
ON THE ORDER OF f(l/2+Ä)

BY

SZU-HOA MIN0

Introduction. The problem of finding an upper bound for 6 such that

f (1/2 + it) = 0(/9)

has been attacked by van der Corput and Koksma(2), Walfisz(3), Titch-

marsh(4), Phillips(6), and Titchmarsh(6). Their results obtained are, neglect-

ing a factor involving log t,

1       163       27        229 19
6 ^ — j    -;    -;    ->    and   -

6       988      164      1392 116

respectively. The object of the present paper is to prove that

r(l/2 + it) = 0(i15'92+e) (e > 0).

In this paper there are two main difficulties. The first is the vanishing of

the Hessian 77(x, y) (see (6.7) below) along certain lines. This is solved by a

suitable division of the domain of summation and by making use of a geo-

metrical lemma (Lemma 10). The second difficulty is that if we use the

straightforward way of choosing X'=X" = X2 (see §9) we shall get, instead of

(9.8), a result containing a negative power of a which will spoil the main idea.

The fact that (9.8) contains no a indicates clearly that our method is a limit-

ing case and we can get no more benefits by merely using more summations.

I wish to express my sincere thanks to my supervisor Professor E. C.

Titchmarsh for his kindness in suggesting this problem to me, reading the

drafts and giving invaluable criticism and encouragement.

1. Lemmas quoted.

Lemma 1(7). Let fix) be a real function with continuous derivatives fix),
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fix) and f'"ix). Let fix) be steadily decreasing, fib) =a, fia) =ß andiñ)

X2 ̂  | /"(*) | < ¿Xîf | fix) | < A\3

for a=x<b. Let ra„ be such that

fin,) = v (a á v á ß).

Then

gÍTÍ[/(ny)— V7l„]

2 e2"'<"> = e""'4  E    1-i-h 0(X2     )
*™ ^"^ It! f        \     1/9

oánái aá»áí      1/    i»,)  \1,¿

+ O [log {2 + (i - a)Xa} ] + 0[(¿ - a)X2/5X3/5 ].

Lemma 2 (9). If Fin) is a real function, p, aandb areintegers andO <p <b — a,

then

where

iiriF(.n) = — -{4(0 - a)2p + 2(0 - a)
P

p-l 6-r |\

Z(P- 0 X)e2,ri*<r'm) >

r=l 7re=a 1/

1/2

$(>", m) = Fim + r)
r1 d

Fim + rt)dt.

Lemma 3. Let a,,, be any numbers, real or complex, such that if Sm,n

= Z™=i ZXi aß, then \Sm,n\SG il=m = M; lgn£N). Let bm,n denote
real numbers, 0 = bm,n ̂ 77 and let each of the expressions

Om.n "771,71+17 Om,n "771+1,717 Om,n Ojn+1,71 077i,n+l ™t™ 07n+l,n+l

be of constant sign for values of m and ra in question. Then

/ .   7 t am,nOm,n = 5G77.
7n=l n=l

Lemma 4. Letf(x, y) be a real function of x and y, and

s = X£ p2irif(in,n)

the sum being taken over the lattice points of a region D included in the rectangle

a^x = b, agyg/3. Let

where

(8) Throughout this paper we use A to denote a positive constant, not necessarily the same at

each occurrence.

(9) Titchmarsh, On van der Corput's method and the seta-function of Riemann, Quart. J.

Math. Oxford Ser. vol. 2 (1931) p. 166.
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r1 d
<t>iim, ra) = fini + p, n + v) — fm, n) =  I    —fm + pt, n + vt)dt,

J o   dt

r1 d
<¡>2Ím, n) = fim + p, ra — v) — fim, ra) =  I    —fim + pt, n — vt)dt,

J o   dt

p and v are integers, and S' is taken over values of m and ra such that both

im, ra) and im+p, n+v) belong to D; and similarly for S". Let p be a positive

integer not greater than b — a, and let p' be a positive integer not greater than

ß—a. Then

(ib - a)iß - a)) r (ib - a)iß - a) "^   »^ ,      .) "*!
s = o\--——-\ +o \--——-Y, E \s'\\

r Mb - a)(ß - a) !=i   »£1 ) 1/2-1

+ °    Y-~,-"S   ^  \S"\\        •
_   V PP |i=0      v=0 ) J

This lemma (as well as the next lemma) evidently remains true when p

is not an integer but greater than 1. In that case Eî-'i 4>iß) 1S to be inter-

preted as Eiácáp-i 0(m)7 and so on. A similar interpretation should be made

when p' is not an integer but greater than 1.

Lemma 5. If 0<p^b—a, then

¡ib-o)iß-a)) r (ib - u)(ß - a) Ö 1       ,) 1/21

where

5'"   =   V1   V1 e2rij>(m,n)

with

r1 d
4>im, n) = fim + p, n) — fim, n) =  I    —fim + pt, n)dt

Jo   dt

the sum being taken over values of im, ra) such that im, ra) and im+p, ra) belong

to D.

Lemma 6. Let fix, y) be a real differentiable function of x and y. Letfxix, y)

be a monotone function of x for each value of y considered, and fvix, y) be a

monotone function of y for each value of x considered. Let \fx\ 5=3/4, \fy\ ^3/4,

for a^x^b, af^yf^ß where b — a^l, ß — a —I (¿2:1). Let D be the rectangle

(a, b; a, ß) or part of the rectangle cut off by a continuous monotone curve. Then

X £ e2"/(m'n) = Ç f eW-'-rtdxdy + OH).
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Lemmas 3, 4, 5, 6 are either quotations or simple modifications of

Lemmas a, ß, 7, 5 of a paper by Titchmarsh.

2. Lemmas concerning double exponential integrals. In this section we

give a refinement of a theorem due to Titchmarsh(10).

Lemma 7. Let D be the rectangle ia,b;a,ß) and U be its longer side. Let fix, y)

be a real algebraic function satisfying the following conditions in 7?(u).

(1) B^\fxx\<AB,        r2B~^\fyy\<AB, \fxy\<AB,

(2) I fxxfyv - fly \>r\ 0 <r = B,

(3) I fxxx \<AC,       C < AB*'2,       CUr < AB2,
i     2 2 i 2 l/2 1     2

(4) I fxxfxyy — 2fxxfxyfxxy + f xyf xxx I < Ci73 ,        B    C\ ^ r /2,

and, for a positive integer k,

4-1    2ifc-l _.  ik-Z^ 1/2-1/2*    1-1/2Í;     1/2* _ .   2-3/2*\
(5) B    Ci     U = Oir      )    or    B d        U       = Oir        ).

Then

C   dx f  e2rii^^dy = o(— J.

Proof. We divide D into three regions, namely

Dx: fx è 751/2,

7>2: 0^/I<731'2,

D3: fx < 0.

Sometimes we want to redivide 7?i into subregions. We denote by 7>n the

part of 7>i lying between the curves

/.-/.— - ±
/.,       ~  B^2

and by 7>i2 the remainder of 7?i. Similarly we may divide D2 into 7>2i and 7>2

(1)  Consider, first, Di. Integration by parts gives

/»  /» /» pg27ri/(i,y)-la(y)

j   I     eîrif(x.v)dxdy =  I     -;-        dy
J J d, J   L   2-rcif x    L

(2.1) 1    CCU*
H-(I    — eW^-rtdxdy = h + 72,

2wiJ J D,fl

say, where x = o>(y) and x = xiy) are boundaries of 7?i.

(1.1). To estimate 7i, we consider, for example,

(10) Proc. London Math. Soc. (2) vol. 38 (1935) pp. 96-115.

(") The letters B, r, C and C¡ are used to denote positive constants.
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dy.

The function x(y) is either the solution offx=B112 or it is a constant.

In the former case we have

d fxy
—fixiy), y) = fv - fz —- = v,
dy fxx

say. Hence

/C                e2*iudu          / B^2\
eirif(x(y),yïdy =   | -■  = OÍ-)

and

/J |n]âr/

g2TÍ/(x(lí),!/)¿-y

r/Bi/2  2irifxixiy), y)

On the other hand,

giTij(xM ,y)

\B^2      r   ) '       \r)'

I.\v\<r/BM   2wifxixiy), y)

Here/^731'2, so

/   1     rrlB      dy\    \
dy = 0[- I — \dv)

\ B"2 J _r/Bi/2   dv\    /

dv       1   -

dy    fxx _

and, by (1), (2) and (4)

2 2

2 f xij xyy ¿J xxf xyJ xxy + f xy] xx
Jxxjyy        fxy        fx

fl. 3

(2.2)

Hence

> A-
r2 - B"2-Ci

> A
B

L
e27T¿/(x(¡/),D)

1-K7-/S1/2    2irifxixiy), y)

Secondly, if x(y) =a, a constant,

e2*iJ <.x(.v) ,y)

■dy

dy = o(- —-\   =  0(—\
\ßlli     ßl/2      r2) \r )

f -I g2irif(.a,y)

dy.
2Tifxixiy), y)        J   2irifxixiy), y)

By (1) and a well known formula concerning exponential integrals (12), this is

(12) If f{x) is a real differentiate function with \f"{x)\ >X  in (c, d) then f' «"«>' dx

= 0(1/X'/2).
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°(-——) - 41)-
XB1'2   (r2^-1)1'2/ \r )

(1.2). Now consider 72. We have

(2W)272 =  f flîl e*-tf (*.»)]    " dy -  f dy ( — ¿W>dx
J L/l Jx(»)       J     J   fl

+ 3 f f ^ e^^dxdy = l[ + l'2 + I3,

say. The first integral can be treated as 7i. So

I'i = Oil/r).

We have

72' = f f    h^L e^'^^dxdy + f f    ~ e^^^dxdy
J ^ Du     fx J J Dn     fx

= la + 72i,

say. Let x = <f>iy) = <piy, u) be the solution oifx = u. Then

^-fi<t>iy),y)=fy-f*^L-
dy fxx

In 7>i2, the absolute value of this expression is not less than r/Bil2. Hence

722 = f dy f ~ e*r{K"">áx = f dy f

r du r fxxx r   c   / bu2\ da
=    J    —   j- e2rifU(y,u),y)dy   =     I _qI - \_

J   u3J    fxx JbW B     \   r   / u3

\f£"V \r/'

by (3).

To estimate 72,, we put «=■/„ and v=fv—fxfxy/fxx. Then

d(«, Î)) 2 fx 2 2
(2.3) - -   = Jxxjyv /zjl ~~j      \J xxj xyy ¿f xxj xyj xxy + f xyj xxx)-

dix,   y) fxx

The absolute value of this expression is greater than Ar2 if

| /. | < rC?/!.

Denote by D'n the part of 7>u in which the inequality holds and by 7>íí the

remainder of Du. Then

J xxx                                          f              g    J xxx                          aU
^—.e2rif{x,y)¿x—    I    ¿y   I    -e2irif(x,y).-

jx J J        J XX M

B1^ du
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Il       I J XXX        _      ... .    ,        ,       I
I   I   ,   —-¡- e2T%nz-y)dxdy\

J J Du      fx \

f c dxdy             c     du c rlBl"             dv

< AC \  \   -~ = AC — ,--j
J J     Jx J sm u3J I ö(m, d)/ô(x, y) |

1          ri        ¿Cl / 1 \
= AC-= -- OÍ —J,

iB1'2)2  B1'2  r2      B3'2   r \r /

by (3). Also

/m      .      . I CC dxdy r       r       du
\ f f „ -^r &*V<-*>*H%4y\ <Acff —-? = AC f dy f
\J   J Du.       fx J   J fx J J \fxx\  U3

2

_0(£._^_0(±.™JE:\_0/±),
\B    ir'CT1)2/ \r     B2      r*  ) \ r )

by (3) and (4). Hence J¿ is also 0(l/r). Thus 7¿ = 0(l/>). It follows that

(2«)272 = OÍ —J + 3 f f   — <r**<*">iady.

Repeating this argument we find

*

I. = o(—J +o( f f  tj¡-f*0">ixdy\-

Denote the last double integral by J, then

3 =  ff     + fÍ     =J2 + Ji'
J  J Dn J  J Dn

say. We have, as before (13),

/'        du   r   k-i C        / 7?1/2\ du

\r    5(2*-D/2/ \r/

To estimate Ji, we write

Jl= ÇÇ   + ÇÇ, =j[ + j['.
J J flu J J Du

As before (14), by (1) and (2.3),

(13) See the estimation of l'„2 above (2.3).

(u) See the estimation of IL.
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du   r r,m" dv
7ÍI <AB /'    du   r

B^U2kJ | d(u, v)/dix, y) |

= o(V-) = o(—\
\      ij(2*-i)/2   b1'2   r2) \r )

k—l k—1    2k-l

-o(*°)-oj±*  Cl.  l-oj-),

by (5). Combining these results we find that J is Oil/r). Hence 72 is 0(l/r).

(2). Now consider the integral over 7J>2. Putting fx — u, we have

j j     e2riS(x'^dxdy =  I        ¿m J   -dy.
J J D¡¡ J 0 J f xx

As in (1.2), we have d/(0(y, u), y)/dy^r/B112. Hence the inner integral is

0((l/73)-(731/2A)) =Oil/rB1'2). The result follows for this part.

Finally, by (2) and (4) we have, using (3) and the fact that \fx\ <B112,

B1'2      /» r/B1'2

\jj      ez*if(*.y)dxdy   ¿  \\      dxdy =   f f
I J J Dn J  J Dn <J 0 Jo

3(î:, y)

diu, v)\
dudv

/i B"z      /, r/B"2       /                            1 \
I 0[-\dudv

o       Jo \r2 - iB^2/B2)-dB2)

= OÍB1'2 —-) = 0(— ).
\ 731'2   r2) \r )

(3). We have established the stated for Z>i+7J>2, that is, the region /,^0.

A similar proof can be applied to D3.

Lemma 8. Let D' be the part of D cut off by a curve ior several curves) whose

equation is of the form x = giy) where giy) is an algebraic function satisfying

(6) | Ufxxg"iy) | < Kr

where K is a sufficiently small constant. Then if we replace the condition (1)

in Lemma 7 by

il') B^\fxx\<AB,   | /.„ | < AB,   | fyy | < AB, fxxfxy > 0

we have

r r /i +1 log b\ +1 log u\\JJ       e2*if(x,y)dxdy  = 0(-—-■-5-Lj.
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7ra particular, the curve may be a straight line x=py+q.

Proof. If \fyy\ WB/2, the condition (1) holds if we replace B by 73/2.

Now suppose that \fyy\ <B/2. We put x = î-+n, y = n. Then

a2
\U

d?

d2

dr,2

fix, y)

fix, y)

^ B,

'■   \ J xx    \    ¿J xy T" jyy \   *>

B

Thus the condition (1) is restored. Conditions (2) and (3) remain true. So do

(4) and (5) since the expression on the left-hand side of (4) is an invariant

under our transformation. We may therefore assume that all these conditions

are satisfied. We need only to consider integrals of the form

/

gixif(o(.y),y)

■ dy
fxigiy), y)

We divide the interval of integration into three parts:

(1) \ fxg'iy) +fy\   ^r/B"2,

(2) | fxg'iy) +fv\< r/BU*,        | fxxg'iy) +fxy\^ r/2,

(3) | fxg'iy) +fy\< rlBV\ | fxxg'iy) +fxy\< r/2.

In the first part,

/ei*if(,o(.v),y) /. e2»i{^ / 1 \

fxigiy)7y)dy = J fxifxg'+fy)= 0\7)

In the second part,

(I/.| >731'2).

1/
g2-rif(g(y),y)

fxigiy), y)
dy\

fxifxg'+fy)

fxxg'iy)   + fxy
/dy\        I     C

fx\       r \J

-1 [logMy), y)]\ =o^-

dy
fxigiy), y)

i + | log b | + | log u\

)•

In_the third part, we put u=fxg'+fy, then

du

dy
= fxxg'2+2fxyg'+fyy+fxg"

_j 2 2

= f xx[{g fxx + f xy)    + J xxfyy } xy + J xxj xg    J-

If \fx\ > Ur, the theorem is true. If otherwise,

I du\

dy

r*
> A —

B
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Hence

çet*if (,<»).») /    1      çriB^    dy\     \ /      r        B\ /1\

•I fxigiy), y) dy ~~ °\B^J d~u\) = ° XÏB^'V2) ~=    \7/

The lemma follows.

3. Lemmas concerning network. Suppose there is a network of which

each cell is a rectangle So of area U and with sides of lengths I and m. Suppose

S is a rectangle with sides parallel to lines in the network and of lengths a and

b respectively. Suppose 7,i and 7,2 are parallel lines which bound with side

of 5 a strip of area A. Let L be either of them and let the area of 5 under L

be A i.

Lemma 9. The number of rectangles So lying partially or entirely within S

and entirely under L is

AL /ab
NL =- + 0[

U •(■f+^ + i).\ /       m        /

The number of rectangles So lying partially or entirely within S and partially

or entirely under L is

AL (a       b        \
N'L =- + 01 — + — + 1).

U \l        m

Proof. (1) Without loss of generality, we may assume that the sides of S

coincide with lines belonging to the network. For otherwise we may replace 5

by one with this kind of sides so that the variations of A ¿ and Nl are re-

spectively

0 lj + ̂  + 1)u] *°d °
b

— + 1
m

Without loss of generality we may assume that So is a unit square so that

U = l = m = l. For, only the ratios of areas and lengths really matter. Without

loss of generality we may also assume that L is of positive slope.

Now consider all the vertical lines of the network which are not entirely

outside 5. Let the line nearest the left-hand side of 5 be h and the next h, and

so on. Let the first of them which meets L inside S be /*. Let the points of

intersection of L with lk, 4+1 • • • be Pk, Pk+i, ■    ■ ■

We draw from P, ii = k, k + 1, • ■ •) a horizontal line toward the right until

it reaches li+\. We denote the part of A l which is below these horizontal line-

segments by Ai and the remaining part by Ai. Then the first part of the

lemma follows from the fact that At = 0ib), 0t%Ai-NL = Oia).

(2) The second part of the lemma can be proved by drawing horizontal

lines toward the left instead of the right.
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Lemma 10. The number of rectangles So lying partially or entirely between

¿i and Li and partially or entirely within S is

°(t+- + 1>\ l        m        /

A (ab
N = — + 0[-

Proof. We have N = Nl1 — Ni1 and the lemma follows from Lemma 9.

4. We have to consider sums of the form

b b

(4.1) Si = 2 n~u =   2 e-iilogn, a < b ^ 2a.
n=a n=a

By Lemma 2,

1     / I   P-1 6-7- -*   1/2

(4.2) |Si| S —Uib - a)2p + 2ib - a)     £ (p - /•) £ e-iilo«<m+r)/'B
P    \ I   r=l 77i= a

provided that

(Ci) 0 < p < ¿> - a.

Let

p-i t—f

(4.3) 52 = ^ (p - r) £ <riil°e(",+r>'m;

then, by Lemma 1,

fA as Si = e_Ti/4 £ (p - r) 2     , e",7T,i/2 + Oia^trUV'2)
(4.4) _i oáváf3   |/"(w,)|1/2

where

+ Oip2 log í) + 0(a-2«¿2/5p12'5)

2        y + j'
/(y) = /(>■. y) = - — log '

(4.5)
27T y

/'(*»„) = v,       4>iv) = fim,) - vmv,

a = fib -r),        ß= fia),        b ^ 2a.

Let

(CO b = Oit"2);

then

and

tr Atr
v = fim,) =->-> Ar

2icmvimv + r)       m2
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(4.6) p = Oiß).

Let

B' N'

Ss=   X)       Z    e2ri*<-*-y\        R < R' ^ 2R < p,        N < N' g 2N ^ ß.
x=R+l y=N+l

Applying Lemma 5 twice and Lemma 4 once, we have

/RN\        / (RNYIS Í*-1 rx2_1 /x'2_1  x"2_1        \i/nim i/2\

*-°y+0(^fe[S,C?, £ '*') 1 I )
/ (RN)7!*  I  X_1     r X2_1    /   X'2_1    X"2_1 \ 1/2-11/2-J   1/2 V

<*•"      ^(^He [£,(.£ ,5 w) ] } )
where

R"        AT"

(4.8) St =   £     Z   e*'l*<»'*),    R" = R'- x3,    N" = N'- yi - y2 - y3
x-B+1 v=ff+l

with

f /• f »      d3
(4.9) fix, y) =  I  I  I    —-—$ix + x3t3, y + yiti + y2i2 + y3t3)dtidt2dt3

J J J o   dtidt2dt3

and 5/ is a similar sum. Here we assumed that

(C3) 1 á X'2 g R,       X'2 = X"2 = N,       X'X" = X2.

Since S¿ can be estimated as St, we consider the latter only.

5. In this section we shall reduce \pix, y) to a convenient form. We have

(5.1) 4>ix, y) = yiyi ill     ix3<ptyi + ynftrfdtidtt&t

where

*              d3                                  *         d3
<pxyi =-4>ix*, y*),        <t>ys =-<t>ix*, y*),

(5.2) dx*dy*2 ây*3

x* = x + x3t3, y* = y + yih + ydi + yzh.

We have

t       1 t (    1 1\
fxix, y) = --■—,        fyix, y) = - —I—;-j.

2tt x + y 2tt \a; + y      y /

From/„(x, myix))=y we find, by choosing the proper sign,

2t V'2

irxyj

x        x / 2/ X1

(5.3) «,(*) = -- + -[1+— )
2        2 \       TTxy/
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Since

d d
<Pxix, y) — faix, niyix)) + /„(x, mvix)) —my{x) — y—myix) = /x(x, m„(x)),

dx dx

d d
<t>yix, y) = fyix, »,(*)) —myix) — y—myix) — mvix) = — îw„(x),

dy dy

we have, by (5.3),

^,) = ,(j-(l+£-)1/2)

y      /2/y* y»'»r 1   Trxy       1 /ttx^X2 "1

"T      \T/      x^L     "T ~27~~8~\27/      "'J'
(5.4)

/ 1       ( 2t \v\
**»-<7-(• + -) )

xyy

x       ( 2t\112 x112 [~ 1   irxy       1 /Txy\2

2

/ 2/y'2 x1'2 r 1   TXy       1  /irxy\2 "1

\V/   y^L     T~27-~8\17/     "J'
Differentiation gives

1 /22\1/2 f        3  TTxy
♦■«<«.»)-7(7) *-"V"[>-T=2

(5.5)
3 /2A1'2 r 1   xxy

*»,(*. y) = - -{—) *"«*-*'U -
6    2t

1 /7Txy\2

8 \ 2</

Hence

lF/2í\1/2        /•/•f1
*(*, y) =-—(—)    yiy* I  I  I    »*-1/2y*-6/2(*3y* - 3y3x*)dhdt2dt3

}

1 /2tVl

(5.6) (r)

»  1  ,rV*1l*

• I  M- x*-l'2y*-s'2(3x3y* - y3x*)dtidt2dt3 +

6. In this section we consider the Hessian of ^(x, y), that is,
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2

77(X, y)   = Tpxxtyy - txy

We denote the first term on the right-hand side of (5.6) by ^°(x, y) and write

<£(x, y)=x~l,2y~il2ix3y — 3y3x). Then

**»(*, y) = 3x-5/2y-5/2(x3y + y3*)/4,

(6.1) #„(*, y) = 3x-3'2y-7'2(x3y + 5y3x)/4,

^„(x, y) = 3x_1/2y_9'2(5xsy — 35y3x)/4.

From this it is obvious that, for 7? + l ^x<2R, N+l ^y<2N,

(6.2) #„ = OiR-*t*N-t'sQ),    <i>xy = OiR-3'2N-7i2Q),    $yy = OiBrlixN^"tQ)

where

(6.3) Q= x3N + (y3 + 1)7?.

Hence

(6.4) -iv = OiR-oiW-"'^), ^ = OiR-V'N-7'^), #^ = 0(A-«,ff-"C)l

and so on.

Using the expansion

4>(x*, y*) = $(x, y) + x3/3*x(x, y)

+ (yi<i + y2¿2 + y3h)$vix, y)
— 1       2 2

+ 2    [xs^xxtx, y) + 2x3/3(yii

+ (yiíi + y2i2 + y3t3)2^yvix, y)] +

—1      2 2

+ 2    [xsís^xxíx, y) + 2x323(yiíi + y2¿2 + y3t3)$Xyix, y)

we find that

1 /2ÍX1'2      r X3 yi + y2 + y3
vix, y):= ti 7 yiy2 *(*> »+ y #i(-:ï' ̂ _l-2-*'

2
1   (x3                          (yi + y2      y3\      ,      .

+ — <—■ $„(*, y) + 2x3[—-h — 1 *«,(*, y)

2 2 2

, /yi + y2 + y3 , yiy2 + yiy3 + y3yA )+ (-j-+-2-)*„(*, y)}+---J

i /2/y2    r i (*»
= -[-)    yi,2[*(x',y')+T{-^(x, y)

2 2 2

+ -— *xv(x, y) -I-—-$vvix, y)> H-J

where x'=x+x3/2, y' = y + (yi+y2+y3)/2.

Hence, by (6.4) and (C3),



462 S. H. MIN [May

#'-. - - ("^)    ytft [ 4>xx(x', y') + 0 (ä-*/W-'*e (^)2)] .

*-•=li^T^b^'y,)+o(r~v2n~v2q(r^))}

*"=li^T^b^y,)+°{r~wn~*'^{W)\
since \'2/R+\"2/N = OiQo/RN) where <2o=X,¡W+X"27?.

Hence, by (5.6),

4>xx = -¡-(—)  yiy»*.«(«'. yO + o(#w»^^/w^/~Y)

+ Oir^yiyiR-^N-3'^),

(6.5)     #* = j(^)   yiy»*.»(«'. /) + oUi*w^»&r*iq(!j£y\

+ OirWyiytR-V'N-'itQ),

*" = 7(7)  :y'l3'2$1"'(x'•y) + o('1/,yiy^1/w-,/,e(J^)2)

+ 0(r1'2y1y27?1/W-7/2C).

We may omit the second error term from each of these relations provided that

(C«) R3N = Oit).

Hence, by (6.2) and (C3),

txx = 0(il'*yiyiÄ-«'W-«'K>),       ixV = OitV'y^R-^N-i^Q),

#«, - Oitli2y1y2R-lt2N-^2Q).

Further, by (6.1),

,2
'**  =  ~1

(2    2-3     -7„2/Ço\2\

77(x, y) = (9</32x) ylylx''*'y'-'\x3y  + (2(10)"' - 5)x3y']

2 9/     2 2  ,-3  ,-7    2  ,2 ,  , 2  ,2

V'xxif'vv - TpxV - —- yiy2x    y    (x3y    — 10x3y3x y   — 15y3x )
32x

(6.7) -[x3y'- (2(10)1/2 + 5)y3x']

+o(*wrr*flP(|)>
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Remarks. The inequalities (6.5) to (6.7) obviously remain true if we

replace ^(x, y) by a partial sum containing only the first ra ( à 1) terms on the

right-hand side of (5.6). Further, the general term is of the form

tU2yiy2ffJ  (~^~) x*~Wy*~m^X3y* + C2yzx*)dhdt2dt3

-""»»iff, (T)*-"*r"V+—)
/       yih + y2/2 + y3<3y-5/2

/       yih + yih + y3t3\             (       x3t3\\
X   cix3y( 1 H-J + c2y3xl 1 -\-J   dhdt2dt3

= tl'2yiy2X^2y-3i2\pix-\ y"1) + 0<(—) \

+"{(2i±7^!)}]

where 7>(x_1, y_1) is a polynomial in x~l, y_1 (depending on yi, y2, y3, x3 and

«). Now suppose that

(C.) X'2 < Rt",       \"2 < Nt-< it > 0)(1S).

When h is large enough, the inequalities (6.5) to (6.7) remain true if we

neglect the terms which are

•KtOMC*^!y
from each term on the right-hand side of (5.6). So we can write <A(x,y)

=^i(x, y)+*/'2(x, y) where i/'iix, y) is an algebraic function satisfying (6.5) to

(6.7) and

*,(*, y) = ^yiy^r^[o{(^)} +0{(* +* + *)}]

which can be made as small as we please by taking h sufficiently large. In

fact, we can choose h so that, for a given positive 5, ^2(x, y) =0(i-<).

7. Now return to the sum St. Let

J£5/2^y5/2 2J3/2jy7/2

(7.1) Zi = c-,       l2 = c->
¿1/2yiy2Q z1/2yiy2Ö

(,s) We use e to denote a small positive number, which, like the symbol A, may or may not

keep the same value.
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where c is some positive constant.

By (4.6) we have

(7.2) R = OiN),       h = Oih).

We divide the region of summation of 54, that is,

R+l ^ x = R",       N + 1 g y g TV"

into rectangles with sides parallel to the axes and of lengths h and l2 and

parts of such rectangles. We may enumerate these subregions and denote

them by Aj,, p=l, 2, ■ • ■ . If c is small enough, the variations of \px and \py

in each Ap will be less than 1/2. Hence to each Ap correspond integers p and

v such that if ^(x, y) =^(x, y) —px—vy the absolute value of the first deriva-

tives of ypp is not greater than 3/4. So for each Ap we have, by Lemma 6,

(7.3) EE e2"*<*-»> = Z Z e2xi*»<x^ = f f   ¿"W^dxdy + 0(/2)

provided that

(CO h è 1.

Hence

S4 = Z{ Íf   e2xi*^x^dxdy + Oih)\ .

The system of parallel lines

I x3y - (2(10)!/2 - 5)y3x| = 4m£, m » 0, 1, • • • ,

divides each A, into strips. Hence

= Z) I  I     eixi*»<-x''l)dxdy + ]£ £ I  I        exxi**'-x'v'>dxdy
p   J  J Ap J7   m-O«'   ■/ Ap,m

+ E f f „ #w***'»iah + Z O(/0 = 7o + 7i + 72 + 73,

say, where

£, nog (roí
L  log 4  J

Ap,m denotes the part of Ap for which

(7.5)      4m£ < I x3y - (2(10)»'* - 5)y3x| < 4"'+1£      (m - 0, 1, • • • , L - 1),

Si

(7.4)
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Aj,' denotes the part for which

(7.6) | x3y- (2(10)i/2-5)y3x| <£

and Ap" denotes the part for which

(7.7) | x3y - (2(H))1/2 - 5)y3x¡ > 4¿£(> AQ).

Evidently

\Jo\^H f f, dxdy =  f       f      dxdy = 0[-).
(7.8) p J J a' J R+i J n+1 \ x3 /

|x3!/-(2(10)l«-5)l/8x|<i

In the next section we shall prove, under certain conditions, that

r r (   R3I2n7>2 log t  \
| e2*HP(x,y)dxdy = 0 (-),

( r r /r3^n7'2 log t\
l        e2xi*'ix->)dxdy = 0[-— ).

J J a, V    ¿1/2yiy2Q    /

On assuming this,

/ *=? ^       RWNV2 iog t     \

Jl~°\hop   <1/2yiy2ei/2-2^'2J

where im) denotes that the sum runs over only those p for which Ap lie par-

tially or entirely in the strip (7.5). By Lemma 10, the number of such Ap is

771        2   2    2 1/2

/4m£R\ (R       N        \ /4 #yiy2Q\ (t   yiy2Q        \
o[—— ) + o(— + — + i) -of     '*? ) + o(    yyv +1).

\x3W2/ \h       h        ) \   x3R3N*  } KR'i'N'i*        )

Therefore

r        t,1 ( 2"l?1/2/1'2yiy2(33/2      Qf2N RVi^nn        -| -i
7i = 0   log f £•{—-—     +--+-}

L       Zl>\     x3R3'2N^ 2™?'2      Myty&i'-lfi*) A

r (t"2yiyiQ2       Q"2N R»i*N"*    \1
= 0   log t<—-1->   .

L        \x3R3i2N6'2        p'2        ¿1/2yiy2Q1/2£1/2/J

Similarly

iïR        \/N       \R3'2I—+111 —+ II-
2yiy2Q

KR        \/N \ R3'2N712 log n

7+1/\7+ /     <1/2yiy2Ö    J
(7.10)

' ¿1/2yiy2<2 T?3'2^"211

R3i2N3'2 ¿1/2yiy2(2/J
-o[log/|—

since R/h = N/h and (x + l)2 = 0(x2 + l). Finally,
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/3 = 0K7+1)(7+1>]=°(7r + /2)

m 0(tll2yiy&\        /R»*N'i*\

\R3i2N3'2) \tll2yiyiQ)'

From (7.8) to (7.11)

Si = 01—-) + 0  log«-*-^- + --+-\
\x3J L \x3R3'2N5i2        Í1'2        P^yiyiQ112?12) J

since %<Q and Q = x3N, by (6.3).

If we put 7?£/x3= (<21/27vV£1/2) log t, we shall get £ = ((x37VÇ1/2/7?) log í)2'3.

But we take the bigger value

Q   /      X2X"2      X1'2
<7-12) '^^(w^+T)) los!"''

The value is certainly bigger by (6.3). The reason for doing so will be seen in

the following sections. We have

rRll3Q/     X3X"2     X1'2 "I r^'^i^Ö2       1
Si = 0\--(-)    log2'3*    +0-^-^log/

L   X3   \yiy2(y3 +1)/ J LxWN'i*   & J

^ '   ' r7t11/6iv7/2"i

+   Li1/2yiy2öJ'

Remarks. If (C3) is not true, the second term is not less thanOÍTÍA7).

Hence (7.13) remains true.

8. Proof of (C7) under certain conditions. We consider, for example, the

first relation in (C7) only. By the remarks at the end of §6, we can write

xf,p='Pi>,i+ir'p,2 where ^p,i satisfies (6.5) to (6.7) and 4'p,2 = 0it~i) where 5 can

be made as large as we please. Hence

j   j        e^^p^-^dxdy =11        e^^r.^^dxdy
"   "  Ap.m J   J Ap.m

+ M((     k"Uy)l'^1
,_i   LJ J Ap,m j\ A

= I  I        e2xi*v.^x^dxdy

"    "  Aj>,m

RZIi-fiTIiI              R3/2N7li V

+ 0( - ).
\tli2yiy2Qll2-2m?i2}

Write íAp.i=^'*. We need only to examine the conditions of Lemma 8. Let
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B = AfliiytytR-WN-'i'Q,

then

/1/2yiy27?-5/2iV-6/2<2( — J - 0(7ír2í)

by (C5). By the remarks at the end of §6, \(/* satisfies (6.5) to (6.7). Hence, by

(6.1),

* * 737? *  . BR2
(8.1) B<\kxx<AB, 0<$xy<A   -, \^yy\<A

N N2

Thus condition (1') of Lemma 8 is satisfied. In condition (2), we may take,

by (6.7), r20 = AtyiylR-3N-7QAm^), provided that ty{ylR-3N-7Q2iQo/RN)2
<7£>o for a sufficiently small K. By choosing the constant A in (7.12) suffi-

ciently large, this can be achieved, provided that

(CO Q. = OiR2<3N).

In condition (3), we take C = ABR~1, i/ = min (TV, h). Then we want

737?-1<^733'2 and BR^NrKAB2, that is, R~2<AB and r0N<ABR. Since

2"1¿1/2<Q112, we have raN Kt^^y^R^^N^^Q<ABR. The second condition is

satisfied. Since Q>x3N, we have 73 > Atll2R~&l2N~312, and the first condition re-

duces to

(CO RN3 = Oit).

By taking k sufficiently large, we can replace the conditions (4) and (5) by

a stronger condition

(8.2) BV2Ci = Oirlf).

By differentiating \p*y with respect to y we get an extra factor N"1. Hence

tly = 0 iBRN-i). Similarly tëxy = OiBN-i),tâxx = OiBR-i). Therefore

I       $2$ ^¡        ̂        ■{[ a|e 2    a|: i 3 —2
^xx\kxyy  —   2\f/xx$xytxxy + ^xy^xxx]   <   B RN      .

We now take Ci = BRN~2. Using (7.12) we find

2 2     2—2—1 2     2     —i    -2/3 / X3X   2 \1'
(8.3) r0>ABRN   Q   £ > AB R N   R      (-)    .

\yiy2(y3 + 1)/

The relation (8.2) becomes

KX3X"2      X1'2    1
B-)    tr'\.

yiyiiyz + l)/      J

Since <2>(y3 + l)7?, we have B>Atll2yiyiiy3 + l)R-3l2N¡>¡2. So the last condi-

(l6) Here we write ro for the r in Lemma 8 to avoid confusion.
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tion reduces to

(Cío) Tî-1'3 = 0[itl"\*\"*R-tliN-*fs)1l*t-l

9. Now consider S3. Since Sí can be estimated as 54 we have, by (7.13)

and (4.7),

/ iRN)7<* I x-i r*=l /xj;i \^> //¿i/sq x3'2X"

(9.1)     +0X~7^-iSLSVxS y?i VxT yi-2y2-2(y3+l)-l0g2/a/

¿1/2yiy2ç2

+

¿Jll/6^7/2\   \ l/2-]l/2-|   l/2\

X3RZI2Nbli    - /i/2y1y2Q)

We choose X' and X" such that X'2iV=X"27?, then, since X'X"=X2,

(9.2) >.» = (-)    X,       V-(-)     X.

This is possible provided that

(Cu) NR-1 = X*.

Thus Q = 0(K'2N)=0(K"2R)=Oi\2N1i2R1'2). Hence

/RN\ oíiRNyitíiS3 = 0[-    + Of iRNy'HR^Nlog^t

¿1/2^5 R*'3N3 )   1/8\

= 0 ( — J + 0(ilil'R*i'Ntitk,i* log1'4 X)

provided that

(9.4) T?1'3^ = 0(i1'27?-W-1X6),       r^X-^/W3 log < = OiP'OR-iN-1**).

Choose X so that Ä7tfX-1', = f1',»/^»«iV»«Xl'• log1'4/, then

(^l/4/Vl/4\8/9                                   RiltflHO

-)     log-1'18 < =-log-1'18 *.
¿1/16      y             ■                               ¿1/18 °

Inserting this value in (9.4), we find that the first relation is more stringent.

It can be replaced by

(C12) RN* = Oitr').

Inserting (9.5) into (9.3),
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(9.6) S3 = O^1'36^8'9^8'9 log1'36 0 = Oitwt+'RWN*'»).

We now return to (4.4). We observe that the above argument applies

equally well if S3 is over part of a rectangle cut off by either or both of the

curves v=a and v=ß. In fact, the equations of the two curves are, by (4.5),

,._i(±__i_Y    ,__±(J__1
27r\6       b - r) 2ir\a + r       a

Hence along these curves d2r/dvt = Oia3/t2). In Lemma 8 the condition (6) is

satisfied if (see (C7)) |ippxxha3t-21 <7vi"o where \pP, l2 and r0 are given in §§7

and 8 and K is sufficiently small. By our choice of k, \^pxxh\ <NR_1. By (6.3)

and (7.12), ro>Atli2yiy2R-3l2N-7i2Qli2^2>At^2R-3i2N-7i2NR-li3. Thus the

condition reduces to Kt1i2R~n"iN-9i2> NR-^aH'2 for a sufficiently small K.

That is, a3R5"iN!i2<Ktbi2. Using the fact N = OiRt/a2) or N3>2 = 0 iR3i2t3'2/a3),

we reduced it to R7l3N2<Kt. This is included in (Ci2). Hence it is legiti-

mate to use Lemma 8 in estimating St. We may also use Lemma 10 to get an

upper bound for the number of rectangles (or parts of rectangles) Ap,m in a

strip (7.5), since the domain of summation lies entirely within a rectangle of

side-lengths 7? and N.

We observe that \fyVir, y)\ >Atra~3. Hence, by partial summations

52 = 0(p(/p<r-3)-1/2i1/36+«p8/9/38/9) + 0(a3/2r1/2p3'2)

+ Oip2 log 0 + 0(a-2'6/2'5p12'6)

= oipsw+'a-Wp41'13) + 0(a3'2r1'2p3'2) + Oip2 log t) + 0(a-2/6¿2 V2/6)

since ß = Oitpa~2). Therefore, by (4.2)

Si = 0(ap-1/2) + 0(í16'72+ía13/!V/35) + Oiasitt-Uip-1")

+ Oia"2 log1'21) + Ofa3'10/1 V6).

The first two terms are of the same order if

(9.7) p  =   (/-15/72-«a23/3«)36/23  =  ¿-15/46-«^

This gives, for a = 0(/1/2),

St = 0(/15/92+ia1/2) + 0(r31'184+'a) + Oia1'2 log1'2 0 + Oit31'230a1'2)

= 0(i16/92+'a1/2).

Hence, by partial summation

(9.8) ¿ -^ = 0(^2+«).
n—a   w

10. Let us examine the conditions we assumed. The conditions (Ci;f

(CO and (CO are included in (Ci2). By (9.2), (C3) is not stronger than (C6).

By the remarks at the end of §7 and by §8, the conditions (CO and (C7) can

)■
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be deleted. The conditions (C2) is satisfied so far as we do not consider the

case a>At112. It remains, therefore, to consider (CO, (CO, (Cío), (Cn) and

(CiO.
Since Qo = OÇK'2N) and \'2N = \"2R, (C6) and (CO can be replaced by

X'2 = 0(7?2'3/-«). By (9.2) and (9.5), this can be reduced to the trivial condi-

tion RSN-^Oit2-').

Using (9.2) and (9.5), (Cio) can be written as

K^10/9jyl0/9/^y\l/2 \l/2       -i
fi"-—-( — 1       R-V2N-5li\      t-,\

which is actually equivalent to (C12). Since N=OiRt/a2) (use the relation

above (4.6)), (C12) is equivalent to 7?6/3+e = 0(a8). By (9.7), this reduces to

r76/46/3+e = 0(a3). That is,

(C) a > At21<M+'.

Now consider (Cn). By (9.5), the condition is

NR'1 < r^Tc^JV8'9 log-2'91

or

(C) t2 log21 g AR17N-K

Using N>ARta~2, this can be reduced to

(CO t3 log2 / = 0(7?16ff2)    or   R > A
t3 log2 A1'16/t3 log2 f\

11. If both (C) and (C) are satisfied we have nothing to justify. Now

suppose that one of them is not true.

We shall not take the values for X'and X" given in (9.2). We can, as did

Professor Titchmarsh(17) in his paper, takeX"=X2 and omit the X3-summation.

This amounts to using Lemma 5 three times.

We are compelled to examine the whole proof afresh, keeping to its

original form as closely as possible. §3 is now useless. In §4, we omit all the

X3-summations and put X3 = 0, X' = l whenever they occur elsewhere. In §5,

we put x3 = 0. In §6, we put x3=X' = 0. Then, in (6.7), the first term on the

right-hand side is now "positive definite."

Now §7 can be greatly simplified, for we have no need of redividing A„.

We may take Ap as A„" there and put J0 = J = 0. By arguing as before, we

find

/RN       \ Vfi2yiyiy3      R^W2! ,
St = Ji + J3 = 0(-+ h J log t = 0\ —-^- +-   log t.

\h ) L RV2N3'2      /1/2yiy2y3J

(17) Loc. cit. p. 13.
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Inserting this result into (4.7) we obtain

s3 = o (Tüvyx1'2) + oír^i^n"!™?'1^7'* log1'81)

+ o(7?15/16iV21'16r1/16x-7/8 log1'41).

The first two terms are of the same order if

KR3Nb X1/22l

This gives

(11.3) S3 = 0(A«/«*JVM'4V" log1'22 f)

provided that the last term in (11.1) is negligible. This is true if RN& log t

= 0(/X14). Using (11.2) and the fact thatN <AtRa~2, we reduce this to

(11.4) tuR10 log251 = Oia™).

First, suppose that (C) is true and (C) is false. Then (11.4) becomes

tl*ia~2t3 log2 i)6/8 log26 t = Oiai0). This can be reduced to a>tU3i330 log7'11 /, a

consequence of (C).

We expect that (11.3) implies (9.6). This is true of R^N-^Kt2^ which is

weaker than the negation of (C). Thus (9.6) is proved for this case.

Next, suppose that (C) is untrue. Then we have, as before,

S2 = Oipbl'22t9i22a-3'n log1'22 0 + Oia3i2t-ll2p3'2)

+ Oip2 log t) + 0(a-2'6/2'6p12/6).

Hence

Si = CXap-1'2) + 0(a4/up7/44¿9/44 log1'441)

+ tXa^V1'4/-1'4) + Oia1'2 log1'2 t) + O(a3'10p1/V/5).

The first two terms are of the same order if

(11.5) P = [(a28r9 log-1 i)1/29].

This gives

b

2 n~u = 0(a15/29/9/68 log1'68 t) + 0(a117/116r5/29 log1'116 /)

n=a

+ Oia1!2 log1'2 0 + 0(a143/290/4'29).

It can be verified that the last three terms are negligible and all condi-

tions except (11.4) can be removed. By partial summation,

X- = 0(a1/68i9'68 log1'681) = Oit16'92 log1'581)
«1 / 2+ i t
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since (C) is untrue and (21/46) X1/58+9/58 = 15/92. By (11.5) we may re-
duce (11.4) to

(C*) a > tl7'i0 log143'1761.

Thus we have proved (9.8) completely under the sole condition (C*).

12. Completing the proof. We use, first, the inequality

N' i

^ -= 0(iV'6/82i11/82) + 0(2V-I7/328/61'328)       (2V > i11/86).
n-N nll2+it

For N'<tl7iia+>, the first term is 0(i16/92+<), for

17   5       11 _ 105      15

40 82      82 " 656     92

The second term is 0(i18'92) if N=tm'3n.

For N<tl72'3n, we use the result(18)

£      „-1/2+«  = 0(tkal-k-ll2}

where a<b<2a<t/w, and ¿=97/696, ¿ = 480/696. The sum is 0(F'W) since

97       /480      97        IX   172       97        35X172       15-+(-)-=-+-< —•
696      \696      696       2 /   391      696      696 X 391      92

By the approximate functional equation, we have

t(1/2 + it) = 0(¿16/92+4) (« > 0)

where the constant implied by 0 depends only on e.
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(18) P, pp. 222-223.


