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BY
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1. Introduction. The problems considered in this paper are the complete-

ness of sets of the form {/Xne_ci} (c>0, X„>0) in (0, oo) (where the X„'s are

not necessarily integers) and the analytic continuation of lacunary power

series23c«zXn (where the X„'s are integers).

Let n(t) =n\(t) denote the number of Xn not exceeding /. W. H. J. Fuchs

[3](x) proved that \tx"e~ct} is complete with respect to L", l^pSs oo, if there

is a constant A such that n(t) ¡ît/2—A. I shall prove by a different method

t*1 '- it is sufficient to have

(1.1) ra(Z) - t/2 è - tS(t),

where /°°/~l5(/)<f/ converges. Fuchs has pointed out to me that the same result

is obtainable by his original method; in addition, since the present paper was

written, a paper [3a] by Fuchs has appeared, establishing the result (stronger

if the X„ satisfy X„+i—X„^e>0) that if X„+i—X„à«>0, {/Xne_c<} is complete

with respect to L2 if and only if

(1.2) f  r-^(r)dr = oo,      *(r) = exp il 23  k\ ,
J 1 <■    Xn<r ;

and that (1.2) is sufficient for completeness with respect to Lv, p7^2, pel-

However, the proof given in the present paper is somewhat simpler than

either of Fuchs's proofs.

Fuchs also showed [3 ] that if the set {ra} of all positive integers is divided

into two complementary subsequences {XB} and {jUn}, then at least one of

|/x„e-ci| an(j {¿/*ng-c<J ¡s complete. (This is a trivial consequence of his later

result [3a].) I shall show that {ra} can be replaced by any sequence \an\

such that na(t) >/ — /§(/) with /°°/_1ô(/)a/ convergent (see Theorem 4, where an

extension to k subsequences is given). This is a corollary of Fuchs's results in

[3a] if an+i — a„^e>0.

The completeness of sets {tXae~ct} is equivalent to the completeness of

various other sets. For example, the Fourier cosine transform leads (as was

pointed out to me by H. Pollard) to the set {(cos x)x» cos \nx} in (0, w/2); the

Mellin transform leads to the set {V(\„+it)} on (— oo, oo).

Presented to the Society, September 15, 1945, under the title Some complete sets of functions;

received by the editors October 23, 1945.

(l) Numbers in brackets refer to the references at the end of the paper.
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Almost the same reasoning as is used for the completeness problem leads

to new criteria for the uniqueness of the solution of the generalized moment

problem

un=  \    fi*da(t),
J o

a(t) nondecreasing (see §5).

Let f(z) have a power series of the form

00

(1.3) 2ZcnZX»,
n=0

where the X„ are integers and

(1.4) lim sup n\(r)/r = D.
n—,ao

If/(z) is defined by (1.3) for small \z\ and by analytic continuation (if possi-

ble) for large \z\, Mandelbrojt has shown that, in every angle with vertex

at the origin and opening 2a>2irE,/(z) (if not a constant) either has a singu-

lar point or is unbounded. Mandelbrojt's result applies to Dirichlet series,

and is more general in other ways; but it requires the strict inequality(2)

a>ivD. I shall give some results in which, if (1.4) is somewhat strengthened,

a = irD is permissible. In the first place, (1.4) can be replaced by

(1.5) w(r) g r(ir-xa - e(r)),

where fKr~1e(r)dr diverges; (1.4) with a>irD is the case where e(r) ^ e>0. In

the second place, when a=ir/2, results on complete sets can be applied to

show that f(z) (if not constant) either has a singular point or is unbounded

in every half-plane containing z = 0 in its interior, provided only that

(1.6) n(r) ^ r(l/2 + 5(r)),

where S(r) has the same properties as in (1.1). By applying Fuchs's later re-

sult [3a] instead of the results of the present paper, (1.6) can be replaced by

(1.2); either (1.6) or (1.2) requires less of n(r) than (1.4), but implies a little

less about/(z). These results for a = ir/2 imply a corresponding improvement

of results of Mandelbrojt and Ulrich [ó] on a generalization of quasi-analytic-

ity.

The power series result for a = 7r/2 is not only a consequence of the com-

pleteness of {/x**e_<"}, but also implies it. It is interesting to observe that, as

Fuchs showed [3], the completeness of {íx"e_cí} is also equivalent to the fol-

lowing statement about differences: if \an} is a sequence such that an = o(n)

(2) Mandelbrojt [4] states the theorem with a^irD, but this is evidently an oversight, as

his proof shows.
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and Ax»öo = 0, then {an} is constant(3).

There are also decomposition theorems for power series analogous to those

for complete sets. For example, let {«} = {X„} + {/in}, c*i>0, a2>0, ai+a2

>ir. If fi(z) = ^2,cnzKn and /¡¡(z) =23t»2'"' and if we take any two angles of open-

ings 2«i, 2a2, with vertices at the origin, then one of fi(z),ft(z) has a singular

point, is unbounded, or is a constant in the corresponding angle. A stronger

result can be obtained if we start from a sequence which already possesses

gaps.

The theorems of this paper depend on some uniqueness results for func-

tions analytic in a half-plane; these will be given first.

2. Lemmas on entire functions. We begin with some properties of special

entire functions.

Lemma 2.1. Let {X„} be an increasing sequence of positive numbers and let

n(r) denote the number o/X„ not exceeding r. Let ô(t) be a positive function vanish-

ing near / = 0. Let c> 0 and

(2.2) n(f) à et - to(t),       n(t) = 0(t), /-^ oo.

Then the product

(2.3) <¡>(z) = 11(1-22An)
n-l

converges and there are constants Ai, At such that for r>0

(2.4) log | 0(re*) | ^ crrr \ sin 6 \ - AirSi(r), ir/4 g | 6 \ g tt/2,

where r8i(r)  is nondecreasing and  /°°r-1oi(r)¿r converges  or diverges  with

/"'r^btfdr, while for an unbounded sequence of r's,

(2.5) log \<t>(revr)\ ̂  - Air.

The convergence of the product follows from (2.2), which also shows, since

<p(z) is even, that it is a function of order 1 and finite type; (2.5) is a well known

result for such functions [10, p. 276].

We have, if z is not real,
OO -00

log <t>(z) = Z log (1 - z/\l) =  j    log (1 - z2/t2)dn(t)
n-l J 0

I », i i CR     n(t)dt   )
= .to {„<*)>og (,-,/*) -2,/    ^--^

= - 2z2 f
J o

n(f)dt

o     t(t2 - z2)

(') The case {\„} =2n was found independently by Agnew [l]; a simpler proof was given

by Pollard [8]; the equivalence of "power series," "completeness," and "difference" theorems

has been given a simplified proof by Boas and Pollard [2a].
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the "integrated term" disappears by (2.2), since log(l— z2/R2) =0(R~2) as

E—> eo. Hence

Ü'00  n(t)       z2       )

Let n(t) =ct+tÇ(t), where f (/) ^ - S(t). Then

log | ♦(.) | = - m{f' ^dt} - 2f'^{^tdt

= ii + h,

say. We have

(2.6) Ii-Tc\y\.

Also,

r2 - i2 cos 20
SSI

l<2 - z2/ ¿4 2i2r2 cos 20 + r4

and so

r2 - t2 cos 2*0
r(0-

o Í4- 2<2r2r2 cos 26 + r*

If ir/4g | d9| <ir/2, cos 20^0 and so we have.

I2 + r2

dt.

r F + rl   .
h ^ - 2r2 I     8(t) -dt = - r8i(r),

Jo t* + r*
where

C"        t2 + r2
8i(r) = 2r\     8(t) ——dt,

Jo ¿4 + r*

so that rôi(r) is nondecreasing. We have

/r"    r"    t2 + r2r-x8i(r)dr = 2 I    dr \    8(t) —— o7
o J o       J o t* + r*

t2 + r2
dt

r r   t2 + r2
= 2      a(/)¿<      -

Jo Jo    /4 + r4

= C |    tr^dt,
J 0

where Cis a positive constant; consequently /°°r_1 Si(r)¿r and /°°í_1S(/)áí con-

verge or diverge together.
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Lemma 2.7. With the hypotheses of Lemma 2.1, except that (2.2) is replaced by

(2.8) n(t) ^ ct + t8(t),

we have for r>0

(2.9) log | 0(re") | ^ CTrr | sin 0 | + A3r8i(r), x/4 g | 0 | g ir/2,

where 5i(r) has the same properties as ôi(r), and we have (2.5) for an unbounded

sequence of r's.

The proof is the same as for Lemma 2.1, through (2.6). We then have

r2 - t2 cos 20
^ 2r2 f   8(f)

J o ¿4 - 2/2 cos 20 + r*
dt

- 2rÍfo

8i(r) = 2r3 f
J o

s(t)

+ r2

\(t)dt

(t2 + r2)2

(t2 + r2)2

8(f) dt

Just as before, it follows that fxr~18i(r)dr and f*r~lS(r)dr converge or diverge

together.

Lemma 2.10. If t](r) is nonincreasing, rrjir) f oo as r f «, and /°°/-1?7(í)£"í

converges, there is an entire function piz) such that, for 16 | g tt/2,

log | Pire«) | ^ n,(f)/3, r ^ r„,

where r0 is a positive constant.

Let {X„} be an increasing sequence of positive numbers such that

Arrtir) ^ «xM è rt|(r), r ^ b > 0,

where .4 is a constant greater than 1. We shall show that

Hz) = n (i + z/k)

has the required properties.

We have, as E—» oo,

tr'dnit) = R-^iR) + I    tr2nif)dt
o «7 o

á A(E) + f  |->,(0<ft-O(l);
JXl

hence E^A» converges, and so piz) is entire.
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We then have

zn(t)
dt,log <K«) = Z log (1 + «A») =  f   log (1 + z/t)dn(t) =  f

n-l J 0 Jo       t(t + Z)

and consequently, if |ö| áir/2,

. .        r°°  n(t)        r2 + rt cos 0
log | *(»)   = 9t log*«    = -^ ——-—— A

Jo        /     r2 + 2rt cos 0 + /2

r°°    n(t)dt              rr    r\(i)dt
> r2 I     -^ r2 I-

Jo    t(r + t)2 -      J b    (r + t)2

£ (r - b)v(r)/2 > rr,(r)/3, r è 2b.

3. Analytic functions in a half-plane. We can now prove the uniqueness

theorems which we need.

Theorem 1. Let F(z) be analytic in x>0 and continuous in x^O. For x^O,

let

(3.1) log | F(z) | ^ mx log x + Ax + <r(r), m > 0,

where A is a constant, a(r) is nondecreasing and f°°t~2cr(t)dt converges.  Let

F(X„) = 0, where X» > 0 and

(3.2) rax(/) è mt/2 - tb(t),

5(f) i 0 and f"t-lh(t)dt converges. Then F(z) =0.

Let <p(z) be the function of Lemma 2.1, with the given sequence {X„} and

c = m/2. (If n(t)5¿0(t), we.can discard Xn's until n(t)=0(t) without.affecting

(3.2).) Let n(t) be nonincreasing, tr\(t) Î co, with fxt~1r¡(t)dtconvergent and

ij(/)>3^4i5i(/)+3/_1<r(/), where .41 and Si are the quantities appearing in (2.4).

Let yp(z) be the function of Lemma 2.10, and consider the function

F(z)
H(z)

B\T(z))»*{z)t{z)

where B is a constant, to be chosen in a moment. Since the zeros of <p(z) in

x>0 are cancelled by the zeros of F(z), H(z) is analytic in x>0 and continu-

ous in x^O. We then have, for r>n, where ri>r0 is a suitable constant,

log | H(z) | ^ mr cos 6 log r + mr cos 0 log cos 6 + Ar cos 6 + a(r)

— mr cos 8 log r + mr6 sin 6 — log | (j>(reie) \ — rr¡(r)/2 — log B

:£ mr cos 8(A + log cos 6) + mr6 sin 6 + <r(r)

- rr,(r)/2 - log | 4>(re«) \ - log B.
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Hence, for tt/4 g | 0| g ir/2 and r > n,

log | H(z) | g mr cos 0(4 + log cos 0) + mr \ sin 0 | ( | 0 | - ir/2)

+ cr(r) + Air8i(r) - rv(r)/2 - log B

;£ mr cos 6(A + log cos 0) — log B.

If E is chosen larger than max|EEr(z)| for \z\ gri, xèîO, we have log |íí(z)|

<0 for |z| <ri, and so

(3.3) log | E(z)| g wr cos 0(4 + log cos 0), r è 0, tt/4 g | 0 | g ir/2.

For 0g 10| gir/2 and for an unbounded sequence of values of r we also have

log | H(z) | á Cr,

where C is a constant.

Now let K»(z)=H(z)em¡°*, co>0. Then by (3.3), for x/4g|0| gir/2,

log | Ku(z) | g wr cos 0(log cos 0 + A + w)

while

log | Ew(z) | á (C + w)r, 0 g | 0 | g ir/2,

for an unbounded sequence of values of r.

If 0o is chosen so that cos 0O <e~", we then have log |EM(z)[ gOfor 0 = +0O,

0o<ir/2, and so, by a well known Phragmén-Lindelof theorem [10, p. 177],

log |Ew(z)| gO for Og |0[ ^0O. In particular, then,

| H(x)e»x | g 1

for x>0. Letting co—»°o, we obtain H(z) =0. Hence F(z)=0.

Theorem 2. Ee¿ E(z) &e analytic in x>0. For x^l, let

(3.4) log \F(x+iy)\ g *|y|+«r(r),

wÄere fxt~2cT(t)dt converges. Let F(pn)=0, where pn>0 and

n»(f) ̂  (k/%)t + t8(f),

b(t) is nonincreasing, and f'at~1h(f)dt diverges. Then E(z)=0.

Let p(z) be the function of Lemma 2.7, with pn replacing X„. In the part

of x*z 1 where tt/4 g | 01 gir/2, we have

log |E(z)/«(z)| gcr(r) -Air8i(r),

and

log | F(z)/c6(z) | = 0(r)

on a sequence of semicircles of unbounded radii. Applying Carleman's theo-

rem [10, p. 130] to F(z)/p(z) in this half-plane, we obtain
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{y-2c(y) - il,y-i5f(y)}dy

= 0(1) -Ai j  y~Wy)dy.

Since f°°y~1S2(y)dy diverges, this leads to a contradiction unless F(z) =0.

4. Completeness of sets {/Xne_<!i}. We can always suppose that c = l, by

making a change of variable if necessary. We say that a set of functions

{/n(t)} "_i is complete with respect to a class C if

/;
Mt)g(t)dt = 0, n= 1,2, ■■■; gGC,

implies g(t) =0 in C.

Theorem 3(4). If {X„} is an increasing positive sequence with

(4.1) n(t) ^ //2 - tS(t), j    t-^dt < oo,

5(/) nonincreasing, then the set {/x»e_<} is complete with respect to every Lp(0, « ),

lgp^ oo.

/;

We have to show that if

o

e~'t^f(t)dt = 0, ra = 1, 2, • • • ; /(/) G L'(0, oo),

then /(/) = 0 almost everywhere. We consider the function

F(z) =  f   e-'t*f(t)dt
Jo

and show that, if F(X„) =0 (ra = 1, 2, ■ • • ), then F(z) =0. That/(/)= 0 almost

everywhere then follows from the uniqueness theorem for Mellin transforms.

F(z) is analytic in x>0 and continuous in x^O. If p=oo, we have

|/(/)| ^M and so

J o
F(z) | á        e-H*dt = r(* + 1).

If p = 1, let /„" |/(01 dt = AT; then

I/?(*)!<;;

If Kp< oo, let p' = p/(p-l); then, by Holder's inequality,

F(z) | ^ ilf   sup   e-'/1 = e-'a;1.

(4) A result of Fuchs [3a], stronger when X„+i—X„^e>0, is quoted in §1.
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| F(z) | g { J"    | f(f) | p¿í| 1/P j J   e"»' </p'*di| *

= Jf{r(#'* + I)}1'"'.

Using Stirling's formula when p>l, we thus have in all cases

(4.2) log | F(z) | g * log * - * + B log x,

where B depends only on p.

F(z) thus satisfies the hypotheses of Theorem 1, with m = l, a(r) =B log r.

Consequently E(z)=0.

Theorem 4. Let {a„} be a real positive sequence with

na(f) > mt/2 - t8(f),

where m is an integer greater than 1 and b(t) satisfies the conditions of Theo-

rem 3\ Then if {an} is divided into m exhaustive and nonoverlapping sequences

|iXn}, • • • , {mX„}, at least one of the sets {iiXne-1} is complete with respect to

L'(0,   oo)  (lg^goo).

Suppose that the first m — 1 of the sets are not complete in a specified Lp;

then there exist m — 1 functions pk(f) of Ep such that

Fk(z) =  f   t'e-'Pk(f)dt fé 0,
J o

E*(*Xn) = 0, n = 1, 2, • • • ; k = 1, 2, • ■ • , m - 1.

If pm(t) is orthogonal to all the functions tmXne~*, let

Fm(z) =  f   t'e-*pm(f)dt,
Jo

and let

E(«) = Fi(z)E2(z) • • • En(z).

Then F(an) =0 (n = 1, 2, • • • ). By the reasoning of Theorem 3, we have

log | F(z) | g m(x log x — x + B log ¡c), i^O.

F(z) now satisfies the hypotheses of Theorem 1, and consequently F(z) m 0.

Hence Ero(z)=0, and so the set {t">*ne~*} is complete.

5. A generalized moment problem. Let {pn} be a sequence of positive

numbers such that

(5.1) n»=  f   tx"da(t)
J o
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for at least one nondecreasing ct(t). The problem is to find conditions on

{ii„} which imply that a(t) is unique if normalized (a(0+)=0, a(t)

= \a(t+)+a(t — ) \/2). The following theorem gives a sufficient condition

for uniqueness which is better than conditions given previously [2] for non-

integral X„, though weakçr than Carleman's criterion [9, p. 20] for X» = ra.

Theorem 5. Let {X„} be an increasing sequence such that

(5.2) Xn  è  Xn-l(l  +   l/l0g Xn_l)

and n\(t) ^t(l — S(/)), where ô(t) satisfies the conditions of Theorem 3. Then two

normalized nondecreasing functions ai(t), a2(t) satisfying

(5.3) pn = f  t^daj(t), j = 1, 2,
J o

are identical if there is a constant a such that

(5.4) Mn     "  á <rX„, ra = 1, 2, • • • .

Suppose that cti(t) and a2(/) satisfy (5.3), and let

F(z) =   f   t'd{ai(f) -a2(/)},
J o

so that F(X„)=0. Then

\F(z)\ ^  f  t*d{ai(t) + a2(t)\;
Jo

and so | F(\n+iy)\ ¿2u„ and

log | F(X„ + iy) | á log 2 + log Mn

(5.5) g log 2 + 2Xn log (<rX„)

á 2X„_i log Xn_i + -4X„_i,

where A is independent of ra. For, we may assume without loss of generality

thatXn-i^e, and then, since

X„ ̂  Xn_i + X„_i/log X„_i,

we have

X„ log (<rX„) ̂ (X„_i + X„_i/log X„_i)(log X„ + log a)

^ (X„_! + Xn_i/log X„_0(log X„_i + log (1 + 1/log Xn_i) + log cr)

Ú (X„_i + X„_i/log Xn_i)(log X„_i + log a + 1/log X„_i)

á Xn_i log X„_i + X„_i(3 + 2 log a),
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and (5.5) follows. Hence, if X„_igac<X„,

log | F(* + iy) | S log | F(\n + iy) |

g 2X„_i log Xn_! + A\n-i

g 2x log # + Ax.

Theorem 1 now shows that E(z)=0, and consequently ai(t) = <x2(f).

6. Gap theorems for power series in half-planes. We next apply the re-

sults of §4 to power series.

Theorem 6(6). Let
OO

/CO = E anz\ | z | < 1,

where {X„} is an increasing sequence of positive integers such that

(6.1) »x(r) úr/2 + r8(r);

here 8(f) satisfies the conditions of Theorem 3; namely, 8(f) nonincreasing and

f'°t~18(f)dt convergent. Then if f(z) is not a constant it cannot be analytic and

bounded in any half-plane having the origin as an interior point.

Theorem 6 follows, by Theorem 3, from the following result, which estab-

lishes the equivalence of gap theorems with conclusions like that of Theorem 6

and completeness theorems for sets {Pne~c*}.

Theorem 7. Let {Xn} be a sequence of positive integers, {/*„} the comple-

mentary sequence. The following two statements are equivalent.

(A) The set {¿"»e-«"} is complete in L2(0, oo).

(B) Every function /(z) =E"-oc»2>"'> noi a constant, either has a singular

point or is unbounded in every half-plane containing the origin in its interior.

For the application to Theorem 6, we need only note that (6.1) implies

n,(r) à r/2 - rSi(r),

where 8i(r) satisfies the same conditions as 8(r).

Theorem 7 is proved by Boas and Pollard [2a].

Theorem 8. Let {cn} be a sequence of complex numbers and let {X„}, {jun}

be two complementary sequences of the positive integers. Let

00 00

*i(«) = E cx„zx»,      Fi(z) = E «w**.
n-l n-l

Then, in every half-plane having the origin as an interior point, one at least of

(6) A stronger result follows by the same reasoning from the result of Fuchs [3a] quoted

in §1.
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Fi(z) and F2(z) has a singular point, is unbounded, or is identically a constant.

This follows from Theorem 4, with m =2, together with Theorem 7.

7. Gap theorems for power series in angles. We now establish the re-

mainder of the theorems outlined in §1.

Theorem 9. Let
oo

f(z)   =   Z CnZ», | Z |   g   1,
n—0

where c„ = 0 except for ra=X„. Let

«xW á ir^at - tS(t), a < x,

where b(t) satisfies the conditions of Theorem 2, namely, b(t) noninct-easing, and

/°°/-15(/)d/ divergent. If f(z) is not a constant, it is unbounded or has a singular

point in every closed angle of opening 2a, with vertex at 0.

The special case in which the upper density of {X„J is less than a/ir is

not quite included in the result of Mandelbrojt quoted in §1. The case

a = 7r/2 is included in Theorem 6.

We may suppose that the angle is | d\ g a. hetf(z) he analytic and bounded

in this angle; we shall show that/(z) is a constant.

We have

= — i j zrn~\2ircn = — i I  z~n~1f(z)dz,
J c

where C consists of the arc a^6¿2ir — a of the circle |z| =1, the line seg-

ments 6= ±a, Ogrgic (R>1), and the arc -agflga of \z\ =R. The in-

tegral along the latter arc is R~"f°Laeinef(Reie)dd, which approaches zero as

R—»oo provided that ra >0. Hence, for raâ 1,

2ttc„ = ie~ina I    /(/e<a)/-n-1á/ - ¿e-<«(2»^«) j   /(/«-<«) f-"-1^

/2t— a e-inf>f(eV>)de.

Thus for ra ̂  1,

(- l)"2irc„ = iein(-*-a) I    /-"-yi/e5")^ — ieri(-nr-a) J    t-n-1f(te-ia)dt

/T—a /(- e-^e'^dd.
-(*-o

We now write
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F(z) = ¿e"c'-a) I     tr'-yQe'^dt - iir4*(«'-«0  l    tr'-^te-^dt

/(- e-ie)eizede.
-/_ -(r-a)

Then E(z) is analytic for x > 0,

|F(z+ ¿y)| g ^e(T-»>l"l, *êl,

where ^4 is a constant, and E(ju„) = 0, where {p„} is the set of positive integers

which are not X„'s. We have

n?(r) ^ ((it — a)/ir)r + r8(r) + constant.

By Theorem 2, E(z)=0, and so, in particular, c„ = 0 for w^l. Thus/(z)=c0.

As an application of Theorem 9, we can improve a result of Mandelbrojt

and Ulrich [6] on quasi-analytic functions. In their Theorem I, the condi-

tion lim sup(vm/m) <2, which can also be written lim sup n,(r)/r^l/2, can

be replaced by n,(r) >r/2+rb(r), where 8(r) satisfies the conditions of Theo-

rem 9.

It is natural to seek a decomposition theorem analogous to Theorem 8.

The most obvious one would state that, if {n} = {X„} + {pn}, then, in every

angle of opening exceeding it, one of the series EcXnzX"> E^n2"" has a singular-

ity, is unbounded, or is constant; this is a weaker result than Theorem 8.

However, the following two theorems are not contained in Theorem 8.

Theorem 10. Let {cn} be any sequence. Let the positive integers be divided

into disjoint sets {,X„} (/=1,2, • • • ,m).Letcti+ • • • +am>ir. Then, iffunc-

tions fj(z) are defined by the series

00

îi(z) = E ciKziKn,
n-l

and if we associate with f¡(z) an angle of opening 2a¡, with vertex at the origin,

at least onef¡(z) has a singular point, is unbounded, or is constant in the corre-

sponding angle.

Suppose that every f¡(z) is analytic and bounded in the corresponding

angle, and let c0 = 0. By replacing f¡(z) by fj(zeiß) with a suitable ß, we can

make the jth angle be | 01 g a,-. We then form the functions Fj(z) as in the

proof of Theorem 9 ; F¡(z) satisfies

|E,(z)| g¿J-e<"-a>')l"l.

We have F¡(¡pi) = 0, where the jpn are the w's which are not 3X„'s. Let

F(z) = Ei(z)F2(z) • • • Em(z).
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Then F(z) has an (m — l)-fold zero at every ra, and satisfies

\F(z) I g ^el-^CM"..+«■)}[»!,

If ir(m — l)>mir—(ai+ • • • +am), that is, «i+ • • • +am>ir, F(z)=0 by

Theorem 2 with k=mir— (ai+ • ■ ■ +am); we do not use the full force of

Theorem 2. Then one F¡(z) at least must vanish identically.

We can obtain a somewhat different result if we start from a sequence

which already has gaps.

Theorem 11. Let {c,,} be a sequence in which cn = 0 except for ra=Xn, where

«x(i) g et - tô(f), c <í,

with the same conditions on 5(t) as in Theorem 9. If {X„} is divided into m dis-

joint sequences {*X„} (k — 1, • • • , m ; m >1) and fk(z) are the corresponding func-

tions, then in every angle of opening 2irc(l — 1/m), with vertex at 3 = 0, at least

one of fk(z) has a singular point, is unbounded, or is a constant.

We suppose that all the /*(z) are analytic and bounded in the angle

|0| ga and form functions Fk(z) as in the proof of Theorem 9. Let

F(z) = Fi(z) • • • Fm(z). Let {pn} be the sequence of integers which are not

X„'s. Then F(X„) = 0 for every ra, and in addition F(z) has an m-iold zero at

each pn. Hence the number of zeros of F(z) in (0, /) is

t+(m-l){(l-c)t + t5(t)\ +0(1)

= {«(1 - c)+c}t+(m- l)to(t) + 0(1).

On the other hand, log| Fk(z)\ = 0(e<T-<">l»l), and so

log \F(z)\ =0(em<*-Œ>l>'l).

By Theorem 2, F(z) =0, and so some Fk(z) =0, provided that

ir{m(l — c) + c\ ^ m(ir — a),

or a^«(l — 1/m).
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