ON THE CONNECTION BETWEEN GAPS IN POWER SERIES AND THE ROOTS OF THEIR PARTIAL SUMS

BY
P. ERDÖS AND H. FRIED ${ }^{(1)}$

In this paper we are going to investigate the connections between the gaps of power series with the distribution of the roots of their partial sums. Let

$$
\begin{equation*}
f(x)=1+a_{1} x+\cdots+a_{n} x^{n}+\cdots \tag{1}
\end{equation*}
$$

be a power series with the radius of convergence 1 . We say that it has Ostrowski gaps ρ if there exists a $\rho<1$ and a pair of infinite sequences m_{k} and n_{k}, with $m_{k}<n_{k}$ and $\lim n_{k} / m_{k}>1$, such that $\left|a_{n}\right|<\rho^{n}$ for $m_{k} \leqq n \leqq n_{k}$.

It has infinite Ostrowski gaps $\rho(\rho<1)$ if to every $\rho^{\prime}>\rho$ there corresponds a pair of infinite sequences m_{k} and n_{k} (depending on ρ^{\prime}) with $m_{k}<n_{k}$ and $\lim n_{k} / m_{k}=\infty$ such that $\left|a_{n}\right|<\rho^{\prime n}$ for $m_{k} \leqq n \leqq n_{k}$.

We denote by $A(n, r)$ the number of roots of $f(x)=1+a_{1} x+\cdots+a_{n} x^{n}$ within the circle of radius r.

It is well known that every overconvergent power series has Ostrowski gaps, and that every power series with Ostrowski gaps is overconvergent in a domain of which every regular point of the circle of convergence is an interior point.

We are going to prove the following theorems:
Theorem I. A necessary and sufficient condition that a power series have Ostrowski gaps is that there exist an $r>1$, such that

$$
\begin{equation*}
\underset{n=\infty}{\lim \inf } \frac{A(n, r)}{n}<1 . \tag{2}
\end{equation*}
$$

Theorem II. A necessary and sufficient condition that a power series have infinite Ostrowski gaps ρ is that

$$
\begin{equation*}
\liminf _{n=\infty} \frac{A(n, r)}{n}=0 \quad \text { for all } r<\frac{1}{\rho} . \tag{3}
\end{equation*}
$$

Theorem I is not new. It has been proved by Bourion(${ }^{2}$), but his proof is quite different from ours. The proof of Theorem I will be based on the following lemma, which seems interesting in itself.

[^0]Lemma I. If $0<\rho<1$ and $1 / \rho>r>1$, then there exists a constant $c>0$ (depending only on r and ρ) such that every equation $f_{n}(x)=1+a_{1} x+\cdots+a_{n} x^{n}$ $=0$, in which

$$
\begin{equation*}
\left|a_{k}\right|<\rho^{k} \quad(m \leqq k \leqq n) \tag{4}
\end{equation*}
$$

has at least $c(n-m+1)$ roots outside the circle of radius r.
Proof. Without loss of generality we can assume $m>n / 2$. Since the product of the moduli of the roots of our equation is $\left|1 / a_{n}\right| \geqq \rho^{-n}$, at least one of the roots exceeds r. Therefore $N /(n-m+1)>0$, where N denotes the number of roots outside the circle of radius r. If the lemma were false there would exist a sequence of polynomials

$$
\begin{equation*}
f_{\nu}(x)=1+a_{1} x+\cdots+a_{m} x^{m}+\cdots+a_{n} x^{n} \quad\left(m=m_{v}, n=n_{\nu}\right) \tag{5}
\end{equation*}
$$

(here and in the future we shall omit the index ν where there is no danger of confusion) in which $\left|a_{k}\right|<\rho^{k}$, for $m \leqq k \leqq n$, and such that

$$
\begin{equation*}
c=N /(n-m+1) \rightarrow 0 \tag{6}
\end{equation*}
$$

($c=c_{\nu}, N=N_{\nu}$, and so on, $\nu \rightarrow \infty$).
We are going to show that these assumptions lead to a contradiction. We choose

$$
\begin{equation*}
k>\max \left(\frac{1+r}{1-\rho r}, \frac{1}{\rho}\right) \tag{7}
\end{equation*}
$$

We write the polynomials (5) in the following form

$$
\begin{equation*}
f_{\nu}(x)=a_{n} \prod_{i}\left(x-y_{i}\right) \prod_{i}\left(x-z_{i}\right) \prod_{i}\left(x-u_{i}\right)=a_{n} Y(x) Z(x) U(x) \tag{8}
\end{equation*}
$$

where y_{i} denotes the roots for which $\left|y_{i}\right| \leqq r, z_{i}$ the roots for which

$$
r<z_{i} \leqq 2 D, \quad D=k^{n /(n-m+1)}
$$

and u_{i} the roots for which $2 D<u_{i}$. Further we denote by l, s, t the number of roots y_{i}, z_{i}, u_{i} respectively. From (6) we have

$$
\begin{align*}
\lim \frac{s+t}{n-m+1} & =0 ; \text { hence } \\
\lim \frac{s}{n-m+1} & =\lim \frac{t}{n-m+1}=0, \quad \lim \frac{l}{n}=1 \\
\lim \frac{l+s-m+1}{n-m+1} & =\lim \left(1-\frac{t}{n-m+1}\right)=1 \tag{9}\\
\lim \frac{l+s-n}{n-m+1} & =\lim \left(-\frac{t}{n-m+1}\right)=0
\end{align*}
$$

From the definition of the z 's it follows that

$$
r^{s}<|Z(0)| \leqq 2^{s} D^{s}
$$

or

$$
r^{8 / n}<|Z(0)|^{1 / n} \leqq 2^{8 / n} D^{s / n} .
$$

Hence from (9)

$$
\begin{equation*}
\lim |Z(0)|^{1 / n}=1 \tag{10}
\end{equation*}
$$

$$
(\nu \rightarrow \infty) .
$$

From

$$
1=\left|a_{n} \cdot Y(0) \cdot Z(0) U(0)\right|
$$

and (10) it follows that

$$
\begin{equation*}
\lim \left|a_{n} Y(0) U(0)\right|^{1 / n}=1 . \tag{11}
\end{equation*}
$$

If x is any point within the circle of radius D we obtain from the definition of the u_{i} 's that

$$
1 / 2<\left|\left(u_{i}-x\right) / u_{i}\right|<3 / 2
$$

or

$$
(1 / 2)^{t}<\left|U(x) \cdot(U(0))^{-1}\right|<\cdot(3 / 2)^{t} .
$$

Hence from (9)

$$
\begin{equation*}
\lim \left(\left|U(x) \cdot(U(0))^{-1}\right|\right)^{1 / n}=1 \quad\left(U(x)=U_{\nu}(x), n=n_{\nu}\right) \tag{12}
\end{equation*}
$$

Let now ξ be the point on the circle of radius D where the product $|Y(x) Z(x)|$ assumes its maximum. It follows from Cauchy's formula that this maximum is greater than D^{l+s}. We obtain from

$$
\left|f_{v}(\xi)\right|=\left|a_{n} \cdot Y(\xi) \cdot Z(\xi) \cdot U(\xi)\right| \geqq\left|a_{n} U(\xi)\right| D^{l+s}
$$

and from (11) and (12) that

$$
\begin{equation*}
\left|f_{\nu}(\xi)\right| \geqq D^{l+s}(1-\epsilon)^{n}|Y(0)|^{-1} \tag{13}
\end{equation*}
$$

for all sufficiently large ν, where ϵ is an arbitrarily small positive number.
Now we shall show that this is impossible, namely that the maximum of $\left|f_{\nu}(x)\right|$ on the circle of radius D is not as large as that.

Put

$$
\max _{k \leqq n}\left|a_{k}\right|=B_{v} .
$$

The index of the largest coefficient is clearly less than m (since $\rho<1$). Now we estimate B_{ν}. Let ω be the point on the unit circle where $\left|f_{\nu}(x)\right|$ assumes its maximum. It follows from Cauchy's formula that

$$
\begin{equation*}
B_{\nu} \leqq\left|f_{\nu}(\omega)\right| \tag{14}
\end{equation*}
$$

From (11) and (12) it follows that

$$
\begin{equation*}
\lim \left|a_{n} Y(0) \cdot U(\omega)\right|^{1 / n}=1 \tag{15}
\end{equation*}
$$

(Observe that $k>1$ so that ω is in the interior of the circle of radius D.) From the definition of the z_{i} we have

$$
r-1 \leqq|z-\omega| \leqq 2 D+1<3 D,
$$

or

$$
(r-1)^{\bullet} \leqq|Z(\omega)|<(3 D)^{\bullet}
$$

Hence from (9)

$$
\begin{equation*}
\lim (Z(\omega))^{1 / n}=1 \tag{16}
\end{equation*}
$$

From $\left|f_{\nu}(\omega)\right|=\left|a_{n} \cdot Y(\omega) \cdot Z(\omega) \cdot U(\omega)\right|$ we obtain by (16) and (15) that

$$
\begin{equation*}
\left|f_{r}(\omega)\right| \leqq(1+r)^{l}(1+\epsilon)^{n} / Y(0) \quad\left(l=l_{r}, \text { and so on }\right) \tag{17}
\end{equation*}
$$

for all sufficiently large v, where ϵ is an arbitrarily small positive number. From (14) and (17) it follows that

$$
B_{\nu} \leqq(1+r)^{l}(1+\epsilon)^{n} / Y(0)
$$

If we denote by M, the maximum of $\left|f_{\nu}(x)\right|$ on the circle of radius D, we have

$$
M_{\nu} \leqq m_{\nu} \frac{(1+r)^{l}(1+\epsilon)^{n}}{Y(0)} D^{m-1}+\sum_{i=m}^{n}(\rho \cdot D)^{i}
$$

or, because of $\rho D>1$,

$$
\begin{equation*}
M_{v}<m \frac{(1+r)^{l}(1+\epsilon)^{n}}{|Y(0)|} D^{m-1}+(n-m+1)(\rho \cdot D)^{n} \tag{18}
\end{equation*}
$$

From (13) and (18) it follows that

$$
\frac{D^{l+\epsilon}}{|Y(0)|}(1-\epsilon)^{n} \leqq m \frac{(1+r)^{l}(1+\epsilon)^{n}}{|Y(0)|} D^{m-1}+(n-m+1) \rho^{n} D^{n}
$$

for sufficiently large ν and arbitrarily small positive ϵ. Hence we obtain from
$\left|y_{i}\right| \leqq r$, (9), the definition of $D, m>n / 2$, and (7)

$$
\begin{align*}
1 & \leqq\left[\frac{m(1+r)^{l}(1+\epsilon)^{n}}{D^{l+s-m+1}(1-\epsilon)^{n}}+\frac{(n-m+1) \rho^{n} \cdot r^{l}}{D^{l+s-n}(1-\epsilon)^{n}}\right]^{1 / n} \\
& <\frac{m^{1 / n}(1+r)^{l / n}(1+\epsilon)}{D^{(l+s-m+1) / n}(1-\epsilon)}+\frac{(n-m+1)^{1 / n} \rho r^{l / n}}{D^{(l+\varepsilon-n) / n}(1-\epsilon)}<\frac{1+r}{k}+\rho r+\eta<1 \tag{19}
\end{align*}
$$

for every η if ϵ is sufficiently small and ν sufficiently large. This contradiction establishes the lemma.

Proof of Theorem I. First we show that (2) is necessary. If the power series has Ostrowski gaps there exists a $\rho<1$ and a pair of infinite sequences m_{k} and n_{k} with $m_{k}<n_{k}$ and $\lim n_{k} / m_{k}=\theta(\theta>1)$ such that $\left|a_{n}\right|<\rho^{n}$ for $m_{k} \leqq n \leqq n_{k}$. By Lemma I, corresponding to any $1<r<1 / \rho$ there exists a positive constant c such that

$$
n_{k}-A\left(n_{k}, r\right)>c\left(n_{k}-m_{k}+1\right)
$$

Hence for sufficiently large k

$$
n_{k}-A\left(n_{k}, r\right)>c n_{k}(1-1 / \theta)
$$

or

$$
\frac{n_{k}-A\left(n_{k}, r\right)}{n_{k}}>c\left(1-\frac{1}{\theta}\right)
$$

and therefore

$$
\lim \inf \frac{A(n, r)}{n}<1,
$$

which shows the necessity of condition (2).
Assume now that (2) is satisfied. Then there exists a sequence n_{k} such that

$$
\begin{equation*}
\lim _{k=\infty} \frac{A\left(n_{k}, r\right)}{n_{k}}<1 . \tag{20}
\end{equation*}
$$

We denote by $f_{n_{k}}(x)$ the polynomial consisting of the first $i_{k}+1$ terms of $f(x)$, and by $x_{i}^{\left(n_{k}\right)}$ its roots. (To simplify notations we shall omit the index' k where there is no danger of confusion.) We choose ϵ so that $0<\epsilon<r-1$. It is well known that for any $\gamma>0$, only a bounded number of roots of $f_{n_{k}}(x)$, $k=1,2, \cdots$, are within the circle of radius $1-\gamma$. It follows easily from (20) that positive numbers c and c^{\prime} exist, both less than 1 and such that

$$
\left|\Pi^{\prime} x_{i}^{(n)}\right|>(r-\epsilon)^{c n} \quad\left(n=n_{k}\right)
$$

for sufficiently large k, where $\left|\Pi^{\prime} x_{i}^{(n)}\right|$ is the product of at least $c^{\prime} n_{k}$ roots of $f_{n_{k}}(x)$. Thus we obtain

$$
a_{n_{k}}<(r-\epsilon)^{-c n_{k}} .
$$

Hence if we choose δ such that $(r-\epsilon)^{-c}<\rho<1$, we can conclude that $\left|a_{n_{k}}\right|<\rho^{n_{k}}$. Now we choose δ such that

$$
0<\delta<\rho(r-\epsilon)^{c}-1 .
$$

By Stirling's formula it is easy to see that $C_{n, l n}<(1+\delta)^{n}$ for sufficiently small l. Now for

$$
1 \leqq p \leqq l n \quad \text { and } \quad p<\left(1-c^{\prime}\right) n \quad\left(p=p_{k}, n=n_{k}\right)
$$

we obtain

$$
\left|a_{n-p}\right| \leqq C_{n, p}\left|\prod_{i=1}^{p} \xi_{i}\right| /\left|\prod_{i=1}^{n} x_{i}^{(n)}\right|
$$

where $\xi_{1}^{(n)}, \cdots, \xi_{p}^{(n)}$ are the roots with the greatest absolute values. Therefore we have

$$
\left|a_{n-p}\right|<\left(\frac{1+\delta}{(r-\epsilon)^{c}}\right)^{n}<\rho^{n}<\rho^{n-p}
$$

which completes the proof of Theorem I.
For the proof of Theorem II we need the following lemma:
Lemma II. Let $f(z)=1+a_{1} z+\cdots+a_{n} z^{n}+\cdots$ be a power series with Ostrowski gaps ρ and radius of convergence 1 , and let $\epsilon>0$; then for each

$$
\begin{equation*}
r<\left(\frac{1}{\rho}\right)^{\lambda} \text { where } \quad \lambda=\frac{\epsilon}{\sigma+\epsilon} \quad \text { with } \quad \mu=\lim \inf \frac{m_{k}}{n_{k}} \tag{21}
\end{equation*}
$$

we have

$$
\begin{equation*}
\liminf _{k=\infty} \frac{A\left(n_{k}, r\right)}{n_{k}} \leqq \liminf _{k=\infty} \frac{m_{k}}{n_{k}}+\epsilon \tag{22}
\end{equation*}
$$

If this lemma were false there would exist an

$$
\begin{equation*}
r_{1}<(1 / \rho)^{\lambda} \tag{23}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lim _{k=\infty} \frac{A\left(n_{k}, r_{1}\right)}{n_{k}}>\lim _{k=\infty} \frac{m_{k}}{n_{k}}+\epsilon \tag{24}
\end{equation*}
$$

(We consider if necessary a subsequence of m_{k} and n_{k}.) We choose r_{2} so that

$$
\begin{equation*}
1<r_{2}<1 / \rho \quad \text { and } \quad r_{1}<\hat{r_{2}} \tag{25}
\end{equation*}
$$

Thus $r_{1}<r_{2}$. Denote by $M_{n_{k}}(r)$ the maximum of $f_{n_{k}}(x)$ on the circle of radius r. From Jensen's formula we have

$$
\begin{equation*}
M_{n}\left(r_{2}\right) \geqq \frac{r_{2}^{\mu_{2}}}{\left|a_{1} \cdot a_{2} \cdots a_{\mu_{2}}\right|}, \quad \quad \mu_{2}=A\left(n, r_{2}\right), \quad n=n_{k} \tag{26}
\end{equation*}
$$

where $a_{1}, \cdots, a_{\mu_{2}}$ are the roots of $f_{n}(x)$ within the circle of radius r_{2}. Hence

$$
\begin{equation*}
M_{n}\left(r_{2}\right) \geqq \frac{r_{2}^{\mu_{2}}}{r_{1}^{\mu_{1} r_{2}-\mu_{1}}}=\left(\frac{r_{2}}{r_{1}}\right)^{\mu_{1}}, \quad \quad \mu_{1}=A(n, r) \tag{27}
\end{equation*}
$$

Since $\left|a_{t}\right|<\rho^{2}$ for $m<t<n$ we obtain

$$
\begin{equation*}
M_{n}\left(r_{2}\right) \leqq(1+\eta)^{m} \cdot m \cdot r_{2}^{m}+(n-m+1)\left(\rho r_{2}\right)^{m} \tag{28}
\end{equation*}
$$

where η is arbitrarily small. From (27) and (24) we obtain

$$
\left(M_{n}\left(r_{2}\right)\right)^{1 / n} \geqq\left(\frac{r_{2}}{r_{1}}\right)^{\mu_{1} / n} \geqq\left(\frac{r_{2}}{r_{1}}\right)^{\sigma+\epsilon}
$$

and from (28)

$$
\left(M_{n}\left(r_{2}\right)\right)^{1 / n} \leqq r_{2}^{\sigma}
$$

for sufficiently large k. Hence

$$
\left(\frac{r_{2}}{r_{1}}\right)^{\sigma+\epsilon} / r_{2}^{\sigma}=\frac{r_{2}^{\epsilon}}{r_{1}^{\sigma+\epsilon}} \leqq 1
$$

or

$$
r_{2}^{\epsilon /(\sigma+\epsilon)} \leqq r_{1}
$$

which contradicts (25). Thus Lemma II is proved:
Proof of Theorem II. Condition (3) is necessary. This follows immediately from Lemma II; here we have $\lim m_{k} / n_{k}=0$.

Condition (3) is sufficient. If a power series has no infinite Ostrowski gaps ρ, there exists a $\rho^{\prime}\left(\rho<\rho^{\prime}<1\right)$ so that we have for every sequence n_{k} a corresponding sequence m_{k} such that $\left|a_{m_{k}}\right|>\left(\rho^{\prime}\right)^{m_{k}}$ and $m_{k}>c n_{k}$ for some $c>0$. If we choose r so that $1 / \rho^{\prime}<r<1 / \rho$ we have

$$
\begin{equation*}
M_{n_{k}}(r)>\left(\rho^{\prime} r\right)^{m_{k}}>\left(\rho^{\prime} r\right)^{c n_{k}} \tag{29}
\end{equation*}
$$

for some $c>0$ where $\rho^{\prime} r>1$.
On the other hand if we choose r^{\prime} so that $r<r^{\prime}<1 / \rho$ and if (3) holds, there exists a sequence n_{k} so that $f_{n_{k}}(x)$ has only $o(n)$ roots within the circle of radius r^{\prime}. We write

$$
f_{n}(x)=g_{n}(x) h_{n}(x) \quad\left(n=n_{k}\right)
$$

where

$$
g_{n}(x)=\Pi\left(1-\frac{x}{y_{i}}\right), \quad h_{n}(x)=\Pi\left(1-\frac{x}{z_{i}}\right)
$$

and y_{i} are the roots inside, z_{i} the roots outside the circle of radius r^{\prime}. Therefore
the degree of $h_{n}(x)$ is $o(n)$. There clearly exists an $l<1$ such that

$$
f_{n}(x) \neq 0 \quad \text { for }|x| \leqq l
$$

(since $f(0)=1$). Thus

$$
\lim \left(f_{n}(x)\right)^{1 / n}=1 \quad \text { for }|x| \leqq l
$$

where that determination of $f_{n}(x)$ is taken which is 1 when $x=0$. Also

$$
\begin{equation*}
\lim \left(h_{n}(x)\right)^{1 / n}=1 \quad \text { for }|x|<l . \tag{31}
\end{equation*}
$$

Therefore from (30) and (31)

$$
\begin{equation*}
\lim \left(g_{n}(x)\right)^{1 / n}=1 \tag{32}
\end{equation*}
$$

$$
\text { for }|x|<l .
$$

We have

$$
\begin{equation*}
g_{n}(x) \leqq \Pi\left(1+\left|\frac{x}{y_{i}}\right|\right) \leqq\left(1+\frac{|x|}{r^{\prime}}\right)^{n} \leqq 2^{n} \quad \text { for }|x| \leqq r^{\prime} . \tag{33}
\end{equation*}
$$

Thus by Vitali's theorem (by (32) and (33))

$$
\begin{equation*}
\lim \left(g_{n}(x)\right)^{1 / n}=1 \quad \text { for }|x| \leqq r<r^{\prime} \tag{34}
\end{equation*}
$$

From

$$
\max _{|x| \leq r} h_{n}(x) \leqq\left(1+\frac{r}{l}\right)^{o(n)}
$$

we obtain from (34)

$$
\left|f_{n}(x)\right|=\left|g_{n}(x)\right|\left|h_{n}(x)\right|<(1+\delta)^{2 n} \quad \text { for }|x| \leqq r
$$

for arbitrarily small $\delta>0$ and sufficiently large k. Therefore we have

$$
\lim \sup \left(\left|M_{n_{k}}(r)\right|\right)^{1 / n_{k}} \leqq 1,
$$

which contradicts (29). This completes the proof of Theorem II.
Let $\sum_{k=0}^{\infty} a_{k} x^{k}\left(a_{0}=1\right)$ be a power series of radius of convergence 1 which has Ostrowski gaps. Let $f_{n_{k}}(x)=1+\cdots+a_{n_{k}} x^{n k}$ and $\lim \left|a_{n_{k}}\right|^{1 / n_{k}}=1 / l$. Bourion ${ }^{2}$) remarks that every boundary point of the region of overconvergence of $f_{n_{k}}(x)$ has a distance from the origin which is less than a constant depending on l. In fact by using the concept of transfinite diameter ${ }^{(8)}$ it is easy to see that this constant is less than $4 l$. We are going to show that this constant is greater than l.

Let $T_{n}(x)$ be the nth Tschebicheff polynomial belonging to the interval $(0,4)$. It is well known that the maximum of $T_{n}(x)$ in $(0,4)$ equals 2 . We de-

[^1]note by A_{n} the largest coefficient (in absolute value) of $T_{n}(x)$. It is easy to see that $\lim \left|A_{n}\right|^{1 / n}<4$. Let n_{i} tend to infinity sufficiently fast and consider the power series
$$
f(x)=\sum_{i=1}^{\infty} x^{m_{i}} \frac{T_{n_{i}}(x)}{A_{n_{i}}}, \quad \quad m_{i}=m_{i-1}+n_{i-1}+1 .
$$

Put

$$
f_{n_{k}+m_{k}}(x)=\sum_{i=1}^{k} x^{m_{i}} \frac{T_{n_{i}}(x)}{A_{n_{i}}}
$$

It is easy to see that if the n_{i} tend to infinity sufficiently fast the circle of convergence of $f(x)$ is $1, \lim \left(1 / A_{n_{k}}\right)^{1 /\left(n_{k}+m_{k}\right)}>1 / 4$ and every interior point of $(-1,4)$ is in the region of overconvergence of $f_{n_{k}+m_{k}}(x)$. This completes the proof.

Let us denote by $\phi(l)$ the maximum distance of a boundary point of the region of overconvergence from the origin. We have

$$
l<\phi(l)<4 l .
$$

The question of the exact value of $\phi(l)$ remains open.
Added in proof. P. Turán recently pointed out that Lemma I is a consequence of the following theorem of Van Vleck (see, for example, Dieudonné, La theorie analytique des polynomes d'une variable à coefficients quelconques (Mémorial des Sciences Mathématiques, vol. 93), Paris, Gauthier-Villars, 1939). Let $h(z)=b_{0}+\cdots+b_{n} z^{n}$ and α be the unique positive root of

$$
C_{n-1, p-1}\left|b_{0}\right|+C_{n-2, p-2}\left|b_{1}\right| x+\cdots+C_{n-p, 0}\left|b_{p-1}\right| x^{p-1}-\left|b_{n}\right| x^{n}=0 .
$$

Then $h(z)$ has at least p roots in $|z| \leqq \alpha$.
More precisely, Turán obtains the following result: Let $\rho>\rho^{\prime}>1$, $0<\theta<1 / 10$, and

$$
\theta \log \frac{20}{\theta}<\frac{9}{20} \log \frac{\rho}{\rho^{\prime}}
$$

and n sufficiently large. Then if $f(z)=1+\cdots+a_{n} z^{n},\left|a_{\nu}\right|<\rho^{-\nu}$ for $m<\nu<n$, $f(z)$ has for $|z|>\rho^{\prime}$ at least $\theta(n-m)$ roots.

Turán obtains this result by a simple computation, by applying Van Vleck's theorem with $p=[\theta(n-m)]+1$ to $z^{n} f(1 / z)$.

[^0]: Presented to the Society, September 12, 1943; received by the editors September 25, 1946.
 ${ }^{(1)}$ Deceased December 23, 1945.
 $\left.{ }^{(2}\right)$ L'ultra convergence dans les series de Taylor, Actualités Scientifique et Industriel, no. 472, Paris, 1937.

[^1]: ${ }^{(3)}$ For the definition and properties of the transfinite diameter see M. Fekete, Math. Zeit. vol. 17 (1923) pp. 228-249. The result we need is that the transfinite diameter of an interval of length l is $l / 4$.

