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Introduction. This paper concerns the theory of ideals in the algebra

(called the group algebra) of all complex-valued functions on a locally com-

pact (abbreviated to LC) group which are integrable with respect to Haar

measure, multiplication being defined as convolution. It is proved that the

group algebra of a group which is either LC abelian or compact is semi-

simple, an algebra being called semi-simple in case the intersection of all

regular maximal ideals is the null ideal (a regular ideal is defined as one

modulo which the algebra has an identity). This extends the theorem

that the group algebra of a finite group is semi-simple. A weaker kind of

semi-simplicity is proved in the case of a general LC group, an algebra being

called weakly semi-simple when both the intersection of all regular maximal

right ideals is the null ideal and the same for left ideals. (In the case of a

finite-dimensional algebra these concepts of semi-simplicity are equivalent to

that of Wedderburn, and in the case of a commutative Banach algebra with

an identity-—-which Gelfand designates as a "normed ring"—are equivalent to

Gelfand's concept of the vanishing of the radical of the algebra.)

It is shown that an ideal in a (strongly) semi-simple algebra can be re-

solved into regular ideals in an approximate fashion, the approximation being

in terms of a topology which is (algebraically) introduced into the family of

all regular maximal ideals. This topologized family (which is called the spec-

trum of the algebra, this term being suggested by the case of the algebra

generated by a linear operator) is determined in explicit fashion for the group

algebra of a group which is either LC abelian or compact, and partially de-

termined when the group is discrete. Specifically, in the case of a group which

is respectively either LC abelian, compact, or discrete, the spectrum of the

group algebra is homeornorphic with the group of continuous characters, dis-

crete or compact. A closed ideal in a group algebra is the kernel of a kind of

extension from the group to the group algebra of a bounded strongly continu-

ous representation of the group by linear operators on a Banach space. If the
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Í1) This paper is an extension of a part of the author's doctoral dissertation which was pre-
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ideal is regular and maximal, the representation is irreducible ; and for a group

which is either LC abelian or compact, the ideal is regular and maximal if

and only if the representation is finite-dimensional and irreducible (in the

case of a LC abelian group this correspondence implements the homeomor-

phism mentioned above between the spectrum of the group algebra and the

group of continuous characters).

These theorems have applications, which are partly new results and partly

great simplifications in the proofs of known results, to the theory of bounded

representations of LC groups and to harmonic analysis. A LC group has a

complete set of strongly continuous irreducible representations by bounded

operators on Banach spaces (irreducible in the sense that there exists no non-

trivial invariant subspace). (Gelfand and Raikov [16] have proved that the

same theorem is true for representations by unitary operators on Hubert

spaces, with a weaker kind of irreducibility, by a method unrelated to ours.)

The Peter-Weyl-von Neumann approximation theorem for almost periodic

functions on groups [27] is shown to be essentially equivalent to the fact that

the group algebra of a compact group is semi-simple. A theorem of Tauberian

type is obtained which considerably generalizes Wiener's general Tauberian

theorem [37], specifically as regards: (a) the set of zeros of the Fourier trans-

form of the kernel (the null set in Wiener's case, and arbitrary here) ; (b) the

space of the kernel (either the group algebra of the reals or a certain ideal in that

algebra, in Wiener's case, and here one of a general class of ideals in the group

algebra) ; (c) the group over which the functions are defined (the additive

group of the reals in Wiener's case, and here an arbitrary LC abelian group).

(Wiener's theorem has also been extended as regards (a) and (b) by Pitt [29],

in a series of theorems of which some are very special cases of our results.)

A similar generalization is made of Wiener's results about the span of the

translations of elements of Lebesgue spaces ovei the reals. The basic case of

a theorem about the existence of analytic functions of absolutely convergent

Fourier-Stieltjes transforms which was proved independently by Beurling [4]

and by Cameron and Wiener [6] is extended from the reals to arbitrary LC

abelian groups, and partially extended to compact (not necessarily abelian)

groups.

We note at this point that many of our results, in so far as they refer to

the group algebra of a LC group which is abelian, were independently ob-

tained by Gelfand and Raikov. Gelfand's paper [10] investigating Banach

algebras with identities, which was one of the keys to these results, was known

to the author fairly early in his work. On the other hand, the later papers, [ll]

by Gelfand and [15 ] by Gelfand and Raikov, in which it was recognized that

the methods introduced in [lO] could be fruitfully applied to harmonic analy-

sis, and [17] by Gelfand and Silov, in which the set of maximal ideals in a

commutative algebra with an identity is given various topologies, one of

which is identical with the topology we employ in the spectrum, were not



1947] THE GROUP ALGEBRA OF A LOCALLY COMPACT GROUP 71

known to the author until after his work on the abelian case was complete(2).

The spectral resolution of ideals in the algebra appears, however, to be a pre-

viously unrecognized development of importance for harmonic analysis.

The type of decomposition that we consider for ideals in group algebras

is one as an intersection of regular maximal ideals, which differs from the type

usually considered for algebras, this being one as a direct sum of minimal

ideals. The reason for the difference is that the latter type of decomposition

cannot be utilized in the case of group algebras, because of the fact that mini-

mal ideals do not exist, in general (for example, the group algebra of the reals

does not contain any minimal ideals). On the other hand, given a regular

ideal in an arbitrary algebra, there exists a regular maximal ideal containing

it, and it is therefore natural to expect that a decomposition into regular

maximal ideals should be more generally valid than one into minimal ideals.

As a matter of fact, a number of fairly recent investigations of the theory of

representations of various types of rings (none of which were assumed to

satisfy any finite chain condition—a kind of assumption which is rarely satis-

fied in the case of a ring originating in analysis) have likewise considered the

regular maximal ideals as the basic constituents of the algebra. In this cate-

gory are notably the investigations of: Stone into Boolean rings; McCoy and

Montgomery into generalized Boolean rings; and Gelfand and his associates

into commutative Banach algebras with identities. The work of these authors

is similar to ours in two additional important respects. In the first place, they

are also strongly concerned with the semi-simplicity of the rings which they

consider (semi-simplicity for rings being defined in the same way as for alge-

bras)—the main conclusions of Stone's paper [33] and McCoy and Mont-

gomery's paper [24] being respectively essentially that a Boolean ring is

semi-simple, and the same for generalized Boolean rings. Secondly, some of

these authors have introduced, in connection with the rings they consider,

the space which we have designated the spectrum (Stone [34]; Gelfand and

Silov [17])(3). Our point of view differs from that of these authors chiefly in

our somewhat greater interest in decompositions of general ideals (as well as

null ideals)(4). In the case of a group algebra, decompositions of closed ideals

(*) These results, with the exception of the ideal spectral resolution, were presented in

Bull. Amer. Math. Soc. Abstract 46-7-366.

• ") Some algebraic systems other than rings have been investigated from essentially the

same viewpoint: distributive lattices by H. Wallman and Ai-spaces by S. Kakutani and M. and

S. Krein. The principal conclusion of each of these authors can be stated as the theorem that

each system is semi-simple, in the same sense as in the case of algebras, ideals being suitably

defined; and each of these authors topologized the set of regular maximal ideals in a way which

resulted in a topology analogous to that on the spectrum of an algebra.

(4) We mention that Gelfand [12] has considered decompositions of general ideals in

Banach algebras satisfying certain special conditions; whether any non trivial group algebras

satisfy these conditions we do not know. In the case of a generalized Boolean ring, an exact de-

composition for general ideals is an easy consequence of semi-simplicity, following from the

evident fact that a homomorphic map of such a ring is a ring of the same type.
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into regular maximal ideals are closely connected (by virtue of the relation

between ideals and group representations) with decompositions of group rep-

resentations into irreducible representations.

A point of technical interest is that by omitting the usual assumption that

the algebra under consideration has an identity, a more natural definition of

group algebra can be given, and there results from this definition a more sug-

gestive kind of spectrum for the group algebra (the spectrum of an algebra

with an identity being necessarily compact). It is this (possible) lack of an

identity which makes it necessary at times to consider regular (or regular

maximal) ideals rather than fully general (or general maximal) ideals.

The analytical basis of our work consists mainly of various parts of the

theory of operators on a Banach space together with the same theory for a

Hubert space. Our utilization of Hubert space theory rests on the observation

that the group algebra is (algebraically) isomorphic with an algebra of

bounded operators on the space L2 of complex-valued functions on the group

which are square-integrable with respect to Haar measure; an element x of

the group algebra corresponds to the operator taking y into xy, y being a

general element of L2 and xy being the convolution of x with y. In its utiliza-

tion of Hubert space methods and consideration of noncommutative algebras

our work is similar to an interesting paper of Ambrose [3], but differs from

this paper considerably because Ambrose investigated direct-sum decomposi-

tion into minimal ideals. His structure theorems when applied to the case of

an algebra essentially equivalent to the group algebra of a compact group

(in which minimal ideals exist) imply the semi-simplicity of this former alge-

bra (from which the semi-simplicity of the group algebra follows easily), as

well as other facts about compact groups.

There remain open a number of natural questions about the ideal theory

of a genera] group algebra. Specifically : (a) s the group algebra of a (general)

LC group semi-simple? (b) Is every bounded strongly continuous representa-

tion of a LC group by operators on a Banach space equivalent to a strongly

continuous representation by unitary operators on a Hubert space? More

generally, we inquire about the topology on the spectrum of the group alge-

bra, and the extent of the duality between the spectrum and the group. (Is an

analogue of the Plancherel theory valid for general LC groups?) We hope

that the present paper may suggest methods of dealing with these questions.

This present paper is an extension of part of a doctoral thesis whose topic

was suggested by Einar Hille. Specifically, Hille suggested a continuation of

the investigations by himself and Tamarkin [18, 20, 21, 22, 23] of the ideal

theory of the algebra of Laplace-Stieltjes transforms absolutely convergent

in a fixed half-plane, this subject being closely related to the ideal theory of

the group algebra of the reals. For conceptual clarification and for other rea-

sons, an investigation of the ideal theory of the group algebra of a general

LC abelian group was of interest. In the case of a compact abelian group, the
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Riesz-Hildebrandt theory of completely continuous operators was an effective

tool in proving the semi-simplicity of the group algebra and in showing that

the obvious necessary condition that an element of the group algebra have an

adverse (which is equivalent to the condition that an element of the group

algebra with an identity adjoined have an inverse—see below for a definition

of the adverse, which essentially takes the place of the inverse in an algebra

which is not assumed to have an identity) is also sufficient. (Hille and

Tamarkin [19] had previously proved the latter theorem in the case of the

group algebra of the reals modulo unity.) It was clear that the same theorem

could be proved for the group algebra of a compact group which was not nec-

essarily abelian, by slightly modified methods. In a conversation with B. J.

Pettis about our thesis, Pettis mentioned Gelfand's paper [lO] as somewhat

concerned with the ideal theory of Banach algebras. In this paper (which

followed papers by Gelfand and others about algebras of bounded continu-

ous functions on topological spaces) it was shown (among other results) how

the units in a commutative Banach algebra with an identity could be deter-

mined once the maximal ideals were known. On the other hand, the existence

of maximal ideals in such an algebra was proved by transfinite induction. It

was almost too much to hope that it could be proved (without essentially

determining the units in the process) that there existed no maximal ideals in

the group algebra of a LC abelian group except those which were apparent.

It was plain that such a proof would lead to great simplifications in important

aspects of harmonic analysis (in particular to a much simplified proof of

Wiener and Pitt's theorem in [29a] about the existence of adverses in the

group algebra of the reals). Fortunately such a proof was found, and the theo-

rem about the existence of adverses which had previously been proved for

the group algebra of a compact group followed easily for LC abelian groups.

The fact that the semi-simplicity of the group algebra of a compact group

essentially implied the approximaton theorem for almost periodic functions

on groups, together with the foregoing results for the case of a LC abelian

group, naturally suggested that an investigation of general group algebras,

with especial regard to semi-simplicity, might be valuable(6).

In Part I semi-simplicity of group algebras is considered, and a relation

between ideals in a group algebra and representations of the group is estab-

lished. The existence of Haar measure (and its measure-theoretic conse-

quences, as exposed in Chapters II and III of [35]) is the only special premise

used. In Part II a spectral resolution for ideals in a general algebra is ob-

tained, and applied to ideals in the group algebra of a group which is either

(*) In 1941 war work (from 1943 in the form of military service) interrupted our investiga-

tion of group algebras, and its continued pressure was largely responsible for the great delay in

the submission for publication of the material then on hand. In preparing this material for

publication we have made various refinements, the chief one being an increased generality for

the ideal spectral resolution.
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LC abelian or compact. The topology on the spectrum of such a group algebra

is considered, utilizing the analogues of the Plancherel theory for a group

which is either LC abelian or compact (see, for example, Chapters V and VI

of [35]). Part III covers applications to harmonic analysis on groups: Tau-

berian theorems, determination of the span of the translations of functions,

analytic functions on group algebras, and a new approach to the theory of

almost periodic functions on groups.

We are deeply indebted to Warren Ambrose for many interesting conver-

sations about locally compact groups, which led to extensive simplifications

in the development of our theory.

Part I. Semi-simplicity of group algebras

1. Definitions. In Part I our main object is to investigate group algebras

with regard to semi-simplicity, the definitions of these terms being given in

the present section.

Definition 1.1. A (right, left, two-sided) ideal in an algebra is called:

regular if there exists(6) an element of the algebra that is a (left, right, two-

sided) identity modulo the ideal (e is a left identity modulo an ideal if ex—x

is in the ideal for every x in the algebra) ; maximal if it is proper and contained

in no other proper ideal. An ideal is a two-sided ideal, unless otherwise speci-

fied.
Definition 1.2. An algebra is called (strongly) semi-simple if the inter-

section of all regular maximal ideals is the null ideal. It is called weakly semi-

simple if both : (a) the intersection of all regular maximal right ideals is the

null ideal; (b) the same is true for left ideals.

Definition 1.3. The group algebra A of a LC group G is the topological

algebra consisting of all complex-valued functions on the group which are

integrable with respect to (left-translation invariant) Haar measure, the to-

pology being obtained by norming a general function with the integral of its

absolute value, and algebraic operations being defined as follows:

(af)(x) = af(x),        (f + g)(x) = f(x) + gix),        (fg)(x) =   f f(y)g(T^)dy.

Here, / and g are general elements of A, x is a general element of G, a is a

general complex number, and dy refers to Haar measure(').

(6) Such ideals should strictly be called "(right, left or two-sided) regular," but in order to

avoid circumlocution the qualifying phrase is omitted, it being clear from the context what kind

of regularity is meant. It may clarify this notion to explain that a two-sided ideal I in an alge-

bra A is regular if and only if I can be extended to an ideal I of the algebra Ä, Ä being ob-

tained from A by adjoining a unit (in case it does not already have one), and the extension being

in the sense that IT\A =1, I\JA=Ä.
(7) There exist other interesting algebras associated with LC groups which generalize the

group algebra of a finite group, notably the weak closure R of the algebra generated by the

unitary operators, on the space of square-summable complex-valued functions on the group G,
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2. Existence of adverses. In this section it is shown that whether the ad-

verse (8) of an element of a general algebra exists essentially depends largely on

whether the adverse exists modulo regular maximal ideals(9), and that the

same is true as regards the existence of a right adverse in relation to the regu-

lar maximal right ideals.

Definition 1.4. An element y of an algebra is called a left (right) adverse

of an element x of the algebra in case x+y=yx (x+y = xy), and is called sim-

ply an adverse in case it is both a left and a right adverse. An adverse of x

is denoted xA (the next theorem shows that an element can have at most one

adverse).

corresponding to left translations on the group. (In the case of a discrete group this algebra has

been investigated by Murray and von Neumann [25, 26].) So far as the author knows, the first

generalization of this type was made by Peter and Weyl [28], who considered the numerical-

valued continuous functions on a compact group as a kind of group algebra, with multiplication

denned as convolution. In the case of a compact group it happens that nearly all of the usual

numerical function spaces are algebras with respect to convolution (this being due essentially

to the fact that the measure of the group is then finite) ; the algebra of square-summable functions

on a compact group has been investigated by Ambrose [3]. But, in general, A is the only one

of the usual function spaces which is an algebra.

The ideal theory of R is closely related to the theory of unitary representations of G, and

is in some respects simpler than the ideal theory of A. On the other hand, A has the significant

advantages that: (a) rather general representations of G correspond in a simple fashion to repre-

sentations of A (whether they correspond in a natural way to representations of R is an open

question) ; (b) the ideal theory of A is fundamental in important aspects of harmonic analysis

on the reals; (c) in the case of a LC abelian group the spectrum of A is, rather suggestively, the

continuous character group (the spectrum of R is a compact space of a rather complicated sort,

being non-separable in case G is the reals; in general, for a LC abelian group, R is isomorphic

with the algebra of measurable, essentially-bounded, numerical functions on the continuous

character group, with multiplication denned in pointwise fashion). We note that A is algebrai-

cally isomorphic to a weakly dense sub-algebra of R.

It would be fundamentally awkward to consider the real-valued integrable functions on

the group as the group algebra, for a variety of reasons. For example, the quotient algebra of

this real algebra over a LC abelian group modulo a regular maximal ideal is isomorphic with the

algebra of complex numbers (over the real field).

(8) We prefer the term "adverse" to the more usual term "quasi-inverse" (and the quasi-

inverse is the negative of the adverse). Consideration of adverses is necessary because a group

algebra does not in general have an identity (see Theorem 1.10). In the case of an algebra with

an identity i, the inverse can be used instead of the adverse, the (right, left, two-sided) adverse

of an element x existing if and only if the (left, right, two-sided) inverse of x—i exists. We prefer

not to adjoin an identity to the group algebra, partly because it complicates the spectrum of

the algebra, and partly because it is the ideal theory of the algebra without the identity which is

directly pertinent for applications to Tauberian theorems and spanning of translations.

(9) Not entirely, however. It is clear from Calkin's theorem [5] that the ideal of com-

pletely continuous operators is the only maximal ideal in the (Banach) algebra of bounded

operators on Hubert space (defining the Banach norm of an operator to be its bound), that

there exist elements in this algebra which have an adverse modulo every maximal ideal without

having an adverse (in the large)—namely the identity minus a completely continuous operator

for which unity is a proper value.
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Theorem 1.1. If an element of an algebra has both a right and a left adverse,

then it has a (full) adverse, and this adverse is unique.

The proof is very analogous to that for inverses.

Theorem 1.2. A proper regular iright, two-sided) ideal in an algebra is con-

tained in some regular maximal iright, two-sided) ideal.

Putting I for the (right, two-sided) ideal and e for an identity modulo J,

then by Zorn's lemma there exists a (right, two-sided) ideal M which is maxi-

mal with respect to not containing e. It is easy to verify that M is a regular

maximal (right, two-sided) ideal.

Theorem 1.3. A NASCi10) that the iright, full) adverse of an ielement,

element of the center) of an algebra exist is that it exist modulo every regular

iright, two-sided) ideal in the algebra.

The condition is obviously necessary. Now suppose that x is an (element,

element of the center) of the algebra A, and that x has an adverse modulo

every regular maximal (right, two-sided) ideal, but no (right, full) adverse.

Setting 7= [xy — y| y(E-4 ](n), it is easy to verify that 7 is a regular (right,

two-sided) ideal ix being an identity modulo 7) and that I is contained in no

regular maximal (right, two-sided) ideal. By Theorem 1.2, I = A, implying

xy — y — x for some y, a contradiction.

3. Concerning the semi-simplicity of general group algebras. The exist-

ence of the adverse of an element of a group algebra implies, it will be seen

the existence of the inverse of an associated bounded linear operator on a

Hubert space. Consideration of the existence of this inverse, in the light of the

spectra] theorem for self-adjoint operators, yields a restriction on the exist-

ence of adverses; this restriction, utilizing the results of the preceding section,

is used to show that a group algebra is weakly semi-simple, and also that the

intersection of the radical (see following definition) and the center of a group

algebra is the null ideal. These facts are proved in the present section; the

latter fact is used in the following section to show that the group algebra of

the direct product of a LC abelian and compact group is semi-simple.

Definition 1.5. The radical of an algebra is the intersection of all regular

maximal ideals in the algebra.

Definition 1.6. Fora complex-valued function/(•) on a LC group, /*(■)

is defined hy:f*(x) =pix)ifix~1))ci12), where dx~1 = pix)dxi13).

(10) NASC is used as an abbreviation for "necessary and sufficient condition."

(u) The notation [f(x) \ (x has the property P)], where /(x) is a function of x, is used to de-

note the range of values of f{x) for all values of x having the property P.

02) The notation {■)" is used to denote either the complex conjugate of the expression in

parentheses or the topological closure, depending on the context.

(13) Compare [35, p. 40] (where the notation A(x~l) is used for p{s)).
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This definition of/*(•) is used instead of the more usual (fix*1))' for rea-

sons which are plain from Theorem 1.4.

Theorem 1.4. Iff is in the group algebra of the LC group G, then so is f*.

Putting Tf for the bounded operator on L2iG) defined by(u)

Tfg=fg,       geL2(G),

then the adjoint of Tf is T¡*.

Using Fubini's theorem, Theorem 1.4 is easily verified.

The following trivial corollary embodies an important algebraic aspect of

group algebras, which allows immediate translation of a theorem about right

ideals into a theorem about left ideals.

Corollary 1.4.1. Iff and g are elements of the group algebra of a LC group

and a is a complex number, then: (fg)* = g*f*, (f+g)*=f*+g*, /**=/, and

(af)*=*a*f*.

Theorem 1.5. The group algebra of a LC group is weakly semi-simple, and

the intersection of its radical with its center is the null ideal.

The proof is indirect. Assume that h is in the intersection of (all regular

maximal right ideals, the radical and the center).. Putting f = hh*, plainly / is

in the intersection (of all regular maximal right ideals and all regular maximal

left ideals, the radical and the center). By Theorems 1.1 and 1.3 and the

fact that 0 has an adverse, af has an adverse for every complex number a.

Defining T, Ua and I by:

Tg = fg,        Uag = iaf)Ag,       Ig = g,

where g is a general element of L2 on the group, then clearly these are all

bounded operators, and, by Theorem 1.4, T is self-adjoint. It is easy to verify

that:
(/ - Ua)il - aT) = I = (7 - aT)(I - Ua).

It follows that the spectrum of T consists only of zero; and therefore, by the

spectral theorem for a self-adjoint operator, T = 0. Hence/ = 0 and h = 0,

concluding the proof (15).

4. The group algebra of the direct product of a LC abelian group and a

compact group. In this section it is proved that the group algebra of the

direct product of a LC abelian group and a compact group is semi-simple.

(") The convolution of an element of L, with an element of L% is necessarily an element of £j;

see [35, p. 50].

(") We have incidentally proved, clearly, that any self-adjoint algebra of bounded opera-

tors on a Hubert space is weakly semi-simple.

It is interesting that this method also shows that a Boolean ring is weakly semi-simple,

it being easy to verify that 0 is the only element which has either a right or a left adverse.

Stone's representation theorem for a Boolean ring follows.
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The proof proceeds essentially by showing that every non-null closed char-

acteristic ideal in such a group algebra meets the center in a nonzero element,

and that the radical of a group algebra is closed, and then applying Theorem

1.5. The theory of completely continuous operators is not used.

Theorem 1.6. In a topological algebra with the property that a (right, full)

adverse of every element in some neighborhood of zero exists, every regular maxi-

mal (right, two-sided) ideal is closed.

Putting A for an algebra with the property stated in the theorem, and M

for a regular maximal (right, two-sided) ideal, it follows easily that M (de-

noting the closure of a set by superposing a bar) is a (right, two-sided) ideal.

It is evidently sufficient to show that M =A is false. Employing an indirect

argument, suppose that M is A. Putting e for a (left, two-sided) identity mod-

ulo M, it is clear that there exists an element of M, m, such that the (right,

full) adverse of e —raí exists. Putting z for this (right, full) adverse, then the

defining equation of z,
(e — m)z = e — m + z,

yields a contradiction when reduced modulo M.

Definition 1.7. A Banach algebra (or simply 5-algebra) is an algebra

whose linear space is identical with that of a Banach space, and such that

||a;y|| é IHI -||y|| for general elements of the algebra x and y.

Corollary 1.6.1. A regular maximal right or two-sided ideal in a B-algebra

is closed.

It is easy to verify that if x is an element of a .B-algebra with ]|x|| < 1, then

y= — Z^T-i*" is absolutely convergent and xy = yx = x+y. Therefore the hy-

pothesis of Theorem 1.6 is satisfied.

Theorem 1.7. The group algebra of the direct product of a LC abelian and

compact group is semi-simple.

Let G be the direct product group and C the compact group. Putting N

for the radical of the group algebra, and noting that a group algebra is a

.B-algebra (using the Li norm, as previously), it follows that iVis closed. Now

suppose A£iV, let k be a general element of the intersection of LX(G) and

Lt(G), and put

d = hk,       g = dd*,       /(•) =  f ga(-)da,
J c

where ga(x) = (g)(a~1xa) (taking the integral in the Bochner-Dunford-Hilde-

brandt sense)(l6) and where a^xa is defined for ö£C by identifying C with

the subgroup of G : [(c, e') | c £ C], where e' is the identity of the abelian group.

(M) See [9] for an account of this integral; we shall refer to it as the BDH integral.
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From the obvious fact that the radical is invariant under automorphisms of

the group algebra (and hence, in particular, the automorphisms r(x)—*r(a~1xa),

where r(-) is a general element of the group algebra) it follows that/(-) £iV.

Also, it is clear that/(a-1xa) =/(x) for every aGG, from which it follows that

/(•) is in the center of the group algebra. Hence (by Theorem 1.5) /(•) =0.

To conclude the proof it is necessary to show that this last result implies

A = 0. Now g is plainly a continuous function, and therefore the integral de-

fining/(•) exists in the pointwise Lebesgue sense; thus f(e) = m fa \ d (x) \ 2dx,

where m is the measure of C and e is the group identity. Therefore d = 0, which

implies h = 0 by virtue of the general character of k(1'1).

5. Bounded group representations. In the present section it is shown that

a closed left ideal in the group algebra of a LC group corresponds in a natural

fashion to a bounded strongly continuous representation of the group by lin-

ear operators on a .B-space (such a representation is called a B-representa-

tion). Moreover, in case the ideal is maximal, the representation is irreducible,

in the sense that the only invariant subspaces are the trivial ones—0 and the

entire space. It then follows, utilizing the weak semi-simplicity of the group

algebra, that a LC group has a complete set of irreducible ^-representations.

In the special case of a group which is either abelian or compact, it is shown

that an ideal is regular and maximal if and only if a corresponding group rep-

resentation is finite-dimensional, bounded, continuous, and irreducible.

Definition 1.8. A Banach representation (or simply ^-representation) of

a LC group G on a Banach space B is a function T(-) on G to the algebra of

bounded linear operators on B such that : (a) T(-) is continuous in the strong

operator topology; (b) T(ab) = T(a)T(b) for a, &GG; (c) ||T(a)|| is bounded

for a£G; (d) T(i) is the identity operator, i being the group identity. Such a

representation is called irreducible if there exists no proper subspace of B

which is invariant under T(a), for all a(E_G, except the null space. The

mapping f(-)-+faT(x)f(x)dx, where/(•) is a general element of the group

algebra A, and the integral is defined to be the operator taking the general

point b of B into the BDH integral faf(x)(T(x)b)dx, is called the extension of

T(-) to A. A family of 5-representarions of G is called complete if the identity

is the only element of the group which is mapped into the identity operator

by every representation in the family.

In connection with this definition it should be mentioned that it is easy

to verify that the extension of a ^-representation of a LC group is a continu-

ous homomorphism of the group algebra.

Theorem 1.8. Let K be a closed left ideal in the group algebra A of the LC

group G. Then there exists a B-representation of G on the Banach quotient space

(l7) There exist groups whose algebras are semi-simple and which are not of the type con-

sidered in Theorem 1.7. An example is a free group with any number of generators, in the dis-

crete topology.
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A—K, the kernel(ls) of the extension of this representation being ithe ideal)

[x\ xA C.K]. In case Kis a maximal left ideal this representation is irreducible.

For uE:A and a£G, define ua by uaix) =uia~~1x). Defining Ta on A —K

by Taiu+K) =ua+K, it is clear that in order for this definition to be valid

(for Ta to be single-valued), it is sufficient that ua belong to K whenever u

does. To show that this is the case, recall that [35, p. 52] for any «£i there

exists a sequence vnÇ,A such that vnu—*u, as n—► oo. It is easy to verify that

the relation vnu—*u implies ivi)au—*ua. Now if w£ÜT, ivn)au(z:K because K is

a left ideal, and hence, because K is closed, ua(EK, thus Ta is well-defined.

It is easy to verify that the mapping a—*Ta is a ¿-representation of G. It

follows readily from the theory of the BDH integral that the extension of this

representation to A is the mapping x—>SX, where Sx{u+K) =xu+Kin). It

is plain that the kernel of this homomorphism is as stated. A subspace of

A —K which is invariant under the group representation is also invariant un-

der its extension, using the fact that a BDH integral is in the span of the range

of values of the integrand. It follows that if K is maximal, the representation

is irreducible.

Corollary 1.8.1. A LC group has a complete set of irreducible Banach rep-

resentations.

Designate the ¿-representation of the LC group G corresponding to the

regular maximal left ideal K (which is closed by Corollary 1.6.1) by TaiK).

Now if TaiK) = TiiK), then clearly ua — uÇTZ for every w£.4; and if a is

represented by the identity operator by all such representations, then by the

weak semi-simplicity of the group algebra, ua = u for every «G-4, which im-

plies a = i.

Definition 1.9. A ¿-algebra A with the property that the operators

x—>ux and x—*xu ix, mG-4) on A to A are completely continuous (abbreviated

to CC) is called a CC algebra.

Theorem 1.9. Let G be a group which is either LC abelian or compact. Then

every regular maximal ideal in the group algebra is the kernel of the extension

of a bounded, continuous, irreducible representation of G by finite-dimensional

matrices. Conversely, the kernel of the extension of such a representation is regu-

lar and maximal, and the kernels of the extensions of two such representations

(I8) The kernel of a homomorphism of an algebra is the collection of elements which are

mapped into zero by the homomorphism. If F is a closed linear subspace of a Banach space X

the Banach quotient space X — Y is the algebraic quotient space with the norm ||*;-r-F||

=infligy||jt-|-},||. It is known that a Banach quotient space is a Banach space.

(u) More generally, a strongly continuous homomorphism of the group algebra onto the

algebra of bounded operators on a B-space, B, is the extension of a 5-represenration of G on B,

in case the kernel is regular. Putting e for an identity modulo the kernel and S(x) for the opera-

tor into which x (GA) maps, it can be shown that a—>S(e0) isaB-representation of G, and that

the extension of this representation is x—>S(x).
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are the same if and only if the representations are similar (20).

First consider the case of a compact group. Then ux can be written as the

BDH integral fauax(a)da, where W is an element of A for each a, defined by

u"(t) =u(ta~x). Since the operation a—*ua is continuous on G to A [35, p. 41 ],

the set [w^aGCr] is compact. It follows, from a theorem of Dunford and

Pettis about BDH integrals [9, Theorem 3.1.10] that the operation x—*ux on

A to A is CC. In the same way it can be shown that #—>xw is CC, and there-

for i is a CC algebra. It is easy to verify that a 5-quotient algebra(21)

of a CC algebra is CC. Hence if M is a regular maximal ideal (which is closed

by Corollary 1.6.1) the jB-quotient algebra A/M is CC, and has an identity.

Clearly, the unit sphere in A/M is compact and by F. Riesz' theorem about

LC linear spaces, A/M is finite-dimensional. Putting K for a regular maximal

left ideal which contains M (by Theorem 1.2 such an ideal exists), it follows

that A —K is finite-dimensional. It is easy to show, from the fact that M is

maximal,that [x|x.4 C.K] =M. Reference to Theorem 1.8completes the proof

that M is the kernel of the extension of a bounded, continuous, irreducible

representation of G by finite-dimensional matrices.

Now suppose that <p is such a representation of G. By Burnside's theorem,

the algebra of matrices generated by the range R oí <p is a full matrix alge-

bra. We now show that, on the other hand, the image of A under the exten-

sion <3? of 4> is dense in R. It will then follow, clearly, that $(A) is the same

full matrix algebra. Let g be an arbitrary continuous complex-valued function

on G, let V be an arbitrary neighborhood of the identity in G, and put hv for

the characteristic function of V, divided by the measure of V. It is easy to

verify that limr fog(a)hv(ab~1)da=g(b), the limit being taken in the Moore-

Smith sense, with set inclusion reversed as the partial ordering on the system

of neighborhoods. Plainly, $(A$r) =fa(p(a)hv(ab~1)da, and therefore lim &(h"v)

=<b(b), completing the proof that $(A) is dense in the range of <p.

Since a full matrix algebra has an identity and is simple, the kernel of $

is regular and maximal. It is evident that the kernels of the extensions of two

representations of the type described in the theorem are the same in case the

representations are similar. Conversely, if the kernels of the extensions of two

representations are the same, the images of A under the extensions are clearly

isomorphic. Since every automorphism of a full matrix algebra is inner, the

representations are similar.

In the case of an abelian group, it follows easily from the Gelfand-Mazur

theorem [lO] (that a simple commutative Banach algebra is isomorphic asa

topological algebra with the complex numbers) that if AT is a regular maximal

(20) In the case of a LC abelian group such representations must, of course, be continuous

characters.

(21) The B-quotient algebra B/I of a B-algebra B with respect to the closed ideal I is the

B-quotient space B — I with multiplication defined by (a+/)(&+/) =ab+I. It is easy to verify

that a B-quotient algebra is a B-algebra (cf. footnote 18).
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ideal, the representation of G given by Theorem 1.8 (with K = M) is one-

dimensional. Being bounded and continuous, the representation is a con-

tinuous character. It is clear, on the other hand, that the kernel of such a

representation is regular and maximal. The argument used above in the case

of a compact group to show that inequivalent representations correspond to

different ideals also applies to the case of an abelian group.

6. Some comments on the foregoing theory. The purpose of this section is

to present two theorems which, it is hoped, clarify somewhat the limits and

significance of some of the preceding methods. To begin with, the notion

of adverse is required in order to deal effectively with principal ideals in an

algebra without identity; in connection with this observation the following

theorem is of interest.

Theorem 1.10. The group algebra of a LC group has an identity if and only

if the group is discrete.

Putting G for the group, A for the group algebra, and i for the group

identity, it is easy to verify that if G is discrete, the element/(•), defined by

f(i) = l, f(x)=0 when xy^i, is an identity in A. Now suppose that A has

an identity /( • ) ; then :

f g(y¡<r1)f(y)dy-1 = g(x)
J a

almost everywhere, if g(-)£-4. In case g(-) is a continuous function that

vanishes outside a compact set, it is clear that both sides of the preceding

equation represent continuous functions, and therefore the equation holds

for all values of x. Setting x = i, we get fog(y)fiy)dy~1=gii), for such g(-).

If we put PiE) =fxfiy)dy"1, where E is a general measurable set with com-

pact closure, and define piE) = 1 if iÇzE, piE)=0 otherwise, then, evidently,

f giy)dpiEv) = ( g(y)dti(Ev),
J O J G

where g( • ) is an arbitrary continuous function vanishing outside of a com-

pact set. By a uniqueness theorem for measures on LC spaces, p(-) =p(-).

Since p(-) is absolutely continuous with respect to Haar measure, this

equality implies that {i} has positive Haar measure. It follows that every

infinite set has infinite Haar measure. Therefore a compact subset is finite;

and from the fact that G is LC it is easy to conclude that a set consisting

of a single point is open.

It is plain that the methods of proof of Theorem 1.9 apply to any group

algebra that is either CC or abelian. However, this observation cannot be

utilized to extend the scope of that theorem, as the following theorem shows.

Theorem 1.11. The group algebra of a LC group is (CC, abelian) if and only

if the group is (compact, abelian).
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Let G be the group and A the group algebra. Assuming that A is CC,

let/ be a general element of A and put T for its right regular representation.

By a theorem of Dunford and Pettis about BDH integrals [9, Theorem

3.1.10], the fact that T is CC implies the existence of a null set N such that

U= [fy\yEG-N] is totally bounded, where (fv)(x) = (f)(y~1x). Since G-N
is dense in G and the mapping y—*fv is continuous on G to A, the closure of U

contains V= [/B|yEG]; hence Fis totally bounded. Therefore, there exists

for an arbitrary positive number e a finite set of elements of G, (au • • ■ , an),

such that Ui[a| ||/0— /oJ| <e]=G. Now let P be a neighborhood of the

identity with finite measure, and such that QQ~1(ZP. Taking/ to be the char-

acteristic function of Q and e to be less than m(Q), where »i( • ) is Haar meas-

ure, it follows that ||/0 —/o,|| = m(aQ o a<<2), where o designates the symmetric

difference. Hence m(aQ o atQ) <m(Q) =m(aQ); and clearly, aQr\atQ^0,

a(E.aiP, GC. U,a<P. Thus G is totally bounded, and since it is LC, G is com-

pact. On the other hand, it follows easily, as noted previously, that if G is

compact then A is CC.

Now suppose that A is abelian. Defining p(-) by the relation dy~1 = p(y)dy

and writing out the equation fg = gf using the definition of convolution, it

results that:

I f(y)[«(y-1*) - p(y)g(xy~1)]dy - o,
J a

for all x except a null set. From the arbitrary character of /(•), it follows

that
g(y~1x) = p(y)g(xyr1),

for all x except a null set, for almost all values of y. If g(-) is continuous,

the equation holds for all values of x and y, the complement of a null set

being dense in G. Setting x equal to the identity shows that p(y) = l. It is

easy to conclude from the general character of g(-) (any continuous inte-

grable function) thaty~1x = xy~1. On the other hand, it is obvious that if G is

abelian, then so is A.

Part II. Spectral resolution of ideals in group algebras

1. General algebras. We derive an approximate decomposition for an

ideal in an algebra into regular maximal ideals, modulo the radical of the

algebra, which specializes to a kind of spectral resolution in the case of the

group algebra of the real line or the algebra generated by a symmetric

matrix. In later sections of this part this decomposition, which we call the

spectral resolution, is applied to ideals in the group algebra of a group that is

either LC abelian, compact, or discrete.

Definition 2.1. Let T be the family of all regular maximal ideals of an

algebra A. Let A be a general subset of Y and I an ideal in A. The kernel

of A is the intersection of all ideals in A, except that it is A when A is void.
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The hull of I is the set of regular maximal ideals containing it. The spectrum

of I is the complement in V of its hull. The hull or spectrum of a set of ele-

ments is that of the ideal generated by them. A is said to be closed if it equals

the hull of its kernel. A neighborhood of infinity is the complement of a set

which is such that there exists an element of A which has an inverse modulo

every element of the set. With the preceding family of closed sets, T is called

the spectrum of A.

Theorem 2.1. The spectrum of an algebra is a Z\ topological space.

The notation of Definition 2.1 is utilized. It is clear that the null set is

closed and that the intersection of any family of closed sets is closed. To

show that the union of a finite family of closed sets is closed an indirect proof

is used. Let A,- be closed (i = l, ■ • • , n) and assume that A= U<Aj is not

closed. Putting D for the kernel of A and Dt for the kernel of A,, it follows

that there exists an element of V, M, which contains D and is not in A.

Plainly, M is not in A¿, and therefore the ideal generated by M and Z>, is A.

It follows that if e is an identity modulo M, there exist XiÇzDi and y^M

such that Xi+yi = e (i = l, • ■ • , n). Multiplying together these equations,

it is easily seen that XiX2 • • • xn = e modulo M. On the other hand, since

D<Z_M, XiX2 • ■ • xn£Af, contradicting the preceding congruence. That the

space is Ti follows from the fact that an inclusion relation between maximal

ideals can exist only if they are the same.

Now the spectral resolution for ideals is proved.

Theorem 2.2. An ideal in an algebra contains, modulo the radical of the

algebra, the kernel of an open set which contains both the hull of the ideal and a

neighborhood of infinity.

Let I be an ideal in the algebra A, Q its hull, A an open set in the spectrum

r of A which contains both Í2 and a neighborhood of infinity, and put

A = T—A, D for the kernel of A, and /(•) for the homomorphism on A to

A/D. Clearly there exists an element e of A that is an identity modulo every

element of A. It follows that e is an identity modulo D, and that /(e) is an

identity in A/D. By Theorem 1.2, either/(J) is contained in a maximal ideal

in A/D, or f(I) =A/D. It is easy to verify that a maximal ideal in A/D has

the form M/D with Af£A; and /(7) CM/D implies IQM, which is impos-

sible. Hence /(Z) =A/D, and it follows that I contains an element e' which

is an identity modulo D. Now if x is in the kernel of A, it is trivial to verify

that xe'=x modulo M for every MÇzT, or xe'^x modulo the radical. This

concludes the proof, it being obvious that xe'(£I.

Corollary 2.2.1. If I is a closed ideal in a topological algebra A with the

property that elements whose hulls contain neighborhoods of infinity are dense

and such that x is in the closure of xA for every xÇ^A, then I contains, modulo

the radical, the kernel of an open set containing the hull of I.
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Let A be an open set containing the hull of I, and put L for the kernel

of A. It is plain from Theorem 2.2 that if y ££,, and if the hull of x contains a

neighborhood of infinity, then yxÇE.1. It follows that yuÇ^I for every «G4,

because I is closed and elements whose hulls contain neighborhoods of in-

finity are dense, and hence yG7, since yCi(yA)e.

The following theorem is useful for the later discussion of the group

algebra of a discrete group.

Theorem 2.3. The spectrum of an algebra which has an identity modulo its

radical is compact.

Suppose that e is an identity modulo the radical of the algebra A and that

ns£sA4 = 0, where (A5, sÇ^S\ is a family of closed subsets of V. Of course,

the compactness of T is equivalent to the existence of a finite subfamily

whose intersection is void. Put Ds for the kernel of A, and D for the ideal

union of the D„ sÇ^S. Plainly, e is an identity modulo D. Hence, by Theorem

1.2, either D=A or D is contained in a regular maximal ideal M. It is easy

to verify that the latter condition implies MGHsesAj, which is impossible.

Hence D=A, implying that the e has the form ^íGt^í, where xtÇiDt and T

is finite. It follows readily (noting thatZ?,, contains the radical) that ("¡¡£^¡ = 0,

concluding the proof.

2. The spectrum of a group algebra. The application to ideals in a particu-

lar algebra of the preceding spectral resolution is naturally strengthened by

determination in more explicit fashion of the topology on the spectrum. The

present section is concerned partly with this topology in the case of the group

algebra of a group that is either LC abelian, compact, or discrete, and partly

with the verification of the conditions for the resolution of closed ideals in

such group algebras. Theorem 2.4 suggests that the spectrum of a group

algebra may be dual to the group in a fashion somewhat analogous to that

in the case of the duality between a LC abelian group and its character

group.

Theorem 2.4. The spectrum of the group algebra of the locally compact

group G is :

(a) komeomorphic with the character group, via the mapping defined by

Theorem 1.10, in case G is abelian^2) ;

(b) discrete, in case G is compact;

(c) compact, in case G is discrete.

First let G be abelian, put G* for its continuous character group, and c/>(-)

for the mapping on G* to the spectrum T of the group algebra defined by

Theorem 1.10. It is plain from Theorem 1.9 that $(•) is biuniform. To show

(22) \ye regard the group G* as topological, the topology being that of Pontryagin, specifi-

cally: a general neighborhood of the point «0* of G* is [x*|supI£e|:ic*x —jco*x| <e] where C is a

general compact subset of G and e is a general positive number.
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that <p(-) is continuous an indirect argument is used: assume that y*£S* and

<p(y*)C£(<p(S*))e. Then for some/(• )&4, the group algebra, fey*xf(x)dx?±0

and fax*xf(x)dx = 0 for **£S*. Defining

e = 4-J j y*xf(x)dx ,        e' = e( J \ f(x) \ dx\ \

let C be a compact subset of G such that fa-c\f(x)\dx<e and put

N*= [x*\ \y*x— x*x\ <e' for all x£C]. If we express fay*xf(x)dx as

J(y*x — x*x)f(x)dx + |      (y*x — x*x)f(x)dx + I   x*xf(x)dx,
c J a—a J a

and now choose x*ÇE.N*C\S*, a contradiction results:

/y*xf(x)dx   < 3e.
a

To show that <p~1(-) is continuous, an indirect argument is again used:

assume that ME(cb(S*))c, ^(^^(MGT). Let U* be a neighborhood of

the identity in G* such that U* is compact and S*i^y*U*U*~1 = 0, where

y*=cp~1(M). Let iîbe the characteristic function of U* and put F(-) for the

convolution of H with H* with respect to Haar measure on G*. By the

theory of the Plancherel-Weil transform, F(x*)=fax*xf(x)dx for some

/( • ) ÇlA. Setting g(x) = (y*x)cf(x), it is clear that fGy*xg(x)dx ^0, fox*xy(x)dx

= 0íot x*(£S*, andg(-)(E.4, contradicting the assumption that Me(<p(S*))l!.

Now let G be compact. To show that T is discrete is plainly equivalent

to showing that for a general M (ET, Af^fl/er./^jf^- By Theorem 1.9, M is

the kernel of the extension of a finite-dimensional bounded continuous irre-

ducible representation of G. Putting/(-) for any coordinate of a unitary rep-

resentation equivalent to this representation, it is plain that (f(-))cG.A,

and it follows readily from the orthogonality relations(23) that (f(-))c(£M,

(/(•))eeri/erW.
It follows immediately from Theorems 1.10 and 2.3 that V is compact in

case G is discrete.

Theorem 2.5. The complement of a compact set, in the spectrum of the group

algebra of a group which is either LC abelian, compact, or discrete, contains a

neighborhood of infinity.

In case the group G is LC abelian it is plainly sufficient to show that for a

general compact subset C* of the character group, there exists an element

of the group algebra A whose Fourier transform is equal to unity at each

point of C*. Let U* be a conditionally compact open set containing C*, put

(n) See, for example, [35, p. 73].
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V*= Z7* Z7*—1, and let/(-) and g(-) be the characteristic functions of U* and

V* respectively. Setting h(-)=m~1fg, where m is the Haar measure of 77*

(and/g is the convolution of/ and g with respect to Haar measure on G*),

it is easy to verify that hix*) = 1 for x*Çi.C*. Plainly / and g are Plancherel-

Weil transforms of elements of L2iG), p(-) and y(-), and it follows that h(-)

is the Fourier transform of the function m~xp(x) -y(x) ; and it is obvious that

this function is an element of A.

In the case of a compact group it plainly suffices to show that if

[wî<(-)|î = l, •••,«] is a general finite set of continuous irreducible repre-

sentations, then there exists an element of A, /(•), such that faf(x)mi(x)dx

is the identity matrix (i = l, •••,«). It follows easily from the orthogonality

relations that the complex conjugate of the sum of the diagonal coordinates

of the n representations is such an element.

For discrete groups the conclusion follows immediately from Theorems

1.10 and 2.3, and Definition 2.1.

Theorem 2.6. Let A be the group algebra of a group that is either LC abelian,

compact, or discrete. Then the class of elements of A whose hulls contain neigh-

borhoods of infinity is dense.

First let the group G be LC abelian, Iet/( ■ ) be a general element of A, and

let f,(x) (i = l, 2) be elements of L2(G) such that f(x) =fi(x)f2(x)—clearly

such elements exist. Taking inverse Plancherel-Weil and Fourier transforms,

p=pip2, where pi is the transform of/,- (and pipi is the convolution of pi

and p2 on G*). Plainly, for a general positive number e there exist elements

of L2(G*), 7i,, and 72,«, which vanish outside compact sets and are such that

Ht«.«-#»,e||2<e, where || -||2 is the L2 norm. It is easy to verify that 7i,e72,,

is the Fourier transform of an element ge of A, and that ||/—ge\\—»0 as e—>0.

By Theorem 2.5 this completes the proof for the case of an abelian group.

In the case of a compact group it is plainly sufficient, by Theorem 2.5,

to show that the elements of A whose spectrum is a finite set is dense. An

indirect proof is utilized : assume that the span of the preceding class of ele-

ments is a proper subspace of A. By the Hahn-Banach theorem and Riesz'

representation theorem for continuous linear functionals on A, there exists

an essentially bounded measurable function g(-) on G which is not zero and

such that fog(x)f(x)dx = Q for every f(-)(E.A of finite spectrum. Since the

measure of G is finite, g( ■ ) £.4. On the other hand, it is clear from the ortho-

gonality relations that the complex conjugate of a coordinate of a continuous

irreducible representation of G by matrices has a finite spectrum, which by

Theorems 1.7 and 1.9 implies that g(-) =0, a contradiction.

The proof is trivial for the case of a discrete group.

Corollary 2.6.1. The group algebra of a group which is either LC abelian,

compact, or discrete satisfies the conditions of Corollary 2.2.1.
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3. The group algebra of the reals. Theorems 1.7 and 2.4 and Corollary

2.6.1 show that a closed ideal in the group algebra of a compact group equals

the kernel of its hull. In the present section it is shown that a similar, though

weaker, theorem holds for the group algebra of the real line—more specifically

the same conclusion is valid provided the hull has a certain topological

character (2i).

Theorem 2.7. Let I be a closed ideal in the group algebra of the additive

group of the real numbers. Let A be the hull of I and put D for the closed set of

real numbers homeomorphic with A by Theorem 1.9. Suppose that D=P + Q,

where P is a closed set without limit points and Q is a union of (possibly semi-

infinite) open intervals. Then I equals the hull of its kernel.

Two main tools are employed in the proof: a family of special functions

utilized considerably by Wiener in his harmonic analysis investigations, and

an inequality of Carlson and Beurling. The special functions are a kind of

approximate idempotents (the group algebra contains, of course, no actual

idempotents except zero) and the family of these functions plays a part

analogous to that of the minimal idempotents in the theory of algebras of

finite dimension. The inequality is needed because it is algebraically more

effective to consider the Fourier transform of an element of the group algebra

A (rather than the element itself) but analytically difficult because the norm

of an element is not expressible in a simple fashion in terms of the Fourier

transform of the element. The Carlson-Beurling inequality bounds the norm

by a functional expressible in a highly direct way in terms of the Fourier

transform. The basic lemma is first proved for elements on which this func-

tional is finite; the fact that such elements are dense in A is then used to

conclude the proof.

Lemma 2.7.1. If we define

(8 \1/2          1' — cos xs        xs
— J    e~ipx -cos —,

then : (a) X( •, 5, p.) £.4 if 5 is positive and p is real, (b) X( •, s, p)/—>0 as s—»0,

if /is an element of A whose Fourier transform vanishes at p, (c) the Fourier

transform of X(-, s, p) is:

1 if    | / - p | < s,

A(t, s, p) =     1 - s-11 / - p |     if    s g I / - p | < 2s,

,0 if   | / - p | ^ 2s.

It is easy to verify that it is sufficient to consider the case p=0. It is

(w) A similar theorem has been proved in  [8], according to the review of this paper in

Mathematical Reviews.
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trivial that X(-, s, 0), X, say, is an element of A if s is positive and that

||X8|| is bounded as 5—»0. It is well known that X( •, s, 0) is the Fourier trans-

form of X, (see, for example, Wiener [37, pp. 49-50]). Therefore, to conclude

the proof of the lemma it suffices to show that \sf—»0 as s—>0 for all/in a set

which is dense in the class of elements of A whose Fourier transform vanishes

at zero. Now the set B of all functions which are finite linear combinations of

characteristic functions of bounded intervals and whose Fourier transform

vanishes at zero is easily seen to be such a set.

The Carlson-Beurling inequality [7, 4] states that for g(-)(E.A :

/» / r°° V'V r°° \1/4U(*)U*á(J_   \G(t)\*dt)    (J^   \G'(t)\2dtj    ,

where G(-) is the Fourier transform of g(-), provided that G(-) is absolutely

continuous. Setting g(-)=\f, where/ is a general element of B, it follows

readily that X„f—»0 as j—»0.

Resuming the proof of the theorem, suppose first that/ is an element of A

whose Fourier transform, F, vanishes on D, and also on a neighborhood of

infinity N. Plainly, there exists a finite set of points in D, (pi, ■ ■ • , pk),

such that the (set) union of U,(pi) (i = l, • • • , k), N, and Q is an open

set V containing the hull of /, where U.(p) = (p — s, p+s). Clearly,

Xl*_i(l—A(-, s, pi))F (pointwise product) is the Fourier transform of an

element/, of the kernel of V. By Theorem 2.2,/,£J; and if we utilize Lemma

2.7.1, it is easy to show that/£7. Now it follows from Theorem 2.6 that the

conclusion is valid without the hypothesis that F vanishes on a neighborhood

of infinity, completing the proof.

4. Some theorems on the spectrum of a general algebra. The theorems

presented in this section may be useful in connection with further investiga-

tions of the ideal theory of group algebras, and are of independent interest.

Theorem 2.8. Let A be the algebra obtained from the algebra A by adjoining

an identity as follows: A consists of all ordered pairs (x, a) with x(E.A and

aÇzF, F being the field of A, and algebraic operations defined by

a(y, ß) = (ay, aß), (x, <*) + (y, ß) - (x + y, a + ß),

(x, a)(y, ß) = (xy + ay + ßx, aß);

here x and y are general elements of A and a and ß general elements of F. Then

the spectrum of A is homeomorphic with the relative space obtained from the (com-

pact) spectrum of A by deleting the (regular) maximal ideal A' = [(x, 0)\x(E.A],

and A is isomorphic with A '.

It is easy to verify that A is an algebra with (0, 1) as identity and that

the mapping x—>(x, 0) is an isomorphism on A to A'. Clearly A' is an ideal

in A, and A/A'~F; hence A' is maximal. To avoid circumlocution, A' will
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now be identified with A. For a point M in the spectrum F of A, put

~M=f(M) = [(x, a)\x+aeME:M], where Cm is an identity modulo M. Plainly

jlf is an ideal in A, and by the isomorphism law for ideals:

(M + A)/M ~ A/(M r\ A).

Now it is easy to show that Mi\A =M and M+A =A. It follows that M is

maximal in A.

To show that/(-) is uniform, suppose f(Mi)=f(M2), where Mi and M2

are in V. Then x+aeiG-AZi is equivalent to x + ae2(E.M2, where e,- is an

identity modulo Mí; in particular, x^Mi is equivalent to x(E.Mi, or Mi = Mi.

On the other hand, if P is a regular maximal ideal in A different from A,

it follows from the isomorphism law for ideals that PC\A is a regular maximal

ideal M in A. Putting e for an identity modulo M, (x, ct)(£P implies

(x, a)(e, 0)£P, or (xe+ae, 0)£P, which shows that x+cteÇuM. It follows

that Pdf(M), and P=f(M) since both ideals are maximal, completing the

proof that/(-) is biuniform.

To prove the continuity of /(•), let A be a general subset of T and put D

and D for the kernels of A and/(A) respectively. It is necessary to show that

if AfoGr and MiDD, then Mo'Z)D'. Let (x, a) he a general element of D.

Then x+aeuG.M for every Af£A, where e^ is an identity modulo M. Multi-

plying by an identity e modulo Mo, xe+aeÇ: M for every JkfGA, which shows

thatxe+aeSMo, and therefore (x, a)£3?0- To prove that/_1(-) is continuous

it is necessary to show that MoDD implies MoDD, which follows by inter-

secting both Mo and D with A, completing the proof.

It follows that only a quite special 7+space—a space which is close to

being LC—can possibly be the spectrum of an algebra(2s) :

Corollary 2.8.1. The spectrum of an algebra is homeomorphic with the rela-

tive space obtained by deleting a point from a compact Ti-space.

It has been shown above that the complement of a compact set in the

spectrum of a group algebra of a group which is either LC abelian or compacf

contains a neighborhood of infinity. It is natural to ask whether the converse

is true, that is,, whether the complement of a neighborhood of infinity is

contained in a compact set. It follows from the next theorem that this is

actually the case. Hence, if infinity is added to the spectrum of such an alge-

bra as an ideal point, the spectrum is compactified in the manner usual in

topology, and our term "neighborhood of infinity" is justified.

Theorem 2.9. A closed set A in the spectrum of an algebra A is homeomor-

phic with the spectrum of A/D, where D is the kernel of A.

(M) The spectrum is not necessarily a Hausdorff space, an example being the spectrum of

the algebra of all polynomials over the complex field. It is easy to see that the spectrum of this

algebra is in one-to-one correspondence with the complex plane, and that a general non-null

open set consists of the complement of a general finite set of points.
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Let /(•) be the homomorphism on A to A/D, and for M£A define

Md=/(M). By the isomorphism laws for ideals, A/M~(A/D)/MD, showing

that Md is in the spectrum Yd of A/D. On the other hand, if IdÇlYd, then

clearly/_1(Zjj)£A. Thus/() is biuniform on A to Yd-

Now if A is an arbitrary subset of A, it is clear that Mo~DC\mE:í.M, Af0£A

imply f(Mo)~DV\M^\f(M); hence/(•) is continuous on A to YD- If PdGTd

and PcDOjiíGaAÍb, then clearly PDfl-wEA-M"; hence/(•) is bicontinuous,

and the proof is complete.

Corollary 2.9.1. The complement of a neighborhood of infinity is compact.

Putting A for a neighborhood of infinity in the spectrum of the algebra A

and D for the kernel of the complement A of A, it is easy to verify that A is

closed. Plainly A/D has an identity, and therefore by Theorem 2.3 its spec-

trum is compact. It follows from the theorem that A is compact.

Part III. Applications to harmonic analysis on groups

1. Tauberian theorems. Straightforward application of the spectral reso-

lution of ideals in the group algebra of the additive group of the real numbers

results in a very considerable generalization of Tauberian theorems due to

Wiener and to Pitt. In addition, the proofs of the previously known theorems

are simplified to an extent which can hardly be overestimated. With regard

to the historical development of this method, some aspects were implicit in

Wiener's work. On the other hand, a crucial aspect—the utilization of proper-

ties of maximal ideals in algebras—originated in the work of Gelfand and his

associates. Specifically, the fact that a proper ideal in an algebra with an

identity is contained in a maximal ideal (which is due to Krull) was basic in

Gelfand's Banach algebra investigations, and was applied by him to prove

the main lemma in Wiener's proof of his general Tauberian theorem. In the

present section a theorem of Tauberian type is proved which includes Wie-

ner's general Tauberian theorem and a related theorem due to Pitt as very

special cases, and it is clear from the proof that a wide class of Tauberian

theorems consists essentially of theorems about the ideal theory of the group

algebra of the reals.

Theorem 3.1. Let B be a dense linear sub space of the group algebra A of the

additive group of the real numbers and a Banach space with respect to a norm || • ||

(not necessarily the same as the norm on A). Assume that B satisfies the follow-

ing three conditions:

(a) /G-B implies thatfa(E.B, where (fa)(x) = (f)(x — a),for every real a, and

IWI -11/11 ■
(b) The mapping a—*fa on the real numbers to B is continuous for /£2?.

(c) If ||/„|| ->0, then £J_(/„) (x) | dx-*0.
Let ß be the unit sphere in the conjugate space of B and define
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G(w, f)  = lim sup | wfa | ,
a—* »

P(G,fufi) =      L.U.B.      G(w,fi).
»GO, G(«>,/i)SG

Let /i and f2 be elements of B, put Zi for the set of real zeros of the L-Fourier

transform of ft, and assume either (i) Zi is in the interior of Z2, or (ii) Z¡(ZZ2,

and Zi = P+Q, where P is a closed set without limit points, Qis a union of open

intervals, and P and Q are disjoint.

Then: limoso P(G, fufi) =0.

It is plain that if /£^4 and g£¿, the BDH integral

/gxf(x)dx
-00

exists, and it is easy to verify that it equals fg. Hence B is an ideal in A.

Now set J= [/I/G7J, limco P(G, fi, fi)=0]. It is easy to show that
<I>(G, fi, f+g)SPiG, fi, /) + ||g||, from which it follows that I is closed in B.
The following equations and inequalities show that I is an ideal in A :

I      f "
Giw, fg) = lim sup   w I    fa+bg(b)db

a—.oo      \      J _oo

IS»   00
I     wfa+hg(b)db

r " i
^  I    lim sup I wfa+bg(b) | db

J -00

è G(w, f) f    | g(b) | db.
J -00

Now observe that IC\B = I, where I is the closure of I in A. Because if

xÇzI(~\B, let \xn\ be a sequence of elements of A whose A -limit is x. It

follows from the theory of the BDH integral that ||x„y— xy\\—->0 for y£^4,

showing that xyÇ.1 for y£.4. It is clear from the continuity of /„ as a func-

tion of a that if e is a positive number then there exists ye(E.A such that

||:c— a:ye|| <e; hence a:£7.

The theorem now follows from Corollaries 2.2.1 and 2.6.1, and Theorem

2.7.
It is easily seen that the first part of Wiener's general Tauberian theo-

rem [37, Theorem 4] and Pitt's Theorem 2 [29] follow from the case B=A;

and that the second part of Wiener's theorem [37, Theorem 5] results from

setting B — Mi (see Wiener [37, p. 73] for a definition of Mi), and defining
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00 

2. The span of translations of elements of function spaces on groups. 
DEFINITION 3.1. A (right, left) translation of a function f(x) on a group G 

is a function of the form (f(xa),f(ax», where a is a fixed element of G. 
The present section investigates the span of the translations of elements 

of certain kinds of function spaces, including the Lebesgue spaces with re-
spect to Haar measure, on LC groups. Wiener's theorems [36] giving NASCs 
that the span constitute (the entire spaces) either L or L2 is extended to 
groups which are either LC abelian or compact. In the case of Lp spaces on 
LC abelian groups it is shown that conditions analogous to those for L and ~ 
(requiring that the Fourier transform not vanish) are sufficient when p = 2 
and necessary when 1 <p <2, but, in case the group is the additive group of 
the real numbers, not sufficient when 1 <p <2, settling a well known question 
raised by Wiener. On the other hand, for Lp spaces on the additive group of 
the real numbers a condition is given which is sufficient but probably not 
necessary, and which extends results of Agnew's. In addition to the fore-
going results, which concern the conditions under which the entire space is 
spanned, the intuitional relationship between the span and the spectrum of a 
set of functions is confirmed by showing that the spectrum is a function of 
the span, and that the span includes all functions whose spectrum is interior 
to (in the topology of Part II) the spectrum of the set of spanning functions. 

The main physical significance of the study of spanning, in the opinion of 
the author, is that the span of the translations of functions of time is a major 
invariant of the functions, when they are related to a physical system whose 
characteristics are independent of absolute time, and in which linear combi-
nations of the functions is meaningful; and that the analogous is true in the 
case of physical systems whose characteristics are invariant under an associ-
ated LC group. 

Our chief tool is the spectral resolution for closed ideals in group algebras. 
First it is shown that the span of the translations of elements of a space 
satisfying conditions (a)-(c) of Theorem 3.1 is a closed ideal in an algebra 
built on the space; the spectral resolution is then applied as in the proof of 
Theorem 3.1. In the case of Lebesgue spaces of exponent greater than unity, 
Lemma 3.3.1 is important. 

THEOREM 3.2. Let G be a group which is either LC abelian or compact, and 

(It) Other theorems of a similar character can be obtained by the same method. Essentially, 
the method consists of, first, showing that the set of functions satisfying the conclusion of the 
theorem is an ideal (usually a matter of straightforward verification), and second, applying 
the ideal spectral resolution, for example, to obtain a general theorem including Theorem IB 
of the cited paper by Pitt; 0 is put equal to the entire conjugate space and the spectral resolu-
tion for a not necessarily closed ideal applied. 
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B a dense linear subspace of the group algebra A of G and a Banach space with

respect to a norm || -|| (not necessarily the same as the norm on A). Assume that

B satisfies the following three conditions:

(a) f(-)G=.B implies that /„(•) and /"(■) are elements of B for every aGG,

where fa(x) =f(a~xx) and f"(x) =f(xa~1).

(b) The mappings a—>/0 and a—»/" on G to B are continuous for /G5, and

IIMHHh 11/11 • „
(c) 7/||/(-, n)||-»0, thenfo\f(x, »)|d*->0.
Then the B-span of the translations of elements of a set K of B contains all

elements whose A-spectrum is interior to that of K.

Lemma 3.2.1. The span of the (left or right) translations of elements of K is

the closure of the set T of all products (gf or fg) with g(E.A,f(E.K.

It is plain from the theory of the BDH integral that the integral

(fofag(a)da or fafag(a)da) exists and is in the span of (left or right) transla-

tions of elements of K, if/Gif and g(-)Ç_A. On the other hand, from the

closed-graph theorem, fafag(a)da=gf and fafag(o)da=fg. That (/„ or f") is

in the closure of T is seen by putting g(x) = (m(E))~1h(x), where h(-) is the

characteristic function of the set E, E being a neighborhood of a, and m(-)

being Haar measure, and noting that the 5-limit of (gf or fg) is (/„ or /"), be-

cause (gf or fg) is in any closed convex set containing [fb\ &G-E] or [/*| &G-E].

Lemma 3.2.1 shows that the span S of the translations of elements of K

is closed in B and an ideal in A. It is easy to verify that the A -closure 5

of S is an ideal in A and that SC\B = S (compare the proof of a similar fact

in Theorem 3.1). The theorem now follows from Corollaries 2.2.1 and 2.6.1.

Corollary 3.2.1. A NASC that a subset K of the group algebra A of agroup,
which is either LC abelian or compact, span A is that K be contained in no

regular maximal ideal.

Setting B =A in Theorem 3.2 and noting that the spectrum of A is interior

to that of K if K is contained in no regular maximal ideal yields the corollary.

Corollary 3.2.2. Let G be compact and B either one of the spaces LP(G),

lgp<oo, or the space of continuous functions on G with the norm ||/(-)||

= supie<? \f(x)\. Let K be an arbitrary subset of B and put à. for the set of all

continuous irreducible representations of G, r(-), such that fak(x)r(x)dx = 0,

for all elements of k(-) of K. Then the B-span of the translations of the elements

of K consists of all f( • ) Ç.B such that

j f(x)r(x)dx = 0,
J a

for every r( ■ ) GA.

It is easy to verify that B satisfies the hypothesis of Theorem 3.2. Utilizing

Theorems 1.9 and 2.4, the corollary follows.
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Theorem 3.3. Let G be a LC abelian group and K a subset of LPiG) such

that the Lp-Fourier transform of every element ofK exists, ilfp > 2, the Lp-Fourier

transform of an element f of Lp is said to exist if f is the Lq-Fourier transform

of an element of L„ where p~1+q~1 = 1.) In order that the translations of elements

ofK span Lp, it is sufficient when 2 ̂ p < oo, and in case K is countable, necessary

when Kp^=2, that: (*) for every set S* in the continuous character group G*

of G which is a countable sum of compact sets, there exists a subset of K that is

finite or countable, and such that the common part of S* and the zeros of the

Lp-Fourier transforms of the elements of the subset is a set of Haar measure zero.

Lemma 3.3.1. A NASC that the translations of the elements of a set K in Lp

span Lp is that the following be true: if g(-)£¿3, where ^>~l+c2~1 = 1, and

Jafixy-1) igiy))cdy = 0 for all fi ■ ) GK, then g( • ) = 0.

By a lemma of Banach(27), the translations of/( • ) span Lp if and only if no

continuous linear functional vanishes on all translations except the zero

functional. By the extension of Riesz' representation^8) theorem to general

Lebesgue spaces a continuous linear functional on Lp, X, has the form

*/(•)- r fix)igix)Ydx,
J a

where g(-) is a particular element of Lq. The proof is completed by combining

these facts in straightforward fashion.

Consider first the case p^2. An indirect proof is given: suppose that (*)

is satisfied but that the translations of the elements of K do not span Lp.

By Lemma 3.3.1 there exists a nonzero element g of Lq such that fgc = Q for

/£7C, gc being the complex conjugate of g. Since 1<}^2, the L3-Fourier

transform of g, G(-), exists. By hypothesis the Lp-Fourier transform of/,

Fi-), exists, if f(EK. Hence the Parseval formula for Fourier transforms

[35, p. 118] applies, in the following manner:

fg'(x) =  f ^x*xF(x*)(G(x*))°dx*.

Now G(x*) is zero except on a countable sum of compact sets, because G(-)

is an element of Lp. Noting that F(x*)(G(x*))c is an element of hi, it follows

from uniqueness theorems for Fourier transforms and the validity of (*) that

g(-)=0, a contradiction.

Now suppose 1 <p^2. Again an indirect proof is given: let if be a count-

able set of elements whose translations span Lp and whose Lj,-Fourier trans-

forms vanish on the measurable set S* of positive measure. Plainly there

(") S. Banach, Théorie des opérations linéaires, Warsaw, 1932, p. 57.

P8) F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann. vol. 69

(1910) p. 475. (The extension applies to Lp spaces over an arbitrary complete <r-field of sets with

a completely additive measure, the entire space being not necessarily an element of the field.)
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exists a measurable set of finite positive measure E* on which the ¿p-Fourier

transform of / vanishes for /G-K- Putting H for the characteristic function

of E*, plainly H(ELP(G*) ; hence H is the La-Fourier transform of an element

of Lq(G), h. Using the Parseval formula as in the preceding paragraph, it

follows that fh = 0 if/G-K, constituting a contradiction, by Lemma 3.3.1.

In case p = 2 and K is countable, (*) is NAS, plainly. For K a single func-

tion and in the case of the additive group of the reals, this has been proved by

Wiener [36], our method of proof of sufficiency being simpler but less ele-

mentary than that of Wiener. It is natural to ask, as Wiener did [36, p. 93],

whether the same theorem is true for other values of p, and it has been shown

by the author [31] that it is not. For completeness, the specific result is

quoted.

Theorem 3.4. There exists for every p satisfying 1 <p<2 an element of Lp

on the additive group of the real numbers whose Lp-Fourier transform is not zero

except on a set of Lebesgue measure zero, and whose translations do not span Lp.

The following theorem indicates that there exists a positive connection

between the span of the translations of an element of LP on the additive

group of the real numbers and its suitably-defined Fourier transform. Agnew's

theorems [l, 2] about spans in Lp are special cases(29).

Theorem 3.5. Let f be an element of both Lv and L¡, over the additive group

of the real numbers, such that the set of zeros of its L-Fourier transform has no

limit points, and where 1 <p < ». Then the translations of f span Lp.

Utilizing the notation of Lemma 2.7.1, it is easy to verify that

||X(-, s, a)||p = 0(5p_1) as s—>0, || -||p designating the Lp norm. Now put B for

the common part of Li and Lp, with the norm || -||i + || -||p. Let g be any ele-

ment of Lp and e a real positive number. Simple functions being dense in Lp,

there exists ge€zB such that \\g — ge\\P<e. Putting G„(-) for the Li-Fourier

transform of ge, and Ge<a(t) =Ge(/)JJ[m_i(l —A(/, Cn, zm)), where a is the set of

positive numbers {Cn} and {z„} is the set of zeros of the Zi-Fourier trans-

form of/, and noting that

II*- n(/ + r-)*INe^p(¿l|r-||-i)||*||,
n-l \ n«.l /

where x is an element of an (arbitrary) Banach space and the Tn are bounded

and mutually commuting operators on that space to a subset of that space

(with a different norm), it follows that there exists a set \Cn\ such that

Ge,a(-) is the £p-Fourier transform of an element of Lp, ge,a, with ||g«,,a— ge||P<ß.

It follows that ||g — g,,a\\p<2e. Plainly, B satisfies the hypothesis of Theorem

3.2. By Lemma 3.2.1 and the remark at the end of the proof of this lemma,

(29) Agnew's proofs include direct methods of approximation.
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ge,a is in the ¿-span (and hence in the Lp-span) of the translations of/, com-

pleting the proof.

3. Analytic functions on group algebras. In this section theorems are

proved about the existence of analytic functions on the group algebra of a

group which is either compact or LC abelian, and on an algebra associated

with a LC abelian group obtained by combining with the group algebra the

algebra of convolutions of purely discontinuous completely additive set

functions. Our results for the case of an abelian group constitute an extension

of theorems published by Gelfand and Raikov [15] (the present work was

done without knowledge of their work however), and include the basic case

of a theorem obtained independently by Beurling [4] and jointly by Cameron

and Wiener [ó](30) about analytic functions on an algebra associated with

the additive group of the real numbers.

Continuous functions are not generally definable on group algebras. It is

easy to see that otherwise every sequence tending to zero would be the se-

quence of Fourier coefficients of an integrable function.

Theorem 3.6. Let f be an element of the group algebra A of a compact group

and p(-) a function that is analytic and single-valued on a connected open set

containing zero and the closure of the set of all proper values of matrices into

which f is mapped by homomorphisms of A with kernels which are regular and

maximal, and such that p(0)=0. Suppose either thatf commutes withf* or that

p(-) is a meromorphic function. Then there exists an element gin A such that

for every regular maximal ideal M in the group algebra,

g m = Pi fui),

where fin and gM are matrices into which f and g are mapped by a homomorphism

of A with kernel M,fiu being a normal matrix iff commutes withf*, P(Jm) being

defined in a fashion similar to that for diagonal matrices, and so as to commute

with similarities (31).

Lemma 3.6.1. In order that an element of a CC semi-simple algebra have an

adverse it is sufficient that it have an adverse modulo every regular maximal ideal

in the algebra.

(30) The results of these authors are formally somewhat more general than ours (for the

case of the reals). However, it is easy to verify that the present methods could be utilized to

obtain theorems of the type that these authors prove, with the (possible) exception of Cameron

and Wiener's results about the existence of multi-valued analytic functions of Fourier-Stieltjes

transforms.

(3i) \\re are indebted to N. Dunford for pointing out that the theorem remains true in the

more general case that ${■) is analytic and single-valued on each of a finite collection of con-

nected open sets, the value of this type of analytic function of a matrix being defined by the

Cauchy integral formula. See N. Dunford, Spectral theory. I, Trans. Amer. Math. Soc. vol. 54

(1943) pp. 185-217, esp. pp. 192-193.



98 I. E. SEGAL [January

Put A for the algebra and Ux for the left regular representation of the

element x of A, that is, the operator taking y into xy, where y is a general

element of A. By the Riesz-Hildebrandt theory of CC operators, either/— Ux

has a bounded inverse, I being the identity operator, or there exists a non-

zero yÇLA such that (I— Ux)y = 0. Reducing this last relation modulo a regu-

lar maximal ideal M shows that y—xyÇ^M. Multiplying by an element that

is an adverse of x modulo M shows that yÇEM; A being semi-simple, this

implies y = 0. Hence I— Ux has a bounded inverse. Putting u= —(I— Ui^x,

it is easy to verify that xu = u+x, that is, « is a right adverse of x. Utilizing

the right regular representation of x in similar fashion, it follows that x has,

also, a left adverse, and therefore x has an adverse.

Considering first the case in which / is normal, it is easy to show that/jj

is the hermitian conjugate of fui, in case the group representation correspond-

ing to the homomorphism is unitary. Every continuous finite-dimensional

representation of a compact group being equivalent to a unitary representa-

tion, it follows that f m is normal if / commutes with /*. Put D for the range

of the proper values of fin for all regular maximal ideals M, and E for the

connected open set containing zero and D on which cp(-) is single-valued and

analytic. Let F be an open set such that F(ZE, D(ZF, and whose boundary

consists of a finite number of polygons. Writing B for the suitably oriented

boundary of F, it follows easily from Cauchy's theorem that:

1    r   <j>(ß)      a

2-kiJb     ß     a — ß

for aÇz.D. It is plain that the adverse of ß^fui exists for every /3GB and

regular maximal ideal M. Hence (ß~xf)A exists. It is easy to verify that if x

is an element of a 23-algebra such that xA exists, then there exists a neighbor-

hood N of x such that uA exists for wGiV and the mapping u—>uA is continu-

ous. Hence the mapping ß—>(ß~1f)A on B to A is continuous; since B is com-

pact, the range of this mapping is bounded. Hence the following BDH in-

tegral exists:

i    r  <t>(ß)
-J-.J   -^ (ß->/)Ädß.

2iriJ b     ß

Putting g for this integral, it is clear that gM=4>(fM) (the mapping h—*hM

being linear and bounded).

Now suppose that <p(-) is meromorphic, and that /is not necessarily nor-

mal. We can plainly set <p(z) =<pi(z)<pt(z), where c/>i(z) is rational, and regular

at every point at which <f>(z) is regular, and where <pt(z) has a convergent

power series expansion in the circle |z|^||/|| + l, and c/>2(0)=0. Clearly,

<t>i(f)(EA. Now Lemma 3.6.1 shows that the theorem is valid for

c6(z) =z(z — l)~1, and it follows easily that it is valid for <p(z) =z(z — a)~1, a be-

ing any complex number. It is plain thatc/>i(z) has the form p(z)YLl-i(z — ca)~1,
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where p(z) is a polynomial and p(ai)yi0 for every i. Noting that (z — a)-1

= z(z — a)~1 —I, and observing that pif) £.4 if p(- ) has the form zJJ<gs(z —a,-),

5 being any set of indices, it follows that pif) £.4 (32).

Theorem 3.7. Let G be a LC abelian group. Put Rfor the set of all complex-

valued completely additive set functions on G of the form ct(-)+ß(-), where a(-)

is absolutely continuous with respect to Haar measure and j3(-) has the form

ß(E) = £ b(x),

b(x) vanishing except on a countable set of points. Let y(-) be an element of R

and suppose that p(-) is a function that is analytic and single-valued on a con-

nected open set containing the closure of the range of the Fourier-Stieltjes trans-

form of y(-), r(-) (r(x*) =fox*xdy(Ex)), over the range G*, the group of con-

tinuous characters of G. Then there exists an element 8(-) in R whose Fourier-

Stieltjes transform A(-) satisfies:

P(T(x*)) = A(x*), z*£G*.

Lemma 3.7.1. Let /(•) be a continuous almost periodic function on the not

compact LC abelian group G. Then if C is any compact subset of G,

inf |/(*)|  =     inf     |/(*)|.
i£ o ¡c£ a-c

The proof is indirect. Suppose that C is compact, e is a positive number,

and inixç=a-c \f(x)\ ^inf^ge \fix)\ +e. Because G is not compact there ex-

ists a sequence {a<} in G such that a¿C and a¡C are disjoint, when iy±j.

It is easy to verify that \f(a&) — f(a¡x) \ ^e, when iy±j. Hence /(•) is not

almost periodic, a contradiction.

Lemma 3.7.2. Let y be an element of R such that inf^gc?. | Tix*) \ >0, where

r(-) is the Fourier-Stieltjes transform of 7O). Then 7 has an inverse with re-

spect to convolution in R.

Consider first the case of a discrete group. In that case, R regarded as

an algebra, multiplication being defined as convolution, is obviously isomor-

phic with the group algebra. An element 7 satisfying the hypothesis is clearly

contained in no maximal ideal, and hence the ideal generated by 7 is R,

showing that 7 has an inverse.

(a) An analogue of Theorem 3.6 for a general LC group can readily be obtained by:

(a) utilizing in place of the class r of regular maximal ideals the class $ of ideals which are either

of the form [x|^4x£iî] or of the form [x\ xA (Z.L], where Rand ¿are respectively regular maxi-

mal right and left ideals, (b) restricting the analytic function to be meromorphic. (It is easy to

verify that T = * in the case of a group which is either LC abelian or compact.) To see this,

observe first that an element of a group algebra has an adverse if and only if it has an adverse

modulo every ideal in * (by Theorem 1.3), which proves the analogue for the case of the function

4>{z)=z{z —1)_1. The case of a general meromorphic function (it is clear how to define sucha

function on a B-algebra) then follows just as in the case of a compact group.
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Assume now that G is not discrete; then G* is not compact. Let a and ß

be the absolutely continuous and purely discontinuous constituents of y, and

A(-) and B(-) their Fourier-Stieltjes transforms respectively. By the gener-

alized Riemann-Lebesgue lemma [35, p. 116], [x*\ |.<4(;c*)| ^e] is compact

if e is a positive number; hence inf^go« |.B0>c*)| >0, applying Lemma 3.7.1.

If we put G' for the group G considered as a discrete group, it is plain that

G* is a dense subgroup of G'*. If we define

B'(x'*) =   f x'*xdß(Ex),
J a

clearly B'(-) is continuous on G'*; hence inf »,.£<?>• |.B'(x'*)| >0. It follows,

by the result of the preceding paragraph, that y has an inverse in R.

It is easy to verify that —aß-1 is absolutely continuous. Utilizing the

isomorphism between the group algebra of G and the subalgebra A' of A

consisting of elements that are absolutely continuous, it follows that —aß*1

has an adverse modulo every regular maximal ¡deal in A ', and hence an ad-

verse in R. Setting a=ß~1—ß~1(—aß~1)A, it is easy to show that a(a+ß) is

the identity, completing the proof.

Lemma 3.7.3. Let T be a commutative Banach algebra with an identity

e, and put A for a family of maximal ideals in T with the property that

infjtfgA |x(Af)| >0 implies that x has an inverse in T, x(M) being a complex

number defined by the congruence x=x(M)e modulo M. Let t be an element of T,

and suppose that <j>(-) is a function that is analytic and single-valued on a con-

nected open set containing the closure of the range of t(M), M varying over the

domain A. Then there exists an element u in T such that

u(M) = <p(t(M)),

for MGA.

The proof is the same as the proof of the corresponding fact for Theorem

3.6 except that inverses are used instead of adverses.

The proof of the theorem may now easily be concluded by utilizing

Lemmas 3.7.2 and 3.7.3.

Theorem 3.8. Let f be an element of the group algebra of the locally compact

abelian group G. Suppose that </>(•) is analytic and single-valued on a connected

open set containing the closure of the range D of F(x*), where F( ■ ) is the Fourier

transform of f and x* ranges over the subset N* of the group G* of continuous

characters of G*, and suppose also that if zero is in D, then <¡>(0) =0. Then there

exists an element of A whose Fourier transform H(-) satisfies H(x*) =<b(F(x*)).

Consider first the case in which (N*)e is compact. Put I for the ideal in A

consisting of elements whose Fourier transforms vanish on N*. Then A /I has

an identity, by Theorem 2.5. Setting A for the family of regular maximal
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ideals in A corresponding to TV*, it is clear that every maximal ideal in A /I

has the form M/I, with M£A; on the other hand, A/M~(A/T)/(M/I), by
the isomorphism law for ideals. Hence if «£.4 andTkf£A,w(Tkf) = (u+I) (M/I),

showing that if iniwc^&jl (M+-0(-AZ')| >0, where Aj is the family of ideals

of the form M/I with TW£A, then infj^eA |«(TW)| >0. By virtue of the

continuity of u(-), the last equation implies inf^ga |w(71¿f)|>0; hence

ininif=Tr | (u + I)(M)\ >0, where Tr is the spectrum of A/1. Plainly, the con-

ditions of Lemma 3.7.3 are satisfied, setting T = A/I and A = Tr, and the valid-

ity of the theorem in this case follows.

Suppose now that N* is not compact. Then zero is in D, by the general-

ized Riemann-Lebesgue lemma, and the proof is concluded by combining the

discussion of the case in which (TV*)C is compact with the analogue to Lemma

3.7.3 for the case of an algebra without an identity, this analogue being proved

in the proof of Theorem 3.6.

4. A new approach to the theory of almost periodic functions on groups.

The principal results of von Neumann's theory of numerical-valued almost

periodic (AP) functions on groups are frequently considered to be the approxi-

mation theorem (that is, the extension of the Peter-Weyl theorem), the fact

that a LC abelian group is maximally AP(33), and the existence of the mean.

The purpose of the present section is to derive the first two of these results

from the foregoing theory of group algebras; for completeness the third result

is also proved, from the existence of Haar measure on compact groups. This

derivation seems worth while partly because of its logical simplicity, the group

algebra results following rather directly from the existence of Haar measure

and the spectral theorem, partly because the proofs are relatively short, and

partly because it seems aesthetically satisfying that the approximation theo-

rem can be formulated in highly algebraic terms, as the semi-simplicity of the

group algebra of a compact group.

Our starting point is the fact that the space of continuous AP functions

on a topological group is essentially equivalent to the space of continuous

functions on an appropriate compact group. This fact was first derived by

Tannaka from von Neumann's results (it had been proved earlier by Pon-

tryagin in the case of the additive group of the real numbers). It is proved

here directly from the definition of almost periodicity, utilizing a topolog-

ical device introduced by Stepanoff and Tychonoff [32] and later used by

Weil and van Kampen. These authors investigated a single AP function

by retopologizing the group in a manner depending on the function, and com-

pleting the resulting metric group. In the present treatment all AP functions

are simultaneously utilized, the retopologized group being not necessarily

metric, but completable as a group, by the theory of uniform spaces(34)—a de-

(M) A maximally AP group is one on which there exists for every two points of the group

a continuous AP function which assumes different values at the points (according to [27]).

(M) See A. Weil, Sur les espaces à structure umforme et sur la topologie générale. Actualités

Scientifiques et Industrielles, no. 551, Paris, 1938.
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velopment which was not in existence at the time of those authors' investi-

gations.

The approximation theorem follows from the semi-simplicity of the group

algebra of the compact group mentioned in the previous paragraph. The

maximal almost periodicity of LC abelian groups is implied by (but does not

imply) the semi-simplicity of the group algebra of a LC abelian group.

Theorem 3.9. Let R be the set of all complex-valued AP functions on the

topological group G. Put K for the class of all elements of G on which every func-

tion in R assumes the same value as on the unit. Then K is a closed normal sub-

group of G, and there exists a compact group G such that :

(a) There exists a continuous uniform homomorphism </>(•) on the topo-

logical group G/K to a dense subgroup of G.

(b) There exists a biuniform exhaustive linear mapping T on R to the family

of complex-valued continuous functions on G such that, for f(-)£zR and jcGG,

f(x)=(Tf)(d>(x)).

It is easy to verify that K is a closed normal subgroup. Putting

G/K=H, yp(-) for the (continuous) homomorphism on G to H, and S for the

class of all complex-valued continuous AP functions on H, it is straight-for-

ward to show that h( • ) G S if and only if h(tp(x)) G-R. Thus/Hs maximally AP.

The underlying group of H will now be retopologized to form a uniform

topological group H*. A general neighborhood family N(h), hÇ:H*, is defined

to be the set of all elements k in H* such that:

sup    | fi(xky) — fi(xhy) \ < e (i = 1, • • • , ra),
x.vGh*

where {fi(-), * • ' > /n(-)} is a general finite subset of S and e is a general

positive real number. It is easy to verify that H* is a uniform topological

group. Noting that if f(-)(~S, then f(xy_1) is right AP on H*XH*, we see

from the definition of almost periodicity that H* is totally bounded. On the

other hand, if g( ■ ) is uniformly continuous on H*, it is clear that the mappings

a—*ga(-) anda—»g"(-)> where ga(x) =g(xa) andga(x) =g(ax), are continuous on

H* to the space of complex-valued functions with the distance between two

functions defined to be the L.U.B. of their difference. Hence the ranges

[ga(-)\a£LH*] and [ga(-)\a£H*] are totally bounded, that is, g(-) is AP;

plainly, then, g(-)(E.S. Since neighborhoods of the identity are invariant

under transformation by elements of the group, H* is imbeddable in a com-

plete group; if we call this group G, it is plain that the conclusions of the

theorems are valid.

Theorem 3.10. A continuous almost periodic function on a topological group

can be uniformly approximated arbitrarily closely by linear combinations of co-

ordinates of bounded, continuous, irreducible, finite-dimensional representations.
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Adopt the notation of the preceding theorem and put / for a general ele-

ment of R. The main fact used in the proof is that Tf can be approximated

in the group algebra A of G by linear combinations of coordinates of bounded,

continuous, irreducible, finite-dimensional (BCIF) representations of G, this

being proved by an indirect argument. Assume that Tf is not in the A -span

of the coordinates of BCIF representations of G. Then there exists a continu-

ous linear functional on A which vanishes on all such coordinates and is not

zero (by a lemma of Banach's). Utilizing Riesz' representation theorem for

continuous linear functionals on an Li-space, there exists a measurable

bounded function g( ■ ) on G, which does not vanish almost everywhere, such

that fog(x)r(x)dx = 0 for a general coordinate r(-) of a general BCIF repre-

sentation of G. On the other hand, it is obvious that g(-)£.4. Combining this

fact with Theorems 1.7 and 1.9, we see that g(-) =0, a contradiction.

The proof is concluded by an approximation argument. Let h be an

arbitrary complex-valued continuous function on G, and define \\h\\c

= supX(=ä\h(x)\ for such a function. Putting e for a general positive

number, let/ be an element of A such that \\h— fh\\e<e, and let g be a

linear combination of coordinates of BCIF representations of G such that

||/-«IU<«(||*||«)_1- Noting that M.áHílUy« we see that \\h-gh\\c<2e,
concluding the proof, because gh is expressible as a finite linear combination

of coordinates of BCIF representations of G, and every such representation

of G corresponds by Theorem 3.8 to a BCIF representation of G.

Theorem 3.11. A LC abelian group is maximally almost periodic.

Employing an indirect proof, utilize the notation of Theorem 3.8 and as-

sume that all functions in A take on the same value at the point a of G as

at the identity of G, which is not a. Obviously a character of G is AP, and

therefore

/x*x[f(x) - f(ax)]dx = 0,
o

where/(•) is a general element of A. By Theorem 1.9 and the fact that the

group algebra of a LC abelian group is semi-simple, f(x) =f(ax) almost every-

where, showing that a is the identity, a contradiction.

Theorem 3.12. If we employ the notation of Theorem 3.8, the mean value of a

general element f of R is fa(Tf)dx, where dx is Haar measure on G, the measure

of G being unity.

If we define Lif) =fa(Tf)(x)dx for/£J2, it is easy to verify that: (1) L(-)

is linear; (2) L(l) = l; (3) L(/)^0 if (f)(x)^0 for all *£G; (4) L(fa)=L(f),
where ifa)ix) = (J)ixa), for a£G. These formal properties determine uniquely

the mean, by a theorem of von Neumann's [27, Theorem 7].
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