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In this paper we are going to investigate the connections between the gaps

of power series with the distribution of the roots of their partial sums. Let

(1) f(x) = i + aix+--. + anx» + - - -

be a power series with the radius of convergence 1. We say that it has Ostrow-

ski gaps p if there exists a p<l and a pair of infinite sequences mk and nk,

with mk<nk and lim nk/mk>i, such that | an \ < pn for mk á « Û «*.

It has infinite Ostrowski gaps p (p<l) if to every p'>p there corresponds

a pair of infinite sequences mk and nk (depending on p') with mk<nk and

lim nk/mk= « such that | a» | < p'B for mk á « ú nk.

We denote by.d(«, r) the number of roots of f(x) = 1 -f- aix + • • • + anxn

within the circle of radius r.

It is well known that every overconvergent power series has Ostrowski

gaps, and that every power series with Ostrowski gaps is overconvergent in a

domain of which every regular point of the circle of convergence is an interior

point.

We are going to prove the following theorems:

Theorem I. A necessary and sufficient condition that a power series have

Ostrowski gaps is that there exist anr>i, such that

A(n,r)
(2) lim inf —- < 1.

n*»°o n

Theorem IL A necessary and sufficient condition that a power series have

infinite Ostrowski gaps p is that

A(n,r) 1
(3) lim inf —-= 0 f or all r < — •

B=« W P

Theorem I is not new. It has been proved by Bourion(2), but his proof is

quite different from ours. The proof of Theorem I will be based on the follow-

ing lemma, which seems interesting in itself.
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Lemma I. If 0<p<l and l/p>r>l, then there exists a constant c>0 (de-

pending only on r and p) such that every equation fn(x) =l+aix+ • • ■ +anx"

= 0, in which

(4) | ak | < pk (m ^ k g n),

has at least c(n — m+l) roots outside the circle of radius r.

Proof. Without loss of generality we can assume m>n/2. Since the prod-

uct of the moduli of the roots of our equation is | l/o„| èP~n, at least one of

the roots exceeds r. Therefore N/(n — m + l) >0, where A7 denotes the number

of roots outside the circle of radius r. If the lemma were false there would

exist a sequence of polynomials

(5) f,(x) = I + aix + • ■ • + amxm + ■ ■ ■ + anxn        (m = m„n = n,)

(here and in the future we shall omit the index v where there is no danger of

confusion) in which \ak\ <pk, for m^k^n, and such that

(6) c =N/(n - m+ 1)-> 0

(c = cy, N = Ny, and so on, v—-><»).

We are going to show that these assumptions lead to a contradiction. We

choose

(7) k > max (i±i, 1).\1 — pr       p /

We write the polynomials (5) in the following form

(8)        fy(x) = flnTT (x - yt)II (x - Zi) IT (* - «•) = anY(x)Z(x)U(x)
i i i

where y< denotes the roots for which | y¿| ¿r, Zi the roots for which

r <Zi^2D,       D = ¿»/c—-»+»,

and Ui the roots for which 2D<u¡. Further we denote by /, s, t the number

of roots y<, z,-, «¿ respectively. From (6) we have

s + t
lim-= 0;   hence

n — m + 1

(9)

s t I
lim- = lim-= 0,    lim — =1;

n — m+l n — m+l n

l + s — m + 1
lim

n — m +

l + s — n
lim- = lim

n — m + 1

hl / t \
- = lim (l-) = 1;

\        n — m + 1/

(-'—)-"■\     n — m + 1 /
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From the definition of the z's it follows that

r' < | Z(0) | ^ 2°D°

or

r'ln < | Z(0) |1/n g 2'lnDsln.

Hence from (9)

(10) lim IZ(O)!1'" =1 (»-> oo).

From

1 = |o»-F(0)-Z(0)£7(0)|

and (10) it follows that

(11) lim IflnF^t/tO)!1'" = 1.

If x is any point within the circle of radius D we obtain from the definition

of the m/s that

1/2 < | (m - x)/ui | < 3/2

or

(l/2)><\U(x)-(U(0))-i\ <-(3/2)<.

Hence from (9)

(12) lim (| U(x)-(U(0))-i\yi» = 1 (U(x) = U,(x),n = n,).

Let now £ be the point on the circle of radius D where the product | Y(x)Z(x) \

assumes its maximum. It follows from Cauchy's formula that this maximum

is greater than Dl+a. We obtain from

I /,(*) I - I <*»-F(Ö -Z(k) ■ £7(0 | è | anU(i) | D'+'

and from (11) and (12) that

(13) [/,(*) | *Dl+-(l-e)"\Y(0)\-i,

for all sufficiently large v, where e is an arbitrarily small positive number.

Now we shall show that this is impossible, namely that the maximum of

|/„(x)| on the circle of radius D is not as large as that.

Put

max  | ak \ = Bv.

The index of the largest coefficient is clearly less than m (since p < 1). Now we

estimate B„. Let co be the point on the unit circle where |/\(x)| assumes its

maximum. It follows from Cauchy's formula that
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(14) B,¿\M*)\.

From (11) and (12) it follows that

(15) lim \anY(0)-U(a>)\1'n = 1.

(Observe that k>l so that w is in the interior of the circle of radius D.)

From the definition of the z< we have

r - 1 á | s - « | ^ 2D + 1 < 3D,

or

(r-l)«*|Z(«)| <(3D)>.

Hence from (9)

(16) lim (Z(w))1'» = 1.

From |/,(w)| = \a„- Y(u)■ Z(u)■ U(u>)| we obtain by (16) and (15) that

(17) | /,(«) | =g (1 + r)'(l + e)»/T(0) (I = /„ and so on)

for all sufficiently large v, where e is an arbitrarily small positive number.

From (14) and (17) it follows that

P, = (1 + r)'(l + e)VF(O).

If we denote by M, the maximum of \f,(x) | on the circle of radius D, we have

(1 + f)'(l + «)» »
M. g m,--—- D-1 + £ (p-DY

y \0) i*=m

or, because of pD > 1,

(1 + r)'(l + e)»
(18) M, < m -- y      , Z?-1 + (»-»+ l)(p-P)".

From (13) and (18) it follows that

D'+' (1 + r)'(l + e)n
-(1 - e)n û m-.        ■ g—» + (n - m + l)p»7>

I F(0) | | 7(0) |

for sufficiently large v and arbitrarily small positive e. Hence we obtain from

\y\ gr, (9), the definition of D, m>n/2, and (7)

p»(l-r-r)'(l + «)"       (n-m+l)pn-rl-y¡n

-  LD'+—»+1(1  -«)" P'+-»(l  _ e)n    J»(1 - «)" D'+'-n(l - e)"

(19)
»"»(1 + r)""(l + «)     (» - m + l)»»pr'/»        1 + r

<-1-<-h pr + v < 1
Z)(H--«H-1)/»(1 _ t) p<'+—•)/»(! - «) *
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for every 77 if e is sufficiently small and v sufficiently large. This contradiction

establishes the lemma.

Proof of Theorem I. First we show that (2) is necessary. If the power

series has Ostrowski gaps there exists a p < 1 and a pair of infinite sequences

mk and nk with mk<nk and lim nk/mk = 6 (6>i) such that |o„| <p" for

mk^n^nk. By Lemma I, corresponding to any 1 <r < 1/p there exists a posi-

tive constant c such that

nk — A(nk, r) > c(nk — mk + 1).

Hence for sufficiently large k

nk — A(nk, r) > cnk(i — I/o)

or

nk — A(nk, r)
> c

nk

and therefore

(-4)
A(n, r)

lim inf -1-< 1,
n

which shows the necessity of condition (2).

Assume now that (2) is satisfied. Then there exists a sequence nk such that

A(nk, r)
(20) lim ■ ' < 1.

*■=»      nk

We denote hyfnh(x) the polynomial consisting of the first nk-\-i terms oif(x),

and by jcj"*> its roots. (To simplify notations we shall omit the index k where

there is no danger of confusion.) We choose e so that 0<e<r — 1. It is well

known that for any 7>0, only a bounded number of roots of fnt(x),

k = l, 2, • • • , are within the circle of radius 1—7. It follows easily from

(20) that positive numbers c and c' exist, both less than 1 and such that

Hl'^IXr-e)0" (n = nk)

for sufficiently large k, where Hl'xi"^ is the product of at least c'nk roots of

fnk(x). Thus we obtain

anh <(r- «)—»*.

Hence if we choose 5 such that (r — e)~c<p<l, we can conclude that

\a„k\ <p"*. Now we choose 5 such that

0 < Ô < p(r - e)c - 1.
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By Stirling's formula it is easy to see that C„,¡„ < (1 + 5)" for sufficiently

small I. Now for

1 g p ^ In    and    p < (1 — c')n (p = pk, n = nk)

we obtain

I  0n—p I   =  *^n,p IU n«:(n)

where ¿£B), • • • , ¿¿n) are the roots with the greatest absolute values. There-

fore we have

/  1 + S y

\(r - «)•/
o„_p | < (- J  < p" < p"~p

which completes the proof of Theorem I.

For the proof of Theorem II we need the following lemma:

Lemma II. Let f(z) = l+Oiz+ • ■ • +anzn+ • • •   be a power series with

Ostrowski gaps p and radius of convergence 1, and let e > 0 ; then for each

(21) r <

we have

(22)

(t)'

e .      mk
where    X =-    with    p. = hm inf-

o- + e nk

.    Mn^r)             .     »,
hm inf-  s hm inf-(- e.

If this lemma were false there would exist an

(23) n < (l/Py

such that

A(nk, r-i) mk
(24) lim •-  > lim-(- e.

t=«       nk t=«¡ nk

(We consider if necessary a subsequence of mk and nk.) We choose r2 so

that

(25) 1 < r2 < 1/p    and    ri < r2.

Thus ri <r2. Denote by Mnk(r) the maximum off„k(x) on the circle of radius r.

From Jensen's formula we have

(26) Mn(r2) £

m:
r2

fll-Oj • • • o,.
M2 = .4(n, f2),        » = nk,
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where ax, ■ • ■ , aK are the roots of fn(x) within the circle of radius r2. Hence

n

(27) Mn(r2) à -¿^ = (-)  , Pi= A(n, r).
Tl *2 VI /

Since | at\ <p' for m <t <n we obtain

(28) Mn(r2) g (1 + r,f-m-r7 + (n - m + i)(Pr2)m

where 77 is arbitrarily small. From (27) and (24) we obtain

(r2 \«/n      /r2 \'+«
(Uf.(r0)1/B = (¿J       = ^-J

and from (28)

(M„(r2))1/n g r¡

for sufficiently large k. Hence

(r2 \'+' / ,        rl

or

r2       Ú ri

which contradicts (25). Thus Lemma II is proved:

Proof of Theorem II. Condition (3) is necessary. This follows immedi-

ately from Lemma II; here we have lim mk/nk = 0.

Condition (3) is sufficient. If a power series has no infinite Ostrowski gaps p,

there exists a p' (p<p'<l) so that we have for every sequence nk a corre-

sponding sequence mk such that | amh\ >(p')mh and mk>cnk for some c>0. If

we choose r so that l/p'<r<l/p we have

(29) Mnk(r) > (p'r)m* > (p'r)'»*

for some c > 0 where p V > 1.

On the other hand if we choose r' so that r<r'<i/p and if (3) holds, there

exists a sequence nk so that fnk(x) has only o(n) roots within the circle of

radius r'. We write

fn(x)   =  gn(x)hn(x) (ii  =   Hk)

where

*«(*) = n(i--).   *»(*)-n(i--^)
and y< are the roots inside, z< the roots outside the circle of radius r'. Therefore



60 P. ERDÖS AND H. FRIED [July

the degree of hn(x) is o(n). There clearly exists an Z<1 such that

/.(*) ^0 for | x | g I

(since /(0) = 1). Thus

(30) lim (fn(x))1/n =1 foi | s| £ J

where that determination oifn(x) is taken which is 1 when x = 0. Also

(31) lim (A»(*))1'" =1 for | *| < /.

Therefore from (30) and (31)

(32) lim (gn(x)yin = 1 for|*|</.

We have

(33) gn(x) á Il(i + 1-1) ̂ (l + ̂ rf= 2"       for I *l = r'-

Thus by Vitali's theorem (by (32) and (33))

(34) lim (gn(x)y'n =1 for | x \ g, r < r'.

From

(r \o(n)

we obtain from (34)

[/.(*) I - I «-(*) I I hn(x) I < (1 + a)2» for I * I ^ r

for arbitrarily small 5>0 and sufficiently large k. Therefore we have

limsupdMa^r)!)1/"*^ 1,

which contradicts (29). This completes the proof of Theorem II.

Let 2~lt-oakXk (o0 = l) be a power series of radius of convergence 1 which

has Ostrowski gaps. Let fnk(x) = l+ ■ • • +ankx'"> and lim |o„t| 1/n* = l/7.

Bourion(2) remarks that every boundary point of the region of overconver-

gence of fnk(x) has a distance from the origin which is less than a constant

depending on /. In fact by using the concept of transfinite diameter(') it is

easy to see that this constant is less than 41. We are going to show that this

constant is greater than /.

Let Tn(x) be the «th Tschebicheff polynomial belonging to the interval

(0, 4). It is well known that the maximum of Tn(x) in (0, 4) equals 2. We de-

(3) For the definition and properties of the transfinite diameter see M. Fekete, Math. Zeit,

vol. 17 (1923) pp. 228-249. The result we need is that the transfinite diameter of an interval

of length I is 1/4.
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note by An the largest coefficient (in absolute value) of Tn(x). It is easy to see

that lim |^4„| 1/n<4. Let m tend to infinity sufficiently fast and consider the

power series

/(*)   =   ¿Z Xm<-■-' m< = mi-x + M.-l + 1.
i-x Am

Put

/»*+»>*(*)   =   2- X^ —.-
t=l Ani

It is easy to see that if the «< tend to infinity sufficiently fast the circle of con-

vergence of f(x) is 1, lim (l/^4„l)1/(ni+m*)>l/4 and every interior point of

( — 1, 4) is in the region of overconvergence of fnt+mk(x). This completes the

proof.

Let us denote by d>(l) the maximum distance of a boundary point of the

region of overconvergence from the origin. We have

I < <j>(l) < 41.

The question of the exact value of d>(l) remains open.

Added in proof. P. Turan recently pointed out that Lemma I is a conse-

quence of the following theorem of Van Vleck (see, for example, Dieudonné,

La théorie analytique des polynômes d'une variable à coefficients quelconques

(Mémorial des Sciences Mathématiques, vol. 93), Paris, Gauthier-Villars,

1939). Let h(z) =b0+ • • • +bnZn and a be the unique positive root of

Cn-x.P-x | h | + C„_2,P-21 bx | x + • • • + Cn-P.o \ bP-x | X*-1 - | bn | xn = 0.

Then h(z) has at least p roots in \z\ ^a.

More precisely, Turan obtains the following result: Let p>p'>l,

O<0< 1/10, and

20       9 p
6 log — <— log •—

6       20        p'

and n sufficiently large. Then if/(z) =1+ • • • +a„zn, \a,\ <p~" for m<v<n,

f(z) has for \z\ >p' at least 8(n — m) roots.

Turan obtains this result by a simple computation, by applying Van

Vleck's theorem with p= [d(n-m)]+i to znf(i/z).

University of Pennsylvania and

swarthmore college


