infer that L,^.o+ff>(s+it)\ =(f>(it) in the

norm topology over any finite Z interval. However, since there is a one-element

base, <t>(s+it) and <j>(it) must be periodic. Thus write <j>(z) =23íí-oo:jv^-'".

Hence

/logp
I <b(s + it) \2dt

-log?

and the limit as 5—»0+ on the left-hand side yields

1 /» logp

-——I    U(¿o|2á/=i.
2 log p J _iogp

The conditions of Theorem 6.1 are satisfied. Hence #(z)£P.

If yp(w) is regular and bounded in \w\ <1 and satisfies equation 10.06

then it is a simple matter to show that \p(w) £./■ This observation allows us

to exhibit the most general such function. Indeed we need merely slightly

modify a result of Seidel's [20, p. 204] to get

1   C T
(10.07) $(w) = B(w) exp — j    (1 - | w\ 2)/(l - 2| w\ cos (arg w - 6)

T  J 0

+ \w\2)da(d).

Here B(w) is the Blaschke product II (-4,— w)/(\—A~íiv) with either real or

conjugate complex pairs of zeros within the unit circle subject to XT 1-^*1 >0

and (t(0) is monotone non-increasing with vanishing derivative a.e. Hence

setting w = m~* yields the most general solution on a one-element base.

Added in proof. The writer is indebted to Dr. R. P. Boas for a reference

to a significant paper by A. Wintner, Diophantine approximations and Hubert's

space, Amer. J. Math. vol. 66 (1944) pp. 564-578. The reader will find this
work of interest in connection with the ideas of §9.
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