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BY

H. KOBER

In the proof of his classical theorem on approximation by polynomials

Weierstrass first constructs integral functions of the order two, to approxi-

mate to a continuous function uniformly over a finite interval. The more gen-

eral problem : Which condition is necessary and sufficient for a function /(*)

to be approximated by integral functions uniformly over (— °o, oo)? was

solved by T. CarlemanO), and a slight refinement of his method gives the

following interesting result:

(A) Given any positive increasing function pix) (0^*< °°)> there are in-

tegral functions gniz) iz = x+iy; « = 1, 2, • • • ) such that

u.b.   p(\ *| )|/(*) - g»(*)[-»0 as «-»«J,
— co<a:<oo

provided only thatf(x) is continuous in (— co, oo).

The function /(*) need not be bounded. On the other hand, nothing can

be stated about the nature of the gn(z). These functions may be integral func-

tions of infinite order; take, for instance,/(*) =*1/2 exp (ex). To obtain func-

tions of finite order, stronger conditions are to be imposed on/(*).

Let first/(*) be supposed to be bounded. By known results(2) the condi-

tion should be the weaker, the higher the order of gn(z) is, and the problem is

answered by the following theorem (stated without proof) :

(B) When p is a positive integer and w^ — co then /(*) is approximated,

uniformly in (co, oo), by functions ga(x)C.Gí¿) (0<a—>oo) if, and only if, p(x)

is uniformly continuous in (|cop| sgn w, oo), where Pix) =/(| ac1'*! sgn x) for *^w.

This result is known for co = — °o, p = 1(2). The necessity of the condition

is deduced from the following theorem (stated without proof) :

(C) If l/2gp<oo, ga(z)GG^ (0<a<oo), and if g„(*) is bounded in

(0, oo), then x1~pgá (*) is bounded in (I, oo), and so ga(*1/p) is uniformly con-

tinuous in (0, co).
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This can be considered as a generalization of Bernstein's theorem (see §2

of the present paper).

The condition in Theorem (B) can be shown to suffice even if/(*) is not

bounded; and possibly this result holds whenever 1/2 ^p< oo, with w> — oo

for 1/2 =p<l.

Now approximation shall be considered by elements of Ga only. The func-

tion/(x) shall not be required to be bounded in the familiar sense; but, from

the above remark to (A), it is evident that some restriction of a related kind

is necessary. The cases when/(x) is represented asymptotically (as x—>± oo)

by linear functions or satisfies a Lipschitz condition or a condition of the

Taylor type have been investigated(3). In the present paper a much more

general case is treated, and under that weaker condition the degree of ap-

proximation is considerably improved corresponding to (A) (see 3.11, 3.12,

4.12). This justifies the basic definitions given in §1. To deal with necessary

conditions, a basic property of integral functions of exponential type is de-

duced (Theorem 2). The results of §3 are extended to functions analytic in

the half-plane in §4.

Non-negative integers will be denoted by j, I, m, », real numbers by A, k,

positive numbers by A, B, H, K.

We write
n

^n.hf(x) = £ (- l)'+nCn,jf(x + jh); Ao.kf(x) = /(*).
y=o

1. Basic definitions and lemmas. Elementary properties of functions,

which are uniformly bounded or uniformly continuous of order w, will now

be discussed.

1.1. Definitions.

(I) A function f(x) is said to be uniformly bounded of order n if (i) it is

bounded in some interval (no matter how small), and if (ii) there are two numbers

H and K such that, uniformly for — °°<x<«:>, |A„,„/(x)| ^K whenever

—ZZ = A_ZZ. When « = 0 then f(x) is uniformly bounded in the familiar sense.

(I I) A function f(x) is said to be uniformly continuous of order n (« = 1) if

(i) it satisfies the condition (i) of (I) and is (ii) measurable on any finite interval,

and if (iii), given e > 0, there is a 8 = 8(e) > 0 such that, uniformly for — oo <x < oo,

|A„,a/(x)| ^6 whenever — ô = A = ô.

It is evident that, for « = 0 and » = 1, the condition (i) is omitted in

definition (I); so are (i) and (ii) in (II) for « = 1. The property (II) of a func-

tion implies (I). The converse is, in general, not true; the function sin x2, for

example, is uniformly bounded of any order, but there is no order of which it

is uniformly continuous. It is, however, true for the class Ga (see §2).

Example (i). The function xr (arg x = 0 or arg x=7r for x>0 or x<0, re-

spectively, «O^w + 1) is uniformly bounded and uniformly continuous of

order « + 1, but not of any smaller order.

(3) Theorem 3(c) F and the Bernstein Theorem 3(d)F; Theorem 10G.
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This follows from the equalities (cf. G, p. 22, line 6)

/» h /* h
• • •   I     (* + h + t2 + ■ • ■ + tmy-mdhdt2 ■ ■ ■ dtm;

o J o

&n+i,hXr = A„,n(x + h)r - An,hxr;   \ Aui" | = 21~r+n \ h\r~n.

Example (ii). f(x) =xT(x+a)~s; 5 = 0 or s<0, 0=>^w+s + l; Q(a)^0.

This function is uniformly continuous of order » + 1, or of some smaller

order.

Example (iii)./(x) =log £"„0aj*'v)> ''j^O; £"=0a3xr'>íO for — oo <x< <».

This function is uniformly continuous (of order one).

Example (iv).f(x) =x sin |x1/2| is uniformly continuous of order two, but

of no smaller order.

Example (v). If/(*) is uniformly continuous of order » then the same is

true for the function (cf. §3.2), belonging to Ga,

r°° (sint/(2n + 2)\2n+2
ga(x) = J     Í-—t--j      f(x + t/a)dt (a > 0).

1.2. Some lemmas, and a theorem.

Lemma 1.

AB,_„/(*) = (- lYAn,KÍ(x - nh) (n = 0),

An,hf(x) = A„_liB/(x + h) - A„_i,„/(x) (n = 1),

awif, writing Am,t{A„,Ä/(x)} =Am,kAn,hf(x), we have

(1.22) Am,kAn,hf(x) = An,kAm,kf(x).

Lemma 2. If |A„,A/(x)| ÚKfor \h\ ^H, then

(1.23) | Am,kAn,hf(x) \ = 2mK   (|A| = ZZ, -co<Í!<oo,-oo<¡i;<°o).

Corollary. If f(x) is uniformly bounded of order n, then it is uniformly

bounded of any higher order. The result holds for uniform continuity of order

n (w = l).

These lemmas are evident.

Lemma 3.

n

(1 ■ 24) An,2hf(x) = £ CnjAn,hf(x + jh).
i=o

This is shown by means of the equations

n{     <-*•--' \ o («odd),
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¿ (- l)lC„,if(x + 2lh) = ¿/(* + mh) ¿2 i- 0— CA.—I
j^O m—0 Í—0

=  Ê Cnií¿ (-  l)*C.>ft/{* + (Í + /l)*}   (/i-»-/)
J=0 )!=0

=   ¿AK"   l)"An,/,/(* + /*).
;-0

Theorem 1. If f(x) is uniformly continuous of order n, and if /(*) ts wwi-

formly bounded of order m (m<n), then f(x) is uniformly continuous of order

m when m^zl, of order 1 when m=0.

This result appears to be elementary, yet we are unable to give an ele-

mentary proof. Anticipating the Theorems 3 (for m — 0) and 2, we see that

the functions ga(x), approximating to/(*), are uniformly bounded of order m

and, therefore, uniformly continuous of order max (1, m). This gives the re-

sult required. In a similar way we can show:

Theorem 1'. !//(*) is uniformly continuous of order n (w>l), then it is

continuous in the familiar sense on any finite interval.

1.3. Two estimates.

Lemma 4. If |A„,(/(*)| ^K for -H^t^H, then

| An,tf(x) | ^ (2/H)nK \t\n fort è H and fortg,- 77.

Proof. Lett>H, 2lH<t^2l+1H, h=t/2l+1. Then 0<&=H. By Lemma 3,

(1.31) | An.ikf(x) I g 2"     max      | An,hf(x + jh) \ ^ 2"K.

Repeating this procedure, we have finally

| An,tf(x) | = | An.tlw*/(*) | g 2»+1>«7f g (2t/H)»K,

as 2l<t/H. In a similar way we proceed when t<—H.

Remark. Evidently for — co <f < oo, — oo <*< oo we have

(1.32) |A,,,/(*)| ZA(l + \t\»).

Lemma 5. If fix) is uniformly bounded of order n, then

(1.33) |/(*)| ¿.4(1 + 1 »|").

Proof. It is obvious that for — oo <£< oo ;/i = 0, 1, 2, • • -,

An-i.kfií + jih) = An-i,kf(0 +  Í2  A..*/tt + /*),
1-0

the latter sum vanishing when/i—1<0, that is, when/i = 0. Hence
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m-l

AB_m,B/(* + jmh) = £ Cjm,jAn-.m+j,hf(x)
3=0

(1.34)
Jm-l=Jm— 1     im-i—im-l— 1 »—Jl— 1

+ £       £    • • • £ a„,b/(* + /A)       (i á » á »).
Jm-1=0 ím-2=0 3=0

By definition,/(x) is bounded in some interval; we may, therefore, suppose

that it is bounded in ( —wZZ, nH). Let now m=n, y>nH or y<—wZZ;

/ZZ<|y|g(/+l)ZZ;/i = (/ + l)-iy;jn=jm = /+l.Theni„ = ZZ-1|y|+l, |A| =ZZ
and, by hypothesis, | An¡hf(jh) \ =Zi. Thus, taking x = 0 in (1.34), we have

I f(y) I = I f(jnh) I = «ir1      max       | Aj,hf(0) |
3=0,1,- --,11-1

+ i"      max       | A„,B/(iA) | = Zi/TV fjZ = ^4'(ZZ_1 \ y\ + 1)",
3=0,1,---,3„-l

which proves the lemma.

2. A basic property of integral functions of exponential type. Now inte-

gral functions of exponential type, which are uniformly bounded of order «,

will be dealt with.

2.1. The result, and some lemmas,

Lemma 6 (Bernstein's theorem(4)). If f(z) belongs to Ga (a>0), and if

|/(x)| =^4 for — oo <x< oo, then |/'(x)| ^ccA for — oo <x< co.

Theorem 2. If f(z) belongs to Ga (a>0), and if /(*) is uniformly bounded

of order n (w= 1), then/<n)(*), its derivative of order n, is uniformly bounded in

( — oo, œ) in the familiar sense, and f(x) is uniformly continuous of order n.

Theorem 2'. If f(z) belongs to Go, and if f(x) is uniformly bounded of order

n (w = 0), thenf(z) reduces to a polynomial of degree not greater than w.

Corollary. When f(z) is an integral function and f(x) is uniformly

bounded of order n, then either f(z) is a polynomial of degree not greater thann,

or there are points zi, z2, ■ • • (|zy|—*°°) awo* a constant a>0 such that

\f(z,)\ >e*M (j = l>2, • • •)•

Lemma 7. If $(x) is uniformly bounded of order m, and $>(m)(x) is an in-

tegral, and if i>(m+1)(x) is uniformly bounded in the familiar sense, then 4>(m'(x)

is uniformly bounded in this sense as well.

2.2. Proof of Lemma 7, awd of Theorem 2 for n = 1 (6). Without loss of gener-

(*) S. Bernstein, Leçons sur les propriétés extrémales des fonctions analytiques d'une variable

reelle, Paris, 1926, p. 102, corollary.

(6) As the referee pointed out to me, this can alternatively be deduced from a result of

Duffin and Schaeffer, Amer. J. Math. vol. 67 (1945) p. 141; This is also true for »> 1.
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ality we may suppose that <£(*) and/(*) are real-valued. Let |Am>i$(*)| ^K

for \h\ ¿H, and | <£(m+1>(*)| ^B in (— co, oo). If, for some *, <£(m)(*) were

greater than A =HB+mmH~mK, we should have

/• tl+tl+.-.+ tm

*<»>(* + ii + h + ■ ■ ■ + tn) = *<•»>(*) +  I $(«+!)(* + t)dt
Jo

> HB + mmH~mK - HB = mmH~mK,

for O^tj^m"1!! (j = l, 2, • • • , m). Thus we should arrive at the contradic-

tion

/» h     /o h                 /oh

I I    $<"»(* + ¿i + /, H-+ /»)*i*i • • • dtm
o   J o Jo

> hmmmH-mK = K,

for h = m~1H. This proves the lemma.

Proof of the theorem for « = 1. By Bernstein's theorem, \f(x+h)—f(x)\

áK for | h\ ^H implies that

(2.21) | /'(* + h) - /'(*) | ^ aK (-»o <ï<oo,-Hgigfï).

If, for some *,/'(*) were greater than K/H+ocK then, using (2.21), we

should have the contradiction

/(*+H) - /(*) = c f(x+h)dh ^ c f(x)dh
Jo Jo

| /'(* + h) - /'(*) | dh > H(K/H + aK) - aHK =K.
o

Therefore |/'(*) | ^K(l/H+a), which proves the theorem for » = 1. Probably

in the general case we should have |/(n)(*)| ^A„K(l/H+a)n (— <x> <*< co)

where An depends on « only.

2.3. Proof of the theorem for «>1. Suppose that the theorem is true for

«'=« — 1. It is not difficult to show that

n

(2.31) (- l)"An,*_*/(* + nh) = ¿2 (- l)'Cn,jAn-i,hAj,kf(x).
i-o

Let 0<ht¿H, 0<k^H. By the hypothesis, the moduli of the terms

An,k-hf(x + nh) ;       An,hA0,kf(x) = A„. hf(x);       Ao,aA„,j,/(*)

do not exceed K. Hence the modulus of

n—1

(2.32) ¿2 (- iyCn,iAn-i,hAj,kf(x) = gh,k(x)
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is not greater than 3K. For w = 2, this gives

(2.33') |Ai,BAi,,/(x) I = 3K/2 .

If «>2 we apply the operator Ai,A to (2.32). By Lemma 2, the modulus of

Ai,kAn-i,hAi,kf(x) = Ai,iAB,„/(*)

is not greater than 2K. Hence we have

n-l

£ (- l)>Cn,jAn+i-j,hAj,kf(x) = gh,k(x),
3=2

where | f «,&(*) | ¿2K(n+3). Repeating this procedure (w — 3) times, we have

finally

(2.33) | AB_i,*AB_i,*/(s) | = AnK,

where An depends on w only. Now the theorem holds for w'=w —1, and we

have AB_i,jt/(z)£Ga. Consequently

dn~

— AB_i.*/(*) = | A^i.kf^Kx) | = ¿'      (0 < A = H, - oo < x < «>),
dxn

and applying the theorem again, we have

|/<2"-2>(*) |  g A" (-   oo   <  x <   oo).

If w = 2 the proof is complete. If w>2 then 2« — 2>w; by the corollary to

Lemma 2, f(x) is uniformly bounded of order m = 2« — 3. Now we make use of

Lemma 7, and we deduce that |/(2"~8)(*)| ^A'". Repeating this procedure

(« —3) times, we arrive at the result required

|/(B)(*)| = A (- oo < x < oo).

The uniform continuity (order «) of f(x) is now easily deduced.

2.4. Proof of Theorem 2'. The result can be deduced from Theorem 2; but,

as the referee pointed out to me, more directly from a known result, using

Lemma 5(6). If/(z)GG0 and |/(x)| ^^4(l + |x|m), then/<"■>(*) ¡s constant in

(— oo, oo) ; for the function g(z) =z~m(f(z) — 2L?=oZ'f'(0)/j\) belongs to G0 and

is bounded on the real axis (— oo<x<oo), and reduces, therefore^ to a con-

stant.

3. Uniform approximation by integral functions of exponential type. In this

section the main results will be proved.

3.1. Statement of the results.

Theorem 3. Let f(x) be uniformly bounded of order «, and let the non-

negative integer m be fixed. A necessary and sufficient condition for the existence

of functions ga(z)Ç.Ga (0<a< <») such that

(«) Cf. R. P. Boas, Ann. of Math. vol. 39 (1938) p. 279.
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(3.11) u.b.     \f(x) - (x+i)"ga(x)\-^0
— »<z<™

as a—>co is the uniform continuity (order «) of /(*).

Corollary (i). If (x+i)mf(x) is uniformly continuous of some order, then

there are functions ga(z)Çi.Ga (0<a< co) such that

(3.12) u.b.     {(1 + | *|)m|/(*) - g«(*)| } ->0 asa->co.
— «<a:<w

Corollary (ii)(7). There are functions ga(x)(£Ga (0<a< oo) such that, for

any integer m,

(3.13) u.b.     {(1 + | *| )m\ xr - ga(x) | } ->0 asa->oo,

where r>0, arg * = 0 (*>0) or arg *=7r (*<0).

Corollary (iii). !//(*) is defined in (0, co ) aw¿ ¿/ (x+i)mf(x2) is uniformly

continuous of some order, then there are functions ya(z) £Gi1/'2' (0 <a < oo ) such

that

(3.14) u.b.   {(1 + *)""2|/(*) - ya(x)\ } -*0 asa-*oo.
0<x<*>

Corollary (iv)(8). The result stated in Corollary (ii) holds when Ga is

replaced by 6-£/2) and the interval (-co, oo) by (0, oo).

Corollary (v). Let /(*) =p(x)p(x) where p(z)Ç£Gc for some c>0 and

\p(x)\ <A(l + \x\m) for some m^0, while (x+i)mp(x) is uniformly con-

tinuous of some order. Then, uniformly in (— oo, <n),f(x) can be approximated

by elements ga(x) of Ga (c <a < oo ).

Example./(*) =*r sin x (0<r< oo); here p(z) =sin z£Ci, w = 0.

Remark ta Theorem 3. If /(*) is merely supposed to be 0( | * | n) for *—> + co

the condition is not necessary; take, for instance,/(*) =* sin *. Certainly

it is necessary that (x+i)~"f(x) should be uniformly continuous of order one.

This condition, however, is not sufficient; take, for instance, « = 2,

/(*) =* sin *2, m =0.

Corollary (ii) is evident for the special case when m is fixed, the ga(z)

depending on m. The general case is then deduced by the diagonal method,

if we take m—* oo.

Under the hypothesis of Corollary (iii), we have by Corollary (i)

u.b.    {(l + |y|H/(y2) - ga(y)\ } -*0        as«-»oo.
— oo<y<oo

This holds when y is replaced by — y. Taking y2=x, 2-I{ga(y)+g„(—y)}

(7) Compare Theorem 11 G.

(8) Compare Theorem 11' G.
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=ya(x), we arrive at the result required.

3.2. Z"Ae necessity of the condition in Theorem 3, and its sufficiency in the

case w = 0. By (3.11), any of the functions (x+i)mga(x) is uniformly bounded

of order w. By Theorem 2, it is uniformly continuous of order w, so is, there-

fore,/(x).

Throughout this section and the following ones, we take now

(sint/(2M)\2M
*(t) = cm (-)    ,

fixing the positive integer M large enough for the requirements of the proof

concerned, and fixing cm so that f!„K(t)dt = 1. The function k(z) belongs to Gi.

As/(x) is supposed to be uniformly continuous of order w, the function

(3.21) ya(z) «a f   K{a(t-z)]f(t)dt
J -00

belongs to Ga by the Lemmas 5 and 5F. We have

(3.21') ya(x) =   f   K(t)f(x + t/a)dt.
J -oo '

Hence

f   <c(t)An,l/af(x)dt =  f   k(í)£(- l)'Cn.jf(x + —-A»
J -oo J-oo        3=o \ a      /

(3.22)
n— 1

= £ (- iYCn.aann-j,(x) + (- iyf(x).
3=0

Denoting the sum on the right by ( — l)n_1ga(*), we have ga(z)£.Ga'. In con-

sequence of Lemma 4, we have

|ABlí/a/(x)| =¿(1 + M»),

uniformly with  respect to x and /   (— oo<x<oo,   — oo<f<oo)  and  to

ct.O =cc< oo). Hence, given e>0, we have

\(j     +f   X(t)An,t/J(x)di<i/2

for a suitable N>0. By the uniform continuity (order w) of f(x), we have

|AB,(/a/(x)| =e/2for |//a| g5 = 5(e), that is, for |i| ^Nwhen a = N/8. Hence

K(t)An,tlttf(x)dt   = — I    K(t)dt = —.
IJ — n 2 J _M 2

Therefore the modulus of the integral on the left of (3.22) is smaller than e,
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which completes the proof for the case m = 0.

3.3.  Two lemmas.

Lemma 8. !//(*) is uniformly continuous of order n, then also (x+i)r>f(x)

(j=l, 2, • • ■ ) is uniformly continuous of order n.

In consequence of Theorem 3, with m—0, we have

(3.31) u.b.     | (* + i)-'f(x) - (* + i)-'ga(x) | -» 0 as a->co.
— oo<x<oo

Now/(*), therefore also ga(x), is uniformly bounded of order «; hence, by

Theorem 2, g^(x) is bounded in (— co, oo). Consequently

d"   /    ga(x)    \   =       •     c      ga~\x)

dx\(x + i)V   "  ¿Í Cl (x + i)'+l

is bounded in (— oo,   oo), and so (x+i)~'ga(x) is uniformly continuous of

order « for any a. So is, by (3.31), (x+i)~'f(x).

An elementary proof can be given for j^n/2. For j = n, (x+i)~'f(x) is

uniformly continuous of order one, as we see by applying Theorem 1 to this

function.

Lemma 9. If (i) | An,kf(x)\ =7v"/or —H^h^H uniformly in — oo <*< co

and (ii) the numbers <zo, cti, • • • , am (m^n) satisfy the « conditions

(3.32) Í2j'ai = 0 (1 = 0,1, •••,«- 1;/»= 1 for/= 0),
J-0

then

(3.33) Z«,/(*+/Ä)    á^47s: (-£T ^ Ä g ff, - co < * < oo),
j--o

where A depends on the a¡'s only.

Let

m

(3.34) i;- = J2 a.C,_i+n_i,n_i (/ = 0, 1, ■ • • , m).
•—i

From (3.32) we can deduce that b0 = bi= ■ • ■ =6„_i = 0; for j>m we take

bj = 0. Computing the a/s, we obtain

(3.35) a¡ = ¿ (- l)*Cn,.ôJ+, (j = 0, 1, • • • , m),

¿ aif(x + jh) = ¿ OA^/Í x+(j-n)h).
j-0 j-n
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£ a,/(x + jh)
3=0

g.K2Z\bj\=AK      (-ZZ ^ A ̂  ZZ, - oo < x < oo),
3=n

which completes the proof. Using Lemma 4, we deduce from (3.35) that

(3.36) £ otf(x + jt)
3=0

= A'(l + | /|n)        (-   oo   < / <   00,  -   00   <  x <   oo).

3.4. Proof of Theorem 3 for m>0. Without loss of generality we may take

m = «. We set/3-(x) = (x+i)-)/(x). The function

(3.41)    ya(x) =  f    K(t)f(x + t/a)dt =   f   k(Í)(x + i + t/a)mfm(x + t/a)dt
J —00 J -00

belongs to G„ (see 3.21). Now we have

(£ + r)- = £-+£ (- l)i+1Cm jT'(k + r)— i.
3=1

Hence

(3.42)      ya(x) = (x+ i)™ha(x) + £ — Aa,,(x)-+ £ — Aa,,-(x),
3=1   a' 3=n   a'

where

(3.43)
Aa,,(*) = J    t'K(t)fj(x + t/a)dt;        ha(x) = J    ic(t)fm(x + t/a)dt;

Cj= (- l)i+1Cm,j-,j = 1,2) ••• ,tn.

Forjan the functions A„,3(x) are bounded uniformly with respect to x and a,

as fj(x) is bounded for j = w. Hence the last term in (3.42) tends to zero as

a—*00, uniformly in — 00 <x< 00 ; we denote it by Ra(x). When « = 1 there

is no second term on the right in (3.42). Let now w_2. We form

2n-2

£
<=0

£   (-   l)*C2B_l,.ya/(2B-.-l)(*)   =   (*+  i')m£   (—   l)*C2B-l,.AŒ/(2B-,-l)(*)

(3.44) + X) ií   X (- 1)'C2b_1..(2» - 1 - s)'
,_i  a'    ,_o

r" (       2n- s - 1 \
• J        t'K(t)fj Ix +-t\ dt + $a(x),

denoting by 3a(*) some finite linear form of the functions Zca/(2B-i-«); evi-

dently 3a(*)—»0 as a—>oo, uniformly in (—oo<x<=o). We set
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N = 2n-1;       a.j = (- 1)'CN..(N - s)i;

»=i          (        N - s \
*K*. t) = £ a..ifi[ * +-M (j = 1, 2, •••,«- 1);

«=0 \ OL /

Hj(x) =  I    th(t)$jdt.

(3.45)

We have

N

N > « > 1,        a*,,- = 0,        $,- = £ a,,jfj(x' + sf)
<-o

(x' = x + tN/a, t' = - ¿/a),

and

(3.46) £ a,,jSl = 0, for I = 0, 1, •••,«- 1
<=o

and for anyj (j = l, 2, • • • , «—1); for the latter sum consists of the terms

(- l)kCj,kN'-"22 (- iyCN,.s*+'    (k = 0, 1, 2, • • • ,/)
<=o

each of which can be shown to vanish, since 0^k+l = 2w — 2 = N— 1. For any

of thej's concerned, therefore, the a,,,- (s = 0,1, ■ • • , N) satisfy the conditions

of Lemma 9, and/3(*) is uniformly continuous of order w by Lemma 8. Hence,

by (3.36), we have

| $,-|   ^Aj(l + \t\") (-   00   < t <   CO,  -   CO   <  x <   oo )

uniformly with respect to x and t, and with respect to a for 1 =a < oo. Hence

Hj(x) is uniformly bounded with respect to x and a. Consequently the second

term on the right in (3.44) tends to zero as a—»oo, uniformly with respect

to x. Hence, taking

JV-l

(3.47) ga(x) = £ (- l)'CN,.hanN-t)(x),
»-0

we have

(3.48)        u.b.
— 00<£<»

N-l

£ (—   l)"CN,.ya/<.N-,)(x)   —   (X +  i)mga(x)\ -

Now/(x) is uniformly continuous of order « and, therefore, of order N as well.

Thus the sum in (3.48) tends to/(x) as a—»oo, uniformly with respect to x

(see 3.22, and so on). This completes the proof.

4. The half-plane. The results of §3 will now be used to deal with func-
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tions which are analytic in a half-plane.

4.1. Results and lemmas.

Theorem 4. If, for 0<y<oo, (i) F(z) (z=x+iy) is analytic and (ii)

|F(z)| <Asesï'ï whenever ô>0, and if (iii) F(x), the limit-function of F(z)

(y—>0), is uniformly continuous of some order, then, given m (m=0, or

1, 2, • • • ). there are functions ga(z)(EGa (0<a< co) such that

(4.11) u.b. | F(z) - (z + i) mga(z) | -» 0 as a -* co.
— eo<x<co ,oáí/<«

Corollary. If F(z) satisfies (i) and (ii), and if (iii') for some integer

m>0, (x+i)mF(x) is uniformly continuous of some order, then there are func-

tions ga(z)&Ga (0<a< co) such that

(4.12) u.b. {(l + |e|)»|F(a) - g«(z) | } -> 0        as«-»«.
— oo<x<« ,0^1/<»

Evidently each of the functions ga(z) nearly coincides with T^z) for suffi-

ciently large values of z, uniformly in thé half-plane y = 0. The application of

the corollary to the function zr (r>0; O^arg z^ir) is obvious(7).

Lemma 10.   If, for  0<argz<ir/a,   (i) f(z) is analytic and  (ii)   |/(z)|

<exp (\z\ß) where 0<ß<a, thenf(Ç), the limit-function of f(z) (z—>£), exists

for almost all £ when arg £ = 0 or arg %=ir/a.Tf, furthermore, (iii) |/(£)| ^A

uniformly on the two lines arg £ = 0 and arg £=7r/a, then |/(z) | —A uniformly

for 0 = arg z 5S ir/a. The result holds if, instead of (ii), it is merely required that

|/(z)| <A¡ exp (51 z|a) for any 5>0.

Lemma 11. If Fiz) satisfies the conditions (i) and (ii) of Theorem 4, and if

\An,hF(x)\ =Kfor -H^h=H, - <*> <x< *>, then

I An,kF(z) | =

and

Y,(-iycn,iF(z + jh)
i-o

^ 7£ (- H = h^H)

\An,P(z)\ ^A(l + \t\») (-oo</<oo)

uniformly in the half-plane y ̂  0.

4.2. O« ¿fee lemmas, and proof of the theorem. Lemma 10 is a slight generali-

zation of well known results(9). Applying this result to the function An,hF(z),

and using Lemma 4, we deduce Lemma 11.

To prove the theorem we show first that the functions ga(z) are uniformly

(') For example, E. C. Titchmarsh, The theory of functions, Oxford, 1932, 5.61 and 5.62.

By the transformation z = z11" the lemma is reduced to its special case 0 <arg z <ir, 0 </3 < 1. The

function <j>(z) =exp ( — &-'Ty,1zy)f(z) (e>0; ß<y<l), analytic and bounded for y>0, is now

discussed using the Fatou theorem and the Poisson integral.
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bounded in the half-plane y = 0, assuming that m is not smaller than », the

order of uniform continuity of F(x). We use the notations of §3.4. The func-

tion fm(z) = (z+i)-mF(z) is bounded for real values of z and, by Lemma 10,

therefore, uniformly bounded for y = 0. As t2k(t) is uniformly bounded for

— ay = 3(t) <0(10), we may apply the Cauchy theorem to the integral

K(at - az)fm(t)dt =   I K(r)fm (-\- z)dr,
—oo •' —aiy—ai \<X /

fixing z (y>0). Hence

I ha(z) | = I f   K(t)fJ— + z\dt\<B f   K(t)dt = B,
\J-K \OL / \ J _„

uniformly with respect to z (y^O). Therefore the function ga(z), defined by

(3.47), is uniformly bounded for y = 0. Thus we can apply Lemma 10 to the

function F(z) — (z+i)mga(z); and using (3.11), we have

u.b.        | F(z) - (z + i)mga(z) |   =     u.b.     | F(x) - (* + i)mga(x) \ -* 0
VÈÏ0  —oo<2<oo —oo<i<«

as a—* oo. This completes the proof.

Added in proof, January 20, 1947. If in the theorem or in Lemma 10, re-

spectively, (ii) is replaced by (ii)': | Z"(z)|, or |/(z)| (with a = l) is majorised

by At exp i(c+5)|z| } (c>0), then (4.11) holds uniformly in any strip

0=Sy^Z3, or |/(z)| =^e^ for y>0.

The University

Edgbastan, Birmingham, England

(10) G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Berlin, 1925,

p. 36, no. 202. We have \t'k(t)\ Su.b._.<í<.|/2i£(í)| exp (3(t)).


