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By g(z) <G(z) for \z\ <R, we shall mean that g(0) =G(0), that for \z\ <R
both functions are regular and G(z) is univalent, and that the set of values assumed

by g(z) for \z\ <E is included in the set of values assumed there by G(z). We say

that G(z) is a majorant of g(z)(1). A similar definition may be given with

\z\ ¿R in place of \z\ <R.

We note first that if G(z) is regular and univalent for \z\ <R, then

g(z) <G(z) for \z\ <R is equivalent to the existence of a function p(z), regular

for \z\ <R, with g(z)=G(p(z)) and |c/>(z)| á|«|- For from giz)<Giz) it fol-

lows that piz) =G~1igiz)) is regular, \piz)\ <Rior \z\ <R and p(0) =0; hence

by Schwarz's lemma, \p(z)\ ^ \z\. The converse is clear. A like result holds

for a closed circle \z\ 5=E. Thus if g(z) < G(z) holds in any circle about the ori-

gin, it holds also in any smaller such circle.

From the representation g(z) =G(p(z)) follows also Lindelöf's principle:

If G(z) is regular and univalent for \z\ <R, andif \z0\ <R, then the set of possi-

ble values of g(z<¡) for all functions g(z) with g(z) <G(z) for \z\ <E is exactly

the map of \z\ ¿ \z0\ by G(z). As an example, consider the majorization g(z)

<(l+z)/(l—z) for \z\ <1. By Lindelöf's principle, if za is a given point in

the unit circle, with \z0\ =r, then the possible values of g(z0) fill the circle

having the segment from (1 —r)/(l+r) to (l+r)/(l—r) as a diameter.

When a majorization g(z) <G(z) for \z\ <E is deduced from some hy-

pothesis, it will be referred to as sharp, if for every z¡¡ with |20| <E, g(z0) can

assume for admissible functions g(z) all values permitted by Lindelöf's prin-

ciple, that is, all points in the map of \z\ ^ |z¡¡\ by G(z).

Some known proofs are advantageously stated in terms of majorants.

Consider a proof given by Radó(2) of the theorem that if G(z) maps \z\ <R

on a convex region, then it also maps \z\ <r on a convex region, for r<R. It

follows from the definition of convexity that a necessary and sufficient condi-

Presented to the Society, April 28, 1945; received by the editors February 18, 1946.

(1) A somewhat more general definition has been used by J. E. Littlewood and by W. Rogo-

sinski, any meromorphic function being allowed as a majorant. Also, they call g(z) subordi-

nate to G(z). See Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc.

(2) vol. 23 (1925) pp. 481-519, and Lectures on the theory of functions, Oxford University Press,

1944, chap. 2; Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc.

(2) vol. 48 (1943) pp. 48-82, and other papers mentioned there. However, these papers are little

related to the present one, and the restriction that the majorant be regular and univalent is

convenient for our purposes.

(2) T. Radó, Bemerkung über die konformen Abbildungen konvexer Gebiete, Math. Ann. vol.

102 (1929) pp. 428^29.

1



2 R. M. ROBINSON [January

tion that G (z) map ] z | < P con vexly is that, for every s and /with \s\ ^ 1 and

Og/^1, we have

tG(z) + (1 - t)G(sz) < G(z) for | z | < P.

But then, for given s and /, we conclude that this majorization also holds for

\z\ <r, so that \z\ <r is also mapped on a convex region. A similar theorem

is also true for regions star-shaped with respect to G(0). The proof is obtained

by putting 5 = 0 in the above argument(3).

In this paper, we shall be concerned mainly with the following question: If

g(z) < G(z) for | z | < 1,

for what operators 8 and radii r can we conclude that

2g(z) < 2G(z) for | z | := r?

This problem will be studied by two different methods. In Part I, using

the first method, we obtain results when G(z) is one of the three special

majorants
1+2 1 1+z
-,     ->    log -y
1  - Z        (1 - Z)2 1 - Z

and 8 is any of a wide class of operators. In Part II, by the second method, we

make a thorough study of the two special operations 2g(z) =zg'(z) or [zg(z) ]',

with an arbitrary majorant G(z). The inverses of these two operations are

considered briefly.

Parts I and II are completely independent, so that either may be read first.

The results of both parts are applied to certain special problems in Part III.

Part I

1.1. The first method depends on the Poisson integral formula, which we

shall use in the following form: If g(z) is regular for \z\ 5=1 and g(0) is real,

then for \z\ <1,
1   r 2T 1 + ze_i9

«(«)=-(     ®ê(eie)z-üde-
2-irJo 1 — ze

This formula may be verified as follows. Twice the right side is

t + z  dt~ f       [g(t) + g(t)] ~
¿m J iii—i / —

/ + /,

where

1   r t + z dt
= — «(0-= 2g(z) - g(0)

2m J |<|=i / — z    t

(3) Compare S. Takahashi, Bemerkung zu einer Arbeit von Herrn Radô, Jap. J. Math. vol. 7

(1930) pp. 161-162.
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by the residue theorem, and

1    r 1+ztdt
7 - —j       g(f) —— - - «(0).

¿TlJ  |(|*.l 1—0/      /

Since g(0) is real, we have I+J = 2g(z).

The Poisson integral is particularly adapted to the study of functions with

positive real part. As an illustration, let us use this formula to verify Lindelöf's

principle for such a function. That is, suppose that g(z) <(l+z)/(l—z) for

\z\ <1, and show that if |z0| =r, then g(z0) lies in the map of \z\ ^r by

w = (l+z)/(l—z). Without loss of generality, suppose that g(z) is regular for

\z\ ¿1. Then by the Poisson integral, g(z0) is an average of (1 +z0e~<9)/(l —Zofr*),

with a certain positive weight factor; that is, an average of the values of

(l+z)/(l—z) for \z\ =r. Hence g(za) lies within the convex hull of the map

of \z\ =r by (l+z)/(l—z). Since this map is a circle, the convex hull is the

circle with its interior, as was to be shown.

A more general argument of a similar type is used later. If the mapping

involved is not convex, it is convenient to make use of the concept of a hull-

majorant in expressing the result. By

g(z)<C>{G(z)} for\z\<R,

we shall mean that g(z) and G(z) are regular for | z\ <P, and that for every r with

0 :£r <P, the set of values of g(z) in \z\ ¿r is contained in the convex hull of the

set of values of G(z) in that circle. Obviously, this relation is a consequence of

g(z) <G(z). The converse is true only if G(z) is univalent and maps convexly.

If the above hull-majorization is deduced from some hypothesis, it will be

referred to as sharp, if for every z0 with \z0\ <R, g(z0) can assume for admissi-

ble functions g(z) all values in the convex hull of the map of \z\ i£ | z0| by G(z).

1.2. We shall be concerned with an operator 8 which when applied to a

function g(z) regular for | z\ < 1 gives another such function. The transformed

function will be denoted by 8g(z) or by 8*g(z). The operator 8 will be called

linear if it is

(1) additive: %{g(z)+h(z)} =2g(z)+2h(z),

(2) homogeneous: 8{eg(z)} =c8g(z),

(3) continuous: If gn(z)—*g(z) then 8g»(z) —*8g(z).

In (3) convergence is understood to mean uniform convergence in the interior

of the unit circle. The product of two linear operators is clearly linear.

We shall now show that a linear operation is commutative with an in-

tegration. More exactly, if g(z, t) is continuous for \z\ <1 and a^t^b, and

regular in z for each fixed /, then for any linear operator 8, we have

fb /* b
g(z, t)dt =  I    2zg(z, t)dt.

For if we put 5n=(b — a)/n, then
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I    g(z, t)dt = lim   5n¿ g(z, a + k5n) \.
J a n-»«o L    ¡fc-0 J

The convergence is uniform in the interior of the unit circle. Applying 8 to

both sides, we may bring the 8 on the right after the ^ by using (3), (2),

and (1). The right side is then seen to be equal to the integral of 2zg(z, t).

We shall be concerned with the behavior of the operator 8 when a change

of independent variable is made. A linear operator 8 will be said to be of

order n, if for every function g(z) regular in \z\ <1, and every a with

0< \et\ ¿1, we have

[%tS(ï)]t-«* = <*"%,g(az).

We shall show that if 8 is of order n and 8' of order m, then 8'8 is of order

m+n. Now since 8' is of order m, we have

[Sf'Ä(f)]r=«* = a"8.' h(az).

In this formula, substitute h(z) =8g(z), and use the fact that 8 is of order ».

This gives

[8r'2rg(f)]r-a* = «"8.' [8rf(f)]r—. = «"8.' {c*"82g(az)} = a™+"VZ,g(az),

as was to be shown.

We now give some examples of linear operators. Let

$*(*) = **(*). 0*00 = a-'kCO - ¿(0)],

^g(z) = f'g(t)dt,       £ng(z) = g'(z).

It is easily seen that these four operators are linear, and that the 5ß's are of

order 1 and the Q's of order — 1. Thus every 5pd or Q5ß is of order zero. Now

¥*£>**(*) = g(z) - g(0),        CtuVtfiz) = g(z) (k = 1, 2),

that is, 5ß* and Q* are essentially inverse. The other combinations give us

some interesting examples of linear operators of order zero :

5ßiQ2g(z) = zg'(z), Oifig(z) = [zg(z)]'t

ÇïQifW = (°rl[g(t) - «(0)]¿f,       £ii%g(z) = z-1 f 'g(X)dt.
J 0 " 0

All of these are used in Part III.

Another linear operator 8 of order zero is obtained by letting 8g(z) be

the «th partial sum of the power series expansion of g(z). The various ex-

amples which we have given indicate that linear operators of order zero form

a rather wide class.

1.3. Theorem. 7/
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1 + z ,
g(z) <-- for \z\ < 1,

1 — z

then for any linear operator 8 of order zero,

8g(s)<§J8^4 /or |*| < 1.
P/w5 estimate is sharp(*).

Proof. Without loss of generality, suppose g(z) is regular for | z| ¿1. Ap-

plying the linear operator 8 to the Poisson integral (§1.1) gives

If2' 1 + ze~ie
««(*)=-     W«")8-;-^d9-

2ir J o 1 — ze_l9

Now since 8 is of order zero, this may be written

i r 2t       r  i + n
«*(*)=- I     9tÄ(^ Ur--; de.

Since lRg(etf) is positive and has the average 1, we see that 8g(z) lies within

the convex hull of the map of |f| =\z\ by 8f {(l+f)/(l — f)}, as was to be
shown. Also, for a given z, any point within this convex hull is attained, for

g(z) an average of two functions of the form (1 +az)/(l — az), with \a\ = 1, so

that the estimate is sharp.

Corollary. If G(z) maps \z\ <1 conformally on a half plane, then from

g(z) < G(z) for | z | < 1
follows

8g(z) <§{8G(z)} for \z\<l,

for any linear operator 8 of order zero. This estimate is sharp.

Proof. We may choose constants A, B, a, with A 7*0 and | a\ = 1, such that

AG(az)+B = (l+z)/(l — z). From the hypothesis we find

Ag(az) + B < AG(az) + B,

hence by the theorem AZzg(az)+BZK&{A2zG(az)+B%l}. From the

fact that 8 is of order of zero, it follows that 81 is a constant. Hence

%zg(ctz) <¡£>{%zG(az)}, from which the desired conclusion follows.

That this result cannot be true for an arbitrary majorant G(z) is shown by

the following counter-examples.

Example 1. Let G(z) be any function which is regular for \z\ ¿1. Consider

(4) Some special cases of this theorem, including Sg(z) equal to a partial sum of the series

for g(z), and also 8 = ^20i, have been proved by W. Rogosinski, Über Bildschranken bei Po-

tenzreihen undihren Abschnitten, Math. Zeit. vol. 17 (1923) pp. 260-276 (Satz II, Satz IV).
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the operator 8 = 5ßiQ2 of §1.2, which is linear and of order zero. From

g(z) <G(z) for \z\ <1, we cannot conclude that zg'(z) <!q{zG'(z) } for \z\ <1.

For if so, the boundedness of g'(z) would follow from the boundedness of g(z),

which is clearly not the case.

Example 2. Start from the majorization z2<z for \z\ <1, and perform the

operation 8g(z) = z2g"(z); here 8 = 5T3i02, which is linear and of order zero.

We obtain 2z2 < §} 0}, which is not true in any circle.

1.4. We shall be concerned with the average of an analytic function G(z)

along a line segment, and shall use for it the notation

SSSl{Giz);zi,Zi) =- f*G(r)¿r,
Z2 —  Zl J z,

where the integral is taken along the line segment joining Zi and Z2. We find

that

50? <-;zi,Zi\ =-,
1(1 - z)2 . j       (1 - «0(1 - *)

provided 1 is not on the segment joining zi and Z2. That is, the function

1/(1 —z)2 has the property that its average along a segment is the geometric mean

of the values at the end points. This property will be used in studying 1/(1 — z)2

as a majorant.

We notice first that if 8 is a linear operator of order zero, then

%M{G(t)-,pz, ip + q)z] = 5D?{8fG(f); pz, (p + q)z\.

For if we write the means as real integrals, this becomes

8, f Giip + qt)z)dt = f   [SiGOOJ'r-o+.D.««;

and this is seen to be true by first bringing the 8 after the integral sign, and

then using the fact that 8 is of order zero.

Theorem. If
1

giz) < -—-—1- for \z   < 1,(1-z)2 /ll.

then for any linear operator 8 of order zero,

Mz)<®{2~iT^zy} /<w|*|<i.

The result is sharp for \z\ ¿r, if the majorant is univalent and convex there, so

that the § can be omitted.

Proof. We may put



1947] UNIVALENT MAJORANTS 7

/i + ft(g)y

where

1 + z
h(z) <- for   z    > 1.

1 — z

Without loss of generality, suppose that h(z) is regular for \z\ £1. By Pois-

son's formula,

1 + ze~ie

and hence

h(z) = - f  \h(e«)-
¿■K J a \ — ze

ri  /•"                l n2
g(z) = \-\     m(e»)---del.

\_2ir Jo 1 — ze~te     J

This may also be written as an iterated integral, which may be put in the

form

g(z)

Hence

i    r2r riT (    i )
—-I        I     9U(eiX)9U(e¿")9Jc<-; ze~A, ze-^dXdß.
ir)2 J o     Jo ((1 - f)2 )

1     r2*  r2T (1 )
8g(z) =- dth(eA)m(ei")m<2 7-r : ze_i\ ze-^\d\dß.

(2t)2 J o     Jo (.    (1 — f)2 )

On the right, 8 {1/(1— f)2} is averaged first along a segment joining the two

points ze~iX and ze~iß on the circle |f| = \z\, then this average is averaged

with respect to X and ¡i, a positive weight factor being used. Hence 2g(z)

lies in the convex hull of the map of |f| S\z\ by 8{ 1/(1—f)2}, as was to be

shown.

Now g(z) =1/(1 — qz)2 is an admissible function, if \a\ ¿1. Hence 8g(zo)

can assume any value in the map of \z\ ^|zo| by 8[1/(1— z)2}. Thus the

majorization 8g(z) -<8{l/(l—z)2} is sharp for \z\ ^r, if it is correct. By the

theorem, it holds if the majorant is univalent and convex there. If 8 is the

identity, it is true even though the majorant is not convex; and in this case

the result of the theorem, with the §, is certainly not sharp.

Remark. It may be seen that the theorem in general follows from one spe-

cial case, 8 = Oi$2(6). For, admitting this case, the hypothesis g(z) < 1/(1 —z)2

(6) This essential case of the theorem was in effect proved by A. Marx, Untersuchungen

über schlichte Abbildungen, Math. Ann. vol. 107 (1932) pp. 40-67. For in the proof (pp. 58-61)
of Satz C, concerning a convex mapping function F(z), he deduces F(z)/z-<. 1/(1 — z) from

F'(z)-< 1/(1 —z)2. I have simplified his proof, by making use of the property of 1/(1 —z)2 stated

at the beginning of the section.
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gives
&i%g(z) < 1/(1 - z).

Now let 8 be any linear operator of order zero, and apply 8Qa5ßi to the major-

ization just found, as we may by §1.3. This gives

8«(s) < § Is (T^}'
as was to be shown. However, the proof is not simplified by considering the

special case.

1.5. In discussing log [(l+z)/(l— z)] as a majorant, we shall meet the

following problem: Suppose that q(t) is a real analytic function for a^t^b.

What is the maximum possible value of

f   P(t)q(t)dt,
J a

where p(t) is any function which is piece-wise continuous and for which

- 1 Ú p(t) S 1, f   P(t)dt = 0?
J a

We notice first that for any real constant c,

/» 6 /» b /• b
p(t)q(t)dt =   I     p(t) [q(t) - c]dt g   I      | q(t) - c\dt.

a *J a J a

Equality can hold only if

p(t) = sgn [q(t) - c],

except at a finite number of points. This is an admissible function only for the

unique c such that q(t) is more than c in half of the interval of integration,

and less in half. For this c and pit), we both maximize the given integral, and

minimize the integral of | qit) — c\.

Theorem. Let 8 be a linear operator of order 0. Then for every function g(z)

with
1 + a |

g(z) < log- for \ z | < 1,
1 — z

we shall also have
l + z .    .

8g(z) < 8 log- for \z\^r,
1 — z

if and only if the function
1 + z

L(z) = 8-
1 — z
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has the property that for | f | =r, the line joining E(f) and £(— f) does wo/ cross

/^e maf o/ ¡ z\ =rby L(z) again.

Furthermore, for any z0, the set of possible values of2g(z0),for all admissible

g(z), is strictly convex (that is, no part of the boundary is a line segment).

Thus the largest possible r for which the first conclusion holds is at least equal

to the radius of convexity of L(z) and at most equal to the radius of convexity of

the majorant
1 + z

8 log :-,
1 — z

and could not be increased by inserting § before the right side of the conclusion.

Proof. Suppose for the present that g(z) is regular for \z\ £¡1. If we apply

the Poisson integral formula (§1.1) to 2g(z)/iri, we find that

i   C2T 1 + ze~ie
«(«)=-I    p(e)---de,

4 J 0 1 — ze~,e

where

p(0) =5R{2g(e-«)/«}.

If we apply this formula to g(z)=log [(l+kze~iß)/(l—kze~iß)], where k<l,

and then let k—»1, we find in particular that

1 + ze-w       i   rß+T 1 + ze-u
de.

1 + zer*       i   rP+T
log- = —I       sgn (9 - ß)

1 — ze~'ß      4 J ß-r 1 — ze~

This could also be verified by computing the integral on the right.

The function p(8) satisfies the conditions

/, i*
p(d)de = 0.

0

Furthermore, if we allow p(0) to be any piecewise continuous function satisfy-

ing these conditions, then the function g(z) determined by the above integral

satisfies the hypothesis of the theorem. A direct verification of this is unneces-

sary, since it will follow incidentally at a later stage of the proof. We need

consider only functions g(z) obtained in this way.

Applying the operator 8 to the formula for g(z) gives

8g(z) = (i/4) f    p(e)L(ze-i<>)de.
J 0

Hence

3t{e--8g(z)} = (1/4) f    p(e)SR{ie-iaL(ze-ie)}de.
J 0
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We wish to maximize this expression for a fixed z = z0 with \z0\ =r, and all ad-

missible p(9). By the result at the beginning of this section, the sharp bound is

given by

dO,
/.   2T

\di{ie-iaL(zoe-ie)} - c(a)
o

and is attained only if

p(6) = sgn ^i{ie-iaL(zoe-iB)) - c(a)\,

except possibly at a finite number of points, where c(a) is so determined that

p(6) is 1 in half of the interval of integration and — 1 in half.

We thus have to divide the map of the circle \z\ —r by the function L(z)

by a line of given orientation, in such a way that the part on each side corre-

sponds to arcs of \z\ =r amounting to a semicircle. If and only if the line

joining L(f) and P( —f) does not cut this curve again, for every f with |f j =r,

it is true that the dividing line always cuts the curve into just two pieces,

each corresponding to half of \z\ =r, so that p(6) = 1 and p(6) = — 1 each hold

on a complete semicircle. In this case, as noticed above, we have for the maxi-

mizing function go(z), with a suitable ß,

1 + ze-*
go(z) = log ■

1 - ze-tf

Thus in this case,

3t{<rio8g(z0)} ú ?H{e-ia2go(zo)} á max 8î•(«-""8 log--1 ,
|*|-r       (. 1  - z)

and hence

8g(z) <®h log ̂ —4 for | z | g r.

If L(z) is such that, for some f with |f | =r, the line joining Z(f) and L( — f)

does cross the map of \z\ =r again, then this conclusion is false.

In particular, if we let 8 be the identity, we have

1 + z i
g(z) < log- for | z | < 1,

1 — z

which verifies the statement made earlier that any p(9) satisfying the stated

conditions leads to an admissible g(z).

We still have to show that the set of values possible for 8g(z<>) is strictly

convex. It will then follow that the conclusion with or without ¿p is equiva-

lent, and the proof will be complete. It may be remarked that the convexity

of the set is clear, since an average of two values of g(zo) is obtained by start-

ing from an average of the two corresponding functions p(d).
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Let K be any closed convex set, and 5 a closed subset which has at least

one point in common with each supporting line of K. It is easily seen that if a

supporting line of K has a segment in common with K, then both end points

of this segment must belong to S. Hence if 5 has exactly one point in common

with each supporting line of K, then K must be strictly convex.

Let us apply this result with K the set of all possible values of 8g(zo),

and S the set of values of 8g(z0) corresponding to functions p(d) which are

always equal to ±1, and which have a bounded number of discontinuities.

This set 5 is closed. Also, if we allow as many discontinuities as the maximum

number of times a straight line can cross the map of \z\ =r by L(z), then the

maximum of 5R{e~ia8g(zo)}, for all g(z), occurs for one and essentially only

one such p(6). That is, the maximum of SSi\e~iaw}, for w in K, occurs at ex-

actly one point w in S. Hence K is strictly convex, as was to be shown.

Part II

2.1. Using our second method, we shall study, for certain special opera-

tors 8, the question whether for a given majorant G(z) and for all g(z),

giz) < G(z) for | z | < 1

implies
8g(z) -< 8G(z) for | z | ^ r.

We wish to find the largest r for which this is true for a given G(z).

A brief description of the method will now be given. Let h(z) = 8g(z) and

77(z) =8G(z), and suppose that 7?(z) is univalent for z\ Sr. To show that

&(z) <Hiz) for \z\ ¿r, we must show, for each z0 with z0| ^r, that &(z0) lies

in the map of \z\ ^r by Hiz). It will be sufficient to find a ¿"o with |f0| ár,

suchthat |Â(z0)-H(fo)| ^\H(Z)-H(Ç0)\ for \z\ =r. We shall in fact always

choose .fo so that g(zi) =C7(fo) I it is then perhaps reasonable to suppose that

hizi) will be near HiÇi).

This method is quite successful for 8g(z)=zg'(2) (§§2.2-2.4) and for

8g(z) = [zg(z)]' (§§2.5-2.7). Conditions are derived from which the largest

possible r for a given majorant Giz) may be calculated. Also, the largest com-

mon radius for all univalent majorants is found to be 3 —23/2 in the first case,

and 1/3 in the second. The method is also applied, but with less success, to

the two inverse operations (§2.8).

2.2. Theorem. If Giz) is regular and univalent for \z\ < 1, then a necessary

and sufficient condition that for every function giz) with

giz) < Giz) for | z | < 1

we shall also have

zg'iz) "< zG'(z) for \ z | ^ r

is that zG'(z) is univalent for \z\ ¿r and
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ZG'(Z) - tG'(t) I      r2-   f 2
-—-——   ^ -—       for    f   á   Z   = r.

G'(f) I 1 - r2 '    '      '     '

Proof. By hypothesis, g(z) = G(c5(z)), where c6(z) is regular and |cí>(z)| <1

for \z\ <1, andci(O) =0. We may putc6(z) =z\p(z), where |^(z)| gl for \z\ <1.

For the mapping w=\p(z), we have by the invariant form of Schwarz's lemma,

\dw\ \dz\

1- | w\2       1 - I z|2

or

and this is the only condition to which ^'(z) is subject for given z and ^/(z).

The equivalent inequality for c/>'(z) is(6)

i i       |z|2-U(z)l2
| z<»'(z) - <f>(z) I g '

l-|z|2

If we put f=c/>(z), then we find that

zg'(z) - fG'(f) =G'(t)[z<t>'(z)-4>(z)],

and hence

'zh-lrl2
zg'(z) - fG'(f) | Z\G'(f)

1 -   z 2

For a given majorant G(z), this is the only condition imposed on g'(z) at

a given point z when the corresponding value of g(z) is given; f is to be deter-

mined from g(z) = G(f). If We are given only that \z\ ¿r, then the only condi-

tion to which zg'(z) is subject is that it lies in the circle

2 I  y I 2

| w - fG'(f) | S | G'(f) '
1 - r2

for some f with | £" | ^ r.

We can draw the desired conclusion if and only if, for every f with [ f | iSr,

this circle lies within the map of \z\ ^r by zG'(z). Because of the univalence

of zG'(z), this is equivalent to

| ZG'(Z) - tG'tt) | ^ | G'(f) | '*"    , for | Z | = r.
1 — r2

(') This inequality was given by J. Dieudonné, who drew from it the interesting conclusion

that |<#>'(z)| ál for \z\ S21'2 —1. See Recherches sur quelques problèmes relatifs aux polynômes

et aux fonctions bornées, Ann. École Norm. (3) vol. 48 (1931) pp. 247-358, especially pp. 351-352.
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that

Corollary. A necessary condition to obtain the conclusion of the theorem is

1 +
zG"iz)

G'iz)

2r

1 -r2
for \z\ S r.

Proof. If we let f-»Z then

ZG'iZ) - fG'(f) ~ (Z - f) [ZG'(Z)]'.

If the approach is radial, then | Z — f | =r — | f [. This leads to the condition

[ZG'(Z)\

G'(Z)

2r

1 -r2
for \Z\ r.

Since zG'(z) is univalent, its derivative doesn't vanish, so that this condition

must hold for \z\ gr.

Remark. In particular, putting z = 0 gives 1^2r/(l— r2), or

r g 21'2 - 1,

as a necessary condition for the conclusion of the theorem. For the particular

majorant G(z) =z, the condition of the theorem becomes

\Z-S\ è(r2-|f|2)/(l-r2),

which is seen to be true if 1^2r/(l— r2), and hence for the maximum possi-

ble r. Thus we obtain Dieudonné's theorem: If \g(z)\ <1 for \z\ <1, and

g(0)=0, then \g'(z)\ gl for \z\ ^21'2-1.

2.3. We ask now whether the necessary condition of the corollary is also

sufficient. While this question is not completely answered, we are able to show

that it is sufficient if G(z) maps \z\ ^rona convex region.

We must first prove a lemma about convex mapping functions. We notice

to begin with that if K is a convex region, having the inner radius E with re-

spect to the point a, then K contains the circle | w—a\ <R/2. For if not, K is

included in some half-plane, whose boundary is at a distance d<R/2 from o;

but the inner radius of this half-plane with respect to a is 2d<R, which gives

a contradiction.

Lemma. If G(z) is regular and convex for \z\ ?¡r, then

G(Z) - GQ;)

G'tt)

r
2r

for |f | <\Z\ =r.

Proof. The inner radius of [ z\ <r with respect to f is r(l — | $*/r|2), hence

the inner radius of the map of \z\ <r by G(z) with respect to G(f) is

The distance \G(Z)-G(Ç)

\G'(t)\r(l-\t/r\2).

from G(f) to a boundary point must be at least
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half of this, which gives the required inequality.

Theorem. Suppose that G(z) is regular and univalent for \z\ < 1, and convex

for \z\ ^r. Then a necessary and sufficient condition that for every function g(z)

with
g(z) < G(z)

we shall also have

is that

1 +

zg'(z) < zG'(z)

zG"(z) 2r
-—   >-
G'(z)      ' 1-r2

Remark. The condition for convexity is known to be

(        zG"(z) )
<1 +-— > ^ 0
I G'(z) j

9c-

for

for

for |

for I

z   < 1

< r

s r.

Thus both the convexity condition and the other condition of the theorem

concern the same quantity; the one places it in the right half-plane, the other

outside of a certain circle about the origin.

Proof. Since G(z) is convex for \z\ S.r, zG'(z) is univalent, and indeed

maps \z\ ^rona star-shaped region. Thus to show the sufficiency of our nec-

essary condition, we have only to derive from it and the convexity condition

the inequality required in the theorem of §2.2. It is sufficient to prove the

inequality for the point ZG'(Z) nearest to fG'(f). Join these two points by a

straight line. This segment lies within the map of \z\ ¿r by zG'(z), since this

function is univalent. It is the transform of a curve C joining f to Z. We then

have

|ZG'(Z)-rG'(f)| =  f I [zG'(z)]'\\dz\
J c

zG"(z)
dz=   f | G'(z) | I 1 +

J c I G'(z)

^  ■- G'(z) \\dz\ S; —
l-r2Jc 1

2r
G(Z) - G(r)

Hence by the lemma

ZG'(Z) - ÇG'(Ï)

G'(f)

2.4. Theorem. If

2r

1 - r2

g(z) < G(z)

2r

for < 1.
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then

zg'(z) < zG'(z) for \z\ ^ 3 - 23'2 = 0.171 • • • .

The number 3 — 23/2 cannot be replaced by any larger constant.

Proof. It is known that for a univalent function G(z), the quantity

zG"(z)
w= H-—

G'(z)

is subject, for \z\ ^r, only to the condition that it lie in the circle(7)

4r1 + r2
w-■-

1 - r2 1 -r2

Thus SRw^O if l+r2-4r^0, or r^2-3l/2 = 0.267 • • • ; this is the known

radius  of  convexity  for  univalent  functions.   The  other  condition,   |w|

^2r/(l-r2), follows only if l+r2-4=r^2r, or rg3-23'2. This determines

the required radius, since the convexity condition holds in a larger circle.

Remark. If G(z) =z/(l+z)2, then

zG"(z)        1 - 4z + z2
1 +

G'(z) 1 - z2

Thus the required inequality holds at z — r only for r ^3 — 23/2, so that G(z) is

an extremal function; it is essentially the only one.

We may ask, for what g(z) does the conclusion not hold in any larger

circle? There is no such function; on the contrary, the method of proof shows

that infinitesimal variations of G(z) are decisive. For any particular g(z), a

radius larger than 3 —23/2 may be found.

We shall show now that even if we add the hypothesis that g(z) is univalent

for \z\ <1, we cannot replace 3 —23'2 by any larger constant. We again consider

G(z)=z/(l+z)2, and determine g(z) from

giz) „       ,       G(z)
(1 - «)

g(z) - 1/4 G(z) - 1/4

that is, by making a linear transformation leaving 0 and 1/4 fixed. We find

that
(1 - e)z

" (1 + z)2 - 4ez '

(7) This result will be found in any treatment of the classical theory of univalent functions,

because of the central position which it occupies in that theory. It bridges the gap between

the inequality \ai\ £2 and the bounds for |G'(z)| ("distortion theorem"), for a function

G(z) =z+a¡z2+ • • • , regular and univalent in the unit circle, in that it is obtained from the

former by a linear transformation, and leads to the latter by integration.
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This function maps \z\ <1 on the w plane slit from 1/4 to +00 and from

— (1 — e)/4e to —00. We have evidently g(z) <G(z) for \z\ <1. Now the con-

clusion zg'(z) <zG'(z) for \z\ ^r cannot hold if we have g'(r)>G'(r). This

condition reduces to

(1 - «)(1 + rY > [(1 + r)2 - 4er]2,

which is true for small e if (l+r)4<8r(l+r)2, or r>3-23'2.

Remark. According to a theorem of Biernacki(8), if g(z) <G(z) for \z\ <1,

and if g'(0)/G'(0)^0, then \g(z)\ ^|G(z)| at least for \z\ ^1/4. Using our

theorem, we see that also \ g (z) \ g | G'(z) \ at least for \ z\ g 0.04. Such a result

was found by Biernacki only under the additional hypothesis that g(z) is

univalent.

2.5. The considerations of §§2.2 and 2.3 concerning the operation 8g(z)

= zg'(z) can be extended almost immediately to the operation 8g(z) = [zg(z) ]'.

The results are formulated in this and the next section. On the other hand, the

result analogous to that of §2.4 requires a new method, which is set out in

§2.7.

Theorem. If G(z) is regular and univalent for \z\ < 1, then a necessary and

sufficient condition that for every function g(z) with

g(z) < G(z)

we shall also have

[zg(z)]' < [zG(z)\

is that [zG(z)\' is univalent for \z\ ^r and

for I z I < 1

for < r

[ZG(Z)\ - [¡G(t)Y

G'(f)

r2 - kl
1 - r2

for |r| Z\Z\ =r.

Proof. This is practically identical with the proof of the theorem of §2.2.

We need only notice that, with the notation used there, g(z) =G(f), and hence

[zg(z)]'- [fG(f)]' = zg'(z)-fG'(f).

Corollary. A necessary condition to obtain the conclusion of the theorem

is that

2 +
zG"(z)

G'(z)
>

2r

1 - r2
for r.

Proof. By letting J—»Z radially, we obtain the condition

[ZG(Z)Y'

G'(Z)

2r

1 - r2
for    Z   = r.

(8) M. Biernacki, Sur les fonctions univalentes, Mathematica vol. 12 (1936) pp. 49-64,

especially §2.
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Since [zG(z)]' is univalent, its derivative doesn't vanish, so that this condi-

tion must also hold for \z\ ^r.

Remark. In particular, putting z = 0 gives 2^2r/(l— r2), or

r g (51'2- l)/2 = 0.618

as a necessary condition for the conclusion of the theorem. For the particular

majorant G(z) =z, the condition of the theorem becomes

|2Z-2f| S: (r2-|f|2)/(l-r2),

which is seen to be true for the maximum possible radius. The result for this

case may be written in the following form: If f(z)/z<z for \z\ <1, then

/'(z)<2zfor \z\ g(51'2-l)/2;inotherwords(9), if f(z) is regular and \f(z)\ <1

for \z\ <1, andiff(0) =0andf'(0) =0, then \f'(z)\ ^2|z|/or \z\ á(S««-l)/2.

2.6. Theorem. Suppose that G(z) is regular and univalent for \z\ <1, and

convex for \z\ gr. Then a necessary and sufficient condition that for every func-

tion g(z) with
g(z) <G(z) for \z\ < 1

we shall also have

[zg(z)]' < [zG(z)Y for | z\ ^ r

is that \zG(z)\' is univalent for \z\ gr, and

2rzG"(z)
2 +-—

G'(z) 1 -r2
for \z\ g r.

Proof. In this case, the univalence of [zc7(z)]' is assumed, since it is not

known to follow from the convexity of G(z). Otherwise, the proof is entirely

analogous to that of the theorem of §2.3. Here C should be a curve joining f

to Z, which is transformed by [zG(z)]' into a line segment. We have

[ZG(Z)]'~ [fC(f)]'| = f I [*?(*)]" 11 & I
J c

zG"(z)

■/.'
G'(z) |   2 +

G'(z)
dz

——, f \G'(z) | | dz\ fc—_|<?(Z) -Gift |.
1 — r2 J c I — r2

Hence by the lemma of §2.3, we derive the condition of the theorem of §2.5.

2.7. The problem to be considered is for what radius we can draw the con-

clusion [zg(z)]'-< [zG(z)]' for all univalent majorants G(z). We first examine

(') Compare Robinson, Bounded analytic functions, University of California Publications

in Mathematics n.s. vol. 1 (1944) pp. 131-146 (top of p. 142).
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the possibility of proceeding as in §2.4; that is, by applying the theorem of

§2.6. The quantity w = 2+zG"(z)/G'(z) lies in the circle

w
1 -

4r

1 - r2

provided \z\ ^r. Hence [w\ ^2r/(l— r2) provided 2—4r^2r, or r^ 1/3. The

other necessary condition, that [zG(z)]' be univalent, will be shown below

to hold in a circle of radius more than 1/3. Unfortunately, the auxiliary con-

dition that G(z) be convex may hold only for | z\ ^ 2 —31'2, so that we cannot

determine the sharp radius from §2.6. We find only that the desired conclusion

can be drawn at least for \z\ ^2 —31/2, and at most for \z\ ^1/3.

Consequently, we are forced to go back to the original (and more compli-

cated) conditions of the theorem of §2.5. We shall show first that [zG(z)]'

is univalent in a circle of radius more than 1/3, and then that the required

inequality holds for r = 1/3.

Lemma. If G(z) is regular and univalent for \z\ <1, then H(z) = [zG(z)]' is

univalent at least for \z\ ^0.38.

Remark. It appears likely that the sharp radius is 1/2. For it is easily seen

that \z\ <l/2 is the largest circle in which H'(z)y¿0 always holds.

Proof. We shall show not only that H(z) is univalent for \z\ g0.38, but

also that it maps this circle on a star-shaped region. Since H'(0) =2G'(0)^0,

it will be sufficient to show that

9c
l H(z) )   -

for z   S r
I H(z)

is true with r = 0.38. We shall write the quantity to be estimated in the form

zH'(z)

H(z) L G'(z) J L        zG'(z)J

G(z)_

(z).

The numerator is restricted to the previously mentioned circle, and hence its

amplitude does not exceed arc sin 2r numerically. We proceed to estimate

the amplitude of the denominator. By a theorem of (irunsky(10), we have

log
zG'(z)~gWálog

1 + r

1 - r

Using the inequality \e' —1| ^e1*1 —1, with 5=log [G(z)/zG'(z)]t we find

G(z)

zG'(z)
- 1

2r

1 - r

(10) H. Grunsky, Neue Abschätzungen zur konformen Abbildung, Schriften aus dem Mathe-

matischen Seminar der Universität Bc lin vol. ! (1932) pp. 95-140 (seep. 130).



1947] UNIVALENT MAJORANTS 19

Thus the denominator which we are estimating is restricted to the circle

\w — 21 g2r/(l— r), from which |amp w\ ^arc sin [r/(l— r)] follows. Conse-

quently,

amp-
zH'(z)

;£ arc sin 2r + arc sin

The right side is found to be less than 90° for r = 0.38.

Theorem. If

then

g(z) < G(z)

[zg(z)Y < [zG(z)Y

for | z | < 1

for | «('a 1/3.

The number 1/3 cannot be replaced by any larger constant.

Proof. We have only to show that the inequality of the theorem of §2.5 holds

for r = 1/3. For each f, we need verify this condition only for the point Z on

\z\ =r for which \ZG(Z)\ is nearest to [fG(f)]'. The line segment joining

these points is the transform of a curve C joining f to Z, and lying in \z\ ^r.

This is the same choice of C as in §2.6, and the equation used there is also

needed here. We shall now write it in the form

[ZG(Z)Y- \jG(£)]'

G'(f)

1 -

■/.

G'(z) I (1 ■H
G'(r)|(i-lm

2 +
zG"(z)

G'(z)

2\dz\

1 - I z I

We have written the integrand on the right as the product of three factors,

of which the third is simply the hyperbolic element of distance ás. The first

factor is the ratio of the magnification by the mapping w = G(z) at two points,

z and f, when distance in the z-plane is measured in the hyperbolic metric.

Hence its possible values, for the class of univalent functions, depend only

on the hyperbolic distance between z and f. On the other hand, the second

factor is the absolute value of a quantity which is known to be restricted to

the circle stated at the beginning of this section, and hence the sharp lower

bound is given by

2 +
zG"(z)

G'iz)

2 - 4|a|

1 — 1st2

It will be sufficient to consider the case f = p>0. We shall show that in

this case, the smallest value of the integral is attained when C is the segment

p^z^r, and
Giz) = z/(l + z)2.

To see this, first draw a circle with hyperbolic center p and passing through r.

The curve C must extend from p at least to this circle, and throwing away
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the part of C outside the circle tends to decrease the integral. Let us now, for

various different paths C, compare an element of the integral at a given hy-

perbolic distance D from p, less than the hyperbolic radius of the circle. We

see that: (1) The possible values of the first factor depend only on D. If z>p,

the minimum value is attained for G(z) =z/(l+z)2; to see this, we need only

make a linear transformation taking p to 0, and then apply the classical dis-

tortion theorem. (2) For a given D, the maximum \z\, and hence the mini-

mum value of the second factor, is attained only for z>p\ and the extremal

function in this case is again G(z) =z/(l +z)2. (3) The third factor ds is smaller

along a hyperbolic radius of the circle than along any other curve; and the

segment p^z^r is such a radius. From these three statements, the desired

result follows.

Hence the condition of the theorem of §2.5 will be satisfied for all univa-

lent functions G(z), if it is for the function G(z) =z/(l+z)2, with f = p and

Z = r. The condition may be written

(1 - r2) {[rG(r)Y - [pG(P)Y\ ^ (r2 - P2)G'(P) for 0 =g p ^ r.

Since this condition is true for p =r, it is sufficient to verify that, for Ogp^r,

the derivatives of the two sides with respect to p satisfy an inequality in the

opposite sense:

- (1 - r2)[pG(P)Y' á (r2 - p2)G"(p) - 2pG'(p).

Substituting the value of G(z), this reduces to

(1 - r2)(l - 2p) è (r2 - p2)(2 - p) + p(l - p2),

or
2p ^ 1 - 3r2,

and hence is true for O^p^r provided 2r^l — 3r2, or r^l/3.

Remark. A method similar to that used here could also have been used in

proving the Theorem of §2.4; but in that case we had a simpler method.

2.8. In §§2.2-2.4 we considered the operation 8g(z) =zg'(z), and in §§2.5—-

2.7 the operation 8g(z)= [zg(z)]'. For both of these differentiation opera-

tions, rather complete results were obtained. In this section, we shall consider

briefly the inverse operations. Unfortunately, only rather weak results are

proved, though it appears likely that the conclusion often holds in the entire

unit circle.

Theorem. If g(z) and G(z) are regular for \z\ <1,

zg'(z)<zG'(z) for\z\<l,

and g(0)=G(0), then
g(z) < G(z) for | z | ^ r,

provided r ^ 21/2 — 1 and
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l            l                l            I               í+r
min  I G'(z) I : max | G'(z) \ ^ log-,
UlSr Ulgr 1 — r

and hence certainly for r = 1/5.

Proof. We may suppose G(0) =0. We must first investigate the univalence

of G(z) for |z| &r. Since zG'(z) is univalent for \z\ <1, it defines a star

mapping at least for \z\ gtanh 7r/4 = 0.655 • • • , as was shown by Grun-

sky(u), and hence G(z) is univalent and convex in this circle.

It remains to show that the values assumed by g(z) in \z\ ¿r are included

in the set of values assumed by G(z). Now by hypothesis, zg'(z) =p(z)G'(p(z)),

where p(z) is regular and \p(z)\ <1 for \z\ <1, and<£(0)=0. Hence

giz) =   fg'(t)dt=  f   PWirVmYdt.
J o J o

G(P(z)) =  f 'G'(p(t))p'(t)dt.
J o

On the other hand,

Hence

g(z) - G(p(z)) =  f'[p(t) - tp'd^trKl'MtYdt.
«7 o

The integral may be taken along a radius. Now

i    M2-Uwl2
\p(t)-tp'(t)\ú   '      ,;' ,

i — ! * I

as was pointed out in §2.2. Hence

J o

t\+\Pit)\  .    .,      U
g(z) - Gf>(*))    á        (  #   -   *(0 I ) ,', I G'(c6(0)

./| 1 - |¿|2

We estimate the various factors of the integrand. By the theorem of Dieu-

donné (see end of §2.2), we have \p'(t)\ ¿lfor |t| ^2l/2-l, hence |í| -|c6(i)|

increases along the radius from 0 to z if \z\ ^21/2— 1. In particular,

| 11 - | p(t) | g | z | - | p(z) | S r - | ci(z) |

for r^2"2— 1, |z| gr, and / on the radius joining 0 and z. Also,

I * I + I *(0 lii ,        ,
■   I ^ 2,    | G'(p(i)) | g max | G'(f) |.

(u) The truth and sharpness of this result follows at once from the inequality of Grunsky

quoted in §2.7 (see footnote 10), and was stated explicitly in his note, Zwei Bemerkungen zur

konformen Abbildung, Jber. Deutschen Math. Verein, vol. 43 (1933) pp. 140-143.
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Putting in these bounds, and integrating the remaining factor, we have

| g(z) - G(<f>(z)) | á (r - | *(z) | ) max | G'(f) | log \^1 ■
irisr 1 - r

On the other hand, we have for \Z\ =r, by a familiar argument (integra-

tion along a curve transformed into a straight line), the inequality

| G(Z) - G(d>(z)) | â min  | G'tf) \(r-\ <¡>(z) \ ).
IflSr

Thus we shall have

| g(z) - Gf>(«)) | Ú | G(Z) - G(<t>(z)) | for | z | ^ r, | Z | = r,

and hence g(z) in the map of \z\ iSr by G(z), provided the inequality stated

in the theorem holds.

If we put R = (l+r)/(l—r), this inequality takes the form min/max

^logP. Now the classical bounds for a univalent function, applied to

zG'(z), give min/max^ 1/P2. Hence it is sufficient to have l/P22:log P,

which is true for P = 3/2, or r = l/5.

"*   "OREM. If g(z) and G(z) are regular for \z\ <1, and

[zg(z)Y < [zG(z)Y for\z\<l,

then

g(z) < G(z) at least for \ z | ^ 1/5.

Proof. From the hypothesis, it follows that g(0) =G(0). We may suppose

that G(0) =0 and G'(0) >0. If we put

H(z) = [zG(z)Y,

then also H(0) =0 and H'(0) >0. By the rotation theorem for univalent func-

tions, in the sharp form found by Golusin(12),

| amp H'(z) | ^ 4 arc sin r for | z | ^ r,

provided rg2_1/2, and hence in particular,

9îP'(z) ^ 0 for | z | g sin x/8 = 0.382 •• • .

We shall show that G(z) is univalent at least for |z| g sin 7r/8, by showing

that 9îG'(z) ^0. This may be seen from the formula

G'(z) = z'2 f   [t2G'(t)Ydt = z-2 f   H'(t)tdt,
Jo Jo

(a) G. M. Golusin, Über die Verzerrungssätze der schlichten konformen Abbildungen (Russian

with German summary), Rec. Math. (Mat. Sbornik) N.S. vol. 1 (1936) pp. 127-135 (Theorem

6).
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where the integral is taken along a radius, so that z~~2t dt is positive.

To show that g(z) <G(z) for \z\ 5ir (where í-íjjsin 7r/8), it remains to show

that the set of values assumed by g(z) is included in the set of values as-

sumed by G(z). Now by hypothesis, [zg(z)]'=c/>(z)G'(c/>(z))+G(c/>(z)), where

<p(z) is regular and |c>(z)| <1 for \z\ <1, and c6(0)=0. Hence

Also

Thus

zg(z) =  f ' [<t>W(4>(t)) +G(<t>(t))]dt.
•J o

zG(<t>(z)) =  f ' [tG'(4>(t)W(t) + G(4>(t))]dt.
J 0

g(z) - G(<t>(z)) =z1 T [<t>(t) - t<t>'(t)]G'(4>(t))dt.
J o

This differs from the corresponding formula in the proof of the preceding

theorem only in having a factor t~~x replaced by z_1, which is smaller in abso-

lute value. Thus the estimates made there still apply; in fact, we could make

slightly better estimates here. In any case, the remainder of the proof given

there applies equally well here.

Part III

3.1. Suppose that/(z) and F(z) are regular for \z\ <1, and have the form

z+ • • • . We shall study the relations between the three majorizations

f(z)       F(z) zf'(z)      zF'(z)
(A)     ^±<^±, (B)   f'(z)<F'(z), (C)    -±±L<--±1.

z z f(z) F(z)

Supposing that one of the majorizations holds for \z\ < 1, we ask in how large

a circle \z\ ^r one of the others must hold; there are six possible combina-

tions. It will be convenient to introduce also the majorization

f(z) F(z)
(A') iog/}-L<iog-±±.

z z

The relation between (A) and (A') is the following: From (A) follows (A'),

provided F(z)/zyi0; from (A') follows (A), provided F(z)/z is univalent,

which is true if F(z)/z is never negative.

By applying the linear operator 8 defined by 8g(z) = [zg(z)]' to (A), we

obtain (B). Similarly, by applying the operator 8 defined by 2g(z) =zg'(z)

to (A'), and adding 1 to both sides, we obtain (C). The inverse operations

lead from (B) to (A) and from (C) to (A'). I do not know any method to re-

late (B) and (C), except via (A). This leads to incomplete results.

We shall carry out in detail the method just described only for the case in

which the given majorant, F(z)/z, F'(z), or zF'(z)/F(z), is (l+z)/(l —z). The
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theory in Parts I and II gives here rather complete results. It may be re-

marked that the present problem was the starting point for this paper, and'

that the more general results were worked out in an attempt to solve it. The

six cases of the problem are covered in the following theorem.

Theorem. Suppose that /(z) =z+ • • • is regular for \z\ <1.

If

f(z)       1 + z
(A) — <!- for\z\<l,

z I — z

then

(AB) f'(z) <-- - 1 for | z | 5¡ 1/2,
(1 - z)2

and

zf'(z) 2z 1 + 51'2      /l + S^V2
(AC) -^- <-hi for I z   £-(-I    = 0.346

f(z) 1 - z2 J     *    ' 2 \      2      /

(B) f'(z)<1-^- for\z\<l,
1 — z

fÄew

/(z)        2 1
(BA)--< — log-1 for | z | < 1,

z z 1 — z

and

z/'(z)       1 + z / 2 1 \ ,    |
(BC) J-^-L- <-:( — log-1 ) at least for \ z | ^ 0.3.

/(z)        1—z\z 1 — z        /

//

zf'(z)       1 + z ,
(C) J7Tr<-1- /ir|i|<l.

f(z)        1 - z

then

f(z) l i
(CA) ~<7^—rt /«r|*|<J,

z (1 — z)2

and

1 + z 5 — 171'2
(CB) f'(z) < - at least for    z   g-= 0.438 • • • .(1 - zY -/Il 2
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If we replace < by = in any one of the three hypotheses, we must make

the same replacement in the two corresponding conclusions. Only in the two

cases (BC) and (CB) do we not obtain the largest radius in which the conclu-

sion holds. The result (CA), and a weaker form of (CB), were obtained by

A. Marx.

The six conclusions of this theorem are proved in §§3.3-3.8, respectively.

The proofs are independent, except that (BC) depends on (BA), and (CB)

on (CA). Conclusions (AB) and (AC) are proved by two methods, using

Part I or Part II; (BA) and (CA) are proved by the first method; while

(BC) and (CB) are proved by the second method, but using results proved

by the first method. Also, (CB) for \z\ g2-31/2 = 0.267 • • • is proved by the

first method.

In §3.9, we show that from (CA) for |z| <1 follows (C) only for \z\ g 1/3.

3.2. Before proceeding to the proof of the various parts of our theorem,

we have some comments to make concerning its interest and sharpness.

We have been considering the three expressions

(a)      gi(z) = f(z)/z, (b)      gi(z) = f'(z), (c)      gi(z) = zf'(z)/f(z),

wheref(z) =z+ • • • is regular for \z\ < 1 ; when considering (c), we shall sup-

pose that/(z) 5¿0 for zy±0. Notice that each of the_three expressions measures

in some sense the magnification and rotation accomplished by the mapping

w=f(z). The first measures distance and direction from the origin, the sec-

ond the local scale and orientation, while the third measures the local scale

and orientation relative to the distance and direction from the origin.

The hypothesis gk(z) ■< (l+z)/(l — z), which occurs in the theorem, is

equivalent to 9?g*(z)>0. This seems a particularly interesting majorization,

because it means that in the mapping w=f(z), the rotation (in the relevant

sense) is less than a right angle. Furthermore, for k = 2 or 3, this condition

implies that/(s) is univalent. For if 9î/'(z)>0, then [/(z2)—/(zi)]/(z2 —zi),

which is the average of/'(z) on the segment joining Zi and z2, also has a posi-

tive real part; and Sft{zf'(z)/f(z)} >0 is the condition for a star mapping,

which together with/'(0) 5^0 insures uni valence.

Now let Gi(z) = E(z)/z, G2(z)=F'(z), G3(z)=zF'(z)/F(z), and consider in

general the majorizations

(A)     giiz) < Giiz), (B)      giiz) < diz), (C)     g3(z) < G3(z),

which were considered in §3.1. Notice that if we let f(z) =F(az)/a, where

\a\ ¡SI, then gk(z)=Gk(az) for k = l, 2, 3, and hence also gk(z)<Gk(z). On

the other hand, as a varies, gk(zi) assumes all values in the map of \z\ á |Zo|

by Gk(z). Thus any one of the three majorizations, (A), (B), or (C), allows

for gk(zi) at least this set of values. Hence if from any one of the three

majorizations, assumed in \z\ <1, another one follows in \z\ ¿r, then in this

circle it is certainly sharp, in the sense defined in the introduction. In par-



26 R. M. ROBINSON [January

ticular, all of the conclusions of the theorem of §3.1 are sharp in the circles

where they hold.

Suppose that from gk(z) <Gk(z) for \z\ <1, it follows that gi(z) <Gt(z) for

\z\ ^r, but that r cannot be replaced by a larger number. Then the problem

of finding the possible values of g¡(zo) allowed by the hypothesis is solved

for |Zo| ^r. If |zo| >r, the problem is less simple. It is treated only inci-

dentally in the following sections.

A final remark is the following. The function g¡¡(z) is regular for \z\ <1,

and of the form 1 + • • • , but is otherwise not at all special because it is of

the form f(z)/z, f'(z), or zf'(z)/f(z). For each of the defining equations may

be solved for/(z):

(a) /(z)=zgi(z), (b) f(z) =  {'gi(^)dt,
J 0

(c) f(z) = zexP f [g3(f) -íjr1««-.
J o

3.3. Problem AB. Here we are given

f(z)       1 + z
(A) ^-<- for \z\ < 1,

z 1 — z

and are to find a majorant for f'(z). To obtain this, we must apply to (A)

the operator 8 defined by 8g(z) = [zg(z)]'. We must verify that this is per-

missible.

First proof (using Part I). The operator 8 in question is Q2^3i of §1.2, a

linear operator of order zero. Hence by §1.3, we may apply 8 to (A) if we

insert § on the right, and the result is sharp. Thus we have

(AB*) f'(z) < £ [v^—Ti - 7 for | z | < 1.

This holds for |z| ¿r without the §, if and only if the majorant is convex

there, that is, if h(z) = 1/(1 —z)2 is convex. Now for convexity we must have

(        2h"(z) )
91 < H-—> è 0 for

I h'(z) )
, á r,

'to   '
that is, 9t{(l+2z)/(l-z)} ^0. This holds exactly in the circle having —1/2

and 1 as ends of a diameter, and hence for \z\ ál/2 and in no larger circle

about the origin.

Thus we have obtained the conclusion (AB) of the theorem of §3.1. Ac-

tually, the result (AB*) above is more complete, since it also shows what

values are possible for/'(zo) in case |zo| >l/2.

Second proof (using Part II). We apply the theorem of §2.6, with G(z)

= (l+z)/(l-z). Notice that G(z) is convex, and that [zG(z)]' = 2/(1 -z)2- 1
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is univalent for \z\ <1. Hence a necessary and sufficient condition that the

desired conclusion

(AB) f'(z) <- - 1

is valid for \z\ <r is that

(1 - z)2

2r

1 - z 1 - r2
for á r.

This is correct if and only if 2/(1 +r) £2r/(l -r2), or rgl/2.

Remark. Recalling that 2/(1—z)2—1 is convex for \z\ ^1/2, we see that

either of the inequalities, f'(z)^0 or 9î/'(z)>0, is always valid for \z\ <r, if

and only if 2/(l+r)2-l ^0, or r^21'2-l =0.414 • • ■ . In particular, we

have the theorem: If f(z)=z+ • • • is r?--dar for \z\ <1, and 'Si{f(z)/z\ >0

there, then f(z) is univalent for |z| ^21/2—1 / not always in a larger circle

about the origin.

3.4. Problem AC. Here again we are given (A), which is equivalent to

(A')
.      /(*)      .     1 + z
log-< log-

z 1 — z
for < 1.

We are to find a majorant for zf'(z)/f(z). To obtain this, we must apply to

(A') the operator 8 defined by 8g(z) =zg'(z), and then add 1. We again give

two proofs of the validity of this operation in a certain circle. The proof by

the second method is given first, since it is simpler.

First proof (using Part II). We apply the theorem of §2.3, with G(z)

= log [(l+z)/(l — z)]. Since this function is convex, a necessary and suffi-

cient condition that the desired conclusion

(AC)

is valid for \z\ ^r is that

This is true if and only if

«/to
/w

l + z2

1 -z2

1

-<
2z

.+ 1

2r

1 -r2
for á r.

2r

1 + r2       1 - r2

or 1 — 2r — 2r2 — 2r3+r*^0. The left side can be factored, giving

[1 - (1 + S1'2^ + r2][l - (1 - 5x'2)r + r2] ^ 0.

Since the second factor is positive, we need only solve the first quadratic to

find the required condition
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1 + 51'2 /î + s'/v'2

Second proof (using Part I). We have to apply to (A') the operator 8 = 5ßi02

of §1.2, a linear operator of order zero. Put

1 + z 2z
L(z)=8-

1 - z      (1 - z)2

and let Cr denote the map of \z\ —r by L(z). Then, according to the theorem

of §1.5, a necessary and sufficient condition that (AC) holds for \z\ ^r is

that for I f I =r, the line joining E(f) and L( — f) doesn't cross Cr again. If we

assign to arcs of Cr weights proportional to the lengths of the correspond-

ing arcs of \z\ =r, then this is equivalent to saying that in each direction

there is a line which cuts Cr into two pieces of equal weight.

Suppose that (AC) does not hold for \z\ ^r. Then there is some line

cutting Cr into more than two pieces, such that the pieces on either side of

the line have the same total weight. A parallel tangent to the curve can be

found, such that the part of the curve on the side of the tangent indicated

by the exterior normal to the curve has greater weight than the part on the

other side. By varying the point of tangency continuously, we can find a

tangent such that the part of the curve on either side has the same weight.

Let I a I = \b\ =1. The tangent to Cr at L(ar) will pass through L(br) if

and only if the quantity

L(br) - L(ar)      r(b - a)(l - ar)(l - abr2)

iaL'(ar) ia(l + ar)(l - 6r)2

is real, and hence equal to its conjugate. This leads to the condition

(1 - ar)il - abr2)       (a - r)iab - r2)

(1 + ar)il - br)2   '     (a + r)(b - r)2

Clearing of fractions, and dividing out the factor (1 — r2)(a — b), we have

2r2a2ô2 - [r(l + r2)(l + a2) + a(l - r2)2]b + 2r2 = 0.

The part of Cr on either side of the tangent at L(ar) has the same weight if

and only if this equation is satisfied by two values of b on the unit circle,

one of which is the negative of the other. Thus the coefficient of ô must van-

ish, and in this case the roots 0 = ±i/a are on the unit circle. Hence the condi-

tion which a must satisfy is

r(l + f2)(l + a2) + a(l - r2)2 = 0.

This equation has two reciprocal solutions for a; they are either on the real

axis or on the unit circle. We are interested in solutions with   a   =1, or
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- 2 ^ a + or1 ^ 2.

Such solutions exist only if

- 2r(l + r2) ú(l- r2)2 á 2r(l + r2).

The left side always holds, but the right side holds only if

1 - 2r - 2r2 - 2r3 + r4 g 0,

or r^O.346

We have derived this inequality on the assumption that (AC) does not

hold for \z\ ¿r. Thus (AC) holds at least for \z\ <0.346 • • ■ , and hence for

\z\ g0.346
On the other hand, the line joining L(±ir) does cross Cr again if

ÍRL(ir) <L(-r).

This condition reduces to l—2r — 2r2 — 2r3+ri<0, or r>0.346 • • • . Hence

(AC) cannot hold for \z\ gr if r>0.346 • • • .

Remark. According to §1.5, the conclusion (AC) holds in a circle whose

radius is intermediate between the radii of convexity of the two functions

1 + z          2z                        1 + z          2z
g-«■-,       g log-=-

1 - z      (1 - z)2 1 - z       1 - z2

Simple calculations show that these radii are 2— 31/2 = 0.267 • • •   (which is

the smallest for any univalent function), and 2l/2 —1=0.414 • • • , respec-

tively. The radius 0.346 ■ • • which we found does lie between these.

3*.5. Problem BA. We are given that

(B) f(z) < -—Î for | z | < 1.
1 — z

A majorant for/(z)/z is desired. This may be obtained by applying the in-

verse of the operator 8 for which 8g(z) = [zg(z)]\

Because of the incompleteness of the results of §2.8, which we would need

to apply here, the second method can lead only to a partial result. Since a

complete proof is obtained by the first method, we shall consider only this.

Proof (using Part I). The operator which we are to apply to (B) is Qi^f32

of §1.2, which is a linear operator of order zero. By §1.3, we can apply this

operator, if we insert § on the right. This gives

/(z) (2 1 "j
(BA*) ¿ljL < ${— log-1> for | z| < 1.

z ( z 1 — z        )

To complete the proof, we have only to show that the majorant is convex.

The condition for convexity reduces to
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*{(r^HîVlogr^)}£1-
Now SStw ̂ 1 is equivalent to | w — 21 î£ | w \. Using this, the required inequality

becomes

I Q(z) I á|p(*)|,
where

P« = (",—) - Qiz) = E(s) - —— + 2 log -— •
\1 — z/ 1 — z 1 — z

We find that

P'iz) = 2z/(l - z)3,       Q'iz) = 2z2/(l - z)3,

and hence
| Q'iz) | =g | P'(«) |.

Notice that the transformation w=Piz) can be obtained by setting

CÚ = z/(l — z), IÜ = CO2.

The first transformation takes \z\ <1 into the half-plane 3îw> —1/2, which

is star-shaped with respect to the origin; the second transformation takes

this half-plane into a two-sheeted region, which is also star-shaped. Thus the

desired conclusion can be obtained from the following lemma.

Lemma. 7/E(z) and Qiz) are regular for \z\ <1,

| Qf(z) | á | P'iz) | /or|z|<l,

(5(0) =E(0) =0, and if Piz) maps | z\ < 1 onto a imany-sheeted) region which is

star-shaped with respect to the origin, then

I Qiz) | =S | Piz) | for | z | < 1.

Proof. Suppose that z0 is given, with |z0| <1. Join 0 to Pizi) by a line

segment. This segment lies in the map of |z| <1 by Piz), and hence is the

map of a curve C, lying in the unit circle, and joining 0 to z0. Then we have

I qízí) | á f | e'(f) 11 #1 á f | ̂ (f) 11*1 = piz°)-
J c J c

Remarks. The condition about star mapping is equivalent to assuming that

Piz) is a power of a univalent function which defines a star mapping. If this

condition were omitted, the lemma would be incorrect. For if we put

Piz) =500(e8*- 1),       Qiz)=z,

then we have |E'(z)| >1=Ç'(z) in the unit circle, but Piz) has zeros in

0 < I z | < 1, so that the conclusion cannot hold.

3.6. Problem BC. Here again we are given (B), but we shall use only
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(BA), which was shown in §3.5 to be a consequence of (B). Since the majorant

in (BA) is the average of (l+f)/(l—f) on the segment joining 0 and z, it

certainly has a positive real part, so that its logarithm is regular. Thus (BA)

is equivalent to

(BA') log-< log ( - log Th->) for < 1.

A majorant for zf'(z)/f(z) is required. This may be obtained by applying to

(BA') the operator 8 defined by 8g(z) =zg'(z), and then adding 1. Since the

majorant in (BA') was not considered in Part I, we have only the second

method to use to show that we may apply this operator.

Proof (using Part II). Because of the complicated nature of the majorant

in (BA'), we shall not attempt to determine the largest radius for which we

can apply the operator 8. Without looking at the majorant, we see by §2.4

that this is permissible for I z| ^3 — 23/2 = 0.171 • • • . However, we shall make

a better estimate than this, by applying the theorem of §2.3 with

G(z) = log (—log--1).
\ z 1 — z        /

We can apply the operator 8, obtaining the conclusion

(BC)

for |z

zf'(z)      1+z (2

/to
^r, provided that

zG"(z)

<
1 (f^rb"1)

at
l G'(z) )   -

0   and 1 +
zG"(z)

G'(z)

2r

1 - r2

for \z\ ¿r. Now

1 +
zG"(z)

G'(z)
A(z) - B(z)

where

A(z) :(l- —log-^-)=¿z»:¿
\ z 1 — Z/ „_i        „=i

B(z)
1+Z   /

" 1 - z'\
-log--
z 1 — z 0-(1 + 2

„=i n(n + 1)

00 v y 00

£z«):(l + 2£
n=l       /     \ »-1 n + T>

Thus both A (z) and B(z) are expressed as quotients of power series with posi-

tive coefficients ; in the numerators the coefficients are nondecreasing, and in

the denominators nonincreasing. Hence ^4(z) andP(z) have series expansions

with positive coefficients: -4(z) =2 + (4/3)z+ • • • , P(z) = l+z+ • • • . Thus

A(z) — 2 — z and B(z) — l—z also have positive coefficients, so that
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\A(z) -2-z\£A(r) -2-r,    |E(z) - l-z\gB(r) - 1 - r,

and hence \A(z)-B(z)-l\ ^A(r)+B(r)-3-2r, for \z\ar. The two re-

quired conditions

SR{A(z) - B(z)} _ 0,        U(z) - B(z) \ ^ 2r/(l - r2)

are certainly both satisfied if

| A(z) - B(z) - 11 á 1 - 2r/(l - r2)

for \z\ ^r, which is true if

A(r) + B(r) - 3 - 2r g 1 - 2r/(l - r2).

This is found to be correct for r = 0.3.

3.7. Problem CA. We are given

zf'(z)       1 + z
(C) -TTV^-,- for|z|<l.

f(z)        1 - z

In other words, we assume that/(z) maps |z| <1 onto a star-shaped region.

A majorant for/(z)/z is desired. If we subtract 1 from (C), and then apply

the inverse of the operator 8 for which 8g(z) = zg'(z), we obtain a majorant

for log \fiz)/z].
Because of the incompleteness of the results of §2.8, which we would need

to apply here, the second method can lead only to a partial result. Since a

complete proof is obtained by the first method, we shall consider only this.

Proof (using Part I). The operator which we are to apply to (C) is 5p2Qi

of §1.2, which is a linear operator of order zero. By §1.3, we can apply this

operator, if we insert § on the right. This gives

f(z) (11 ,
(CA'*) log^-<§^21og-} for | z | < 1.

z I 1 — z)

The condition that the majorant be convex reduces to 9? {1/(1 —z)} ^0, which

is true; hence the ÍQ can be omitted. We may then also omit the logarithm,

obtaining

(CA) ^<_L^ for \%\ <1,
z (1 — zY

since the new majorant is univalent. Notice that this determines the set of

possible values of /(zo) for any fixed z0 and all star mappings. The extremal

function is /(z) =z/(l— cxz)2 with \a\ =1, which maps \z\ <1 onto a plane

with a radial slit(13).

3.8. Problem CB. Here again we are given (C), but we shall use only (CA),

(u) Marx, paper cited in footnote 5, Satz B.
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which was shown in §3.7 to be a consequence of (C). The desired majorant

for/'(z) can be obtained by applying to (CA) the operator 8 defined by 8g(z)

= [zg(z)]'. Two proofs will be given that this is possible in some circle.

First proof (using Part I). The operator 8 is O^i of §1.2, a linear opera-

tor of order zero. By §1.4", we can apply this operator to (CA), if we insert §

on the right. This gives

(CB*) /(«) < § {^-TX3} for | z| < 1;

but this estimate is not known to be sharp even under the hypothesis (CA).

From (CB*), we can obtain (CB) for \z\ ^r only if the majorant is convex

there. The convexity condition reduces to

1 + 4z + z2

(1 - «)(2 + z)

Forz = — r, this is evidently trueif and only if r^2— 31/2 = 0.267 • • • , and we

shall show that this determines the radius of convexity. In fact, the required

condition is equivalent to

9î{(l + 4z + z2)(l -z)(2 + z)} ¡SO.

If we let r = | z\ and x = 3cz, this becomes

(2 - 5r2 - r4) + (7 - 5r2)* + 2*2 ^ 0.

The derivative of the left side with respect to x is 7 — 5r2+4:t, which is posi-

tive at least for r ^ 1/2, so that the critical case is x = — r, or z = — r.

From (CB*) we can obtain (CB) only for \z\ ^2 —31'2; the larger radius

given in the theorem of §3.1 will be found in the second proof. On the other

hand, (CB*) does give some information not given by that theorem.

Second proof (using Part II). We apply the theorem of §2.6, with G(z)

= 1/(1— z)2. This function is convex for \z\ ^1/2, as was already noted in

§3.3. We must also check the univalence of

1+z
H(z) = [zG(z)Y =-

1        J       (1-z)8

First we shall show that log H(z) is univalent ; it is sufficient to show that its

derivative has a positive real part. Now

[logP(z)]' = (4 + 2z)/(l - z2),

and, putting r= \z\, the real part of this is, except for a positive factor,

9î{(2 + z)(l-z2)} = 29c{l -z2} +(1 -r2)9îzè 2(1 - r2) - (1 - r2)r > 0.

Thus log H(z) is univalent. Also,
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I amp H(z) | < 4 arc sin r,

so that H(z) is not negative for \z\ ¿2~112, and hence is univalent there.

Having settled these preliminaries, we see that the desired conclusion

1 + 8
(CB) f'(z) <-

J (l - zY

for \z\ ^r, where r ^ 1/2, will follow from (CA) if and only if

2 + z

1 - z

2r .    .
for I 2 la r.

1 - r2

This is true provided(2-r)/(l+r)^2r/(l-r2),orrg(5-171/*)/2 = 0.438 • • •.

This is the largest radius for which (CB) follows from (CA), but not neces-

sarily the largest radius for which (CB) follows from (C). Notice that this

radius is larger than the radius of convexity of the majorant.

Remarks. Marx has conjectured that in the whole unit circle, f(z)

= z/(l— z)2 serves as an extremal function so far as values of f'(z) for star

mappings are concerned(14). We cannot say that he conjectured (CB) for

\z\ <1, since by our definition this fails because the majorant is not univa-

lent. His conjecture could be written

(CB') log/'(z)<log
(1 - zY

for |z| <1. As a contribution to this conjecture, he proved (CB*), by a

method related to our first proof, and from this (CB) or (CB') follows for

\z\ ^2—31/2 = 0.267 • • • . We have increased the radius of the circle where

(CB) is known to be true to (5 -171/2)/2 =0.438 • • • , using a quite different

method, but still making the result depend on (CA). Any further increase

requires that (CB) be deduced from (C) itself, and not from (CA).

3.9. In §3.6, we have drawn conclusions about (BC) from (BA) rather

than from (B), and in §3.8 conclusions about (CB) from (CA) rather than

from (C). We have done this since there was no apparent way of connecting

(B) and (C) except via (A). That this procedure can hardly be expected to

give a maximum radius is made clear by the following example, which is also

interesting in itself.

Starting from (C), we find (CA), and this is sharp. But from (CA), can

we recover (C) ? Writing (CA) in the equivalent form

/GO                    1 i    i
(CA') log ^— < 2 log- for | z | < 1,

z 1 — z

we can apply the theorem of §2.3, with G(z)=2 log [l/(l—z)]. As noted

(M) Marx, loc. cit. p. 66.
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in §3.7, G(z) is convex. Hence a necessary and sufficient condition that the

conclusion

(C)

for \z\ ^r will follow, is that

«/to       1 +
/(z)   " 1 - z

1 -z

2r
for | 21 ^ r.

This is true only if l/(l+r)^2r/(l-r2), or r^l/3. Thus from (CA) for

|z| <1 follows (C) only for \z\ ^1/3, despite the fact that, assuming (C),

(CA) gives a sharp majorant for f(z)/z.

We thus have the following result: If' f(z) =z+ • • • is regular for \z\ <1,

and does not at any point assume a value which would be impossible if f(z) de-

fined a star mapping of the unit circle, thenf(z) does in fact define a star mapping

for \z\ ^1/3. The number 1/3 cannot be replaced by any larger constant.

University of California,
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