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Introduction. In the theory of conformai mapping numerous canonical do-

mains are considered upon which a given domain may be mapped. The func-

tions performing this map are functions of the domain considered and might

be called domain functions. Numerous relations between domain functions

of different types are known; very many of these functions may be con-

structed from a few fundamental ones, such as Green's and Neumann's func-

tions of the domain and the harmonic measures of the boundary continua.

But these fundamental functions themselves are also closely interrelated and

permit numerous identities. It is of interest to organize the system of rela-

tions between the domain functions into a simple form. This is convenient

for the theory of variation of domain functions with their domain; in fact, we

obtain often in extremum problems relative to domain functions several dif-

ferent characterizations of the extremum domain, depending on the type of

variation applied in the investigation. It is, therefore, essential to be able to

reduce one type of equation to another by means of the various identities for

domain functions.

An understanding of all identities between domain functions may be ob-

tained by sustained application of Schottky's theory of multiply-connected

domains [15](2). Schottky proved that there is a close relation between the

mapping theory of these domains and the theory of closed Riemann surfaces;

the identities among domain functions have their complete analogue in the

theory of Abelian integrals and might be proved by means of the latter.

It seems, however, that a theory will be of interest which operates only

with concepts of conformai mapping and the geometric properties of the

functions considered. The functions which prove in such a theory to be the

more basic domain functions may be expected to have importance in the

general study of conformai mapping, too. In fact, it will be seen that one of

the most fundamental functions in the theory will be a kernel function. This

type of function has been studied from various points of view recently [1,2,

13]. The development in this paper gives further a new understanding of

variation formulas which have been applied frequently in conformai mapping;

it allows us also to carry out variational methods in extremum problems with

additional conditions, such as the invariance of conformai type.
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It is difficult to say how much of the methods for obtaining identities ap-

plied in this paper is new. Several authors considered similar domain func-

tions and investigated them by analogous methods; in particular, Grunsky

used in his papers combinations of domain functions which are closely re-

lated to those applied here [6, 7]. However, we felt for ourselves the need to

carry out a systematic study of these formal identities and to establish a

more or less unified method. The identities derived in this paper are far from

complete, but we hope that the methods for obtaining them have been worked

out clearly enough to facilitate the establishment of further identities which

might be required.

1. The fundamental domain functions. Let D be a domain in the complex

s-plane bounded by n proper continua C iv = X, 2, • ■ • , n) which form to-

gether the boundary C— Z"=i £■» of D. For the sake of simplicity and with-

out any loss of generality, we shall assume that D is bounded and that each

C, is a smooth closed curve. We define two univalent functions i»(z; u, v)

and^(z; u, v) by the following requirements: (a) $(z; u, v) maps D upon the

entire complex plane slit along concentric circular arcs around the origin so

that the point uÇiD corresponds to the origin and the point »GD to infinity.

The residue of the simple pole at v is 1. (b) ^(s; u, v) maps D upon the entire

complex plane slit along rectilinear segments directed towards the origin so

that the point u^D corresponds to the origin and the point ¡)GÖ to infinity.

The residue of the simple pole at v is 1.

Existence and uniqueness of these two domain functions is well known.

Let us consider the logarithms of both functions of z£Z>. We have

z — u
(1) log *(z; u, v) = log-h Fiz; u, v),

z — v

where F(z; u, v) is regular and single-valued in D, and because of the condi-

tion on the residue at z = v, we have

(1') log (»-«)+ F(«; u, v) = 0.

If the point z lies in the boundary continuum C,, we have by definition of

i>(z; u, v)

(2) log $(z; u, v) = k„(w, v) + iV„(z; u, v), u, v £ D, z £ C„

where k, and r„ are both real-valued nonanalytic functions of their arguments.

In the same way, we have for ^(z; u, v) the equations

s — u
(3) log ^(z; u, v) = log- + Giz; u, v),

z — V

with regular and single-valued G(z; u, v) for z£Z>, and

(3') log (» — «) + Giv; u, v) = 0.
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For zÇ^C,, we have in this case

(4) log "i'(z; u, v) = s„iz; u, v) + i\v(u, v), u, v £ D, z £ C„

Here s,(z; u, v) and \v(u, v) are again real-valued functions of their argu-

ments.

Consider the class ß of all functions /(z) which are analytic, regular and

single-valued in D and for which the integral

(5) (/, /+) -   f f | /'(*) \2dxdy, z=x+iy,        /'(z) = -/(*),
J J d dz

taken in the Lebesgue sense, exists and is finite(3). We may introduce a metric

into the linear space of all functions of class ß by defining the scalar product

(6) (/, g+) = § § f'iz)ig'iz))+dxdy

of two arbitrary elements /(z) and g(s) in ß. We may easily transform the

surface integral (6) into a line integral by means of Green's theorem. We ob-

tain

(7) (/, g+) =-<f f'i*)igiz))+dz = - - (f fiz)ig'iz))+dz+.
2i J   c 2i J   c

Of course, not for every pair of functions of class ß may this integration by

parts really be carried out; it is, however, permissible if /(z) and g(z) are both

continuously differentiable in D+C. On the other hand, our second formula

for the scalar product permits the extension of the metric to functions which

are meromorphic in D and such that the representation (7) is defined.

In particular, we consider now the expressions (/, (log <î))+) and

(/> (log ^)+)- These are well defined by (7), since log $ and log ^ are dif-

ferentiable and single-valued on C. We have

(8) (/(«), (log $(z; u, v))+) = — <f   /'«(log $(z; u, v))+dz,
2iJ c

which leads, because of (2) and the single-valuedness of/(z) in D, to

ifiz), (log *(z; u, !)))+) =-(h   f'(z) log $(s; », v)dz

= —  (p   f(z)d log <i>(s; u, v).
2i J c

By virtue of the residue theorem this leads finally to

(3) In this paper the conjugate of a complex term A will be denoted by A+.
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(9) ifiz), (log *(s; u, v))+) = «-[/(*) - fiv) ].

Analogously, we have

(10) ifiz), (log ¥(z; u, v))+) =—£ /'(z)(log *(z; », «))+&,
2«/ c

and, in view of (4),

(/(z), (log ¥(z; », »))+) = — ®   /'(z) log ¥(z; », »)¿z

do') j
=-(p   fiz)d log ^(z; », !))

2»/c

and finally

(11) ifiz), (log *(s; », .))+) - - x[/(») - fiv)].

From formulas (9) and (11) two interesting combinations of log $ and

log S? present themselves because of their simple properties:

(12) Piz; », b) = 2-1[log *(2; M> v) — l°g *(z; M> »)]■

(13) <2(z; », ») = 2~1[log $(z; », ») + log *(z; », »)].

The function Piz; », u) is regular and single-valued for z£D, since the

logarithmic poles at u and v cancel by subtraction. Because of (1') and (3')

one has further

(12') P(o; », s) = 2-1[F(îj; », o) - G(t>; u, v)] = 0,

and from (9) and (11) we conclude

(14) ifiz), iPiz; », v))+) = x[/(«) - /(»)].

The identity (14) has been derived for functions/« £ß which are continously

differentiable in D+C; but by the usual considerations of approximation it

may be easily extended to the whole class ß. Since Piz; », v) belongs itself to

the class ß we may use in (14) either definition (6) or (7) for the scalar

product.

The function Qiz; u, v) has logarithmic poles at z = u and z = v and is not

even single-valued in D. Each determination of it is, however, single-valued

on C; it changes only by an integral multiple of 27r¿ if the point z makes a

circuit around u or ». From (9) and (11) we conclude

(15) ifiz), iQiz; u, »))+) = 0.

In order to extend this identity to the whole class ß, we have to replace the

line integral occurring in the definition (7) of the scalar product by an inte-

gral over the interior of the domain D. For this purpose consider the improper



1949] IDENTITIES IN THE THEORY OF CONFORMAL MAPPING 191

integral

(15')       Jif, Q+) =  ff f'iz)iQ'iz; u, v))+dxdy,     Q'(z; «,»)=- Qiz; », v).
J J d dz

If/(z) is continuously differentiable over D + Cwe may evaluate this integral

by integration by parts. We obtain easily

/(/. V) = - ¿ / /00(G'(«; ». «0)W + t[/(») - /(»)]
2î J   c

(is")
= (/.e+)+ «■[/(»)-/(«)].

This formula permits us to define the scalar product (/, Q+) by means of a

surface integral which has a meaning for every function /(z)£ß. It is now

possible to extend the identity (15) to the whole class ß.

The most important relation between the two functions Piz; u, v) and

Qiz; », ») results from the equations (2) and (4). We obtain from them easily

the equation

Piz; », v) - - (<2(z; », v))+ + (*,(«, »))+,
(16)

¿„(M,  »)   =  K„(W, î>)  +  ¿X„(», »),

if z lies on the boundary continuum C, and u, » are arbitrary points in D.

We shall make use of this relation in a systematic way and we shall derive

from it numerous identities for the functions P, Q, and other closely related

functions. It is this formula which makes the pair of domain functions P

and Q the most convenient basis for an investigation of the fundamental

domain functions connected with conformai mapping.

We make a first application of (16) in order to determine the norm of

Qiz; », ») in our metric (7). We find

(17) iQiz; », »), iQiz; », »))+) = — £ iQiz; », v))+dQiz; », ff),
2iJ c

and using (16) and remarking that

(17') <f   dQiz; », t) = 0,
J   c,

we obtain

iQiz; », c), iQiz; », »))+) = — <£ Piz; », v)diPiz; », »))+
(18) 2% J c

= - (P(s; », ff), (P(*; », »))+).

Finally, in view of (14) and (120, we arrive at
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(180   iQiz; u, v), iQiz; », b))+) = - iPiz; », ff), iPiz; », v))+) = - xP(«; », v).

Since the norm of every function /(z) £ ß is non-negative by virtue of defini-

tion (5), and since P is of this class, we conclude

(18") P(«; », ») ^ 0,       iQiz; », ff), iQiz; », t))+) ^ 0.

We see that the function Qiz; », v) with logarithmic poles at u and » has a

nonpositive norm.

Returning to the class ß we remark that the only functions /(z) £ ß with

vanishing norm are the constants. In order to build up a theory of ortho-

normal systems it is important to reduce the class ß to a subclass in which

the vanishing of (/,/+) implies/=0. Such a subclass can be defined in different

ways. The most obvious one is to distinguish the point »£Z? and to define as

subclass ß„Cß the class of those functions /(z)£ß which vanish at the

point v. Because of (120 the function Piz; », ») belongs to this class. Now

it is obvious that if/(z)£ßv has the norm zero it is a constant, and since it

vanishes at v it must be identically zero. From (14) we deduce further

(140 (/(*). (P(*l u, v))+) = x/(«),       fiz) £ Q„

It is now always possible to determine a complete orthonormal system for

the class ß«; that is, there exists a system {/»(z)} of functions in ß„ which

satisfies the conditions

(19) (/,(*), (/„(*))+) = 5,,,        S,„ = j ' " ~ M'
1.0, v j± p.,

and such that every function fiz) £ ß„ may be developed in a Fourier series

(20) /W  =  Î#), <K 'if, ft),
»=1

which converges uniformly in every closed subdomain of D.

Since Piz; », v) is of the class ß„, we may apply to it the development

(20) and, in view of (140, we find
00

(21) p(*;«,«0 = tZ/.CO(/>(«))+.

This shows that the function Piz; », v) is the kernel function of every com-

plete orthonormal system with respect to ß„. It is remarkable that the kernel

function is independent of the choice of the particular system and that it

coincides with a function defined in terms of canonical mapping functions.

From (21) it follows further that Piz; », ») is anti-analytic in ». The de-

pendence of Piz; u, v) on v is much more complicated, since v enters already

into the definition of the basic system {f,iz)}. We shall see later that the

class ß may be reduced in a way which does not distinguish the point », and
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that the kernel function of the class obtained is anti-analytic in u and ». The

importance of (21) for an effective computational construction of Piz; », »)

needs not to be stressed. The formula is still more interesting because it is

possible to compute the second fundamental domain function Qiz; », ») by

simple integration from the function Piz; u, »).

In fact, let us represent Qiz; », v) in the form

Z  —  M

(22) Qiz; », ») = log-h Qiiz; », ff),
z — ff

where Qiiz; u, v) is of class ß. Applying now (15) to the particular function

Piz; a, b) of class ß and using the symmetry law (/, g+) =(g, /+)+, we find

(z — u \
log-,  iPiz; a, b))+)+ iQiiz; », ff), iPiz; a, b))+) = 0.

z — ff /

On the other hand, application of (14) to the particular function Qiiz; u, v)

leads to

(230 iQÁz; u, ff), iPiz; a, b))+) = ir[Qiia; », ff) - QiQ>; », v)].

From (23) and (230 we derive

1 /     z — » \
(24) Qiia; », ff) - Qtf; », ff) =-(log-,   (P(z; a, b))+)

v \      z — ff /

and by definition (22) finally

Qia; », ff) - Qib; », ff)

(25) a — » b — »       1/      z — ua — » b — »       1/z — » \
= log-log--log-,   iPiz;a,b))+).

a — v b — ff       ir \       z — ff /

This formula determines Qiz; u, v) up to an additive constant. We shall see

later that the combination Qia; », v) — Qib; u, ») is of great interest for the

general theory because of its symmetry properties. We note further that the

scalar product in (25) is to be understood in the sense of a contour integral,

since log ((z —»)/(z —»)) has singularities in D. One recognizes that the func-

tion Qia; », v) — Qib; u, v) is analytic in all four variables; another proof for

this fact will be given later as application of a more general theory.

2. Some extremum problems in conformai mapping. Consider the family

% of all functions Fiz) which are regular in D except for logarithmic poles at

the points z = » and z = » and which have the form

(26) Fiz) = log *-^- + Fiiz),
z — ff

where Pi(z) is of class ß. We assume further that
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(260 log (ff - «) + Fiiv) = 0,

that is, that the function exp {P(z)} has a simple pole at - = » with residue 1.

In view of (22), we may write every function Fiz) £§ also in the form

(26") Fiz) =Q(z;u,v)+F2(z),

where F2(z) is again of class ß, and since exp {Qiz; », »)} has at z = » the

residue 1, we have

(26'") Ftiv) = 0.

We may now consider the norms

(27) {F' F+) = {Q(Z; U' V)' (<2(Z; U' V))+) + (<2(Z; U' V)' {F2Íz))+)

+ (F2(z),iQiz;u,v))+) + iF2,F2+),

which are well defined for the family $ because of (15") and (180. We have in

view of (15) and (18')

(28) (F, F+) = - TiPiu; », v) + (Fa, Fs+).

Since F2ÍZ) is of class ßr and has, therefore, a non-negative norm, we obtain

the result:

Theorem I. For every function Fíz)Eli5 we have (F, F+) 3ï —7tP(m; m, »).

Equality holds only for Fiz) =Ç(z; u, v).

If Fiz) is continuously differentiable in D+C, we may write

(29) - iF,F+) --—<£ iFiz))+dFiz),
2iJ c

and this expression has an easy geometric interpretation. The function

Ç=Fiz) maps D conformally (but not necessarily univalently) upon a domain

A, and the curves C, are transformed into new sets of boundary curves T<

ii= 1, 2, • • • ) ; each set is obtained from a basic set Ti, T2, • • • , Tn by simple

translation by an integral multiple of 27tî. The set r„ iy = \, • • • , n) encloses

a certain part of the f-plane and its area is — (F, F+). The function exp {Fiz) \

maps D upon a domain bounded by n curves and we may call — (F, F+) the

logarithmic area of the continua enclosed by them. Thus, we have the result:

Theorem la. If Fiz) £g, the function exp {Fiz)} maps D upon a domain

whose complement has a logarithmic area not greater than irPiu; u, »). Only the

mapping exp {Qiz; », v)} yields the maximal value for the logarithmic area of

the complement.

We shall prove that the function exp {Qiz; u, »)} is univalent in D. Since

the above theorem is a fortiori true for univalent mappings, we obtain the

interesting corollary :
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Theorem lb. If D is mapped univalently so that z = u corresponds to the

origin, z = v to infinity, and so that the residue of the pole at z=v is 1, then the

logarithmic area of the complement of the image domain is not greater than

ttP(m ;»,»). This upper limit is attained by the univalent function exp {Qiz ;»,»)}.

In order to prove the univalency of exp {Qiz; u, »)}, we return to the

definition (13) of Qiz; u, v). If z lies on a fixed boundary continuum C„ the

abscissa of the point Qiz; u, ») is determined by log^(z; u, ») and the ordinate

by log $(z; », v) up to a fixed additive constant. By its geometric definition

log SF attains every value on C, twice and so does log "3?. This shows easily

that Qiz; u, v) maps C„ upon a curve without self-intersection which is cut by

each parallel to the real or imaginary axis exactly twice. Since the imaginary

part of log <£ varies on C, by less than 2ir, it follows that exp {Qiz; », »)} maps

each C„ in a one-to-one manner upon a simple closed curve. It is further clear

that the mapping covers the point at infinity and the origin exactly once.

If we can prove that exp {Qiz; u, v)} has nowhere in D a vanishing deriva-

tive, it follows from elementary topological considerations that this function

is univalent in D.

For the last step in our reasoning we remark that the function

(30)   log Siz; », v) = [cos a log $(s; », v) + i sin a log S^(z; », v)]e~ia,   a real,

is the logarithm of a univalent function in D. In fact, the right-hand side of

(30) is a multivalued function with periods m ■ 2-wi. The boundary continuum

C, is mapped by log S upon a rectilinear segment, which is transformed into

a logarithmic spiral slit if we consider the map by 5(z; », »). This mapping

function has been thoroughly investigated [4, 6]. We use here only the fact

that the derivative of 5 is not zero for any z£Z>. Hence, we find

$'(z; », ff)   ^(z; », ff)
(31) 7(z; », ff) =-?£ — i tan a, z (E: D, a real.

<3?(z; », ff)   ^'(z; », v)

This shows that /(z; u, v) is never imaginary for z£Z>. For z = u and z=v one

has J=X. This shows that

(32) Re \Jiz; u, v)} > 0, z £ D.

For if there were a point z£D with negative Re{ J] we could connect it by

a continuous curve with z = u and there would exist a point on this curve

where Re{ J] =0. But this is a contradiction to (31), which proves finally

(32).
In particular, we conclude from (32) that

d
Í33) — [a log $(z;», ff) + Hog ¥(z; », ff)] ^ 0, z £ D; a, b > 0.

dz

From our preceding considerations follows therefore easily:
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Theorem II. Every function exp {a log <£(z; », v)+b log ^(z; u, v)\ is

univalent in D, if a>0, 6>0, and a+b = i. In particular, exp {Q(z; m, »)} is

univalent in D.

It is now of interest to study the univalent functions of the above type

in more detail and to characterize them by extremum properties. We may

write in view of (12) and (13)

log T(z) = a log $(z; », ff) + b log ^(z; », ff)

(34)
= (a- b)Piz; », v) + ia+ b)Q(z; u, ff).

For a+b = X, we obtain in F(z) a univalent function with (log F)£5, since

exp {Qiz; u, v)} has at z = v the residue 1 and P(»; », ») =0. In the neighbor-

hood of z = », we have in view of (22)

^,,s log T(z' = log (* — «)- log (* - ») + <3i(«; », »)
(34')

+ (a - ¿)P(«; », o) + 0( | z - » | ).

Since P(»; », »)>0, we may by appropriate choice of a and & obtain for

log F(z) a development

(34") log I\z) = log (z - «) + 7 + 0( | z - « | )

with an arbitrarily prescribed possible value for Re {y}. For it is well known

[12] that the largest possible value of Re {7} is attained by log $(z; u, v) and

the smallest by log ^(z; u, »), corresponding to a choice of a = l or 0 = 1,

respectively.

Consider now the subclass %y of all functions Fiz)Çz$ which have at z = »

a given value Re{7}. They may be written in the form

(35) F(z) = log 7/«+F2(z),

where F(z) is the uniquely defined combination of P and Q in the family $y

and F2iz) is of the class ß. Obviously, we have by definition

(35') F2(ff) = 0,        F2(») = imaginary.

Let us compute now the norm of Fiz). We have, in view of (34) and (35),

(F, F+) = iQ+ia- b)P + Ft, iQ+ia- b)P + F2)+)

(36) = «2, Q+) + iQ, Ha - b)P + F2)+) + Ha - b)P + F„ Q+)

+ Ha - b)P + Ft, Ha - b)P + F2)+).

Applying now (18'), (15) and (14), we obtain

(F, F+) = - ttP(m; m, v) + (a - b)2irP(u; », ff)

+ (a - b)7T(F2(u) + (F2(u))+) + (Ft, Ft).

Taking account of (35') and of the equation a+b = 1, we arrive finally at
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(37') (F, F+) = - 4-rrabPiu; », ff) + (F2, Ff).

Since (F2, F2+) ̂ 0 and equality holds only for F2=-0, we have

(38) - (F, F+) g 4-n-abPiu; », ff),

and equality holds only for Fiz) =log F(z). This leads to the theorem:

Theorem Ha. Among all univalent functions fiz) in D vanishing at u and

having a simple pole with residue Xatv and a prescribed value |/'(») |, the func-

tion exp {Qiz; u, v) +aPiz; »,»)}, for a suitable choice of a, maps D upon the

domain whose complement has the maximum logarithmic area.

These results are now closely related to an extremum problem of quite dif-

ferent type. Consider for this purpose the class © of all functions which are

regular and single-valued in D, vanish at » and have the value 1 at ». A typi-

cal function of this class is

(39) /o(z) = Piz; », ff)-P(»; », ff)-1.

Every other function of the class may be written in the form

(40) fit) = foiz) + 0(z)

and, by definition, we have

(40') 4>iu) = 4>iv) = 0.

Computing now the norm oí fiz), we find because of (39), (14) and (40')

(41) (/, /+) = 7rP(«; », ff)-1 + (0, if*-).

Since tp is regular and single-valued in D, its norm is non-negative and we

arrive at the inequality

(41') (/,/+) = xP(»;», ff)-\

valid for every function/(z) of our class. Equality holds only for the function

foiz). This leads to the result:

Theorem III. All functions fiz) which are regular and single-valued in D

and satisfy /(») = 1 and fiv) = 0 map this domain upon an area which is at least

irP(»; u, ff)-1. The extremum map is obtained by means of the function (39).

Comparing theorems la and III we obtain the interesting result:

Theorem Ilia. For every domain D the product between the maximal logarith-

mic area of the complement and the minimal area under mappings of the family

© is exactly 7r2.

There is even a simple geometric relationship between the extremum do-

mains for the two different mapping problems. In fact, we find in view of (16)

that the boundary curves of our second extremum problem are similar to the
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reflected logarithmic images of the boundary curves occurring in our initial

extremum problem. They are, therefore, simple nonintersecting closed curves,

which shows that the extremum problem with respect to the class © leads

to a domain which is at most w times covered and that Piz; u, v) is at most

«-valent. We state, therefore, the following theorem.

Theorem IV. The function Qiz; », ») is the logarithm of a univalent function

and has logarithmic poles at u and v; the function Piz; », ») is regular and at

most n-valued, if n is the connectivity of the domain.

It will be of interest to us to have also the following result. Let /<y(z) be

a map of D on an annullus cut along concentric circular slits such that d

and Cj, ií¿j, go respectively into the inner and outer boundaries of the

annullus, and let g,y(z) be a map of D on an annullus cut along radial slits

such that d and C¡, i^j, go respectively into the inner and outer boundaries.

Let $ij be the general class of schlicht maps A,-¿(z) of D upon domains in an-

nulli such that C< and Cj are carried into the concentric circles bounding the

annullus, and let An denote the logarithmic area of the continua inside the

images of the Cu, i^k^j. Then for prescribed modulus p of the annullus,

where p lies between the moduli corresponding to/,y and gu, Ah is maximized

by the schlicht map &y== ifijgij)lls(Mn/Sn)xtt, f°r suitable X, — l^X^l. If we

pose the same problem without restriction on p the extremal function is

(faga)112 and X = 0. This extremal problem plays for the harmonic measures

the role which those we have considered in detail play for Green's and Neu-

mann's functions, for, as we shall see later, log /,-,- is a linear combination of

harmonic measures. We skip the proof of the result, since it is so much like

those already given.

Finally, we remark that by means of P(z; », ») and Q(z; u, ») it is possible

to obtain interesting mapping functions in the following way: We have, in

view of (16), on every boundary continuum C„

(42) P'(z; », ff)z' = - (Q'iz; », v)z')+,       z' = dz/ds.

This shows that the quotient

(43) £(z; u, ff) = P'iz; », »)/Q'(z; », ff)

has on C always the modulus 1. Since Q'iz; u, v) 5^0 for z£.D, E(z; u, ») maps

D upon the unit circle, of course covered several times. It is easy to determine

the number of coverings. In fact, from (42) we derive that

(44) P'iz; », v)Q'iz; », v)z'2 < 0, z^C.

By the argument principle we conclude, therefore, that the difference between

the number of zeros and the number of poles of the left-hand product is 2n —4.

Now, Q't^O in D, but has two poles at z = u and z = »; hence P'iz; u, ») has

2» —2 zeros and the function £(z; », ») maps D upon the unit circle covered
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In times. The close relations between functions which have the modulus 1 on

Cand the domain functions Piz; u, v) and Qiz; u, v) will be discussed later.

3. The method of contour integration. In this section systematic use will

be made of the equation (16), which connects the functions Piz; », ») and

Qiz; u, ») at the boundary C of D. It will be seen that this relation leads by

means of the residue theorem to a number of important identities. The idea

of procedure will become clear from our first application, which will, there-

fore, be carried out in more detail than the following ones.

We have by Cauchy's integral theorem

(45) —;  (f   Piz; u, v)P'iz; a, b)dz = 0, », ff, a, b £ D,
2-kí J c

since Piz; u, v) and Piz; a, b) are regular in D. By means of (16) we may now

replace in this contour integral P by Q; taking into consideration that

Qiz; a, b) does not change if z describes a continuum Cy, that is,

(46) £    Q'iz; a, b)dz = 0,

we obtain from (45), (16) and (46)

(47) —; (f Qiz; », v)Q'iz; a, b)dz = 0.
2xî J c

The function Qiz; », ») is not single-valued in D, but is so in the domain £>7

obtained from D by performing a cut along a smooth curve y from w to ».

Applying now the residue theorem to Dy and using equation (47), we find

1    rv
(48) Qia; », v) - Qib; », ff) H-; |     2iriQ'iz; a, b)dz = 0,

2iri J u

which leads to the symmetry rule

(49) Qia; », ») - Qib; », ff) = Ç(«; a, b) - Qiv; a, b).

This rule may be compared to the rule of interchange of parameter and argu-

ment in the theory of integrals on Riemann surfaces. It shows that Ç(w; a, b)

— Qiv; a, b) is analytic in all four variables, a result which we obtained in a

different way at the end of §1.

For the next application we start with the identity

(50) -: (Í   Piz; », v)Q'iz; a, b)dz = Pia; », ff) - P(6; », p),
2-iri J   c

which is an immediate consequence of the residue theorem and the analytic

character of P and Q in D. By means of (16) we obtain
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Pia; », v) - Pib; u, v) =-£  iQiz; », v)P'iz; a, b)dz)+

(51) 2\J C
= (j~. £ Piz; a, b)Q'iz; u, v)dz\  ;

a new application of the residue theorem leads to the symmetry law

(52) Pia; », ff) - P(6; u, v) = (P(«; a, b))+ - (P(»; a, b))+.

This result shows that P(»; a, b) — P(»; a, b) is analytic in u and », but anti-

analytic in a and b.

It is now clear how important pairs of functions are which have on C

conjugate boundary values. It is possible to define another pair of functions

with this property and to obtain relations between them and the functions

P and Q. We start with two functions Aiz; u) and P(z; w) which are both

univalent in D and are there regular except for a simple pole at z = » with

residue 1. ^4(z; u) maps D upon the complex plane slit along rectilinear seg-

ments parallel to the real axis, while F(z; u) maps D upon the complex

plane slit along rectilinear segments parallel to the imaginary axis. In both

cases, the point » corresponds to infinity. Our requirements determine the

functions Aiz; u) and P(z; ») up to an additive constant [5].

One has by definition

(53) Aiz; u) = 7„(z) + iav, z £ C„

where yy and a, are real and depend on », but av does not depend on z. In the

same way

(54) Biz; u) = ft. + iS,iz), z £ C„

with real /3„ and 5,(z) and ßv independent of z.

In view of preceding considerations it is suggestive to define now the pair

of functions

(55) Miz; ») = [Aiz; u) - Biz; u)]/2

and

(56) Niz; ») =  [Aiz;u) + Biz; u)]/2.

Obviously, Miz; u) is regular everywhere in D while Niz; u) has at z = u a

simple pole with residue 1. Because of (53) and (54) one has for zÇ^C*

(57) Miz; ») = iNiz; »))+ + (/,(«))+,

where /„(») = —iav—ßv is a constant depending on v and (not analytically)

on ».

The functions Miz; u) and Niz; u) play an important role in the theory of

conformai mapping. One shows by the methods of §2 that Niz; u) is univalent
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in D and that even every combination

(58) Fiz; «) = Niz; u) + XM(z; »), 0 g X ̂  1,

is univalent in D. By means of these functions the following extremum prob-

lems can be solved:

I. Consider the family of all functions which are regular and single-valued

in D and have at »£Z> the derivative 1. Determine that function of the family

which maps D upon a domain of smallest area.

The solution of this problem is given by the function Miz; u) M'iu; u)~l

(where M\z; u) =dMiz; u)/dz). The minimum area is irM'iu; «)-1. Miz; u)

is at most »-valent in D, as can be shown by reasoning similar to that in §2.

II. Consider the family of all functions which are univalent and single-

valued in D and have at the point w£Z? a simple pole with residue 1. Each

such function maps D upon a domain A; we seek a function of this class which

yields a maximum area for the complement C(A) of A in the complex plane.

The solution of this problem is given by the function Niz; u) [11, 14].

The maximum area is ivM'iu; »). We have again the remarkable fact that

the minimum area of problem I and the maximum area of problem II have

for every domain D the product 7r2 [13].

III. Consider the family of all functions which are univalent and single-

valued in D and have at the point »£Z> a development

(59) fiz) = (z - w)-1 + ¿o + Hz -») + •••,

with fixed Re {ki\. Each such function maps D upon a domain A; we seek a

function of this class which yields a maximum area for the complement C(A)

of A (cf. [3]).
The solution is given by that function (58) which has the right value

of Re {ki}. The great analogy between the pairs M, N and P, Q is evident. We

shall now show that they are in fact closely related, and this can again be

done by our integration method.

Starting with the identity

(60) - <h   Miz; a)P'iz; », v)dz = 0, a, », ff £ D,
2iri J   c

and applying the relations (16) and (57), we obtain easily

(60') -' £ Niz; a)Q'(z; », v)dz = 0.
2wi J  c

By virtue of the residue theorem we arrive finally at

(61) Q'ia; u, v) = AT(ff; a) - #(«; a),

connecting the function Niz; u) with the derivative of the function Qiz; », v).

We recognize, in particular, the fact that Q'iz; », ») is analytic in all three
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arguments. This might also have been expected from (49) for the limit case

a—>b.
Let us consider next the following instance of the residue theorem:

(62) —: <b    Niz; a)P'iz; u, v)dz = P'ia; », ff), a, », ff £ D.
2-iri J   c

From (16) and (57) we conclude

(62') -  £ Miz; a)Q'iz; », v)dz = iP'ia; », v))+,
2-wi J c

and applying again the residue theorem, we obtain

(63) iP'ia;u,v))+= Miu;a) - Miv;a).

This shows that P'iz; », ») is analytic in z and anti-analytic in u and ».

Let us combine further M and N in the following equation:

1     f
(64) —: (h   Miz;u)N'iz;v)dz= - M'iv;u),

2iri J   c

This leads by virtue of (57) to

d
M'iz;u) = — Miz; »),

dz

d
N'iz;u) = — Niz;u).

dz

(64') —; £ Niz; u)M'iz; v)dz = (M'(v; «))+,
2iri J c

and, by means of the residue theorem, to the symmetry law

(65) M'(u; ff) = (M'(v; «))+.

From the equation

(66) -  £ M(z; u)M'(z; v)dz = 0, », v £ D,
2iri J   c

we derive in the same way

(66') - £ N(z; u)N'(z; v)dz = 0,
2iri J   c

which leads again by the residue theorem to the analogous symmetry formula

for N,

(67) N'(v; w) = N'(u, »).

From (65) and (67) we infer that M'(u;v) is analytic in u and anti-analytic

in », while N'(u; v) is symmetric and analytic in both arguments.
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One recognizes again the great similarity between the above relations and

the corresponding formulas in the theory of Abelian integrals. The functions

P and Q correspond to the fundamental integrals of the third kind and M

and N to the integrals of the second kind. The functions P and M, however,

have no singularities at all in D. This is closely related to the result of

Schottky [15] that a domain D of connectivity n corresponds to a half of a

symmetric Riemann surface of genus n — i.P and M correspond, therefore,

to fundamental integrals having their singularity in the missing half of the

Riemann surface. Our method of integration along the boundary C of D is

closely related to a procedure of Riemann for obtaining relations between

Abelian integrals; it has been called the method of contour integration. The

central role of the formulas (16) and (57) in this type of reasoning is obvious.

Pursuing the analogy between domain functions of a domain D and

Abelian integrals on a Riemann surface, we introduce now functions which

correspond to Abelian integrals of the first kind. For this purpose we define

the harmonic measures of each boundary continuum C, at the point z with

respect to the domain D. These functions o¡v(z), which play an important role

in the general theory of functions, are defined as follows:

u,(z) is harmonic for z£D and has on C„ the boundary values SM„. One

has obviously the relation

(68) Z «,(*) = 1.
>—i

since the left-hand side represents a function harmonic in D with boundary

values 1 on C.

We may complete a,(z) to an analytic function w,(z) such that

(69) toF(z) =Re {«>,(«)}.

w,(z) is defined up to an additive imaginary constant; it is, in general, not

single-valued in D, though it has a single-valued real part. If z describes a cir-

cuit around the contour C», w,(z) increases by the period

/£     du,w! (z)dz = — i <p      -1
cu                           J c„ dn

(70) <b     w¡ (z)dz = — i <p      -ds = — 2-kíPliv,

where d/dn denotes differentiation in the direction of the interior normal at

zGC.
Since the real part of wv(z) is constant on each boundary continuum Cu of

C, we have

(71) w, (z)dz = imaginary for z varying on C.

This property will now be used in contour integration in the same way as (16)

and (57).
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Consider the integral

(72) -  <*    P(z; u, v)wi(z)dz = 0, »,»£!>.
2iri J   c

We may, in fact, apply Cauchy's theorem, since wl (z) is single-valued and

regular in D. Applying now (16) and (71), we obtain

1     "     r
(73) —; Z  <f>      [Qiz; u, v) - hi«, i>)]wtiz)dz = 0.

2tí ,,=i J c^

The term £„(», v) in (16) cannot be neglected now, since wl (z) is not the de-

rivative of a single-valued function. Using (70), we may put (73) into the form

X     f 2
(74) —: (p   Q(z; », v)wl(z)dz = — Z hiu< v)Pur.

2wi J c m=i

The left-hand integral may be evaluated as before by applying Cauchy's

theorem to a domain Dy obtained from D by making a cut from » to ff along

a smooth curve y. Qiz; u, v) is single-valued in Dy and has at the two borders

of the cut a saltus of amount 27tî. Hence, we find

n

(75) îff,(«) — w,(v) = Z hi«, v)pi»>, v = I, 2, • ■ ■ , n,
o-i

which shows an important relation between the constants kß appearing in (16)

and the harmonic measures.

In the same fashion, we derive from

(76) - «   M(z; u)w! (z)dz = 0, »£A
2iri J   c

and from (57), (71)

(77) —: Z £    [Niz; u) + l„iu)]wliz)dz = 0.
2ici M_i J cM

This leads because of (70) to

(78) wl («) = Z hi«)Pv,
c-l

a relation connecting the constants lß occurring in (57) with the derivatives

of the harmonic measures.

Let us point out finally one interesting property of the harmonic measures

with respect to the scalar product (J, g+) defined in §1. Consider, for this

purpose, the scalar product
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(79) (/, wt) = JJ f'iz)iwl iz))+dxdy

between 7»„(z) and an arbitrary function /(z) of the class ß. Integrating by

parts, we obtain

(80) (/, wt)-£ fiz)iwl iz)dz)+ = — £ fiz)wliz)dz
2i J   c 2% J  c

in view of (71). But the last integral vanishes because of Cauchy's theorem.

Thus, we see that

(81) (/, wt) = 0 for every/(z) £ Q,

that is, the functions w„(z) are orthogonal to all functions/(z) £ ß.

In order to compute the expressions

(82) (w„ w+) = f f w',iz)iwfa))+dxdy

we have to perform a slightly different method of partial integration. We find

(83) (w„ Wa) =-(h   a>,(z)(wM' iz)dz)+ = — (p      W¿ iz)dz = — 2irP^,.
i J c i J cr

This shows that the terms iw„ wf) are real and form, therefore, a symmetric

matrix. The P„„ form a symmetric matrix belonging to a semi-definite quad-

ratic form. In fact, consider the analytic function

n

(84) wiz) = Z W«)
»-i

with real, but otherwise arbitrary, coefficients £v. Its real part is single-valued

in D and has on C, the boundary values £„. Since, in view of (83),

(85) (w, w+) = f f  | w'iz) \2dxdy = — 2* Z U»Pw

and this is a non-negative expression, our assertion is proved. The quadratic

form may vanish only if | w'iz) \ =-0, that is, if w(z) is constant. But this is pos-

sible only if all £,. are equal. In this case, w(z) is really a constant because of

(68).
Another way of understanding the fact that

(86) Z Pi» = 0

is the consideration of the periods of
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(87) Z Wviz) = const.
>—i

for circuits around the boundary continuum C*. One finds in view of (70)

n

(87') Z Pk- = 0, » - 1, 2, • • • , »,
y=l

which leads immediately to (86).

It should be remarked that a system of equations of the form (75) or (78)

determines the unknowns kß or lu only up to a common additive constant.

In fact, if ku (m=1> 2, • • ■ , n) is a solution of equations (75), then ku

+k (m = 1, • • • , n) is, for arbitrary k, another solution in view of (87'). On the

other hand, it follows from the semi-definite character of the matrix (P,,v)

that this is the most general solution of the system of equations (75).

Let us investigate briefly the geometric meaning of the relation (75). It is

evident from the definition of the PM, that when » makes a circuit about the

juth boundary contour CM of D, k,iu, ») has a period

2-kí        r     dkJu, ff)
(70') - 2irid^ -\-= <b- du.

n      J c„        du

Hence the function

(75') K^iu, ff) = £„(», ff) — &„(», ff)

has about C<, p^i^v, no period, and about C, and C„ the periods 2iri and

— 2wi respectively. Hence we see in the usual fashion that exp  {&„(», »)

— k,iu, v)\ is a map /„»(m) of D upon an annullus cut along concentric cir-

cular slits, such as we introduced in §2. Since the mapping function /^„(m) is

determined up to a constant factor, we conclude further that K^iu, v) has

the form

(75") Kß,iu, ff) = Kß, (») — Ä"„„ (ff) + const.,

a result which is also obvious from (75).

4. On Green's and Neumann's functions. We introduce now the two do-

main functions which play a central role in the theory of logarithmic potential

of plane domains.

(a) Green's function g(z; f) is harmonic for z£Z> except for the point

f£Z>, where g(z; f)+log ¡z — f | is harmonic. If z converges to the boundary

C of D, Green's function tends to zero.

Green's function plays a decisive role in the first boundary value problem

for harmonic functions. It is well known that under our assumption on D

Green's function is still continuously differentiable on the boundary C of D.

It satisfies the symmetry law



1949] IDENTITIES IN THE THEORY OF CONFORMAL MAPPING 207

(88) giz; r) = f(f ; z)

and is, therefore, also harmonic in f except for f = z.

(b) Neumann's function 7(z; f) is harmonic for zÇ^D except for the point

X£F>, where7(z; f)+log \z — f | is harmonic. 7(z; f) is continuously differenti-

able in D + C and on C one has

dyiz; f)       2x
(89) -V^ = y

on L

where L is the total length of the boundary curves C. Finally one normalizes

Neumann's function by the requirement

(90) £ y(z; fids = 0.

Neumann's function serves for solving the second boundary value problem

for harmonic functions. Again one has a symmetry law

(°i) 7(z; f) = rit ; a).

It is useful to complete the harmonic functions g(z; f) and 7(z; f) to

analytic functions of z. For this purpose, we introduce two functions piz; f)

and 7r(z; f) analytic in z and such that

(92) giz; f) = Re {¿(z; f)},        7(2; f) = Re {^(z; f)}.

These requirements fix p and it only up to an additive imaginary constant

which may still depend on £. Both functions have obviously a logarithmic

pole at z = Ç; they are not single-valued in D. Besides the period 27r¿ caused by

the logarithmic pole they have periods with respect to circuits of z around the

boundary continua C„. In fact, in view of the Cauchy-Riemann equations we

have

(93) £    dpiz; r) = i £   — Im {piz; fi\ds m - i£ ds.
J c.                       J cds                                          J c.      on

Now, obviously

dgiz; f)
(94) *Á0=-£ '-ds

2irJ   cv      dn

is that harmonic function of f which has on the boundary continuum Cß the

value o,,, and is the harmonic measure of C, with respect to D at the point £",

as defined in the last section. Hence, we may put (93) into the form

(95) £    dpiz; f) = - 2Tt«.(f).
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The periods of 7r(z; f) follow from the expression

/¿tt(z; Ç) = i (b     — Im {x(z; Ç)}ds = — i (p
dyiz; f)

(96)       (f)     <¿tt(z; Ç) = i (f)       - Im {x(z; f) \ds = — i (f)-• ds.
dn

In view of (89) this yields

(97) <b     áx(z;f) = - 2tí —

where L, is the length of the boundary continuum C,. It is important to note

that the periods of 7t(z; f) do not depend on f and that the function

(98) qiz; v, f) = riz; v) - x(z; f)

is, therefore, free from periods around the C,.

It is easily seen from (89) that the real part of q(z; », f) has on C the nor-

mal derivative zero and its imaginary part is constant along each C„. Hence,

one concludes by the usual reasoning that exp {q(z; », f)} is a single-valued

function which maps D univalently upon the entire plane slit along rectilinear

segments pointing towards the origin. The points f and » correspond to the

origin and infinity respectively. Hence, this function is related to W(z; f, »),

defined in §1, by an equation

(99) log ¥(z; f, ff) = x(z; ») — w(z; f) + const.

The additive constant in (99) may be easily determined from the normaliza-

tion of ^(z; f, ») to have the residue 1 at its simple pole ».

For our further developments it is important to notice that dp(z; X)/dz

= p'(z; I) and dir(z; Ç)/dz = ir'(z; f) are single-valued in D and have a simple

pole with residue — 1 at f. On the boundary C we have evidently

(100) p'(z; Ç)dz = imaginary, z varying on C,

since the real part of piz; J") is zero there. On the other hand, we obtain from

the Cauchy-Riemann equations

dx(z;f) ra7(z;f)        . dyiz; fil
it■ iz; f)az =- ds =-i-   ds

ds L     äs dn     J
(101)

-07(2; r)     2t*-| m
-   ds.Fds LA

This leads to the remarkable relation

4«
(101') (*■'(*; t)dz)+ = ir'(z; i)dz -\-ds.

After these preparations we apply the method of contour integration to
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piz; f) and 7r(z; f). We start with the identity

(102) — £ Piz; », v)p'iz; fidz = - P(f ; », »), u, v, f £ D.

We transform the left-hand integral by means of (16) and (100); we obtain

(1020 — Z  £    [Qiz; U, ff) - *„(«, v)]p'iz; t)dz = (P(r; «, ff))+.
2irî „=i »/   c„

Because of the period-formula (95), we find

(102")      --£ Qiz; », v)p'iz; fidz + Z hi«, *)<*Át) = (P(f ! «. *))+-
2m J   c n=i

Now, we evaluate the left-hand integral by applying Cauchy's theorem to the

domain Dy which is obtained by slitting D along a smooth curve y from u to ».

We find easily
n

(103) piv; t) - piu; f) = Q(f ; », ») + (P(f ; », ff))+ - £ *„(«, »K(f).
c=i

This formula expresses ¿>(»; f) in terms of the functions P and Q; it is clear

that by our definition only a formula for piv; f) —piu; f) and not for piv; f)

alone was to be expected. For our definition left an arbitrary imaginary con-

stant free which might depend on f. Hence, only a difference between piv; f)

and its value at a fixed point uÇ_D is uniquely defined; this shows that (103)

yields the maximum information which is to expected for piv; f).

We apply now the same considerations to the function x(z; f). From

(104) — £ Piz; », »)x'(z; fidz = - P(f; », »), », », f £ D,
2-iri J  c

we obtain by means of (16) and (101')

T-ÍÍ    [0(2; «, v) - hiu, ff)] [x'(z; f)z' + -—] ds
2ti u—\J   c L L j

(104')
dz

= - (P(f ; », ff))+,        z' = — •
ds

Hence, applying the period formula (97) we find after a simple transformation

1   r a i,    2/
- ©    Qiz; », ff)x'(s; f)dz — 2_, ^(M. »)-1-(p   Qiz; », v)ds

= - (P(f ; », »))+.

Using again Cauchy's formula with respect to Dy, we arrive finally at the
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equation

*(»; f) - «■(«; f) = Qiï; », ff) - (P(t; », o))

(105) » i,A Lß      2    r
+ Zs hi«, ») — —- <p   Qiz; u, v)ds,

**i L       L J   c

which expresses x(»; ¿") in terms of the functions Q and P.

At this stage it becomes evident that we may obtain much simpler for-

mulas by an appropriate change of normalization of the functions Piz;u, v) and

Qiz; u, »). These functions were defined as the difference and the sum of the

logarithms of two canonical mapping functions. The geometrical properties

of these two mappings, namely mapping upon a circular or radial slit domain,

determine the two functions only up to a constant factor. We determined this

factor by the requirement that the residue at the pole z = » be one. This

normalization was quite natural in connection with the extremum problems of

§2, which made a distinction between u and ». In our formal transformations

of §§3 and 4, however, we made use only of the equations (16), and not of the

requirements at the point z = ». From the normalization (90), which fixed an

arbitrary additive constant without distinction of special points, and, in par-

ticular, from (105), we recognize that a new type of normalization is prefer-

able and will lead to much simpler expressions for Neumann's function. In

fact, we shall add to Piz; u, v) and Qiz; », ») constant terms with respect to

z which depend, however, on » and » such that

(106) <p    Piz; », v)dsz = <p    Qiz; », v)dsz = 0 for every », v £ D.
J   c                           J   c

We denote the renormalized functions again by Piz; u, ») and Qiz; », ») in

order to avoid an excessive number of letters; from now on P and Q will

denote only the fundamental domain functions with the new normalization

(106).
It is clear that the new functions P and Q satisfy again equations (16),

but with new constants &„(», »). Because of (106) we derive from (16) for the

k,iu, v) the relation
n

(107) Z £»*>(», v) =- 0, », » £ D.
v=l

Returning to (105), which was proved from (16) and remains valid for the

new functions P and Q, we find by virtue of (106) and (107)

(108) x(»; f) - 7r(»; f) = Q(f ; u, v) - iP^; », »))+.

By means of (107) we are further able to invert the system of equations

(75) for the &„(», ») and to express these terms by means of w„(»)—w„(»). In

fact, taking the first (» —1) equations (75) and eliminating k„iu, v) from
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them by means of (107) we find all other &„(», ») as linear combinations of

w„(«)— w,iv). This shows that every &„(», ») is a multiple-valued analytic

function of » and ».

Finally, let us solve the equations (103) and (108) with respect to (?(?; u, v)

and (P(f; », »))+; we obtain

QH;u,v) - — [{piv.fi - Piu-A)\ + {x(»;f) -x(«;f)}]

(109) 1 n

+ — Z hi«, »)«m(D.
2 ,,=i

(Pit; », »))+ = — [{p(v; D - P(u;fi) - |x(»; f) - x(»; f)}]

(HO)
1 "

+ — Z hi«, »)«>/.(?)•
2 M„i

These equations show that QiÇ; u, ») is analytic in f, » and » and satisfies the

symmetry law

(ill) Qit; «.») = - <3(r; », «)•

P(f ; », ») is analytic in f and anti-analytic in u, » and has the symmetry rule

(112) P(t; »,») = - Pií; », »).

The analytic behavior of Piz; », ») in dépendance on its arguments might

also be understood from the following considerations: We had in §1 to restrict

the class ß in order to exclude from this class all nonvanishing constants.

We did this by distinguishing a point »£Z> and requiring the vanishing of all

functions of our subclass ß„ at ». Our new normalization for P and Q leads

naturally to a new subclass of ß. Let ßi be the class of all functions /(z) £ ß

which satisfy the condition

(113) £ fiz)ds = 0.

We have, however, to give a meaning to the integral (113) for functions which

are not defined on C. This is possible by the remark that for every function

/(z) which is continuously differentiable in D + C we have in view of (101')

(114)

(/,*+) = - — <f S(*KM*;
2iJ   c

f))H

= -— 9   fiz)ir'iz;í)dz- — <f>   fiz)ds
It J   c LJ   c

whence bv virtue of the residue theorem
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(1140 £ fiz)ds - - - if is), (x(z; r))+) + 4/(0-
J   c 2ir 2

The right-hand side of (114') is defined for every function/(z) £ ß, since it

may be expressed by an improper integral extended over D. This permits an

interpretation of the condition (113) for every function/(z) £ ß and a unique

definition for the class ßi. It is obvious that the only constant in this class is

/(z) =0. We introduce now the metric (6) or (7) into this class and remark that

(/,/+) =0 implies, in Qi, /(z) «0.

The function Piz; », ») belongs to ßi because of its normalization (106).

It satisfies still the relation (14) for every/(z) £ ßi. We introduce now a com-

plete orthonormal system {/..(z)} for the class ßi, which is possible because

of our exclusion of constants; developing Piz; u, v) into a Fourier series with

respect to this system, we obtain because of (14)

(115) Piz; », ») = xZ/,(z)[(/,(»))+ - (/,(ff))+J.
v-l

This series converges uniformly in each closed subdomain of D; it shows that

P is analytic in z and anti-analytic in u and ». The symmetry law (112) is also

evident from (115).

Finally, we derive from (103) and (108) two remarkable identities. Dif-

ferentiating (103) and (108) with respect to » and Ç and comparing the results,

we find

d2p ô2x        1    "    d
(116) =_£       kÁU¡ v)wí(s)>

dffdf dffdf        2 „_i  dv

while the same reasoning after differentiation with respect to » and f+ yields

d2* o>2x 1    »    d
<117) ¿ = ^-7lr hi«, v)iwi (f))+.

dffdf+       d»3f+        2 „=1  dv

These two relations between the second derivatives of Green's and Neu-

mann's functions play a role in the theory of the kernel function of an ortho-

normal system [2].

It is perhaps worth remarking at this point that many of our identities

obtained by contour integration and the boundary relation (16) can be de-

rived directly by inspection of the geometric character of the mappings in-

volved. The relations (116) and (117) offer a good opportunity of demon-

strating this fact. Indeed, let f = o+ít. The functions

(99') «(»; D = Piv; f) + Z hi«, v)&At),

(99") ßiv; f) = x(ff; f)
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have fixed periods about each C„ which are independent of », f. Hence, the de-

rivatives with respect to a and r will have no periods. Furthermore, since

Re {«(», Ç)} and Im {ßiv, f)} have at the worst variations along the C, which

are independent of X, the derivatives will have for a constant real part and for

ß constant imaginary part on each Cv. Thus the partial derivatives da/da and

— idß/OT map D on domains bounded by vertical slits, and —ida/dr and

dß/da map D on domains bounded by horizontal slits. We see, then, by the

cancelation of the poles, that

dp " ôo),, dir
(116') -r- Z hi«, v)-r- * — = const,

ÓV       M=i da ÓV

dp " âcou ôx
(117') — + Z hi«, ■») —- - i — = const.

or        ,,=1 ÓV do-

But these relations imply (116), (117), upon differentiation with respect to ».

This method often gives insight and shorter proofs, but because of its un-

systematic nature we do not investigate it further, with one exception at the

end of §6.

Now, we have to consider an appropriate normalization for the functions

Miz; u) and Niz; »), which were defined in §3 up to an additive constant.

We require again the normalization

(106') <p    Miz; u)dsz = <£    Niz; u)dsz m 0, for every « £ D,
J c J   c

which implies in view of (57)

(107') Z LM«) =0, » £ D.
»-i

The first advantage of this normalization is the fact that the /„(»)'s, which

were until now defined by (78) only up to an additive constant, are defined

in a unique way and become linear combinations of the wl (»), that is, analytic

functions of ». Next, we may apply to Miz; »), Niz; u), piz; f) and x(z; f)

the method of contour integration and perform the same transformations as

we did before with Piz; », v) and Qiz; », »). We obtain finally

(103') p'iz; f) = Nif, z) - (Jf (f ; z))+ + ¿ t(*Mf)
r-l

(108') r'iz; f) = Nfa z) + (lift ; «))+.     .

Solving these equations with respect to 7V(f ; z) and (M(f; z))+, we obtain

(109') Nit; z)=- [x'(z; f) + //(z; f)] - — ¿ J»(i)«,(fl,
2 2  v=i
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(HO') iMit; z))+ = - [x'(z; f) - p'iz; f)] + 1 ¿ fc(f)*(f),
2 2  „_i

which shows that because of our normalization Nit; z) is analytic in both

arguments and Mit; z) ls analytic in f and anti-analytic in z.

In summary, we have

(61) Q'ia; », ») = AT(»; a) - #(«; a),

(63) iP'ia; », »))+ = M(»; a) - Miv; a),

(65) M'iu; v) = (if'(ff; »))+,

(67) N'iu; ff) = iV'(ff; »),

(75) «>,(») — w„(ff) =   Z *«(«. »)P,«, " "• 1, 2, • • • , »,
M~l

(78) »; (») =  Z t(«)Pn». »■- 1, 2, . - •, »,
M-l

n

(103) ¿(ff; t) - Pi«; t) = Qit; «, v) + (P(f ; », b))+ - Z *,(«. »)»i.(f).

(108)  x(ff; fj - x(«; f) = Q(f ; », ff) - (P(f ; », »))+,

(109)

(110)

Qit;«,v) = — [{pint) - Pi«;t)\ + Hv; t) - x(«; r)}]

1 2
+ — Z  W«.  »)W(.(f),

2 p.i

(P(f ; «, ff))+- y [{#(»; f) -K*Íf)}  -   (7r(»;f)-x(«;r)¡]

1 2
+ —Z hi«, v)<»Át),

2 u=i

(109') Nit; z)=- Win t) + P'iz; t)] - — Z ¡W*)«,(f),
2 2 p_i

(lio') (Jf(f; 2))+ = - k(z; t) - P'iz; t)] + — ¿ «iKÖ),

(115) P(«; », ») = x Z M*) [(M«))+ - iUv))+].
?=1

5. Schottky functions and related classes. Schottky [15] was the first to

consider the family 9Î of all functions /(z) which are single-valued and mero-

morphic in D and have real boundary values on C. He developed an interest-
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ing theory of conformai mapping of multiply-connected domains from the

properties of this family and established by means of it the relation of this

theory with the theory of closed Riemann surfaces. It is evident that func-

tions /(z)£9i are very useful in the method of contour integration.

In fact, let/(z) be an arbitrary function of this family. We assume, for the

sake of simplicity, that/(z) has only simple poles. Let z„ iv= 1, • • • , N) be

the coordinates of the poles and rr iv = X, 2, ■ ■ ■ , N) the corresponding resi-

dues. Consider now the integral

i   r N
(118) •—: <h    Piz; », v)fiz)dz = - Z r,P'iz¥; », ff).

2iriJ   c w-i

Using (16) and the fact that/'(z)¿z is real on C, we obtain

Z r+iP'iz,; », ff))+ = - —- (h   Qiz; », »)/'(z)dz
>«i 2-nij c

= -—.<!>   fiz)Q'iz;u,v)dz.
2wiJ   c

By means of the residue theorem we deduce from (119)

N N

(120) Z r+iP'iz,; «, ff))+ = Z rjQ'is,; », ff) + /(«) - /(ff).
1=1 r=l

Applying finally the formulas (61) and (63) we arrive at

N

/(ff) - /(») = Z M(»; 2,) + r+M(v; a,)]
i

N

Z [r,Niu; z,) + r+Miu; z,)].

(121)

This proves the following theorem:

Theorem V. Every function /(z) £F may be developed in the form

(122) fiz) = A + Z [r,Niz; z,) + r+Miz; z,)].
r—1

We have now to establish the additional conditions in order that anjex-

pression (122) be in fact a Schottky function. Obviously, the right-hand side

represents a single-valued meromorphic function of z£D with simple polesjat

the z„. If z lies on the boundary continuum C„ we have by virtue of (57)

N N

(123) fiz) = A + Z [r,N(z; z,) + r+(iV(z; z,))+] + £ r+(/p(z,))+.
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If we require now that/(z) be real on each Cp, we obtain the conditions

(124) Im (a + Z rfil,iz,))+\ =0, p = 1, 2, • • • , n.

Multiplying the pth equation (124) with PPI1 and summing over p from 1 to n,

we obtain in view of (78) and (87')

(125) Im j Z rrwl (*,)} =0, p = 1, 2, , n.

One recognizes easily that every function (122) for which (125) is fulfilled is

of the family 9Î under proper choice of the constant A. The similarity of the

conditions (125) and an analogous result of Abel for single-valued functions

on closed Riemann surfaces is evident.

Another family of functions which is closely connected with dt may be

defined as follows. Gï is the family of all functions F(z) which are regular in D

and which satisfy on the boundary C of D the condition

(126) | F(z) |2 = £(z)(£(z))+= 1.

It is obvious that for every £(z) £6 the expression £(z) -f-£(z)_l is an element

of 9Î.
We obtain now for every function £(z)£@ a simple representation in

terms of the functions M(z; ») and Niz; u) defined in §3. We assume, for the

sake of simplicity, that £(z) has only simple zero-points in D and that at each

such point », (p = 1, 2, • • • , N) one has

(127) lim (z - nJ-Wiz) = rr1, r - 1, 2, • • • , N.
z—*ny

Because of (122), we have in view of (127)

(128) £(z) + Eiz)-> = A + Z [r,Ni*\ n,) + r+M(z; »,)]
p=i

with the additional condition, derived from (125),

(128') Im < Z ***& M \  = 0- p = I, 2, ■ ■ ■ , n.

Since further the function î[£(z) —F(z)-1] is again of class 9Î, we derive from

(122), (127) and (125) the formulas

N

(129) Eiz) - F(z)"1 = ß - Z M(*; O - r+Miz; »,)],
,=i

(130) Re j Z r¿m¿ «i} =0, p = 1, 2, , ».
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Combining (128) and (129), we find the following result:

Theorem VI. Let £(z) be a function of the class (5 with simple zeros at the

points », and let r, be the residues of F(z)_1 at the corresponding poles. Then we

have the representations:

N

(131) £(z) = ¿i + Z rtMiz; n,),
r—l

N

(132) F(z)-1 = A2 + Z r,Ni*\ O.
v=l

and the zeros and residues are connected by the equations

w
(133) Z r,w¿ («,) =0, M = 1, 2, • • • , ».

,=i

These results might also have been proved directly without using the

class 9î by applying the method of contour integration and using the fact that

because of (126) one has, on C, (£(z))+ = £(z)_1.

Since the function £(z) vanishes at all points nß, we derive from (131) the

(iV— 1) equations

N N

(134) Z r+Min,; n,) = £ r+Mim; »,),        p = 2, 3, ■ ■ ■ , N.
t=l v=l

We want now to verify that if N points re, and N numbers r, can be found

such that the N+n — 2 equations (133) and (134) are satisfied then it is pos-

sible to determine constants Ai and A2 such that the function (131) is propor-

tional to a function of class @ and that (132) is proportional to its inverse.

In fact, construct formally two functions £(z) and £i(z) which equal the

right-hand sides of (131) and (132). In view of (134), we may choose Ai in

such a way that F(z) vanishes at all points «,. Hence, the product £(z) -Fi(z)

is regular in D, since the simple poles of Fi(z) cancel against the zeros of F(z).

For z(E.C„ we have by virtue of (57)

(135)

Eiz)-Eiiz) = \ai + £ r+il„in,))+ + ¿ n+(-V(z; «,))+]
L ,-i ,=i J

■[a2+ ¿f,^ ;»,)].

Now, we deduce from the character of the matrix (P„,) and (133) and (78)

(135') Z r?il,ith))+ = Z r+ihinv))+, p = 2, 3, • • • , ».

If we choose now
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N

(135") A2 = At + Z rM»>)
,-i

we have non-negative boundary values for F(z)Ei(z) on C. But since the only

regular functions /(z)£9î are real constants, we find £(z) -Fi(z) =k, where k

is a positive constant. This proves our assertion; we may always multiply the

r,'s by a common factor so that E(z) becomes of class (£.

If we introduce into the identity £(z)-F(z)_1 = l the expressions (131)

and (132) and if we compute the product at a point »„, we find easily

N

(136) r„Z r+M'in,; »„) - 1, M = 1, 2, • • • , N.
v-l

This system of equations for the ry's must necessarily be a consequence of (133)

and (134). Numerous other identities of similar form may be easily obtained.

We shall restrict ourselves here to one example.

We may eliminate the constant Ai in (131) by using the fact that E(«i)

= 0, and this gives to (131) the form

(131') Eiz) = Z r+[Miz; n,) - M im; n,)],
v=l

which is in view of (63) equivalent to

(131") Eiz) = £ r+iP'in,; z, m))+.
,=i

This is another standard representation for the class S in which the constant

term has been determined. Let now

M

(137) Fiz) = Z s+iP'im,; z, mi))+
f=i

be another function of class (£. For the sake of simplicity, we assume that no

zero of Eiz) coincides with one of Fiz). The function £(z) • Fiz) is again of the

same class ©. Hence, multiplying on the one hand (131") with (137) and us-

ing, on the other hand, the representation (131") for the product, we obtain

M     N

Z Z r+s+iPifh; 2, «1))+(P'K; z, m$)+
,       M_l   v=l

(138)

= Z r+(F(M,)-1)+(F'(«,; z, m))+ + £ s+iEim^-^+iP'im,; z, m))+,
,-i ji-i

an interesting relation between the left-hand second order expressions of P'

and the linear terms on the right-hand side. Using the above procedure with

respect to the product £(z)-1-F(z)-x gives an analogous identity in Q'.
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We consider now the particular function (43) of class Gs and apply to it the

representation formula (131"). We obtain

(139) P'iz; u, v)Q'iz; », ff)-1 = Z rtiP'in,; z, »))+,
,=i

where the summation is extended over all 2» zeros », of the left-hand expres-

sion and it is to be noted that z = » and z=» are zeros of this function. This

formula shows that Q'iz; u, ») may be expressed by means of P'iz; », ») and

P'(w,; z, u). This result is of interest because Piz; », ») is a kernel function

and, therefore, numerically easy to handle. The determination of the », and

r, will, however, be in general so difficult that little immediate use of (139) is

to be expected.

Let us consider, further, the matrix (Af'(z,; z„)) which occurred in the

equation (136) for the residues r,. Because of (65) this matrix is Hermitian.

In order to study it in more detail, we remark that for every function /(z)

which is single-valued and continuously differentiable in D + C we have be-

cause of (57)

(140)

ifiz), iMiz; »))+) = — £ /'(z)(M(z; u))+dz
2iJ   c

= -T.<f f'iz)Niz;u)dz = Tf'iu).
2iJ c

By the usual reasoning we conclude for every function/(z) £ ß

(MO') ifiz), iMiz; »))+) = «/'(«).

In particular, we derive from (140') for every function of the type

N

(141) fiz) - A + £ Mf(z; n,),
_i

which is obviously of the class ß, the relation

(142) (/, /+) =  f f | fiz) \Hxdy = x £ X,X+M'(re,; »„).
J  J D |i,wl

This shows that the Hermitian form with matrix (Af'(«,; »„)) is positive-defi-

nite. If we choose in particular as/(z) a function £(z) £®, we find

(142') (F. F+) =   f f | E'iz) \Hxdy =   ¿ rjr+M'in,; »„).*■.

We find from (136) that the value of this sum is N-tt. This result is easily

understood; each function £(z) maps D upon the unit circle covered N times

and the area of this image domain is exactly N-ir.
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There is another interesting representation for all functions/(z)£9î. Let

n

(143) w'iz) = 2W(«)> fcreal,
,=i

be an arbitrary linear combination of derivatives of harmonic measures with

real coefficients £,. If /(z)£9î with N simple poles z, and corresponding

residues r, is given, consider the function/(z)w'(z). We have, evidently, on C

(144) ifiz)w'iz)dz)+ = — fiz)w'iz)dz, z varies on C.

Consider now the equation

1      C A
(145) —   (/>    M(z;»)/(z)w'(z)¿z =  Z^w'(20^(2,;m).

2x¿ J   c ,=i

Because of (57) and (144), we obtain

N 1 n s+

(146) Z (»vw'(z,)M(z,; »))+ = —: Z </>     [Niz; u) + «»)]/(z)w'(z)áz,
,=i 2xt ,,=i J cß

whence by means of the residue theorem

N N

fiu)w'iu) = - Y,r*w'iz,)Nizv;u) + ^,r^iw'izr)Miz,; »))+

(1460
n

- Z W«K>
«-i

where

±¿(146") a„ =-:(b     fiz)w'iz)dz, p = 1, 2, • • • , »,
2wiJ   c„

are, because of (144), real constants. Considering, finally, (78) we find:

Theorem VII. Every function fiz) £9Î may be represented in the form

(147) /(z)w'(z) = £ [r,+(«/(2,))+(M(z,; z))+ - r,«/(z,)2V(z,; z)] + ¿ W«,
,= 1 M=l

wí'¿a rea/ coefficients X^.

We make the following application of this result:

Take an arbitrary function w'iz) of the type (143); then we have in

(148) fiz) = w(iz)/w'iz)

a function of the class 9Î. Suppose that all zeros z, of w'iz) are simple; it fol-

lows easily from the argument principle that there are exactly w —2 of them in
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D. We assume in the following considerations re>2 so that the existence of

zeros z, is assured. The corresponding residues of/(z) are

(148') r, = w/iz,)/w"iz,).

We apply now formula (147) with the function w'iz) replaced there by w¿ (z) ;

we have

w'iiz)wkiz)
Z x¿fc.(1w; (z) = 24 -77—:— )   (-MX2-; 2))+
u_i ,=i\L     w"(z,)     J/w'(z)

(149)
" 2   w!iz,)w¿iz,)

- Z —777^— N^;z)
,„i w"(z,)

Since there are re — 1 linearly independent w' (z), we may write down « (re — 1 ) /2

equations (149) for a given denominator w'iz). We may consider the 2re —4

terms Mizv; z) and N(zv; z) as unknowns and the equations (149) as a system

for their determination. The number of linearly independent equations (149)

is of great importance from this point of view.

First we conclude from (149) that there are at most 3n — 6 linearly inde-

pendent terms w[ (z)w/ (z). In fact, choose w'(z) in (149) as w¡ (z). Take all

equations (149) with w{(z)w{ (z)/w{(z) and w{ (z)w¿ (z)/w{ (z) ik = X, 2, 4,

• • • , re —1). These are exactly 2re —5 equations. If now another equation

(149) of the form w[ (z)wl (z)/w{ (z) is considered with i, k?± 1, 2, 3, we have

2w —4 equations with 2» —4 unknowns. Further, applying condition (125) to

our functions /(z) we have in each case

(150)
El/TllWlfWy        y?   WIÍZ,)WÍÍZ.)

èiVL  w"(zv) 1)   h   w"(zv)

This shows that the rank of the matrix of our 2re—4 equations is at most

2re —5. There exist, therefore, constants such that

7i—1 n—1

aw' iz)w{ (z) + Z ß'Wl (z)w,' (z)  +   Z 1y1»i iz)w! (z)

(151)
n— 1

+ ¿2 8.w{ iz)wl iz) = 0.
,=i

In the same fashion we show easily that each set of 3w — 5 terms w[ iz)w¿ (z)

is linearly dependent and that all terms may be obtained as linear combina-

tions of at most 3re —6 basic independent products of this form.

Theorem VIII. Among the expressions w( iz)wl (z) there are at most 3re —6

linearly independent ones.

Let us assume now that we can find 2n — 5 combinations of indices i and

k for which the equations (149) are linearly independent. This assumption is
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in general fulfilled, as follows from a theorem of Noether (cf. [8, pp. 502—

527]) in the theory of algebraic integrals. If we want to solve the system of

equations, we have first to take notice of the relations (150) between the

coefficients of this system. Since by virtue of the residue theorem

r;2 w!iz,)w¿iz,)      1     r   wl(z)wl(z)

(152) 2-—^t^ = t~-y  —7T\—dz'
,=i        w (z,) 2m J   c        w (z)

we may put the equations (149) in the form

wí iz)w¿iz)
- Z W«v'(z)

w'iz) M_i

(149')

J*/rw! jz,)w¿ (z,)~\\+

h\l  w"iz,)  i)
(iMiz,; z))+ - iMizi; z))+)

A2 w/(z,)w* (z,)

,=2        w"iz,)

- iNizi;z) - iMizi;z))+)- }-.£
2-kí Je      w'

Applying finally (103') we find

Wí (z) Wk (z) " ™ 1     JT      Wi w{

w'iz)

A A 1    r    Wi Wk
— Zj^ik.nWÜz) — 2L, Wz)w„(zi)--—<p     --—dz

„-i M_i 2-kiJ   c      w

A2/rw'(z,)W(z,)"i\+
(153) = Z ( —^^T-r1 ) ((M^-< 2))+ - (^ (*; z))+)

,=2\L      w'iz,)      J/'(2,)

ÎA2 w'iz,)wkiz,)
-    Z J,   , (%i 2)  -  ÍV(Z1; Z))

_J 7» '(Z,)

¡>'(z; zi) y     w'î»i
dz.

2xî
!/£

From this system of equations in 2re —5 unknowns with nonvanishing de-

terminant we may compute the unknowns. We find:

Theorem IX. The functions p'iz;zi), {Niz,; z)—Nizi;z)} and {(Jlf(z,;z))+

— (Af(zi; z))+} are rational functions of the functions wi (z) (t = l, • • -,

» —1) with coefficients depending on Si.

For example, we have

„„„                               .        ,       Z aikjzi)wl jz)w¿ (z)
(153') p'iz; zi) =-,

n

Z &»»' (z)
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1
(154) w'(z) = —

where the summation in the numerator is to be extended over any basic sys-

tem of the w'i i¿)wk' (z). The coefficients £, in the denominator depend also on

zi, since the denominator has to vanish at this point. We might choose as

such a denominator the expression

w[ (z) wi (s) w{ (z)

w{ (zi) w{ (zi) wl (Zi)

(wi (zi))+   (wi (zi))+    (wi (zi))+ ,

if it is not identically zero, which occurs only at exceptional points Zi.

It is possible to obtain additional information about the representation

(153') in the following way. Introduce the differential operators

d        X / d           d\           d         I/o             d \
(155) — = _(-£_),        -= —-i-),

dz       2 \dx dy/ dzi        2 \5xi dy\l

z = x + iy, zi = Xi + iyi.

Differentiating (153') with respect to Zi and using the definition of p'(z; zi),

we find

d2g(z; zi)       Z A^ß(zi)wK' (z)wi (z)w¿ (s)
(156)

dzdz [Ê &(*)**'(«)]
But this expression is symmetric with respect to z and zx; hence we have here

a rational expression in wl (z) and wl (zi) for a second derivative of Green's

function. We do not pursue these formal considerations; they show the im-

portance of the method of contour integration for studying identities between

domain functions. It appears that for the general domain D of connectivity

« > 2 the derivatives of the harmonic measures are among the most important

domain functions, since many others may be constructed rationally from

them. The last results of this section are closely related to Noether's theorem

[8] on algebraic integrals. In view of Schottky's theorem on the mapping of

multiply-connected domains on Riemann surfaces they might even be derived

directly from Noether's result. Our method leads to them directly by simple

applications of Cauchy's theorem and seems to be more appropriate for the

theory of conformai mapping.

6. Theory of variation for the fundamental domain functions. In this

chapter the method of contour integration will be applied in order to study the

variation of domain functions under an infinitesimal change of the domain D.

We shall vary the domain D as follows; we choose a fixed point 20£F> and

consider the conformai mapping

ei*p2

(157) z* = z-\-, 0 á <t> < 2x, 0 < p.
2 —  So
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This map is univalent in the domain \z—Zo| >p. If we choose p sufficiently

small, the whole boundary C of D will lie in this domain of univalency and

will, therefore, be mapped by (157) upon a set of » smooth curves C*. These

curves bound a new domain D* which will be less different from D the smaller

p is chosen. It is this domain D* for which we want to compute the funda-

mental domain functions in terms of those belonging to D. We shall denote

the domain functions of D* by the same letters as those of D, but shall indi-

cate their new domain by an asterisk. Thus P*iz; u, v) has with respect to D*

the same meaning as Piz; u, v) has with respect to D.

In applying the method of contour integration, we shall have to eliminate

from D a small circle of radius e around zo- We denote the circumference by

7t and we denote the remaining part of D by De. By virtue of Cauchy's theo-

rem, we have

-4
2iriJ c

P*iz*iz);u*, v*)P'iz;a, b)dz

(158)

2xt J   ,
P*(z*(z); u*, v*)P'(z; a, b)dz,

since z*(z) is a regular analytic function of z in Dt. On ye we may develop

P*(z*; »*, »*) into a series in powers of p2/e which will converge if eî$>p2.

We find, in fact,

P*(z*; »*, »*) = P*(z; u*, »*) + ■-— P*'(z; «*, v*) + ■ ■ • ;
Z — Zo

(159) d
P*'(z; «*, »*) = — P*iz; «*, »*).

dz

Introducing this development into the right-hand integral of (158), remark-

ing that P*iz; »*, »*) is regular in the interior of ye and applying the residue

theorem, we obtain

„^    T--4    P*iz*iz);«*,v*)P'iz;a,b)dz
(160)    2wi J   7e

= e'VP*'(z0; «*. v*)P'(zo; a, b) + o(P2),

where o(p2) shall henceforth always denote a corrective term of higher order

in p such that limp_op-20(p2) =0. It is obvious that (159) permits the compu-

tation of the higher terms in p, too; the remainder term may be estimated in

terms of the values of P*(z; »*, »*) on yt.

We apply now formula (16) for P(z; a, b) and the corresponding relation

for P*(z*; »*, »*); in fact, if z lies on C, the varied point z* will lie on C*, so

that both instances of (16) hold simultaneously. We find:
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,««,    ~ Z £    fô*(z*(z); «*, »*) - k*iu*, v*)]Q'iz; a, b)dz
(161) 2vt „=iJ c„

= - e-'V(P*'(z0; «*, v*))+iP'izo; a, b))+ + o(P2).

On the other hand, we obtain from the residue theorem, applied to Df,

—; £ e*(z*; «*, v*)Q'iz; a, b)dz
2tti J   c

(162) = Q*ia*; »*, »*) - <2*(6*; »*, ff*) - Q(«; a, ft) + Qfo a, 6)

+ —: £   Q*iz*; «*, v*)Q\z; a, b)dz.
2x¿ J   ye

From a development of Q*(z*; »*, »*) on 7e such as we used in (159) for

P*iz*; «*, »*) we get

,***s  T-- <£  Q*iz*;«*,v*)Q'iz;*,b)dz
(163)    2xi J   y

= e<*P2Q*'izo; »*, »*)Q'(z0; a, ft) + o(P2).

In view of the uniform convergence of Ç*(z; »*, »*) and P*(z; »*, »*) to the

functions Ç(z; », »), P(z; », ») in each closed subdomain of D with p—>0 and

because of the symmetry rule (49), we obtain from (161), (162) and (163) the

variation formula

,.*» Ö*(«*; a*'ô*) - G*(°*: a*'**) - <?(«: a- ô) - Gí»; a-ô)
(164)

- e'W(2o; m, *)<2'(2o; a, ft) - rM^(*.; «. »))+(P'(zo; a, ft))+ + o(p2).

This formula expresses the variation of the symmetric expression Q(w; a, b)

— Qiv; a, ft) in terms of the unvaried domain functions P and Q. One sees

how the method of contour integration leads immediately to this important

result.

Just in the same way, we obtain from the identities

-: £ Q*iz*; »*, »*)F'(z; a, b)dz
2x¿ J c

(165)

1<f2XÍ J      y
= P(»; a, ft) - Piu; a, b) + — _ (fi     Q*(z*; «*, d*)P'(z; a, ft)rfz

and

— /  P*iz*;u*,v*)Q\z;a,b)dz
2xî ./   c

(165')

= P*ia*; »*, ff*) - P*(ft*; »*, ff*) H-: £    P*iz*; »*, ff*)Q'(z; a, b)dz,
2xi ./   Te
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by use of the relations (16) on C the final result

P*(«*; a*, ft*) - P*(ff*; a*, ft*) = P(»; a, ft) - F(»; a, ft)
(166)

- eíve'^o; », »)P'(20; «, ft) - e-¿V(P'(2o; », w)<3'(2o; », ff))+ + o(P2).

Next we transform, by similar methods, the two identities

(167)    -   £ P*iz*;u*,v*)wliz)dz=—   £    P*iz*; »*, v*)wl iz)dz,
2-iri J c 2tí J y(

—: Z £    [6*(z*; »*. »*) - */<**. »*)K (z)áz
2x¿ u_i y   c„

(1670
" 1     /*

= î»,(») - w,iu) + Z **(«*- »*)P^ + —-  <f>     Q*iz*; «*, i>*)wl iz)dz.
,1-1 2-iri J    y(

Using series developments on yf and the formulas (16) and (71), we obtain

n

Z hi«*, v*)Pßv = w,iu) — w,iv) — e¿V6'(2o; », v)wlizo)
(167")     ,=i

- e-i*P2(F'(z„; », ff))+(wv' (zo))+ + o(P2).

Because of (75) this yields

n

£ [**(«*, »*) - hiu, ff)]iV = - eiVQ'(2o; », »)w,'(2o)
(168) M=i

- e-V(P'(z0; «, »))+(w,'(s0))+ + o(p2).

In view of the equations (78) and the character of the matrix (P„,) this leads

to

**'(«*, ff*) = £„(», ff) - e^p2Q'izo; u, »)i„(z0)

(168')
- e-'*P2(P(z0; », ff))+(/,(zo))+ + Aiz0; », ff) + oiP2),

where the function ^4(z0; », ») does not depend on the index p.

The kßiu, v) are by virtue of (75) closely related to the harmonic measures

w,(z). The variation formulas for co,(z) and its periods Pß, under variations

(157) are well known. We have [12]

co*(z*) = w,(z) + 2-V*Py(zo; z)w,'(zo)
(169)

+ 2-1ÉriV(¿'(s0; z))+iwl (z0))+ + o(p2)

and

P*, = F„ + 2-VVî«: (zoX (zo)
(170)

+ 2-1e-iVK' (2o))+(< (8o))+ + <?(P2).
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These formulas could also have been derived by our method of contour

integration, but we omit this proof for the sake of brevity. They are very use-

ful in the following considerations. We start with the two obvious equations

-£ P*iz*; »*, v*)dpiz; a) = - P*ia*; »*, ff*)
(171) 2x* J c

+ ei<fp2P'izo; », v)p'iz0; a) + o(P2),

— íl£    [Q*iz*; «*, »*) - *,*(«*, v*)]dpiz; a)
2xî ß=i J  cß

(171') = - Q*ia*; «*, ff*) + piv; a) - piu; a)

n

+ Z h*i«*, »*)«m(a) + *¿W(zo; », v)p'iz0; a) + 0(P2).
M-l

By virtue of the formulas (16) we obtain from these equations

Q*ia*; »*, ff*) + iP*ia*; »*, »*))+

n

(172) = piv; a) - piu; a) + Z h*i«*, »*)",(<*)
?=i

+ e^p2Q'iz0; », v)p'(z0; a) + e-¡*P2(P'(z0; », »))+(?'(z0; a))+ + o(P2).

Applying now the formula (103), we find

p*iv*;a*) - p*iu*;a*)

n

(172')      = piv; a) - piu; a) + Z hi«, *0[<-v(«) ~ V(a*)]
C-l

+ e^p2Q'iz0; », v)p'iz0; a) + e-«P2(P'(z0; », »))+(/>'(z0; a))+ + c(P2).

By virtue of (169) we have, therefore, for the domain function

(172") D(ff, «; a) = piv; a) — piu; a),

the variational equation

£>*(»*, »*; a*)

,.,,,„.       = fl(». «; «) + «*V   Q'izo; », ff) - — ¿ ^(«. »X (z0)   ¿'(z0; a)
U'2   ; L 2 ,,=1 J

+ ^vjjnzo; «, v))+ --Ê *„(«. *0«(zo))+] ip'izo; a))+

+ oip2).

Using again the notation (172") and (103) we bring this result into the

final form
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d
D*iv*, »*; a*) = Div, u; a) + e^p'izo; a)-Div, «; zo)

dzo

(173) d
+ e-^p2ip'iz0; a))+ —£>(», u; z0) + o(P2).

dzo+

If we are interested only in the variation of the real part of Div, u; a) we

may derive from (172'") the simpler formula

Re {Div*, u*;a*) - Div, u; a)}

= Re íe'Wizo; a) [q'íz0; u, v) + P'iz0; », »)

-yt»; izo)ihi«, v) + ihiu, o))+)l| + oio2).

Now one finds easily from (75) and (78) that

In n

(174')    — Z wiizo)[hi«, v) + ihi«, »))+] = Z M«) - w,(»)]/,(zo),
2   H r=l

whence by use of (61), (63) and (103') after easy transformations

g*iv*; a*) - g*iu*; a*) = %(%; a) - g(»; a)

+ Re {e^p2p\zo; a)[p'iz0; v) - p'iz0; «)]} + o(p2)-

Sending finally » to the boundary C of D one obtains

(1750        i*(t*; «*) = *(»; a) + Re {e^p'izo; a)p'iz0; ff)} + o(P2).

This is a known variation formula for Green's function [10, 12].

Subtracting the conjugate of equation (166) from equation (164) and us-

ing (108), we obtain a variation formula for Neumann's function:

x*(ft*; »*) - x*(a*; »*) - x*(ft*; ff*) + x*(a*; ff*)

= x(ft; ») - x(a; ») — x(ft; ff) + x(a; »)

(176)
- e'Wfa»; a, ft) [Q'izo; », ff) - P'C«,,; «, ») J

+ e-°V(P'(z0; a, ft))+[(G'(*>; «, «0)+ - (P'(zo; «, »))+] + *(P2),

which leads by application of (108'), (61) and (63) to

x*(6*; »*) - x*(a*; »*) - x*(ft*; ff*) + x*(a*; ff*)

= x(ft; ») — x(a; u) — x(ft; ff) + x(a; ff)

(176') r i
— elVQ'(2o; a, ft)[x'(z0; ») — x'(z0; »)]

+ 6-iV2(P'(z0; a, ft))+[(x'(z0; ff))+ - (x'(z0; »))+] + o(p2)-

Let us introduce the domain function log^(z; u, »), defined in (99). Con-
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sidering only the real parts in (176'), we obtain

log | **(ft*; »*, »*) | - log | **(a*; »*, ff*) |

= log | ^(ft; », ») | - log | *(o; », ff) |

( d d )
+ Re < e;V-log ^(zo; », »)-log ^(z0; a, ft) V + o(P2).

\ dzo dzo )

Numerous similar identities may be obtained by the same method. We ap-

plied in §3 the method of contour integration by pairing different domain

functions of D. If one of the two domain functions is replaced by the cor-

responding domain function with respect to D*, we get a variation formula.

There is a similar procedure for Riemann surfaces which makes it possible to

obtain variation formulas for the normal integrals and their periods by con-

tour integration [12].

The variation formula (175') might have been obtained also by the fol-

lowing application of our formal identities. Suppose that g*iz; a) is Green's

function for the domain D*, obtained by the variation (157) from the original

domain D. If z and a are different from Zo we have by Taylor's formula

(        / p'iz;a)        p'ia;z)\)
(178)      g*iz*; a*) = g*(z; a) + Re \e*V( I^-2-L + IA-L±)} + oip2).

{        \ z — zo a — zo /)

The first two terms on the right-hand side represent a harmonic function of z

in D, except for the point Zo, where it has a simple pole, and the point a, where

the first term has a logarithmic pole but the second term remains finite. If

z lies on C we have further because of (178) small values of magnitude oip2)

for this expression. We shall now add to this function another harmonic func-

tion of z which has the boundary values 0 on Cand cancels just the singularity

of the second term at za. The sum function is then harmonic everywhere in D,

except for the logarithmic pole at a, and has on C the order of magnitude

oip2). It is, therefore, up to a corrective term of order oip2) identical with

Green's function. The new harmonic function is

(178') Hiz, a; z0) = - Re {e^p'izo; z)p'iza; a)].

In fact, because of (103') and (57) one has

(178") p'iw;z) = 0 for w £ D, z £ C.

Hence, this harmonic function vanishes on C and one finds by inspection that

it cancels the singularity of the second right-hand term in (178). We obtain

finally

(m-'/ (z: a) + Re V P lT^T + T^¡7 - >'<*>= *M>« *)_]}

= giz; a) + oip2).
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This consideration shows the close connection between a variational problem

and the problem of constructing a harmonic function with prescribed singu-

larities which vanishes at the boundary of the domain. This is just the same

problem which arises in the theory of the Schottky functions and it becomes

obvious why the same method applies to these different fields.

7. Restricted variations. In the theory of domain functions one has some-

times to investigate an extremum problem in a class of domains which is de-

fined by certain normalization conditions. If one wants to attack such a prob-

lem by variational methods, the question arises how to carry out the variation

within the restricted class of domains considered. This is analogous to the case

of isoperimetric problems in the classical calculus of variations, but may be

much more difficult. Our results enable us now to overcome these difficulties

in the case of two important types of restriction.

A typical case of the first type is the following. We wish to vary the do-

main D bounded by the continua Ci, ■ • • ,Cn without changing the conformai

type by means of a variation of the form

A   ato2
(179) z* = z+Z -' P>0,  |a«|ál,

i=i   z — zt

to be understood in the same sense as the variation (157).

We assume that N^3n — 6, which is the number of conformai moduli of

the domain, and we try to find the conditions upon the parameters a¡, after

the zt have been chosen, so that the conformai type of the domain is un-

changed. For this purpose we merely pick a set of moduli, determine their

variations by the methods of §6, and set these equal to zero.

A convenient set of moduli is obtained by use of a fixed linear combina-

tion w(z) of the harmonic measures with real coefficients. We take « — 1 of the

periods of w(z), the values of w(z) = Re{w(z)} at the w —2 critical points

¿i, • • • , dn-2 of to(z) and the n — 3 differences of Im jw(z)} at the pairs of

critical points (d2, di), • • • , (d„_2, di). These invariants are moduli, since if

they are the same for two domains D and D*, then the implicit equation

(180) w*iz*) = wiz)

can be solved to yield the map z*iz) of D upon D*. Here the asterisks refer to

quantities associated with D*.

To obtain the variations of our moduli so chosen, we note that they are

linear functions in the coefficients at and recall (169). By application of (103')

/    AT

o>*(z*) = <o(z) + Re \ Z atP2w'izi)[Niz;zt) - (M(z; zt))+
1. 1=1

(169')

+ ¿J,(2lH(2)]j   +OÍP2),
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whence wè obtain for the analytic functions w*(z*) and w(z)

N N

w*iz*) = w(z) + Z atP2w'izi)Niz; zt) - Z atP\w'izt))+Miz; zt)
<=i ¡=i

N       n

+ Z Z Re {atP2w '(.ZtMz,) ] w,iz) + iK + oip2),

(169'0 t1

where K is some real constant. Since Niz; zt) and Miz; zt) have no periods,

we see that the conditions for the invariance of the re —1 periods of w(z)

which we have chosen are

(181) Re i'£atw'izt)wliizt)\ = o(l), « = 1, 2, • • • , n - 1,

upon application of (78). This is, of course, also a direct consequence of (170).

Letting d* be the critical points of co*(z*), we verify that

(182) co*(¿M*) = «*(á„) + oip2), d, = z*id„).

Hence we can conclude from (169) that the oj(¿M) are invariant when

(183) Re | Z atw'izt)p'izt; d„)\ = o(l), p = 1, 2, ■••,«- 2.

Finally we note that when (181) is satisfied, the third term on the right in

(169") must be constant because of (78) and the character of the P^,-matrix.

Hence, under these circumstances we find for the remaining re —3 moduli the

conditions of invariance

(184) Im | Z atw'izt)Wizt; dß) - n'izt; di)]\  = ö(l),

p = 2, 3, ■ ■ ■ , n — 2,

by use of (108') in transforming (169"). The constant K drops out, since we

take a difference lm{widß) —w(¿i)} in each case. The 3re —6 conditions (181),

(183) and (184) are, then, necessary and sufficient that the variation (179)

leave the conformai type of D unchanged, for suitably chosen terms o(l).

If the determinant of the coefficients of <Zi, • • • , a3n-o does not vanish

identically for N = 3n-6 in the equations (181), (183) and (184), then by the

topological analogue of the implicit function theorem we may find numbers

at so that these equations are actually fulfilled. The determinant will

not vanish identically provided that the functions î»i'(z), • • • , w¿_i(z),

p'iz, di), ■ ■ • , p'iz,dn^2), {ir'iz,dt)—ir'iz,di)}, • • • , {x'(z, dn_2)-x'(z, di) \

are linearly independent. Since x'(z, dß) and p'iz, dß) are the only functions

in this set with poles at d„, a linear dependence relation must have the form
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n—l

L'iz) = Z ««"V' (2)

(185)
n— 2

+ Z ft. [*'(*! dß) - x'(z; ¿0 - P'iz; dß) + p'iz; di)] =0.
*=i

Thus for any function /(z) regular in D and smooth on C

0=£ fiz)iL'iz))+dz+ = - Z <*î £ MdwM
J    C ji=l       J    c

(186) + Z &+ / /(z) k(z; « - x'(z; ¿0 + p'iz; d„) - p'iz; di)]dz
ß=2 J     C

= -4x¿Z&+[M0-/(¿i)]
ß=2

by our usual device. Since [fidß) —/(dt) ] may be chosen arbitrarily, we have

ßß = 0, p = 2, • ■ • , re — 2, and it follows from the linear independence of the

wß (z) that aß = 0, « = 1, • • • , re —1. Thus we have the required independence

and our result is completely proved. The points in the proof where we use

smoothness of C do not require this assumption in any essential way, so

that we can take C to consist of any w proper continua.

If we wish to consider extremum problems for conformai mappings

leaving, say, the point at infinity in D fixed, we may derive from the Green's

function piz, <») and the corresponding system of moduli in this case the

3» —4 conditions of invariance of restricted conformai type

(187) Re (¿a.p'izr, «>)w¿izt)\ = oil), p = 1, 2, • • • , n - 1,

(188) Re j Z **?(**; *)/(ii; d„)\ = o(l), u = 1, 2, • • • , n - 1,

Im < Z atp'iz,; <*>)[x'(z,; dß) - x'(z(; ¿i)]i = ö(1),

P = 2, 3, ■ ■ ■ , n — 1,

(189)

where the dß are the » — 1 finite critical points of piz, 00). Similar conditions

may be derived for the original Hadamard variational formulas which give

the variation of the domain functions under an arbitrary variation of the

boundary [12].

We see from our work on the functions w[wl at the end of §5 that in

general it will be sufficient to set the variations of the P¿4 equal to zero to

obtain a type-invariant variation. For by the methods of that section we can

easily show that every domain function/(z) for which fiz)z'2 is real on C and
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which is regular in D may be composed linearly from 3re —6 linearly independ-

ent products w'i iz)wi (z). Now the analytic functions appearing in (181),

(183), (184) are just of this type and, on the other hand, the variations of the

Pik are expressed in terms of the w[ wl.

We solve a particular well known problem by this variational method in

order to show how such proofs go. Consider the domain D bounded by Ci and

C2, where G is assumed to be the outer boundary of D. In general the con-

formal type of D will change when D is mapped conformally, and we mini-

mize the modulus of D for all conformai images of D. The mappings of D may

be restricted in any number of ways to give a normal family without chang-

ing the problem, for example by fixing the derivative at a point. We take the

modulus to be the period Pu of the harmonic measure of G in any domain D

obtained by mapping D.

We make a variation (179) of the extremal domain D satisfying (181),

(183) and (184) and obtain from the minimum property of Pu the inequality

(190) Pu - Pu = Re j Z alP2wiizty\ + oip2) à 0,

where w>i(z) is the harmonic measure function of G in D.

The reader can verify by the familiar procedure leading to Lagrange

multipliers in the calculus of variations that this implies the existence of real

numbers X„ such that

n-l n-2

*i (z)2 = Z \vf(z)wl (z) + Z K+n~iw'iz)p'iz; dß)

(191) "=1
n—2

+ ¿Z K+zn-iw'iz) [x'(z; dß) - x'(z; di)].
ß=2

It follows from this relation that the boundary components C„ v>2, are

analytic curves z,is) satisfying the differential equations

nz\      dw dwß      "A2 dw dpiz; dß)
wiizY-zlis)2 = Z X„- + Z W.-1-

ß=i        ds     ds ß=i ds as
(192)

dî» fâx(z; dß) 3x(z; di)'
real.

^ to rax(z; dß)        dx(z; ¿i)l
+   » Z  K+in-4,-=

»1-2 ds L      ds ds      J

For each separate arc we can bring this into the form

(193) [dwiiz,it))/dt]2 = ± 1

by suitable choice of the real parameter t. Now there is a map of each small

arc Cp of mapping radius p of C„ v>2, on the exterior of a circle of radius p,

of the form

(194) z* = z 4- ap2/iz - z0) + bP*/iz - z0)2 + • • • , z0 £ C»
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with uniformly bounded coefficients a, ft, • • • . In each such map we obtain

from (170) and the minimum property of D

(190') Re {aP2wiizo)2} + oip2) ^ 0.

If the curve Cp is rotated until it has a horizontal tangent at Zo, we can choose

a= —1+0(1) and we find

(190") Re {wiizo)2} ^ 0.

Hence the lower sign must hold in our differential equations and we have

(193') wi(z,(t)) = ± it+ const.,

so that the C, lie along the level curves of ¿Ji(z). We remark that Pu is un-

changed by conformai mappings of D, which are also mappings of D, and that

in consequence there is no loss of generality in assuming G and G to be con-

centric circles. In this case the C„ v>2, are concentric circular slits and the

extremal map is a function /i2(z) of the type introduced in §2.

Our progress, then, has been to find that for the extremal domain the

C„ v>2, are analytic curves without use of the boundary variation (194)

introduced earlier [9]. We then use the boundary variation to complete the

result, but in a very simple form. Thus we have reduced the work involved in

the application of variational methods to a considerably more elementary

and less involved set of ideas.

We come now to the second type of restricted variational problems which

we desire to handle. Given are re closed smooth curves C, which are the

boundary of a domain D in the complex plane which contains the point at

infinity. We seek a continuum containing all the curves C, of minimum

capacity. We require of variations considered that they transform each con-

tinuum C, into itself. This is, in fact, possible to obtain by means of varia-

tions

(195) z* = z 4- ie^p'tQ'iz; », o) + e~^p2P'(z; u, »))(»/ (z)wk' (z))"1 + o(P2).

According to (16) we have, namely, in C

(196) z'Q'iz; », ff)e¡* + z'P'iz; », v)e~i* = real,        z' = dz/ds.

Since further w[ iz)z' and w£ iz)z' are imaginary on C, one sees that z* — z has

the direction of the tangent vector at z to C, up to a term o(p2). By a correc-

tion term o(p2) it is possible to attain a complete preservation of the con-

tours G. This can be seen by making a variation

(197) 2** = 2* + ¿^í-0{ñ
t=i  z* - zt

to bring the conformai type of our domain back to that of the original region,

and then it is clear that there is a conformai map
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(198) z*** = z** + o(P2)

of the domain of the z**-plane back upon the original domain. For fixed w(z)

we have a freedom of choice of » and » in D and of arbitrary real tp and p. Thus,

this type of variation permits the usual applications in extremum problems.

We proceed to the complete solution of the above-mentioned problem.

Let D be the domain bounded by the minimizing continuum, and let

p(z, =o) be the corresponding analytic function for Green's function with pole

at infinity. The function £(z, » ) has at «> an expansion

(199) g(z; ») = log |*| +7 + o(l),

and the capacity of our continuum is by definition e~y. Hence we obtain upon

making our variation the inequality

n^ *      ».iM jj^±™y_   g»»c°)21
0 è 7   — 7 = Re < e'V-

( \_WÍ (») Wk (») Wi (ff) Wk (») J

, ^   «*W(¿*.; «, v) + e-**p2P'idiß; », »)
(200) + 2w -,,., ,   ,,, ,       --Pidi,; °°)2

^=i w'i' idiß)Wkidiß)

"-2  e^pWto! «. ») + e"¡VP'(d*,; », ff) »
+ Z-,,, .  „,, .   -í'O**; °°)2> + o(p2)>

ß=i Wi idkß)wk  idkß) )

where the d,> are the critical points of w,(z) and the <4„ are the critical points

of Wk(z). By the arbitrariness of <p and p and from the relations (61) and (63),

p'(u; •£__ y\   fi'{di"'' œ)

(«)        „=iL

P'idiß; *>)2

JÏV    p'jdiß; °°
M=iLw/'(d,MWl

iV(»; d<„)
w' (»)w* (»)       „=1Lwi ' (diß)wi idifi)

\Wi" iditi)w¿ idiß) J *'\

'A2r   ?'(<V, °°)2 /   p'idkß; =°)2   \+ "|
- Z     ,,. .   „.. . # («; ¿to) - f    ,,. :   „.. J # («; ¿to)

*-i Li»/ (aV) i»*' (aV) \ wi idhß) wi idkß) / J

(200') p'iv; coy       rfr    ¿'(¿.>; »)2     _.,    . ,

w,' (ff)wi' (ff)       M=1 \_Wi" idi^wi idiß)

- (    m^y    )+Mjv; d,,)l
Kw/'id^wiidi,)/ "J

-2p   ?(<*„; cc)2 /   >'(dto;oo)2    y "I
- Z      ,,,  .    „..  . iy(ff;¿^)-( )M(ff;aV)

ß=i\-W'iidkß)Wk  idkß)                      \w¡ idkß)Wk  (a*,,)/ J

= const.,

since each side of the equation is a function of a different variable. We con-

clude that £'(»; =°)2 is analytic throughout D; in fact we have shown that
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(200") p'iu; «)*/»/ iu)w¿ (») = S(«),

where 5(») is a Schottky function in D.

From the fact that p'iu; <*>)2 is analytic in D, we can conclude that each

slit Ca of the boundary of D in D is an analytic curve, and that in the map-

ping of D upon the unit circle taking the point at infinity into the origin

each side of any segment of the slit Ca is taken into an arc of the same

length as that of the image of the other side of the slit. This is because the

distortion of the mapping on the boundary Ca is in both cases |^>'(z; °°) |.

The function p'iz; ») can be extended to be analytic on a two-sheeted Rie-

mann surface covering D; it assumes values symmetric in the origin at

points lying over one another. From these facts one can carry out a further

discussion of the nature of the Ca.

We remark that this problem could be solved equally well with the re-

stricted variation leaving D conformally invariant for maps preserving the

point at infinity with fixed distortion. But this method would have led us to a

set of Lagrange multipliers which are determined explicitly by the tangential

variation in terms of the various domain functions. Thus the importance of

the relations we have derived becomes apparent.

As a final application of our identities we derive the conditions for un-

changed conformai type under variations (179) from a second point of view

in the case of a smoothly bounded domain D. We start from the assumption

that the parameters at, zt have been chosen in the right way and that D is

mapped upon a domain D* which is conformally equivalent to it. There

exists, therefore, a univalent function in D which maps D upon D*. Let

(201) t = 2 + P2Kiz)

be the mapping function, where the factor p2 measures the order of the second

term. If we invert (179) into

(179') «i = i-*(*) - 2* - Z -^— + °(p2)
(=1   z* - zt

this gives a map of D* upon D except for a certain neighborhood of the

Z(£.D*. In particular, the boundary C* of D* will be transformed into the

boundary of D by means of (179'). Therefore, the composite map

(202) v~\t) = z + p2k„iz) - Z      a'P      + oip2)
t_l     Z   —   Zt

transforms each C, into itself. Thus, having chosen at and zt in the right way,

we have in the limit p—>0 the following condition on C:

( A      o-t    \ dz
(202') ( hm hiz) - Z -) z'"1 = real, z'-

\p-o í_i z — Zt/ ds

On the other hand, if we can determine a function &(z) which is regular in
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D + C and such that

A       at
(202") Kz) - Z -= Hz)z', X(z) = real, zGC,

t=l   z — Zt

we can chose a correction term oip2) so that

A    atp2
(179") z* = z + Z -— + oip2)

4=1     Z  —   Zt

maps D upon a conformally equivalent domain D*.

Thus our problem is reduced to the determination of a function kiz) of the

required type. Choose for this purpose a function w'iz) of type (143) ; evidently

(203)
1 T A      at    1

fiz) = - w'iz)    kiz) - Z -
t L t=i z — zd

is a Schottky function. It has simple poles at the N points zt and the condi-

tion (125) connecting poles and residues of a function of class 9Î yields

(204) Re l't,atw,izt)wl!izt)\ = 0, p = 1, 2, • • • , n - 1.

Now we may apply the representation (122) for/(z) and find

1 T A       a<    1
- w'iz)    Hz) - Z -

,„„ s     * L ¡-i   z — z¡ J
(205)

1   »
= A-Z iatw'izi)Niz; zt) - afiw'izt))+Miz; zt)).

i   t=i

We have further to satisfy the condition that the function (205) vanishes at

all the re —2 zeros d, of w'iz). We may transform these conditions by using

the formulas (109') and (110') to eliminate A^(z; zt) and Miz; zt); we obtain

(206)        Re j.1 - — Z atw'iztWizt; d,)\ =0, v = 1, 2, ■ ■ ■ , n - 2,

(2060       Im ¡A - — ¿ atw'izi) \p'izt; d.) - ¿ (u(z,)a>,(a-,)l|  = 0,

v = 1, 2, • • • , n — 2.

From (204), (78) and (107') we conclude that

(206") Re | Z o,tw'izt)lßizt)\  =0, p = 1, 2, • • • , n.

Sending z in (205) to the boundary C of D and using (57) and (206"), we find
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that A is real. This leads to the conditions:

(207) Im | Z atw'izt) [x'(z(; d,) - x'(z,; di)]\ = 0,     v = 2, 3, ■ ■ ■ , n - 2,

(208) Re | Z atw'izt)p'izt; d,)| =0, v = 1, 2, ■■■ ,n- 2.

We have in (204), (207) and (208) exactly our 3»-6 conditions (181),

(183) and (184) for the parameters at, zt of our variation after passage to the

limit p—>0. It is interesting that the fullfillment of these conditions for a par-

ticular function w'iz) guarantees the equations for every function of this

type.
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