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Introduction. Let ra be a positive integer. Throughout this paper, unless

the contrary is stated, we shall use capital Latin letters to denote ra-rowed

matrices and capital German letters to denote 2ra-rowed matrices. Further-

more, an r-rowed matrix R will be denoted by R(r). Let

-y o.
where 7 and 0 denote the identity and zero matrices respectively. Let T be

the group of all matrices 5DÎ with rational integral elements which satisfy

(i) äwgan' = g,

where W denotes the transpose of SDÎ. Let T0 be the factor group of V over its

centrum; T0 is called the symplectic modular group. It can be thought of as

being obtained from T by identifying the elements S0Î and — 50Î. In applica-

tions to modular functions of the rath degree(1) and to the projective geometry

of matrices (2) it is customary to identify SDÎ and — Wl as a single transforma-

tion. For this reason we have considered T0 rather than T ; it might be pointed

out, however, that the generators of T0 obtained in this paper happen to be a

set of generators of T.

It is the aim of this paper to find the generators of the symplectic modular

group. It will be proved here that this group is generated by two or four in-

dependent elements, according as ra = l or ra>l. The method used here can be

extended so as to give a set of generators for matrices with elements in any

Euclidean ring. In particular, we give the details for the generalized Picard

group at the end of this paper.

Problems of this type have been considered previously. Poincaré(3) stated

without proof that every matrix SDî with integral elements for which Tl&iDl'

= @, where © is the direct sum of ra two-rowed skew-symmetric matrices, is

expressible as a product of elementary matrices of two simple types. Bra-

hana(4) proved this and extended the result to the case where © is any skew-

symmetric matrix by showing in this case that every such matrix 50Î is ex-
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pressible as a product of matrices taken from some finite set of matrices.

From the results given in the present paper, a much stronger form of Bra-

hana's result can be easily deduced.

1. If we set

(A    B\
(2> m'(c  „)•

(1) is equivalent to

(3) AB' = BA',       CD' = DC',       AD1 - BC = I.

By taking inverses of both sides of (1) and using %~1= —%, we can deduce

that 3D?'g2fl = g, so that

(4) A'C = C'A,       B'D = D'B,       A'D - C'B = 7.

We shall begin by showing in §3 that To is generated by the following types

of elements:

(I) Translations:

where 5 is symmetric.

(II) Rotations:

(U  0     \

where £7is unimodular, that is, abs U=l (where abs Udenotes the absolute

value of the determinant of U).

(III) Semi-involutions:

where J is a diagonal matrix whose diagonal elements are O's and l's, so that

J2 = Jand iI-J)2 = I-J.

It is easily verified that matrices of types I, II and III satisfy (1).

2. In this section we prove two lemmas on matrices.

Lemma 1. Let m be a nonzero integer, and let T be an n-rowed symmetric

matrix at least one of whose elements is not divisible by m. There exists a sym-

metric matrix S with integral elements such that

(5) 0 < abs (T - mS) < \ m \n.

Proof. The lemma is evident for ra = l. Consider next ra = 2; let T=it¡1),

S= isa). Then
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(6) abs (7 — mS) = | (<u — rawn)(¿22 — »W22) — itu — ms^)21.

If m divides both tu and /22, it cannot divide tn\ we can then choose 5 so that

in — »wsii = /22— ms22 = 0 and 0 < | tu — msn | <|w|. Suppose on the other hand

that m does not divide one of the diagonal elements, say in. Fix Sn arbitrarily,

and choose su so that 0 < | tn — msn\ <\m\. Since (6) can be written as

abs (7 — mS) = | — mitu — msu)s22 + ■ • •  |,

where • • • represents terms not involving s22, we can choose an integer s22 by

the Euclidean algorithm so that

0 < abs (7 — mS) = \ mih\ — msn) \ < \ m \2.

Suppose now that the result has been established for ra = r—1 with r — 3;

we shall deduce it for n = r. Let T=T(r) and let some element /;,• of T be not

divisible by m. Since r=5 3, there exists a diagonal element tkk of T which is

not in the same row or column as Up Let 7\ be the symmetric (r — l)-rowed

matrix obtained from T by omitting the kth row and Mh column; let Si be

similarly related to 5. By the induction hypothesis, we may choose Si sym-

metric so that

(7) 0 < abs (7j. - mSi) < \ m\r-\

However, we have

(8) abs (7 — mS) = | (i** — mskk) det (7X — mSi) + • ■ ■  |,

where • • • represents terms not involving skk. Choose Su arbitrarily for

1 = 1, 2, ■ ■ ■ , k — 1, k + 1, ■ ■ • , r. Then by the Euclidean algorithm we can

choose Skk so that

0 < abs (7 - mS) = \ m \ abs (7i - mSi) <\m\r.

This completes the proof of the lemma.

Lemma 2. Let A and B satisfy AB' = BA' and let det A ¿¿0. There exists a

symmetric matrix S such that either

(9) B - AS = 0

or

(10) 0 < abs iB - AS) < abs A.

Proof. From AB' = BA' and det A ?¿0, we may deduce that A*B is sym-

metric, where A* denotes the adjoint of A. We apply Lemma 1 with T=A*B

and m = det A. Either every element of A*B is divisible by m, in which case

there exists a symmetric matrix S with A *B = mS, or else there exist sym-

metric matrices R and S such that A*B=mS+R with 0<abs i?<|w|n. In

virtue of the relation A*A =ml, these alternatives become: either B =AS (in
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which case (9) holds), or B—AS = AR/m; however,

AR      (abs 4) (abs R)        abs R
abs-=-j—i-= —i-,

m \m\n \m\n~i

so that

0 < abs iB — AS) <\m\ = abs A.

3. We are now ready to show that To is generated by matrices of types I,

II and III. Let 9JÎ given by (2) be an arbitrary element of To. It suffices to

prove that by multiplying 9JÎ by matrices of types I, II and III, one obtains a

product of matrices of those types.

(3) implies that not both A and B are 0. Since

\C    D/\-I   0/     v  •     *)'

we may assume that A has rank r>0. Furthermore,

/U  0     \/A    B\/V   0     \_(UAV  *\

\0    E/'-i/Vc    7>/\0    F'-V      V   *       */'

so that A may be taken to be of the form

A4i   0\

(11) A - L oh
where A i is an r-rowed nonsingular matrix. We similarly decompose B as

/7(r>

B
\   *     *)'

From (3) it is easily seen that A\B[ =B\A{.|By Lemma 2, there exists a

symmetric matrix Si with either ^4iSi+5i = 0 or 0<abs i?i<abs A\, where

T^^^iSi+^L Define

S
¡s,    ov

V o   o/

Then

(A    B\ (I   S\      (A   AS + B\

so that A remains unaltered while B\ of B is replaced by 0 or R\. If the sec-
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ond alternative occurs, we proceed as follows: let

/0    0
(13)

Then

(A    B\t     J     I - J\      /J  *\

(14) (c d){j-i   j   )-(..)•

(     V

where

A = Aj-Bii-j) = ( M oy

We now repeat the process as before, and so on. Since there are only finitely

many positive integers less than abs A\, this process eventually terminates.

Thus, by multiplying SDÎ by matrices of types I, II and III one arrives at a

matrix

with

/A0   B0\

\*      * J

A° - Ç o)'      Bo = (•   *)

and det R^O. One readily deduces from A0B¿ =BoA¿  that B0 must be of

the form

B,

But then

-C :)•

/    0    7\/^o   Bo\/   J      I - J\      /A+    B+\

\-I    o)\Co   Do)\J-I       J    /      \0       D+)

where J is given by (13). Finally we notice that for a matrix

\o   d)

of To, we must have A = U unimodular, D=U'~1, and thence from (3),

B=SU'~1 with symmetric S. Therefore

IA   JW7 syuo    y

\o   d)    \0   7/VO   u'-1/
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This completes the proof that To is generated by the matrices of types I, II

and III.

4. The set of matrices of types I, II and III which generate To are cer-

tainly not independent generators. Let us reduce the number of generators

as much as possible. Since

/7 SA/7 S2\ _ /7 Si + S2\

Vo /Ao l)~\0      I     )'

the subgroup formed by matrices of type I is generated by those type I

matrices whose S's are given by

(15) So   =

1    0

0    0

o 1

0

0    0 0

Si =

0 10-

10 0-

0    0    0-

0    0    0

01

0

0

0

and all matrices obtained from these by interchanging any two rows and the

corresponding columns. Next we note that

USU'\

I   )'

/£/   0     \/7   SX/Í7-1   0 \      /I

Vo   t/'-y Vo  i) Vo     u'J ~ vo

so that the group generated by matrices of types I and II is the same as that

generated by all type II matrices and the two translations whose S's are given

by (15). However, we have

c ~dc -x: k >c D-c :>
Hence the translation with Si is obtainable from that with S0 and the matrices

of type II. Therefore To is generated by the matrix

/7 So
(16) -(».')

with So given by (15), and all matrices of types II and III.

Since

/U  0     \/V   0     \      /UV 0     \

Vo   t/'-vVo   F-v    Vo     iuvy-1)'

in order to find the generators of the subgroup of rotations we have merely

to find the generators of the group of unimodular matrices. These are given

by the following theorem.
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Theorem 1. Let n — 2. Every unimodular matrix with rational integral ele-

ments is a product of the matrices U\, Z72, U3 and their inverses, where

(17) Ui =

0 0

1 0

• 0   1

• 0   0

0   0

0   0

0 0

1 0

Uz =

U%"

1  1

0   1

0   0

0   0

0   0

0   0

1   0

0   1

-1   0

0   1

0   0

0   0

0   0- •• 1   0

0   0- ••0   1

Proof.  It is known(6)  that every unimodular matrix is a product of

Ui, U2, U3, and
0   1•••0   01

Ui= =

1   0 0   0

0   0

0   0

1   0

0   1

and their inverses. It is sufficient to show that C/4 is expressible as a product

of U\, Ut, Ui and their inverses. We define T= UiU\ for the remainder of

this proof, and let r = (ri, • • • , r„) ' be a column vector. Then

7r =

' r» +' fi '

r%

?n-l

T2V  =

' /•„_! + rn + ("i

rn + r\

T\

rn-2

, T"~h =

' r2 + r3 + ■ ■ ■ + rn + ri'

r3 + ■ ■ ■ + r„ + ri

rn + r\

(6) See for example, C. C. MacDuffee, The theory of matrices, Berlin, 1933, p. 34, Theorem

22.5.
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Therefore

f/j-lj«-!,. =

r» + • • • + rn + n 1

rn + T\

r\

+ rn + rxri + r3 +

so that

(7-1)n-2J7r17"-1r

Ti +

r\

■ + rn + ri

r3

U1iT-i)"-2Ur1T"-h

From this we see that

7"-3r/i(7^1)n_2^r17n-1r

and

iT-v)n-2UxT"-zUiiT-1)n~2UrlTn-h =

r»

r-t

ri + ■ • • + r„ + ri

r3

rn-i

'r» + n+ ' " +rn

r4 + • • • + rn

rn

r\

, r» + ' ' • + f„ + ft,

rn

r\

f2 + f\

rn-i
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Define

u\ = ur1iT-1)"-2u1T"-3u1iT-1)n-2ur1Tn-1.

Then

/l    0\   .
[7t = ^    J + 7<"-2\

where + denotes the direct sum of matrices. But from

Uz = C~        J + /c-2>    and    Uf1 = (      ~   J + 7<"-2>

we deduce

423

iwti-wt-("¡ ")(; X -¡)(| ") + /-

-C3+ 7(""2' = £/4.

This completes the proof of the theorem.

Corollary. Ze/ w^2. Every unimodular matrix with rational integral ele-

ments of determinant +1 is a product of powers of i/2 and

Í0---0   (-1)*'-1]

1 • • • 0       0

u& =

0 0

1 0

By Theorem 1 we see now that T0 is generated by ío and the set of all

semi-involutions and the three rotations defined by

(18)
(Ui      0 \

VO   uf-1/'
i =1,2, 3.

We finally consider type III matrices. Let Jr be the diagonal matrix ob-

tained from the identity matrix by replacing the rth 1 by 0. In that case, if

r^s, we have

/      Jr I - Jr\ /      J. I  - J.\   _   I       Jrs I  -  J„\

\Jr-I Jr      )\J.-I Js       )~\Jrs-I Jrs       )'

where Jrs is obtained from the identity matrix by replacing the rth and 5th

ones by 0's. Therefore, in order to obtain all type III matrices, we need only
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those semi-involutions

/    Jr      I - Jr\

(») (/_/     /(   ), 7-Í.2,.,.,.,

with Jr defined above. Now, let U be that unimodular matrix obtained from

I by interchanging the 1st and rth rows; then we have

/£/  0     \ /    Jr      I - Jr\/U-1  0 \ _ /    7i      7 - JA

VO    C/'-'/U-/      /,    A   0    U')~\Ji-I      /i    /

Therefore T0 is generated by the matrices Xo, 9Í¿ (*'"¿1| 2, 3) and the matrix

/    Ji      I - JA
<2ü) ®° - G, -1 j, )•

with 7, previously defined. But

@0  = 9Î3,

so that 9Î3 may be dropped from the list of generators. Therefore we have the

following theorem.

Theorem 2. T0 is generated by the four matrices Xo, 9îi, 9?2 and @0 given

by (15), (18) arad (20), for ra>l. Tor ra = l, T0 is generated by Xo and ©0.

5. In this section we shall prove the independence of the generators

given in Theorem 2. For ra = l, this is trivial because ©o is of finite order

while Xo is not. Hereafter we suppose that ra> 1.

(1) Independence of Xo- We consider the transformation

(21) (Xi, Yi) = iX, F)ÜR;

if X Y' is symmetric, it is easily verified that Xi Y{ is also symmetric. We shall

show that if the diagonal elements of XY' are even, those of X\Y[ will also

be even if 9JÎ is SRi, 9Î2 or ©0, while if SDÎ = Xo, it is possible to choose X and Y

so that some diagonal element of XiY( is odd. This will show that Xo is not

expressible as a product of Uîi, 9Î2 and <2>0 and their inverses.

Assume now that the diagonal elements of XY' are even. From (21) one

readily deduces that if 30? is a rotation, X\Y{ =XY', so that the diagonal ele-

ments of X\Y{ are also even. If secondly 9JÍ is a semi-involution, we have

Xi = XJ + 7(7 - /),        Fi = - Z(7 - /) + YJ,

so that

XiYi = XJY' - 7(7 - J)X' = XJY' + YJX' - YX'.

Since XJY' is the transpose of YJX', it is again clear that the diagonal ele-
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ments of XiY{ are even. Finally, suppose W = Xo- Then we obtain

Xi¥{ = XiXSo + Y)' = XY' + XSoX'

and for X = I the first diagonal element of X\Y{ is odd. This completes the

proof of the independence of Xo- We may remark in passing, however, that

Xl is expressible as a product of the powers of 8tii 9?2 and ©o-

(2) Independence of 9îi. Let r = (ri, • • • , rn, Si, • • • , sn)' be a column

vector with 2« components. It is clear that the second component r2 is un-

affected when r is multiplied on the left by any of the matrices Xo, 9Î2, and ©0

and their inverses. Under multiplication on the left by 9ti, however, r2 is re-

placed by r%. Hence 9îi cannot be expressed as a product of Xo, 9?2 and @o and

their inverses.

(3) Independence of 9Î2. Multiplying r on the left by 9îi or ©0 or their in-

verses permutes components of r; under any such permutation, however, any

ri and its corresponding s¡ remain ra components apart. Since the effect of

multiplying on the left by Xo is to replace r\ by ri+Si, it is clear that by

multiplying r on the left by a product of 9îi, @0 and Xo and their inverses, r\

may be replaced by a linear combination of r\ and S\ and its position may be

changed. It is however impossible to replace r\ by ri+r2 in this way, and this

is exactly the effect of multiplication of r on the left by 9?2. This proves the

independence of 9î2.

(4) Independence of ©0. We note that

/*    *\  /*    *\       /*    *\

Vo   VVo   */    vo   */

Since Xo, 9îi and 9Î2 and their inverses are all of the form

Vo   */

and ©o is not of this form, it is clear that ©o is not expressible as a product of

Xo, 9îi and $R2 and their inverses.

6. Our previous method can be extended to any Euclidean ring; in par-

ticular, for the ring formed by the Gaussian integers, we have the following

result:

Theorem 3. Let V be the group of matrices 93? with Gaussian integers as ele-

ments which satisfy (1). Let T0' be obtained from V by identifying the four ele-

ments ± ffl and ±iW. Then for n > 1, r0' is generated by the matrices Xo, 9îi, 9Î2

and <&o defined previously, and the matrix

(I SA
(22) Xi = ( ) where Si = iS0.

For ra = 1, To' is generated by Xo, Xi and @o-
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The independence of the generators is shown as follows (with suitable

modifications when ra = 1) :

(1) Independence of Xo- We use the method of §5, (1). Let XY' be a. sym-

metric matrix with Gaussian integers as elements, such that the real part of

each diagonal element is even. This property is preserved when iX, Y) is

subjected to the transformations Xi, 9îi, 9Î2 and ©o according to (21), but not

for the transformation Xo-

(2) Independence of Xi- This is clear since Xi is the only generator which

is not real.

(3) The independence of 3îi, 9Î2 and <S0 follow exactly as before.

Tsing Hua University,

Peiping, China.

Institute for Advanced Study,

Princeton, N. J.


