
REPRESENTATION OF JORDAN AND LIE ALGEBRAS

BY

GARRETT BIRKHOFF AND PHILIP M. WHITMAN«

1. Introduction. In a linear associative algebra A one can introduce a new

product B(x, y) in terms of the given operations by setting

(1) 6(x, y) = axy + ßyx,

where a and ß are scalars independent of x and y, a and ß not both zero.

Albert [3] observes(2) that if a linear subset 5 of A is closed under 0 (in par-

ticular, if 5 is A itself) then 5 is of one of three types: 5 is an associative

algebra, closed under the given multiplication xy; or 5 is a Lie algebra with

product obtained by setting a = l and ß= — 1 in (1):

(2) [x, y] = yx - xy;

or 5 is a Jordan algebra with product obtained by setting a=ß = l/2 in (1):

(3) x-y = (xy + yx)/2.

We propose to study various generalizations, properties, and representa-

tions of Lie and Jordan algebras.

2. Definitions and problems. We begin with a generalization of the idea

of equation (1) of the previous section.

Let 21 be any set of abstract algebras (3) closed under given M¿-ary basic

operations /,-, and let 9 be any set of operations 0x, • • • , 0n obtained by

compounding the/,-. If A G21, then the elements of A together with the opera-

tions di, • • • , 6n form an algebra 0(^4). All algebras which can be obtained

in this manner for fixed 0 [and hence fixed 21] are called 0-algebras. Clearly

the definition of ©(.4) is also applicable to the case where A is closed under

the 0i but not under the/,-; we consider examples of this in Theorems 8-10

Presented to the Society, August 23, 1946, under the title Representation theory for certain

non-associative algebras; received by the editors December 8, 1947.

(1) This paper was presented in part to the Algebra Conference, University of Chicago,

July, 1946. The junior author wishes to express his appreciation of a Frederick Gardner Cottrell

Grant by the Research Corporation which assisted this research.

(2) In describing earlier work on the subject, it must be remembered that A is usually

given as an algebra of matrices or of linear transformations. We shall assume familiarity with

the correspondence between associative algebras and algebras of matrices. Any algebra of

matrices is associative under ordinary matrix multiplication, while (essentially through its

"regular representation") every linear associative algebra is isomorphic to an algebra of mat-

rices. The general theory is due to E. Noether [21 J. Numbers in brackets refer to the references

cited at the end of the paper.

(3) For the general theory of algebras, see G. Birkhoff [5], [8]¡ McKinsey and Tarski

[18], [19], [22].
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below. However, for the present we require closure under the /< as well.

By a Lie algebra we mean an algebra L such that L = 8(4) for some asso-

ciative algebra A when ©= [$i, 62) where

(4) 0i(x, y) = x + y,        62(x, y) = yx - xy;

cf. (2).
By a special^) Jordan algebra we mean an algebra / such that .7 = 0(4)

for some associative algebra A when 0 = {0x, 02\ where

(5) 6x(x, y) = x + y,       62(x, y) = (xy + yx)/2;

cf. (3). The field of scalars of course must not be of characteristic 2.

In these two cases respectively, 0(4) may be denoted L(A) and J(A).

Conversely, if X is a given algebra (not necessarily associative) closed

under its operations which are called 0x, 02, • • • , 0n then we may seek to find

an algebra A consisting of the same elements as X but with operations /,-,

such that X = 0(4). We may then say that we have exhibited Jasa 0-alge-

bra. In general, given an arbitrary X and 0, it is not possible(6) to find an A

by means of which we may exhibit X in the above sense. Hence, as usual in

representation theory, we find it convenient to consider homomorphisms as

well as isomorphisms, and to extend the meaning of our terms accordingly.

Definition. Let X be a particular algebra with elements x< and opera-

tions 0x, • • • , 0n, let 21 be a set of algebras, and let 6~x, • • • , 6n be speci-

fied as compound operations on the elements of the algebras of 21. Then a

0-embedding, or 0-representation,of X is a correspondence, a'.x—>a(x), fromX

into A G 21, such that

(6) a(6i(xx, ■ ■ • , xm)) = 6~i(a(xx), ■ • • , a(xm))

for all i and all Xi, • • • , xmÇ.X. We shall restrict ourselves to the case where

A is generated by the a(x<).

The algebra A is then called a 0-envelope of X.

The 0-embedding is called an iso-0-embedding if the correspondence

x—>a(x) is one-to-one, and then A is an iso-0-envelope of X.

If «i, a2, • • • are 0-embeddings of X, in ^-envelopes {Ax, A2, • • • } G21

then

(7) x—>a(x) = (ax(x), a2(x), • • • )

is a ö-embedding of Xina subalgebra4„p0 of the direct union ^41® ̂ 4 2® • • •,

namely, the subalgebra generated by the set of all (ai(x,),a2(x,), • • O.Buto:«

(*) The word special (sometimes concrete) is used to distinguish these algebras from those

defined by identities without reference to an associative algebra; cf. Albert [4], Kalisch [16].

The question remains open whether special Jordan algebras can be defined by identities.

(6) For example, if © is the set of operations (5), it is known that the identity a2(ba)

= (a2b)a must be satisfied in X; cf. [15]. This does not, however, exclude the possibility of a

comparable representation if other operations than the given ft are taken as basic.
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is a homomorphic image of a, in the sense that if a(xí) =a(x¡), then an(xi)

= an(xj), while by (6) and (7), both a and an are homomorphisms with re-

spect to the 0i. Hence we have the following theorem.

Theorem 1. If 21 is closed under the operations of taking direct unions and

subalgebras then there exists 4U(X)G2I such that there is a 0-embedding 0U of

X inAu(X) and any other 0-embedding of X in an algebra of 21 is a homomorphic

image of 0U.

Definition. 0u is called the universal ö-embedding of X in 21, and AU(X)

is called the free 0-envelope of X [with reference to 21 ] or universal 0-aIgebra

of X. In the particular cases of equations (4) and (5) we shall speak respec-

tively of Lie embeddings and envelopes and Jordan embeddings and en-

velopes.

Evidently AU(X) is the free algebra of 21 in the sense that every 4,G21

is a homomorphic image of AU(X), since the correspondence

[(01, 02, • • • , 0t-_i, 0¿, 0i+i, • • • ) G An(X)] —* [a,- G Ai]

is obviously such a homomorphism.

Then by applying the same homomorphism to the compound expressions

in the operations of 21 which define the 0¿, we see that 0(4<) is a homomorphic

image of 0(4„). Hence 0(4«) is a free algebra for 0(^4), 4 G 21.

If some 0-embedding of X is one-to-one, X is called a 0-algebra. In this case

we may identify the elements of X with their images in A.

If X is a 0-algebra, then 0U must be one-to-one, for if it were many-to-one,

so would be each other embedding (the latter being a homomorphic image of

0«) contrary to hypothesis.

Among the problems which may be stated are these : When is X a 0-alge-

bra? What identities are satisfied by 0-algebras for a given 0, in particular

by special Jordan algebras? Is the set of all 0-algebras, for given 0, closed

under the operations of taking subalgebras, direct unions, and homomorphic

images?

As far as concerns subalgebras, it is obvious that the answer is yes: if

F is a subalgebra of X, and X = @(A), then we need only take the sub-

algebra B of A generated by the images of elements of F, and Y=®(B).

Likewise, suppose Xi, X2, • • -are given to be 0-algebras: Xí = ®(Aí),

4.G2I. Then Xx®X2<g> • • ■ can be put into one-to-one correspondence with

the subset of Ax®A2® • • • consisting of the (ai(x<), a2(x,), • • • ), and the

latter generates Ax®A2® • • • . Then

0(4i ® 42 ® ••• ) = 0(41) ® 0(42) ® • • • = Xi ® X2 ® • ■ • .

Thus this set of 0-algebras is closed under subalgebras and direct unions.

Closure under the taking of homomorphic images remains undecided.
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It is known [8, p. 324] that the set 21 is definable by identities if and only

if it is closed under the operations of taking subalgebras, direct unions, and

homomorphic images.

Consider the congruence relation <£,• on AU(X) which identifies elements

(bi, b2, • • •) and (cu c2, • • • ) of AU(X) if and only if bt = d for fixed i. As

before, the algebra obtained by this identification is precisely Ai. In the

case of linear algebras (including Lie, Jordan, and associative algebras) any

congruence relation <£,• on AU(X) is determined by the set K, of elements which

are congruent to 0. Clearly Ki is a (two-sided) ideal; hence we may write

Ai=A„(X)/Ki.
It is natural to ask: for what K is AU(X)/K an iso-0-envelope of X? Also

we may seek to determine AU(X) for various X; in particular we would like

to know how to solve the decision problem for X.

3. A general property related to 0-embeddings. We consider a canonical

form for polynomials in a linear (not necessarily associative) algebra.

Theorem 2. In a linear algebra, any polynomial in elements e< can be ex-

pressed as a linear combination of monomials ¿$$0$$ ■ • • e*$ with i(l) <i(2)

< • • • <i(r), provided

e¡e{ = hijCiCj -p / . Ck ek,
k

where the X.y and ¿¿ are scalars.

Proof. Just as in the corresponding proof in [6], we can systematically

shift the e< with small subscripts to the left by introducing terms of lower

degree and using induction. It is not guaranteed that the result of this

procedure is unique.

This shows that the usual theory for noncommutative polynomials in one

variable (Jacobson [14]) can be applied also to noncommutative polynomials

in several variables. The scalars X,-¿ and ¿I do not have to be permutable with

the e¿; we can have eiX=</>,(X)e¿.

4. Determination of Lie envelopes. We seek solutions, for Lie algebras, of

some of the problems already mentioned.

Let X be any linear algebra satisfying

(8) [x, y] + [y, x] = 0.

Then X has a basis (finite or infinite) of elements ex, e2, • • • . Hence, for given

x and y, [x, y] is some finite linear combination of the c,-. In particular, this

applies if x and y are basis elements; say

[«,-, 6j\ = ¿2 °k c*,
k

where only a finite number of en enter into the sum (though the basis may be
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infinite), and the à( are scalars ("structure constants"). From (2), we have in

any Lie-envelope of X,

ii        ii,   v   ''   'e,- d  = e¡ Cj + 2-, c* e*
k

where e¿ is the image of e*: e¿ =a(e*).

Then Theorem 2 can be applied. It was shown in [6] and [24] that if

(9) [[*, y], z] + [[y, z], x] + [[z, x], y] = 0

also holds (so that X is a Lie algebra) then this construction produces a linear

associative algebra LU(X) with infinite basis, and that X is the Lie algebra

obtained from LU(X) by (2). Moreover, it is apparent from the construction

that elements have been identified in LU(X) only when required by the hy-

pothesis; hence, any other Lie-embedding of X is a homomorphic image of

LU(X). Hence, in the previous notation, LU(X) is AU(X).

Thus every linear algebra satisfying (8) and (9) has an iso-Lie-embedding

in a linear associative algebra. In fact [6, Theorem 2 ] all Lie-embeddings have

been determined by rational methods. Conversely, starting with a linear

associative algebra and using [x, y]=yx — xy we get an algebra in which

these laws hold. Thus the embedding problem for Lie algebras has been

solved.

However, we do not obtain in the abstract case the theorem of I. Ado [l ]

and E. Cartan [10] that every linear algebra with finite basis over the real

or complex field satisfying (8)-(9) has an isomorphic Lie-embedding with a

finite basis and conversely.

Let us consider an example of Lie-embedding.

Theorem 3. Let G be the regular representation of a Lie group, and let

X1, • • • , Xr be the differential operators defining its Lie algebra L. Then the

free Lie-envelope of L is isomorphic to the (associative) operator algebra generated

by the X*.

Proof. Define G locally by canonical parameters; then theX* are analytic

and (see for instance Campbell [9, p. 332])

X* = d/dxi + £ xld/dXk,       x\(0) = 0.
k

Hence for any monomial in the X*,
i

/xrl.»(l) ,-lAn(r) «(!)+• ••+"('■) ,.   n(l) n(r)
(X ) ■ ■ ■   (X ) = d /dXx        • • •  dxr        +   • • •   ,

where the last dots represent terms in which the differential operators are

either of order less than w(l)+ • • • +n(r) or else have coefficients which

vanish at the group identity 0. Thus any monomial in the X* is a linear

combination of monomials of equal or lower degree, and the associative

algebra is isomorphic to the free Lie-envelope.
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We consider next a generalization of Hubert's Basis Theorem.

Theorem 4. Let R be the ring of formal polynomials in ex, • • • , en (n finite),

with scalars in the field F, subject to the law

(10) c,c¿ = de,- + 2~2ck e*-
k

Let J be a left ideal of R. Then J has a finite ideal basis.

Proof. Let Hn(J) be the set of those homogeneous polynomial forms q of

degree n such that g+rG-7 for some r of degree less than n (that is, let

Hn(J) be the set of "leading constituents" of degree n of the polynomials in

J). We observe that each Hn, with 0 adjoined, is a linear subspace, since the

sum or difference of two homogeneous polynomials of degree n either is again

such a polynomial or is 0, and likewise for the product of such a polynomial

by a scalar, while if qx+rx and q2+r2 are in J, so are (qx + q2) + (rx ± r2) and

c(ç.iJrri)—cqi-\-cri, since / is an ideal.

Let H(J) be the set of polynomial forms comprising the linear subspace

generated by the Hn(J) (n=0, 1, 2, • • • ). We assert that the elements of

H(J), taken as polynomial forms in either the ring R or the ring K of com-

mutative polynomials generated by ft, • • •, en, are an ideal. For if ht,

h2QH(J~), so do chx and &i+/z2 since H(J) is a linear space, while if hÇzH(J)

and gG-R or K, then write q and h as sums of homogeneous polynomials

q = qx + • • • + q„ h = hx + • • • + ht, hi G Hfli)(J), d(qt) = ¿,-

where d(p) is the degree of p. Then qh= 2j*j2<** But qjtj is homogeneous of

degree ¿¿+/(j). Also ÂyG-S/cy) implies Ay+rG-7" for some r of degree less than

f(j). Then q^r is of degree less than di+f(j), and 2,A3+g¿r = g¿(Ay+r)G-7

since J is an ideal. Thus by construction gihjÇE.Hdi+fu)(J). Hence, qh(E.H(J)

since H(J) is a linear space. Thus iî(/) is an ideal. In this regard the only

difference between H(J) as a subspace of R and as a subspace of K is that

different polynomials are identified in the two cases.

Let H* denote the elements of the ideal H(J), taken as polynomials in the

ring K of commutative polynomials in ex, • • • , en. By Hubert's Basis

Theorem (6), H* has a finite ideal-basis px*, - • ■ , pZ- Since H(J) and H* con-

tain the same polynomial forms, we may consider px*, • ■ • , p*, as belonging

also to H(J), in which case we shall denote them px, • • • , pm-

Thus pi(E.H(J); by construction of H, pi is a linear combination of

elements of various H¡(J) :

Pi=Hb)qr,       qiEHiiJ);       b)eF.

(6) See, for instance, van der Waerden [23].
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But by construction of H¡, given qjÇ.Hj(J) then there exists r¡ of degree less

than j such that Qj+r^J. Set

U = 2Z b)(<li + r¡).
i

Then t¡(£J. Let U be the ideal of R generated by the /,-. Then UC.J.

Hence, Hn(U)CHn(J) for all n. But suppose hEHn(J). Then h*GH*,

where h* is the same polynomial form as h. Hence, h* =^3yj*/>j*, yf^H*. Let

y,- be the polynomial form in H which becomes yf* in H*. Then by (10),

2~2jyjpj has the same leading constituent as h*, and hence as h.

But by construction the /,• have the same leading constituents as the pi,

hence y^v.-l,- has the same leading constituent as the given h. Thus Hn(J)

CHn(U) so Hn(J)=Hn(U) for all n.

The proof is then completed by the following lemma.

Lemma. Let S be a subspace of a subspace J of R. If Hn(S) =Hn(J) for all

n, then S = J.

Proof. Suppose S<J. Then there would exist a polynomial p of lowest

degree n (n > 0 since 5 includes 0) which is in J but not in S.

But H„(S) =Hn(J) contains all leading constituents of elements of J. Let

q be the leading constituent of p. Then q(E.Hn(J). But Hn(S)=Hn(J), so

q€zHn(S) also. Hence there exists r, of lower degree than q, such that g+^G-S.

Then p — (q+r) is of lower degree than p, since p and q+r have the same

leading constituent. Hence p — (q+r)(E.S by hypothesis on p. But q+rÇzS,

p = p — (q+r) + (q+r) E.S, contrary to assumption that p&S. Thus the proof

is completed.

5. Determination of Jordans envelopes. Having discussed the free Lie-

envelopes of various algebras, we turn now to free Jordan envelopes. In this

case let us denote AU(X) by JU(X). In all work with Jordan algebras, we re-

quire the base field to be of characteristic not 2, in view of (3).

Theorem 5. If X has a finite basis, so does JU(X).

Proof. Let X have the finite basis ft, • • •, en. Then JU(X) is generated

by the monomials in ft, • • • , c„ by Theorem 2. Moreover,

2J ck ek = evd = (ftft + e,e¿)/2 = e,e¿
k

so square-free monomials generate JU(X). Since n is finite, Ju(X) has a basis

of not more than 2" — 1 elements.

No general solution of the decision problem for JU(X) is known, but in

special cases a solution can be found. It is readily verified that a zero, idem-

potent, or unit in A has the same property in JU(X) and conversely. We con-
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sider several examples of Jordan envelopes, mostly of "irreducible r-number

algebras" [15, p. 63].

As one example, let X be the free zero-algebra with basis ft, • • • , en. By

(3), e,ft+ftft = 2ftft = 0 for all i, j. In particular, let i=j. Then e2 = 0. Hence,

the free Jordan envelope of the free zero-algebra is an ideal of order 2n —1,

excluding the unit element, in the extensive algebra of Grassmann(7).

Again, let X be the algebra with basis e0, ft, • • • , en, with

eo'ft = er fio = ft (i = 0, • • • , n),

ft-ey = 0 (i j¿ j; i, j = 1, • • • , m),

ft-ft = — e0 (i t¿ 0).

Then the free Jordan envelope is the Clifford numbers (8).

Theorem 6. If X is the (special) Jordan algebra of all n by n matrices

(n~=2) then JU(X) is the direct sum M@M, where M is the ordinary associative

algebra of all n by n matrices.

Proof. Let fty be the matrix with a single 1, in the î'th row and jth column,

and zeros elsewhere. In X, the multiplication table is, by (3),

(11) ftrftfci = (bjkeu + buekj)/2.

Set

(12) an m ei,e,j (i ^ j);   an = ai}eH = ftje,-,e,-¿ (i ¿¿ j);   bn = en — a,-,;

ati will be shown in (17) to be independent of j. We seek to obtain the multi-

plication table for JU(X).

(13) ft,«** = 0 (4^ », j),

for, since eu, is idempotent,

ft,e*ifc = Bijekkekk = \2(eij-ekk) — ftttftj}«** = (0 — e*ift/)ft:t

= — ekk(enekk) = — ft=*(0 — e**ft,) = ekkekken = fttfty;

but also eijekk — O — ekkea; adding, ftyft;i = 0. Likewise,

(14) cttft,- = 0 (k 7^ i, j).

(15) ftíftí = 0 (i * j),

for ftA7 = 0-ftvfty by (11).

(16a) ftifij* = ft.ftt (i, j, k all distinct),

for by (14),

(7) See, for instance, Chevalley [ll, p. 145].

(8) See, for instance, Chevalley [ll, p. 61 ].



124 GARRETT BIRKHOFF AND P. M. WHITMAN [January

0 = eij(euejk) = (e»^»»)^/* = (ea ~ ti&ii)e1*

8,8   CijCjk Cii&ik    i    &ii&jk€ij  =   Gij&jk €%i&ik*

(16b) ft,«,-,- = eudj (i ^ j),

for /= 2ft* and by (14).

ft/^/j m -t^ij^ji ms \ft* ~n fiy/yft/fiij == ft»\ftjfijjy "i* \fiîjftj/fi/j

= ft»(ft/       eiiea) + (ft;       eiieii)eii

*= ft,'ft/     o -p ftytfyy —" e,jejj     ftiftj.

Combining (16a), (16b), and (12), we get

(16) 0a = ftj-eyj = eue« for all / and kii i ?± I.

(17) tifipfiU  =   ftzftmftni  =  ftmftnift»  =   0». (t 5* Í,   &, /,  w),

for by (16), ftyftift;i = ftyft,»ftni = ftiftmft»,-. In particular, this shows that the

definition of an is independent of j.

For k^i,j, I, eijaki = eijekkeki=*0.

For & ?í i, j, et¡akk = eaakjejk = 0 ejk = 0.

For tVj, &, fty0a = ftiftyft* = O by (16) and (15).

For i 9*j, djOa = e.va.yfti = 0 ft,- = 0.

ForjVfe, ftyay* = ftyft*ft* = a,* by (16) or (17).
For *Vj,

ftj^j;  "  ftj^jiftifty  ==  ftjft'iftjft;

= ftj(ft, + fi/y     ftjfiyi/fi/; === ti -j- 6ij€ii     u — 0,"/.

For j t^j, ft<o,j = tu/Buen = ft.-fty = a.j.

Hence,   ft¿a,i = ft¿ftyayi = ftyftyay, = ftyayi=ai,-.  Similar  formulas   hold  for

Oijfti, by (16) and symmetry. Summarizing,

(18) ft,-0u = 8/tO.j = 0,-,ei¡ (all i, j, k, I).

ForjVi, k, aijaki=eijejjaki = 0.

For i j*j, «¿¿ay* = ftyftjft,aji = ftyft,ft<ay* = 0.

For ¿ s*/, a¿j-a,i ■ ftyftyay* = ftyöy* = a¿fr.

Hence, for ît^j, a<ia,7=;a,yft,a;y = tt,yayy = a,y.

Likewise, aiia,-, = eiya3la<l- = e,yay, = a«. Summarizing,

(19) 0¿j0*í = 5,t0,¡ (all i, y, ¿, Q.

For íV¿, bijaki = (eji — aji)aki = eaaki — ajiaki = 0.

For all *, j, bijaik = (eji — aji)aik = ajk — aji =0. By symmetry,

(20) ¿iyojfci = 0 = a.-yôtj (all i, j, k, I).
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Hence if jV¿, k, l, &<í&*i->e/<ft*(e»—o») =0.
For J9*k, i, bijbkj = e]iej]ejkejj = ejiejkekkejj = 0.

For i?¿k, bijbjk = (eji — aji¡(ekj—ak,) =e]iek] = eki — ekjen = bik.

For iw*j,

OijOji = ftiftyftyft, = ft"i\fty      ftyftyJft» — fttftyft,

—  (ft* *T~ ft;; ft/ft/iVftt == ftí    l    tí 0¿, = fti.

For all i,

&<,'¿.i = (ft¿ — a.¿)(ft< — a«)

= ft< — 2oí¿ + an = bu.

For k^i, j, bijbkk=(ea-aji)(ekk — akk)=0. By symmetry, &«&y* = 0 for

¿t^j, &. Summarizing,

(21) bijbki = 5jkbu (all i, j, k, I).

Thus by (19)—(21), the a,y multiply among themselves like matrix units,

as do the by, while 0,7641 = 0 = &</ffl«. Hence the subalgebra of JU(X) generated

by the a,y and bki is M© Jf. But this subalgebra contains a,;y+&y, = fty, for all

i and j, so the subalgebra is the whole of JU(X), proving the theorem. In ob-

taining the products we have allowed for the possibility that all the sub-

scripts are distinct. But nowhere have we assumed the existence of sub-

scripts which do not appear explicitly in the factors, except that if only a

single subscript appeared, then we assumed the existence of a second. Hence

the theorem holds for » = 2, 3, • • • .

Theorem 7(9). 2/ Xs is the special Jordan algebra of all symmetric n by n

matrices (n^2), then Ju(Xs) is isomorphic to the n by n total matrix algebra over

the same field.

Proof. Let Eq be the matrix with 1 in the ¿th row andjth column, and also

in the ith column and jth row, and 0 elsewhere. In the notation of the proof

of Theorem 6, En = en, E<y = Ey, = fty+ft,- (i^j). In Xs, the multiplication

table is, by (3),

if i ¡£ k, I, and j ^ k, I;

if i ¡* I;

if * 3* j;

(23) Au m En;        An m EijE,-,- (i ^ j).

(') This example was first studied by F. D. Jacobson and N. Jacobson; cf. [13].

(22)

Eij-Eu = 0

Eij-Eji = En/2

Eij-Eij = En + Ejj

En-En = En.

Set
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We seek the multiplication table for Ju(Xs).

(24) EnEkk =0 (* * f, j),

for, since Ekk is idempotent,

EijEkk = EijEkkEkk = \2(Eij-Ekk) — EkkE,j\Ekk

= (0 — EkkE,j)Ekk = — Ekk(0 — EkkEij) = EkkEkkEij = EkkEij;

but also EijEkk —0 —EkkEij-, adding, we get (24). Likewise,

(25) EkkEij = 0 (kr* i, j).

Hence A nAj¡ = hi¡A «.

(26) EijEjk = EuEik (i * k),

for we may suppose ip^j and then by (24) and (22),

0 = Eij(EaEjk) = (EijEu)Ejk = (Eij — EnEij)Ejk

= EijEjk — Eu(EijEjk) = EijEjk — £,-,•(£,* — E¡kEi¡)

= EijEjk — EnEik + (EuEjk)Eij = EijEjk — EnEik + 0,

and transposition gives (26).

(27) EijEn = En + Ej¡ (i * j),

for 2EiJEij=EijEij+EijEij = 2(Eij-Eij)=2(En+Ejj).
For jV», ¿, AiiAjk=EuEjkEkk = EiiEjjEjk = 0.

For í5¿;,   AnAij = EiiEiiEij = EiiEij=Aij.   Similarly,   for   iV£,   -4<y.4**
= Ôyfc.4 <i.

For jVt, ^, AijAki=EijAjjAki = 0.
For î, j, ife distinct, by (23) and (26),

AijAjk = EijAjjAjk = EijAjk = EijEjkEkk — EikEkkEkk

= EikEkk — Aik.

By(27),foriVj,

AijAji = EijEjjEjjEji = EíjEjjEíj = EnEijEij

= Eu(Eii + -Ey,) = .4,-,-.

Summarizing,

(28) 4if4*i = Syt^ij (all i,j, i, I).

Hence the subalgebra of JU(XS) generated by the -4,/ is a total matrix algebra.

But this subalgebra contains

An + An = EijEjj + EjiEu = Eij(En + E¡¡) = Ei¡I = En

and is therefore the whole of Ju(Xs) and the theorem holds.
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Theorem 8. If Xh is the special Jordan algebra of all Hermitian n by n

matrices (n = 2) over the complex numbers, then Ju(Xh) is isomorphic to the n

by n total matrix algebra over the complex numbers.

Proof. Using the previous notation and ( —l)1/2 = i, let

Bn m — Bji m i(e<;- — ej{) for i ?¿ j.

In Xh, the multiplication table is, by (3), given by (22), commutativity, and

Eij-Bki = 0 if k 9e i, j, I and l A i, j, k;

Eij-Bij = 0 where i ft j;

Eij-Bjk = Ba/2 where; A k;
V    )

Bij-Bki = 0 if i, j, k, I are all distinct;

Bij-Bij = En + -Eyy where i p* j;

Bij-Bjk = — Eik/2 if i, j, k are distinct.

In addition to (23), set (for i^j)

(30) Pi¡ = EuBij,       Pu m EjiPji = EijEjjBji;

Pa will be shown in (34) to be independent of j.

(31) EuBjk = 0 (i, j, k distinct),

for by (29),

EuBjk = EuEaBjk = En(0 — B¡kEu) = — (EnBjh)Eu

— — (0 — BjkEu)Eu = BjkEu,

while EnBjk = 0 — BjkEu; addition yields (31). Similarly,

(32) BijEkk = 0 (i, j, k distinct).

(33) EijBjk = EuBik s Pik (k tí i, j),

for we may suppose iw*j, and then

EijBjk = IEijBjk = (Eu + Ejj)EijBjk = EuEijBjt + E¡¡EjiB¡k

= Eu(Bik — BjkEij) + EjiEuBjk = EuBik — 0 + 0.

(34) EijEjjBji = EikEkkBki (i * j, k)

(and hence P« is independent of j), for

EijEjjBji = EijEjkBki = EikEkkBki-

(35) BijBn = En + En (i -A j),

for 2BijBij = BuBij+BijBij = 2 (5,-y -S«) = 2 (Eu+Ejj).
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For k Ai, j, I, EijPki=EijEkkBki = 0.

For kj¿i,j, EijPjk=EijEjjBjk=EiiEijBjk = EiiEuBik = EuBik=Pik-

For i,j, k distinct, EijPkk = EijEjkPjk = EuEikPjk = 0.

For i?¿k, EiiPkk^EuEikPik = EikEkkPik = 0.

For »Vj, EijPjj^EijEijEiiB,j = (Eii+Ejj)EuBij = EiiBij=Pij.
For all j, EjjPjj=EjjEjiEiiBij = EjiEuEuBij = EjiEiiBij=Pjj.
Thus EijPH = àjkPu+5ikPji if i^j, and AuPjk=EiiPjk = hijPih.

Hence, for i^j, AijPki=EijEjjPki = bjkEijPji = hjkPu. But in spite of the

unsymmetric appearance of (30), P,y can be written in a similar form with the

E's after the B's:

Pi, = EuBij = Bij — BijEu = Bij(Eu + E¡¡) — BijEu = BíjEjj;

(36) Pu m EijPjt = EijBjiEu = (0 - BpE^E» = P.yPy.P«

= BíjEjjEjí = PijEij.

Summarizing previous formulas, and those symmetric to them in view of (36),

(37) AijPu = ôjkPu = PijAki (all i, j, k, I).

For j^i, k, PijPki = BijEjjPki=BijO = 0.
For i, j, k distinct,

PijPjk = BijEjjEjjBjk = BijEjjBjk = P.-y-By*

= EuBijBjk = Eu(— Eik — BjkBij) = — .4«.

Similarly, if i^j, PíjPjí = EuBíjBjí = Eu(-Eíí — Ejj) = -4«.
For i Aj, PuPjk^EjiPjiPjk = Py.O = 0.
For i^j, PnPij = EjiPjiPij = Eji(-Ej¡) = —EijEjj=-Aij. Similarly, for

Í7"=J, -r,y-ryy=     ^1,7.

For i*j, P,íPyy = Ey,Py,Pyy = £y,0 = 0.
For all i, PuPn = EjiPjiPii = Eji(-Aji) = -EjiEjiEii=-(Eu+Ejj)Eji

= —Ajj. Summarizing,

(38) P¿yP*( = - ojkAa (all i, j, k, I).

By (28), (37), and (38), the subalgebra of JU(XH) generated by the Ai7 and P,y

is isomorphic to the n by n total matrix algebra over the complex numbers,

under the correspondence .4<y<->fty, P,y<-»ifty. But this subalgebra contains

the En as in the proof of Theorem 7, and also contains

Pii — Pa = EuBij — EjjBu = EuBij + Pyy-B.y = (JE« + Ej¡)Bíj = IBtj = Bij

and hence is the whole of Ju(Xh). Thus the theorem holds.

Theorem 9. If Xq is the special Jordan algebra of all Hermitian n by n

matrices («à 3) over the quaternions, then Ju(Xq) is isomorphic to the n by n

total matrix algebra over the quaternions.

Proof. Using the previous notation and denoting the quaternion units by
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i, /, k, set in addition

C.7 = J(fty — en) m — Cfi)        Bn m A(fty — e«) = — Z?« (i A j).

In Xq, (29) holds, as do similar formulas with B replaced by Cand by D; also

Bu-Cu = 0, Cij-Dki = 0, Da-Bu = 0 (i, j, k, I distinct);

(39)     Bij-Cjk = Dik/2, CijDjk = Bik/2, Dij-Bjk = Cik/2      (i, j, i distinct);

Bu-Cu = 0, CijDij = 0, DijBij = 0 (< H j).

In addition to (23) and (30), set (for tVj)

\¿ij = Üi'iC,,-, y ¿i = ÍLj$¿ji = Ü,yxÍyyCyi,
(40)

22,7 = EuDij, Ru = EjiRji = EijEjjDji.

Just as for (30), Qu and P,¿ are independent of j. Likewise, formulas (31)—(38)

hold with P replaced by Q and by R; it remains only to determine such prod-

ucts as PijQki and Q,yP*i.

(41) BijCjk = Rik (i, j, k distinct),

for, by the analogues of (31)—(32),

BijCjk' = BijICjk = BijEjjCjk — (— BjiEjj)Cjk

= — (Bji — EjjBji)Cjk = BijCjk — EjjBnCjk

— (Eu + Ej,)BijCjk — EjjBijCjk = EuBijCjk

= Eu(Dik — CjkBij) = EuDik — Rik-

(42) 5,,€,-,■ = - £<£« = Ra + Ru (i H i),

since by (41) we have, for 3 by 3 matrices or larger,

Biy-^ii == l&ij\'ji =  (-^i, "T" J^jjjJ^ij^ji = -C'ti-DiyCy, -f- tLjjtjj^ij

= EikBkjCji + EjkBktCij = EikRki + EjkRkj = Ru + JRyy.

For j ?¿ ¿, P,y<2*( = (P.yJ) Q« = PijEjjQki = 0.
For ¿, j, £ distinct, PijQjk = EuBijCjkEkk = EuRikEkk = RikEkk = Rik.

Similarly, for jV«, PnQu = P«(P,i+Pyy)P¿,= P«.
For tVj, PuQij=EijPjiQij = EijRjj = Rij.
For Mi, PijQjj=PijQjiEji = RiiEij = Rij.
For all ¿, PuQii=-EijPjiQii = EijRji = Ru.
Thus PijQki = hjkRu- Similarly, QijPki= —SjkRu. Similar formulas hold for

QtfPti, P,y<2*i, P.yP«. PijRki- Thus the 4«, P.y, (?,y, and P,7 multiply in a
manner isomorphic to the total matrix algebra over the quaternions, under

the correspondence Aij*-*ei}, P,y<-^x*fty, (?,y<-»/fty, Rif*-*k$t). The theorem

follows as before. Unlike the previous proofs, the proof of (42) assumes the

existence of three different subscripts. Indeed, we show next that Theorem 9

is false for « = 2; Ju(Xq) has order 4«2 if «>2, but order 8w2 if m = 2.
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Theorem 10(10). If X2 is the special Jordan algebra of all Hermitian 2 by 2

matrices over the quaternions, then JU(X2) is the direct sum Mq@M<¡ where Mq

is the associative algebra of all 2 by 2 matrices over the quaternions.

Proof. Let 2 = fti+c22, E = e12+e21, F=ea, P = 2(ei2-c2i), C=j(e12—fti),

D = k(exi — e21). Then in JU(X2), I is a unit and, by (39),

EE = BB = CC = DD = I,       FF = F,

BC = - CB,       DB = - BD,       DC = - CD,
(43)

BE= - EB,       CE = - EC,       DE = - ED,

BF = B-FB,       CF = C-FC,       DF = D - FD.

Hence every element in JU(X2) can be written as a linear combination of

products, in a specified order, of some or all or none of the symbols E, F, B,

C, D (with I inserted if none of the other symbols appears in the term), no

symbol appearing more than once in a term. Hence the order of JU(X2) is at

most 2s = 32. We shall not assume (though it is true) that this form of an

element is unique.

Set U=(I-BCDE)/2, V=(I+BCDE)/2. By (43), U and F are orthog-
onal idempotents which commute with F, and EU= VE, EV= UE, and simi-

larly for E replaced by B, by C, and by D. Set Y=V+(U-V)F, Z=U
+ (V-U)F. Then Y+Z=U+ V = I, so Z = I- Y. By calculation, F and Z
are orthogonal idempotents in the center of JU(X2). Since Y-\-Z = I, Ju(X2) is

the direct sum YJU(X2)@ZJU(X2), where YJU(X2) contains YV=V-VF,

YVE=VEF, YU= UF, YUE=UFE. These four elements generate a sub-

algebra M of YJU(X2). By calculation using (43), one sees that M is a 2 by 2

total matrix algebra with basis UF, UFE, VEF, V— VF; the unit element of

M is UF+ V- VF= Y. Let T= UFE- VEF; then by computation F, TB,
TC, TD are a basis of a subalgebra Q of YJU(X2) isomorphic to the qua-

ternions, under the correspondence F<->1, TB<->i, TC<->j, TD*-+k, and these

elements commute with those of M. Hence YJU(X2) contains the direct

product M®Q of order 16. Similarly ZJU(X2) contains M®Q. But as we

noted earlier, the order of JU(X2) is at most 32. Hence M®Q= YJU(X2)

= ZJU(X2) and the theorem holds.

6. Jordan algebras and convex power families. We shall now show that

special Jordan algebras have much the same relation to convex families of

(real) matrices that Lie algebras have to Lie groups of (real) matrices. In both

cases, the relation is valid only locally.

First consider the concept of a ¿-parameter family ("Schar") © of

matrices X = (xíj), in the sense of Lie. By this is meant a set of matrices,

depending differentiably on k "essential" parameters in a neighborhood of

the identity matrix I. Clearly © is always locally compact, in the topology

defined by the norm   \x\ = (£*./ x%)112.  Furthermore,  if X = I-\-A  with

(10) This form of the theorem and proof was suggested by the referee.



1949] REPRESENTATION OF JORDAN AND LIE ALGEBRAS 131

1.41 <1, we mayO1) define In X=A-A2/2+A3/3- • • • ; the series is ab-
solutely convergent. We may further define

X' = exp (tin X) = I + F + F2/2! + F3/3! -\-,

where Y=t In X. The X' form a one-parameter Lie group, with Xi = X.

Now it is well known that if © is a local Lie group, then for some S>0,

XGSand | In X\ <5 and \t \nX\ <5 imply X'G©; this is a corollary of the
existence of canonical parameters. Hence the concept of a local Lie group is

a special case of the following concept of a "local power family"; and the

usual concepts of infinitesimal generator and equality may be generalized to

local power families as follows.

Definition. A local power family is a set © of matrices which is locally

compact, and such that for some 0i>0, XG©and | In X\ ^5i and \t \nX\ =5i

together imply X'G©- The infinitesimal matrices of © are the set /(©) of

matrices F such that exp (tY)£.& for all sufficiently small t. Two local

power families are locally equal if and only if they coincide in some neighbor-

hood £/,: \X-I\ <5of I.

Lemma 6.1. 2/ © is a local power family, and -X"G© and | lnX| <5i, then

In XG/(@).

Proof. X1 = exp (In X') =exp (t In X). By definition of a local power family,

X'G© for / sufficiently small. Hence by definition of J(©), In JG2(@).
We note also that from the definitions, /(©) is closed under scalar multi-

plication. Now, given 5 such that 5<1 and 5<5i, set Jj(@)=/(©)nZ7j,

where Us is the set of Xwith \X —1\ g5. But from the closure of /(©) under

scalar multiplication, /{(©) is closed under scalar multiplication out to radius

ô. Further, since In X and exp Fare continuous and mutually inverse, and ©

is by hypothesis locally compact, -7a(@) is locally compact. But in view of

the closure of /(©) under scalar multiplication, Y(E.JCS>) is equivalent to

tY(E.Ji(<£>) for sufficiently small /; hence /(©) consists of the scalar multiples

of the elements of /{(©), and bounded subsets of /(©) are compact; in par-

ticular, /(©) is closed. It is further easily shown that two local power

families are locally equal if and only if they have the same set 3 of infini-

tesimal matrices—-which implies that some neighborhood of each consists of

the exp Y[YE3, \ Y\ <«].

Theorem 11. Let © be any local power family of matrices. Then the infini-

tesimal matrices of © form a Jordan algebra if and only if © is "locally convex,"

in the sense that for some 5>0, the set ©j = ©r\Z7j is convex. (Here Ut denotes

the convex "sphere" of all X with \X — l\ <5.)

Proof. Suppose -7(©) is a Jordan algebra. Take 5<Si. If XG@s then

\X-I\ <5and F=lnXG-7(©) and Z = exp F=2+F+F2/2+ •••. Since
J(©) is a Jordan algebra, it is closed under sums and powers, while we have

(") See von Neumann [20 ].
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already seen that it is closed under limits. Hence F+F2/2!+ • • • G-7(©).

Thus X = I+A with ¿G/(©) and ¡Al <ô. Conversely, if AGJ(&) and

\A\ <5<1, then /(©) contains F=ln (I+A) =A -A2/2+A3/3 + ■ ■ • , be-
ing closed under sums, powers, and limits. If also 5 is sufficiently small, then

| Y\ <Si. By definition of /(©), Z = exp («F)G© for sufficiently small u.

Taking \u\ <1 and t = l/u, | In Z\ = \uY\ <5i and \t In Z\ = | Y\ <Si, so by
definition of a local power family, © contains Z' = (exp Y)u' = I-\-A. We

conclude that if ./(©) is a Jordan algebra then locally © consists of

Usr\ [I+J(&) ], where 2+/(©) denotes the set of all I+A for A G/(@). But
Ut is convex by construction, while 2+/(©) is convex since /(©) is by

hypothesis an algebra. Hence © is locally convex.

Conversely, suppose that © is convex; we wish to show that /(©) is a

Jordan algebra. Since /(©) is always closed under multiplication by scalars,

we must show that ^4G/(©) and PGJ(©) imply /l+PG-7(©) and

(AB+BA)/2GJ(<5); this we now do.
If .4G-7(©) then by definition exp (4/)G© for sufficiently small /. Since

© is convex, it contains

C =- [exp (At) + exp (Bt)]/2 = I + (A + B)t/2 + (,42 + B2)t2/4 + • • • .

Then

In C = [(A + B)t/2 + (A2 + B*y/<1 + • • • ]

- [(A + 2?)2¿2/4 + • • • ]/2 + • • • ;

D = In C2"" = (2u/t) In C

= u{(A + B) + [(A2 + 2J2)/2 - (A + By/4]t +•■• }.

Obviously, for t and u sufficiently small (and u independent of t), \ In C\ <8x

and | (2u/t) In C\ = ¡Dl <5i. By definition of a local power family, C^'E®-
Then exp (Eu) G© for sufficiently small u, where

(44)        E = In C2" = (A + B) + [(42 + B2)/2 - (A + 2*)2/4]/ + • • • .

Hence, by definition, 22G-7(©)- Hence, since -7(©) is closed, it contains

limt<o E=A-\-B. Thus J(©) is closed under scalar multiplication and addi-

tion, so, by (44), it contains

4[£ - (A + B)]/t = 4[(42 + 252)/2 - (A + P)2/4] + ■ • •

= [A2 + B2 - AB - BA] + ■ ■ ■

for all sufficiently small t, where the dots indicate terms containing X as a

factor. Since /(©) is closed, it must therefore contain

H = lim 4[£ - (A + 23)]// = ^2 + B2 - AB - BA.
f->0

In particular, let P=0, noting that 0G-7(©) by closure under scalar multi-
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plication. This gives ¿2G-7(©); likewise 232G/(©). Hence A2+B2-H

G/(©); that is, AB+BAEJ(&). Hence (AB+BA)/2GJ(<&), and /(©) is
a Jordan algebra, proving the theorem.

The first half of the proof essentially applies if 3 is any Jordan algebra

of matrices which is closed under limits, even if © is not given. For suppose 3

is such an algebra. Denote by 5(3) the set of all I+A [.4G3]. We call

5(3) a power family. Suppose XG5(3) and \X —1\ <1. By definition of
5(3), X = I+A for some .4 G 3- Then

(I + A)' = I + tA + t(t - l)A2/2l -1-.

Then B=tA+t(t-l)A2/2\+ • • • G3 by closure, so (I+A)' = I+BES(S).
Obviously, 5(3) is convex.

This may be regarded as the convex power family generated by 3, and is

the analog of the concept of a global Lie group. We thus establish a one-to-one

correspondence between Jordan algebras of matrices and global convex power

families.

The above discussion applies to matrices with complex coefficients, with-

out essential change.

7. Postulates for binary mean. In connection with Jordan multiplication

(3), where we take the mean of XY and YX, it seems of interest to consider

certain properties of means(12).

We postulate a binary operation m on abstract elements A, B, ■ ■ • ,

with the properties

(45) AmA = A;

(46) AmB = BmA ;

(47) (AmB)m(CmD) = (AmC)m(BmD).

From (46) and (47) it follows immediately that

(48) (AmB)m(CmD) = (AmD)m(CmB).

Let © be à system each of whose elements is an unordered set of 2"

letters (not necessarily distinct), where » is a non-negative integer depend-

ing on the element. If .4G©, denote by 1(A) the value which n has for the

particular element A. Define equality in © thus: if A and B are in ©, with

1(A) =k and 1(B) =n, then A =B if and only if either k^n and each distinct

letter appears in the set B exactly 2"~* times as often as in A, or w = & and

each distinct letter appears in A exactly 2*~B times as often as in B. AmB is

defined to be the unordered set consisting of each letter of A repeated 2" times

and each letter of B repeated 2* times.

Theorem 12. The system © just defined is thefree(a) algebra on a countable

number of elements satisfying (45)-(47).

(12) For a study of means of ordinary numbers, see Huntington [12].

(u) For the general concept of free algebras, see for instance Birkhoff [8].
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Proof. First we verify that © satisfies (45)-(47). AmA consists, by the

above definition, of each letter of A 2k times, and then again each letter of

.4 2* times—in other words, of each letter of A 2k+1 times. Then by defini-

tion of equality, AmA =A.

It is evident from the definitions that AmB=BmA.

As for (47), we observe that since the elements in © are unordered sets, it

is only a question of the multiplicities of the letters. Let 1(A) =k, 1(B) =n,

1(C) =p, l(D)=q. If the set A consists of the distinct letters a,- with multi-

plicities ait we may write A — {ata,i\, 23= {p\è,}, C={7,c,}, D= {Sidi}.

Then by construction of ©,

AmB = {2'oiOi, 2kßih},        l(AmB) = 2*+«+1;

CmD = {2"yid, 2"ft¿<}, l(CmD) = 2*+«+1.

Hence

(AmB)m(CmD) = \ 2"+¡>+«+1a:<0,-, 2*+*+«+1/3,ft, 2 k+»+*+1yici, 2 *+"+^15i¿<},

a result whose symmetry shows that it is independent of the order in which

A, B, C, D are taken, so that (47) holds. Thus © satisfies (45)-(47).

Secondly we wish to show that any finite or countable system 3Î satisfying

(45)-(47) is a homomorphic image of ©. By (45), in 9î we have AmA=A;

thus by inserting repetitions of the given elements we can write any given

element in $R as a mean of 2" elements. Likewise any mean A of 2* elements

of 9î can be written as a mean of 2" elements, if k^n, simply by increasing

the multiplicity of each element in A by the factor 2"-*, by (45).

We desire 9Î to be a homomorphic image of @; since the letters in the

sets in © are unordered, we shall need that repeated means in 9Î are inde-

pendent of the order in which the elements are taken. For a mean of two ele-

ments of 5K, this condition is precisely (46). For a mean of four or more ele-

ments, (47) and (48) give the result in special cases, but we must prove it in

general. We proceed by induction.

Suppose it is true for n<k (k^2) that the mean of 2" elements of 9î is

independent of their order, and that there is given a mean M of 2* elements.

Let Qx stand for the first one-fourth of the places in the given repeated mean,

Q2 for the second fourth of the places therein, and so on, while the first half

of the places is called Hi and the second half H2. Then the mean of the ele-

ments of Qx is some element of 8Î, the mean of those of Q2 is another, and so

on, so that we have for the given mean

M = (QxmQ2)m(QimQi).

Suppose it is desired to arrange the elements involved in the mean in the

order a, b, c, ■ • • . If aG2Ji, then by induction we may move a to the de-

sired position in Ht, and so in M, without altering the mean. If aE.H2, then

by (46), we may interchange the elements of 27i with the elements of 22j, so
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now aG22i and as before a can be put in the desired place. It is desired that

b follow a. If &G22i, the previous change having already been made, this can

be achieved by induction. If b(E.H2, then by (46) applied to Q^mQi, we can

put b in Qs; then by (47) we can move it to Q2, so bÇ_Hx and can be handled

by induction as before.

If there are only four elements in M, then a and b complete the desired

order for 2?i; the other elements must be in 222 and by induction H2 can be

rearranged as desired.

If there are more than four elements in M, then a and b are both in Qx

and c is desired as the next letter. If cG22i, rearrange 22i by induction. Other-

wise, c(E.H2, and we can move it to Hx (and if Qx is not filled, to Qx) just as

was done with b above. By continuing in a similar manner, we can fill Qx

with the letters which it is desired should be there, and by induction arrange

them in the desired order. Then each other letter is in Q2 or in H2. Say g is

desired as the first letter of Q2. If g is in Q2, we can move it to Q¡ by (47) with-

out affecting Qx which is already arranged. If g is in Q4 we can move it to

Qs by induction which permits rearrangement of H2, likewise without affect-

ing Qi. Hence in any case we can put g in Qz. Suppose it is desired that h fol-

low g. If h is in Q2, we can move it to Qi by (48), without disturbing either Qi

which is arranged, or Q3, which contains g. By induction, we can rearrange

H2 so as to get g and h in Qi. By repeating this process we can fill Q3 with the

elements which it is desired shall ultimately be in Q2. Then by (47) we can put

these elements in Q2, and by induction we can rearrange Q2 in the desired

order. Thus 22i is put in order; all remaining elements must be in H2 which

can then be arranged by induction.

Thus we have shown that any mean in 9î can be represented as a mean of

2* elements for some k, and that these elements can be rearranged in any

desired order—that is, that they are essentially unordered. If 9Î is given, let

the elements of 9Î constitute the letters of © and let each set 4G© correspond

to the (essentially unordered) mean of these elements in 5R. If A=B in @,

then the corresponding means A' and B' in 9Î will be equal, for if A =B in ©

then by definition of equality in © each letter in the shorter (say in A) ap-

pears with a uniformly greater multiplicity in the other; in SR, by (45), these

two means are equal so A' = B'. Likewise, if A corresponds to A' and B cor-

responds to B' then by the construction of the correspondence AmB cor-

responds to A'mB'. Thus SR is a homomorphic image of © as desired and the

theorem is proved.

But now it is clear that if Ax, • • • , An are any n linearly independent

matrices (or other vectors), and if AmB is interpreted as (A+B)/2, then

distinct elements of © (as defined above) represent different matrices. Hence

(45)-(47) are a complete set of postulates for binary means.

It would be interesting to find similar postulates for ternary and n-ary

means, but these are less relevant to Jordan algebras.
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