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1. Introduction. Let p„(x), n =0,1, • • • , be a set of functions orthonormal

on an interval (a, b), and belonging to both a Lebesgue space Lp(a, b) and its

conjugate Lp'(a, b), p>l. We shall say that the set has the property of p-

mean convergence or forms a basis for Lv(a, b) if the formal expansion

f(x)~t,Pn(x) C f(y)pn(y)dy
0 Ja

of every function/(x) in Lp(a, b) converges to/(x) in the pth mean.

A classical theorem of Marcel Riesz [l](2) asserts that the functions

(2/ir)lli cos nx, « = 0, 1, • • • , form a basis for Lp(0, it) for all p>\. An exam-

ination of the literature discloses only three further sets for which the prop-

erty has been studied (3): the Haar functions [2], the Fourier transforms of

the Laguerre polynomials [3, 4], and the Walsh functions [14]. These sets

are bases for Lp(0, 1), Lp( — oo, oo ), and Lp(0, 1) respectively, for all values of

p>l (in the case of the Haar functions for p = l also).

It is the object of this study to investigate the extent to which the prop-

erty of p-mean convergence is shared by other sets of functions. The methods

of functional analysis supply useful necessary and sufficient conditions, but

there seems to be no general method for determining whether a given set

actually fulfills them, and each must be examined on its own merits.

It is natural to begin with a set of functions as nearly like {cos rax}as

possible. The particular choice made here is the set {cos anx\ arising from a

simple Sturm-Liouville problem

/' + «2y = 0;       Ky(ii) + y'(ir) = 0,

y'(0) =0;       K > 0

on the interval (0, x). Since ar = n+0(l/n) it is reasonable to expect that the

set will behave with respect to mean convergence exactly like the set {cos nx}.

This we verify in Chapter I. The famous integral inequality of Hubert [6;

Presented to the Society, April 27, 1946; received by the editors November 7, 1946.

(l) The theorems of Chapter II were obtained in 1945 when the author was a Jewett Fellow

at Yale University.

(') Numbers in brackets refer to the bibliography at the end of the paper.

(') This does not include results for Legendre and other orthogonal polynomials an-

nounced recently by the author without proof [5]. The missing proofs will be supplied in this

paper and a sequel.
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226] turns up in unexpected fashion as the crux of the proof.

That the result remains valid when {cos nx} is replaced by more general

Sturm-Liouville sets is a simple consequence of the equiconvergence theory

of Sturm-Liouville expansions. From this point of view our proof that

{cos anx\ forms a basis for L"(0, it), p>l, is needlessly complicated. Never-

theless our proof can be carried over to sets of functions for which the equi-

convergence method fails (for example, the functions considered in Chapter

III), and for this reason we have considered it worthwhile to present it here.

When the set is chosen to be the normalized Legendre polynomials on

( —1, 1) the situation alters. A simple example (§7) already shows that the

property of mean convergence fails for these functions if 1 <p<4/3; it fol-

lows by a general principle (§2) that it must also fail for the conjugate ex-

ponents p>4. Chapter II is devoted to a proof of Zygmund's (unpublished)

conjecture that the property does hold for 4/3<p<4. Here again the proof

eventually reduces to an integral inequality (§12). This inequality appears

to be new, and may be of some interest in itself. The status of the end-values

p=4/3, p=4 is open; analogy with the corresponding situation (which oc-

curs at p = l, p= oo) for trigonometric series suggests failure of the property

at these critical values, but I am unable to confirm this.

Paralleling the step taken in generalizing the functions {cos nx] to

{cos a,#), we consider finally Hille's orthogonal sets of spherical harmonics

{Pan(x)}, where the a„ are no longer integers [7]. It is not surprising that

the results turn out to be the same as for Legendre series (Chapter III).

2. General principles. Before proceeding to the specific problems it is

convenient to state some general principles. It is assumed that {<p„(x)} is

orthonormal, belongs to Lp(a, b) and Lp'(a, b), and is closed in both spaces^).

As usual, ||/||p denotes the norm (f%\f(x) | pdx)llp of an element f(x) of Lp(a, b).

Sn(f) or Sn(f; x) will be used for the partial sums of the expansion of f(x).

Then:

(i) If {<£„} is a basis for Lp(a, b), p>l, it is also a basis for Lp'(a, b).

Obviously the failure of the property for a value of p implies its failure for

p'. Furthermore, we may limit our attention to the interval 1 <pg2; this is

particularly convenient in obtaining negative results. The principle (i) can be

found in Banach [8; 108] as a corollary of more general results.

(ii) To establish that {(p„(x)] is a basis for Lp(a, b), p>l, it is sufficient

to prove that, for all elements f(x) of Lp(a, b),

(2.1) limsup||5„(/)||P< co.
n—*»

We point out that (2.1) is sufficient only in the presence of the hypothesis

of closure assumed at the beginning of the section. To establish (ii) observe

first that \Sn(f)} is a sequence of linear transformations of Lv. From (2.1)

(*) A set is closed if its closed linear span is the entire space.
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and a theorem of Banach and Steinhaus [8; p. 80, Théorème 5] it follows that

||"5n(/)||pá^4p||/J|P, where Ap is independent of n and/. Now, since the pn(x)

are closed, we may invoke another one of their theorems [8 ; p. 79, Théorème 3 ]

which implies in this case that l.i.m.%lxSn(f;x) exists for all/(x). It remains

only to identify this mean limit—call it g(x)—with/(x). Since

lim   I     | Snifl x) - g(x) \pdx = 0,
n-*x   J a

then

lim   f  pm(x)(Sn(f; x) - g(x))dx = 0
n->»  J a

for all m. From the orthonormality of the pm(x) we can conclude that

[f(x) - gix)]pnix)dx = 0S
for all m. Hence/(x)=g(x).

Chapter I. Generalized trigonometric functions

3. The functions {cos anx}. From the equations (1.1) it follows that the

an are the positive roots of the equation

(3.1) a sin air = K cos ar.

These roots are the abscissas of the intersections of the two curves y = K/a,

y = tan air in the first quadrant. Consequently an = n+en, n = 0, 1, • • • ,

0<eB<l/2. But by (3.1)

tan eB7T = K/en + n = 0(1/«),

so that e„ = 0(l/»). Hence an = n+0(l/n). It follows from theorems of Levin-

son [9; pp. 6-7] that the functions {cos a„x} are closed Lp(0, it) for all p>i.

(Warning: Levinson's property of "closure Lp" is equivalent to our "closure

Lp'.") The orthogonality of the set can be verified by direct computation,

but already follows from the fact that the functions are a Sturm-Liouville

set. The functions {an1 cos anx] are orthonormal if

i        Ç * 7T       sin anir cos anT
<rn =   I     cos2 a„xdx — — +

J o 2 2Otn

Theorem 3.1. The functions {o-„1 cos anx] form a basis for Lp(0, ir) for all

p>l.

In view of the closure of the functions in question, it is sufficient to verify

(2.1). This is the object of the following sections.
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4. The functions {cos (» + 1/2)«:}. As a first step we show that the ortho-

normal functions {(2/x)1/s cos (» + l/2)a:}o" are a basis of Z>(0, x) for all

p>l.
Supposef(x)SLP(0, ir); extend it to be even on (—x, x). Then e~ix/2f(x)

G.Lp(—ir, ir), so that on (— x, x)

«-*•'»/(*) = l.i^n. _   ¿ e<»x f   e-«n+1iv<>f(y)dy.
N—<°    2x —JV_1 J —r

This is a consequence of Riesz's theorem  [l],  [10; 153]. Since |e~fa/i| =1

and/(a:) is even,

f(x) = lim.—   2Z e<("+1'2>* I    cos (n + l/2)yf(y)dy
ÍT-»»     IT   —N—l J 0

); and

f(x)  = Lian. — 5_ cos (» + 1/2)» I    cos (n + 1/2)yf(y)dy
if-»»   r   i Jo

on (0, ir). This completes the proof.

Let  X)„(j") denote the partial sums of the expansion of f(x) in the set

{cos (» + 1/2)«}. Then we have established in particular that

(4.1) lim
n—►»

Z(/)

5. A contour integral. Let K be the fixed positive constant of (3.1), and

suppose 0<5<ir, 0<<<7r. Choose AV, so that a:Ar+i>AV>N+l/2>aN and

let C(N) be the contour which consists of the line segment joining iRN to

—iRtr, together with the semicircle which has the segment as diameter and

lies in the right half-plane. Define the integral Z by

1    C 2z cos zs cos ztdz
(5.1) Z-I       •—-

2tí J cut) (z sin xz — A cos xz) cos xz

Let Ci(N) he the curved and &(N) the straight part of the contour. Along

Ct(N) the integral is

/,

-sN 2y cosh ys cosh ytdy

rk     (y sinh xy + K cosh xy) cosh xy

this vanishes since the interval is symmetric in the origin and the integrand

is odd. Hence

(5.2) I = —: f        ••• dz.
2iriJ cj(jt)
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Now the singularities of the integrand in (5.1) are simple poles occurring

at a* and k +1/2, k=0, I, • • ■ , N. Then by (5.2) and the residue theorem

^  cos ats cos ait       2  ¿L
£ -¡-Z cos (* + 1/2)* cos (* + 1/2)/

0 <T* IT      0

(5.3)

-Lf    ...
2iriJ c.iift2icioi c,(2f)

We next obtain an estimate of the right-hand member, independent of N.

2    c cos zs cos zt dzj-Lf
2x/ J c

<fe
Ci(iV) :/I 2iriJ c,(N) cos zx cos zx   (tan zx — K/z)

¿aC      e-i*~-oi»i | ¿z |
•^ c,(JV)

exp { - (2x - 5 - /)2?2v | sin 61 }
-T/2

/.t/2
exp { — (2x — s — t)Rif sin d}d6.

0

de

Now let a = Rn(2it—s—t) and make the change of variable v = a sin 6. The

last term becomes

A Ç' er'dv

2x- s-tJo    [1 - (s/a)2]1'2'

and this is in turn less than or equal to

A/(2t - s-t).

From (5.3) we obtain then that

(5.4)

J*   cos akS cos a*/       2  ¿L
£ -5-£ cos (* + l/2)s cos (* + 1/2)/

o ffk if     o

2x - s - t

where A is independent of N, s, and t.

6. Proof of Theorem 3.1. To prove the theorem we have only to verify

that the partial sums Sn(f) of the expansion of any function/(x) satisfy (2.1).

Employing the notation of §4, we obtain from (5.4) that

tf J o    2t — s — t
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Hence

£(/)||-M/)||,-Ï

where

*(í) = I     9-^-Ï
«/ o 2x — J — Í

+ 4*WIL

Ii».

In view of (4.1), the condition (2.1) is satisfied if \p(s) belongs to A"(0, x). By

the converse of Holder's inequality the latter fact will be established if we

can prove that

Jo J o   2ic — S — I

exists for every function g(s) of Lp'(0, x). But

\f(T-t)\dt
Z=j   g(x - s)ds I

•/ 0 v 0 i + t

and the existence of J follows immediately from Hubert's integral inequal-

ity [6; p. 226].

Chapter II. The Legendre polynomials

7. Legendre series for Kp<4/3. If f(x)E.L( — 1, 1) it has a formal
Legendre series

/(*) ~ Z anPn(x),
o

where aH = (n + l/2)fiif(x)Pn(x)dx. Let Sn([) denote, as usual, the partial

sums. Since

ai \i/p     / c1 \llp
| ¿»»(as) | pdxj     = Í J     | 5w(f; *) - ijf^Cf; at) | "¿a;J    ,

a necessary condition for the p-mean convergence of a Legendre series is that

(7.1) lim aN( f   \pN(x)\*dx)  * = 0.
w-»       \J _i /

We shall prove that there is a function of Lp( — 1, 1), 1 <p<4/3, for which

this condition is violated. It follows that the Legendre polynomials are not a

basis if 1 <p <4/3; nor, by the results of §2, can they be a basis if p>4.

The function in question is f(x) = (1 —x)~314, a standard counterexample

for many purposes. It obviously belongs to Lp( — 1, 1) for 1 <p<4/3. More-
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over [11; p. 249] aN>AN1>* (N-+*>). Now [11; p. 168]

f   \PN(x)\dx>AN-1'\

so that by Holder's inequality

f    | PN(x) \pdxyi» à 2-1"' f    | Pat(x) I dx > AN-1'2.

It follows that

liminfaArf  í     | PN(x) |pdx)     > 0,
y-.» \«/_i /

so that (7.1) is not fulfilled.

The argument used here is not unlike that which proves the divergence

of a series by showing that the general term does not approach zero, and so

is not a very delicate one. It is possible that more refined methods are needed

to settle the case p = 4/3.

8. Properties of the Legendre polynomials. The goal of this chapter is to

establish the following theorem.

Theorem 8.1. The Legendre polynomials form a basis for Lp( — l, 1) if

4/3<p<4.

The proof, which is rather delicate, will be accomplished by a series of

reductions which culminate in the inequalities of §12. In the present section

we shall state the required properties of the polynomials; in particular, we

derive a new form of Christoffel's identity more suitable for our purposes than

the standard one.

First, some inequalities. We shall need the familiar inequality [ll; p. 160,

Theorem 3.3]

(8.1) (1 - x2)1'4^ + 1)1/21 Pn(x) \£A.

Now we require an estimate for the difference Pn+2(x) —Pn(x). Many writers,

for example Watson [12; p. 315], give the formula

(n+iyi*\Pn(x) - Pn+i(x)\ $A,

which is adequate for the treatment of behavior interior to the interval

( — 1, 1). It does not, however, take adequate account of the cancellation of

the two terms at the end points x = +1. It is precisely at the end points where

the difficulties in our problem occur, and so the more informative inequality

[11; p. 167 (7.33.10)]

(8.2) (1 - x2)-1"^ + l)1'21 Pn(x) - Pn+2(x) | g A
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will be used. I have been unable to get along with anything weaker.

It is important to observe that, in view of the relation [11, p. 71]

1 (1 - x*)P™(x) - -1-ti [Pn(x) - Pn+2(x)],
2 2» + 3

(8.2) can be written

n V/4/     _L   1-V1/2D(1,1>/   \ I   <-   A
(1 - x )    (n + 1)    Pn    (x) | á A

which is precisely the analogue of (8.1) for the Jacobi polynomials P%'tí(x).

It is this observation which suggested to me the extension of Theorem 8.1 to

Jacobi polynomials announced in [5 ] ; the proofs will appear in a sequel.

The partial sums of the Legendre series of f(x) are given by the formula

[11;70]

(8.3) S-(f; *) -  f  f(y)KN(x, y)dy,
J -i

where

_. ,      v      N+l Ptr+i(x)Ps(y) - Plf(x)Py+i(y)
(8.4) KN(x, y) = —-

2 x — y

This form of the kernels, due to Christoffel, will now be recast in another

form, valid for acs^y.

We have, after a simple rearrangement,

Kn(x, y) + KN+i(x, y) = —-— PN+i(x)-—-
2 x - y

+ l±l[PN+2(x)-Píí(x)]^^.
2 x — y

4.   1  p      f-i Pff+l(y)
i" ~ "n+i(x)-

2 x — y

i d      r \i        . . PN+Áy)
-PN+i(x)-

2 x — y

The last two terms, by (8.4), sum to (N+2)~1KN+i(x, y). Transferring them

to the left-hand side yields

/ 1     \ A + 1 PN(y) - Ptf+i(y)
Ks(x, y) + ( 1 - —--) KN+i(x, y) = ——PN+i(x) —^-=^i

\       A + 2/ 2 x — y

2 x — y
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But also KN+i(x, y)=KN(x, y) + (N+3/2)PN+i(x)PN+i(y), so that the left-

hand side is now

/ 1     \ N + 1  2N + 3
(2 - T+-2)Kn(x¡ y)+T+~2 —2— P*"W»«M-

Thus we arrive at the fundamental formula

N+2   N+l PN(y) - PN+2(y)
Kn(x, y) = —-— Ptf+i(x) ■

2JV + 3       2 x - y

JV + 2   AT + 1 r , PN+i(y)

2JV + 3       2 x — y

2V + 1
-— PN+i(x)Pn+i(y).

This form is obviously designed to make use of the inequality (8.2).

9. Estimates of the partial sums. The closure Lp( — 1, 1) of the Legendre

polynomials(5) may be taken for granted, so that our attention centers on

the proof that (2.1) holds for 4/3<p<é. Suppose then that/(x)£-£,»•(-1, 1),

4/3<£<4. By the formulas (8.3) and (8.5)

N + 2   N + 1 /; /•'  PN(y) - PN+2(y)c (t   ï      ^ + 2   N+l „    ,, C1 PN(y)-PN+i(y) „ w
Slf(J' *> = oat  !   -, —~r,— Pn+iÍx) I     -f(y)dy

22^ + 3       2 J_i x—y

iV + 2  Ar+ 1 r^    /s      n ; a1 c1 PN+i(y)f(y)dy

y

N+ 1

2iv +32 J_i        x —

i r1
PN+iix)      PN+iiy)fiy)dy

J -1

The first two integrals exist almost everywhere as Cauchy principal values

[10; p. 317]. Then by (8.1) and (8.2)

| SN(f; x)\<A(N + 1)W*(1 - x2)->'«| f
\J-i

Ps(y) - PN+i(y)

x — y

Ptr+iiy)

f(y)dy

I r1
(9.1) +A(N + iy'\l - x2)1'4    I      -J-^Lf(y)dy

\J-i x — y

+ ¿(tf + 1)"2(1 - *2)-1/4| f   PN+i(y)f(y)dy
\J -i

We shall first dispose of the last of the three terms on the right-hand side

of (9.1) by showing that it has a norm bounded independently of N. By

(•) Or any sequence of polynomials, one of each degree !
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Holder's inequality and (8.1)

\f_P»+i(y)f(y)dy  = ||/||-( J" ' I -W") I''-?)1"

^ ¿(A + l)-1/2||/||p( J ' (1 - y*)->'i'dy\ ' ,

which is finite since p'<4. Then the third term in question is less than or

equal to

a\\J\\ái - s2)-1'4-

Since p<4 this has finite norm.

Returning now to (9.1), we see that Theorem 8.1 is established if we can

prove that the functions

(9.2) (N + l)l'2(l - x2)-1" f
ipN(y) - PN+2(y)

f(y)dy
x — y

and

/' ¿Vn(y)—lL^-f(y)dy
-i x — y

are bounded in norm, independently of N.

10. The reduction of (9.2). Define the function An(y) by

An(y) = (n + iy>2(l - y2)-^{Pn(y) - P*M\.

Then (9.2) is

/>){(^,„_I + l)Ä,

C l   .   . . /((I - y2)/(l - *2))1/4 - 1) H , . C1 AN(y)f(y)
=  I    AN(y)<-\f(y)dy+ I    -dy.

J -i \ x — y ) J -i    x — y

Since An(v) is bounded, by (8.2), the last integral converges almost every-

where as a Cauchy principal value [10; p. 317]. Then the function defined by

(9.2) is in absolute value less than

J     I ¿if(y)
(10.1)

((1 - y2)/(l - x2)Y" - 1

x — y
f(y) I dy

'lAN(y)f(y)
+    I    -dy

\J~i    x

For simplicity we write
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((1 - y2)/(l - x2))"4 - 1
(10.2) K(x, y) =

x — y

Then the function (10.1), in view of (8.2), is less than or equal to

= AI(x)+.JN(x),AfK(,.,)\MUy + \ré^Mdy
J -i IJ -i    x — y

say. By a theorem of Riesz [11; p. 317]

||/*(*)||, á ¿*|M*(y)/(y)|U
and so by (8.2) again

\\Jw(x)\\PZAp\\f(y)\\p.

.   It follows that the functions (9.2) are bounded in norm independently of N if

we can establish that

I(x) = J   K(x,y)\f(y)\dy

belongs to Lp( — 1, 1 ).

11. The reduction of (9.3). We now perform a similar reduction for (9.3).

Let

Bn(y) = (n + 1)"*(1 - y2yi'Pn+i(y).

Then (9.3) is

«/-i l\l — yv J x — y ./_!    x— y

The BatOy) are uniformly bounded, by (8.1). Arguing as in the preceding sec-

tion, it follows that the functions (9.3) are bounded in norm independently of

N if we can establish that

f   K(y,x)\f(y)\dy

belongs to Lp( — l, 1).

12. An inequality. In the two preceding sections we have reduced the

proof of Theorem 8.1 to the following lemma.

Lemma 12.1. If/(x)e¿>(-l, 1), 4/3<£<4, then so do

J   K(x,y)f(y)dy

and
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j   K(y, x)f(y)dy.

K(x, y) is defined as in (10.2).

By the converse of Holder's inequality it is enough to show that for every

function g(x) in Lp'( — 1, 1), p'=p/(p — l), the integrals

(12.1) J   g(x)dx j   K(x,y)f(y)dy

J    g(x)dx J    K(y, x)f(y)dy

converge. We may assume that g(x)^0, f(x)^0. It suffices to prove the con-

vergence of one of these iterated integrals, for inverting the order of integration

and interchanging the rules of p and p' turns one case into the other. We

therefore confine our attention to (12.1).

The iterated integral (12.1) can be written

/i    /•! /I — y2\llpp' /I — yi\-Uvv'
J   f(y)K><p(x, y) {^—J        -&(x)KVp'(x, y) (j^J        dxdy.

By Holder's inequality for double integrals, this is. less than or equal to

(   /•» /■! /I  —   -y2\-l/î>     "I  1/p'

jj    g(x)p'dxj     K(x,y){^—j-2)      dyj

.{J>),,/>,..(^-;)""4
wi)

In view of the fact that/(ELp and g£Z,p' the convergence of (12.1) will be

established if the functions

t\    _    yi\-Up/l /\    _    y2\~llp

C1 (i - y2\Up'

are essentially bounded in — l=ac = l and  — lS|y = l respectively. By the

definition (10.2) of K(x, y) both these functions are of the form

/1 i ,    \/ 1 - t2\"    / 1 - t2\b\

where 0<a<l,0<Z><l, — l<t<l. We shall show in the next section that

this function of t is bounded.
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Before doing so we pause to point out that our proof of Lemma 12.1 im-

plies the interesting inequality

\LK(x, y)f(y)dy Ml/ll,

for 4/3 <p <4. A generalization of this has been stated by the author without

proof in the note [5].

13. The proof completed. The function (12.2) can be written in the form

fij(...).-(...)»
!     -¡-a- \s + t\ds,

J _i I s2 — t2

where the meaning of the dots is clear. This is less than or equal to

[(•••)•-(■■■)', ,n,+|,|f1|t-">--(--->'
1 '    ' J-i | îs - fi«'-i I s2-t2

ds.

In view of the fact that each integrand is even we may replace the integrals

fLi by 2fl. Now let u — 1 — t2, v = 1 — 52, and the last two expressions become,

apart from multiplicative constants,

(13.1)

(13.2) (1

J o

u)1'2 f
J o

(u/v)a - (u/v)h

u — v

11 (u/v)a - («/»)»

dv,

dv

(1 - v)1'2

respectively. Each of these is to be shown bounded in 0 <u <1.

(13.1) can be disposed of by making the change of variable v=}\u. It be-

comes

. l/u I   ^-a _  \-b\

which is bounded by

/J o

/o> 0

1

1 -X

d\

d\.

This converges since 0<a<l, 0<6<1.

(13.2) is a trifle more delicate. Again let v = \u, and it becomes

(1-■"'"(/.'+/,

i/u i x-° _ x-s dX

1 -X

11 i x— - x-

x

(1 - X«)1'2

/'11 x-° — x-* c- d\+ I
o        1 -X               Ji

■1/u I X— - x-» d\

(1 - X«)1'2
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The last term is less than or equal to

l/u■JX-i-°(i _ x«)-i/«dx

where c = min (a, b)>0. Reverting to the original variable v=\u turns the

integral into

u" J    v-l~c(l - v)-1
J u

l2dv.

This approaches the limit 1/e as u—»0, and so must be bounded for 0 g m g 1.

Theorem 8.1 stands established.

Chapter III. Orthogonal sets of spherical harmonics

14. Properties of spherical harmonics. In this brief survey we follow

Hille's dissertation [7], where further information can be found. The roots of

the equation (")

(14.1) *(«) + *(- 1 - a) = A,

when K<2\p( — l/2), are all real, different from a= —1/2, and are symmetric

in this point. Denoting those on the right of the point by ak, k=0, 1, • • ■ ,

we find that —l/2<a0<0, «<a„<« + l, »>0. The functions {Pa„(a;) }o° are

orthogonal and closed L2( — l, 1) [7; p. 56]. Boas and Pollard [13] have shown

that they are in fact closed Lp( — 1, 1) for all p>l. To normalize the functions

we use the formula [7 ; 56]

i       P1   i 2 sin2 or„x    . .
(14.2) an = Pa„(x)dx = {*'(- 1 - «n) - *'(«»)}.

J _i x2(2an + 1)

The formal expansion of any function f(x)Ç_Lp( — l, 1), p>l, takes the

form

(14.3) f(x) = ¿ o-:*Pan(x) f X Pa,(y)f(y)dy.
0 J -i

We note in passing that the {a„} reduce to the integers {n} if A = — oo.

Theorem 14.1. The functions {Pa„(x)} defined above form a basis for

Lp(-1, 1) iy4/3<p<4, but not if Kp<4/3 or p>4.

The proof will follow the lines of Chapter I.

15. A contour integral. Suppose — l<s<l, — Kt<l, a-+i>Rn>N. De-

fine a contour C(N) as follows. It consists of the line segment joining —1/2

+¿A" to —1/2—íRn, closed on the right by the semicircular arc G(A) with

(•) +(x) is defined as r'(*-r-l)/r(*4-l).
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this segment as diameter. Let

2iriJ c

x2(2z + l)Pt(s)P.(t)dz

]ctm 2 sin2 xz[iK- 1 - z) + P(z) - K]

In view of equation (14.1) the integrand has simple poles a0, ai, • • • ,as and

0, 1, • • • , N. Hence, by the residue theorem

» * x2(2a„ + l)Pa(s)Pa„(t)
(15.1) / = E (n + l/2)Pn(s)Pn(t) - £ / '    "K ■

B-o B=o   2 sin2 iran[p'(an) — p'(— 1 — a„)J

The integral along the line segment vanishes, for it is equal to

'-Rif yP-iii+iv(s)P-iii+iy(t)dy
const

/.]bn      cosh2 y{p(- 1/2 + iy) + p(- 1/2 - iy) - K}

which has an odd integrand (7). Then

(2z -f l)Pt(s)P,(t)dz

4t J Ci'am  2 sin2 irz{p(- 1 - z) + P(z) - K]

16. Estimate of the integral I. According to the formula [12; p. 30]

21'2 C '   cos(z + 1/2)^

(cos^ — COS0)1'2

we have

dp

21'2 c'   cos(z+ 1/2)^
P.(cos 6) =- I    ——-—-, .   z = x + iy, 0 < 6 < x,

v Jo   (cos p — cos 9)1'2

P«(cos 8) | ^ Ae'M f   ■
Jo (cosp — COSÖ)1'2

g Ae*WP-i,2(cos 6).

By an asymptotic formula of Hille [7 ; p. 6] this is in turn less than or equal to

¿e*l"l log (x - 6).

Now let s=cos 6, t=cos p. Then the integrand of I is (cf.   [7; p. 62])

less than or equal to

Ae-u*-'-»M log (x - 6) log (x - p)

so

I J I ^ A log (x - 6) log (x - p) f      e-<2r-«-#)l»l | dz |
J Ci(AO

s a log (x - e) log (x - <ji)(2x - e - p)-\

by the argument used in §5. From (14.2) and (15.1) it follows then that

(') We have used here the fact that P-ui-i*(s) =P_i/j+<ï(j).
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ûAT(s,t),(16.1)

where

£ (» + l/2)Pn(s)PK(t) - £ c^P^(s)PJfy
.0 0

log (x — arc cos s) log (x — arc cos /)
T(s, <) = ~

2x — arc cos s — arc cos t

Lemma 16.1. Iff(s)GL"(-l, l),g(t)£Lp'(-l, 1), p>l, then

J*  g(t)dtf   T(s,t)f(s)ds

converges.

On a change of variables the iterated integral becomes

log (x — 0)/(cos 0) sin 0
/log (x — <¡>)g(cos <p) sin <t>d<p I

o J o 2x - 0 - <f>
dd

/"                                         r* log Bf(— cos 0) sin 0
log <Êg(— c°s <£) sin <bd<b I     -¿0.

o                                               Jo                 0 + <f>

It is easily verified that

log <t>g(- cos ¿) sin 0 G Lp'(0, x),

log 0/(- cos 0) sin 0 G ¿>(0, x).

Then the convergence of the integral follows from Hubert's inequality [6;

226].

Corollary 16.1. Z//(s)EZ>( —1, 1), p>l, so does

I    T(s, t)f(s)ds.

17. Proof of Theorem 14.1. Suppose f(s)EL'(-l, 1), p>l. Yet SN(f)
denote the partial sums of its formal expansion (14.3), and £#(/) the partial

sums of its Legendre series. By (16.1) and the corollary just established

|| 2ZN(f)-SN(f)\\p is bounded in N.
If 4/3<p<4, lim supjv.w|| £w(/)||p 1S finite, by Theorem 8.1. Hence the

same is true of lim supAr»«,||5ír(/)||. This proves the first part of Theorem 14.1.

Now suppose 4/3<p<4, or p>4. Since the Legendre polyno-

mials are not a basis for this range of p, there is a function f(s) such that

lim supjv^ooli -Cjw(/)||p— °°- It; follows then that lim supAr«,|í5*(f)ll»>- This
proves the second part of Theorem 14.1.
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