ON THE ORDER OF ¢(1/2+if)

BY
SZU-HOA MIN@®)

Introduction. The problem of finding an upper bound for 8 such that
¢(1/2 + i) = O(#)

has been attacked by van der Corput and Koksma(?), Walfisz(®), Titch-
marsh(*), Phillips(®), and Titchmarsh(®). Their results obtained are, neglect-
ing a factor involving log ¢,
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respectively. The object of the present paper is to prove that
C(1/2 4 it) = O(¢18/92+e) (e > 0).

In this paper there are two main difficulties. The first is the vanishing of
the Hessian H(x, y) (see (6.7) below) along certain lines. This is solved by a
suitable division of the domain of summation and by making use of a geo-
metrical lemma (Lemma 10). The second difficulty is that if we use the
straightforward way of choosing A’ =\’"=)\? (see §9) we shall get, instead of
(9.8), a result containing a negative power of @ which will spoil the main idea.
The fact that (9.8) contains no a indicates clearly that our method is a limit-
ing case and we can get no more benefits by merely using more summations.

I wish to express my sincere thanks to my supervisor Professor E. C.
Titchmarsh for his kindness in suggesting this problem to me, reading the
drafts and giving invaluable criticism and encouragement.

1. Lemmas quoted.

LeMMA 1(%). Let f(x) be a real function with continuous derivatives f'(x),
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S (x) and f'"'(x). Let f'(x) be steadily decreasing, f'(b) =c, f'(a) =8 axd(8)
ME@] <A @] < AN
for a=x<b. Let n, be such that
flm) =» (a =v=P).
Then

e2xilf (mp)—rmy)

E e2rif () = p—wild Z

asnsSb asysg8 I f”("v) |1/2
+0[log {2+ (5 — A} ]+ 0[(® — a)n"Ns" ]
LeEMMA 2(®). If F(n)is areal function, p, a and b areintegersand 0 <p <b—a,

then
}1/2

+00:;"%

3
Z £2%iF (n)

n=a

p—1 b—r
S (o= r) 3 emerow

r=1 m=a

< 1{4@ — 6% + 20 — 0)
P

where
19
®(r, m) = F(m + r) — F(m) = f —F(m + rt)dt.
N 0

LeEmMMA 3. Let a, be any numbers, real or complex, such that if Sm.n
= 2 =1 v=1 Gu then ISm,nl =G 1=sms=M; 1=n=N). Let b,,. denote
real numbers, 0 Sbn,» < H and let each of the expressions

bm,n - bm.n+1y bm,n - bm+1,m bm.n - bm+1.n - bm,n-l-l + bm+l.n+l

be of constant sign for values of m and n in question. Then

M N
Z Z am,nbm.n

m=1n=1

< 5GH.

LeEMMA 4. Let f(x, y) be a real function of x and y, and

S . ZZ eztif(m,n)’

the sum being taken over the lattice points of a region D included in the rectangle
a=x=<b, a=Sy=p. Let

S = Z Z €27id (m,n) S = E Z £27idy(m,n)

where

(8) Throughout this paper we use 4 to denote a positive constant, not necessarily the same at
each occurrence.

(°) Titchmarsh, On van der Corput’s method and the zeta-function of Riemann, Quart. J.
Math. Oxford Ser. vol. 2 (1931) p. 166.
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19
¢l(ms n) = f(m + My B + y) - f(m! n) =f af(m + Ft» n + "t)dtv
0

19
é2(m, n) = f(m + p, n — ») — f(m, n) =fo 'a—;f(M'l'Mt,n—!’t)dt,

u and v are integers, and S’ is taken over values of m and n such that both
(m, n) and (m—+pu, n+v) belong to D; and similarly for S’’. Let p be a positive
integer not greater than b—a, and let p’ be a positive integer not greater than
B—a. Then

S=O{(b—a)(ﬁ—a)}+0[{(b aZ(B ’pr}‘:IS'I}Z]

(PP’) 1z p=1  »=0

o[ {£=08 S )

p=0 =0

This lemma (as well as the next lemma) evidently remains true when p
is not an integer but greater than 1. In that case ) %} ¢(u) is to be inter-
preted as D _1s.5,-1 $(1), and so on. A similar interpretation should be made
when p’ is not an integer but greater than 1.

LEMMA 5. If 0<p=b-—a, then
s =0{<b— a)lw—a)} N 0[{@ 0)(8 — a) le,,,|} 2]
pl/? P st
where
S = Z Z e%fi«#(m,n)

with
19
$m, 1) = flm + w, w) — f(m, ) = f | fm -+t )

the sum being taken over values of (m, n) such that (m, n) and (m—+pu, n) belong
to D.

LeEMMA 6. Let f(x, v) be a real differentiable function of x and y. Let f.(x, y)
be a monotone function of x for each value of y considered, and f,(x, v) be a
monotone function of y for each value of x considered. Let | f,| =3/4, I fy| £3/4,
Jor a=x=b, aSy=p where b—a=l, B—a=l (I=1). Let D be the rectangle
(a, b; a, B) or part of the rectangle cut off by a continuous monotone curve. Then

D> erriftmm) = ff e =9 dxdy 4 O(l).
D D
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Lemmas 3, 4, 5, 6 are either quotations or simple modifications of
Lemmas ¢, 8, v, 6 of a paper by Titchmarsh.

2. Lemmas concerning double exponential integrals. In this section we
give a refinement of a theorem due to Titchmarsh(1°).

LEMMA 7. Let D be the rectangle (a, b; o, B) and U be its longer side. Let f(x, y)
be a real algebraic function satisfying the following conditions in D(1).

(1) Bglfsz<ABy r2B-1§-InyI<AB’ lfzvl<AB,
2 2
(2 lfufw_fzvl>", 0<r=B,
(3) Ifzzzl <AC) o <AB3/2, CUr <AB2,
(4) I fizf:wv - 2fzzfzvfzxv + f:yfx:x | < Cle, BI/2C1 =< r2/2,
and, for a positive integer k,
k—1_2k—1 4k—3 1/2—-1/2k _1-1/2k__1/2k 2—-3/2k

(5) B C, U =O(1’ ) or B Ci U =O(r

Then
b 8 1
f dxf 2 (20 dy = 0(—)
a a r

Proof. We divide D into three regions, namely

).

D ' f. 2 B,
D,: 0= f.< B2
D3: fz < 0.

Sometimes we want to redivide D; into subregions. We denote by Dy; the
part of D, lying between the curves

Sey _ r
fy fafn = BW

and by D, the remainder of D,. Similarly we may divide D, into Ds; and Da,.
(1) Consider, first, D;. Integration by parts gives

27 (z,9) 7w (v)
ff e* i (2.0 dxdy =f|:————-] dy
D, 27”f= x(¥)

2.1 . zz
@2.1) f f 2 i @Ndxdy = I, + I,
21rz

Dlz

say, where x =w(y) and x =x(y) are boundaries of D;.
(1.1). To estimate I, we consider, for example,

(1% Proc. London Math. Soc. (2) vol. 38 (1935) pp. 96-115.
(1) The letters B, 7, C and C, are used to denote positive constants.
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e2rif (x() )

—_—dy.
2wifAx() 3)

The function x(y) is either the solution of f,=B2 or it is a constant.
In the former case we have

Sav
=y,

z -
Sz

d .
;f(x(y), »=ri—1
y

say. Hence

e’*du BY
f e2fif(x(ﬂ)'”)dy = f = 0 ( 2>
lv|2r/BV2 |v|2r/BY2 v r

ezﬂ'f(x(v).v)dy 1 Bl/2 1
ity (s )=o)
fmgr/m/z 2wif(x(¥), ¥) Bz ,

- On the other hand,
dv).

e2 il (x(1),9) 1 r/BY2
R e o |
toi<ripiz 27if2(x(9)s ) B J _,pus

Here f.=BY2, so

and

dy

dv

2 2
_dl’_ 1 _ 2 _ fzzfzyy - 2fzzfzyfzzy +fzyfzzz]
& fo [fnfw Jow — o T
and, by (1), (2) and (4)
2 _ R1/2. 2
2.2) ﬂ r BY2.Cy L )
dy B
Hence

e2%if (x (), v) 1 r B 1
o ol s ) - o(2)
loj<rBiz 27ifo(x(¥), ¥) Bl/2 Blz 42 ’

Secondly, if x(y) =a, a constant,

274 (x(9),9) e2%if (a,v)

- _  dy = —_——dy.
2wifax(3) 9) O 2w x50 )

By (1) and a well known formula concerning exponential integrals (}?), this is

() If f(x) is a real differentiable function with |f"(x)| >X in (¢, d) then [! &7/® dx
=0(1/nm),
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(e ) = °(7)

(1.2). Now consider I,. We have

zz @(v) zzz
(211:)2[2 -_—f[ eh't'f(z.ﬂ)] dy_fdyff ezrif(z.v)dx
b X I
2

+3 f fT eV @ dxdy = I; + I + I,

say. The first integral can be treated as I;. So

= 0(1/r).
We have
fzz fzzz
I; = e (=0 dxdy + eV (=0 dxdy
Dy 3 Dy z
= I3 + Iy,
say. Let x =¢(y) =¢(y, #) be the solution of f,=u. Then

for
fza

In Dy, the absolute value of this expression is not less than #/BY2. Hence

Inp = f dy f Jeer oeiengs = f dy f Jeer pevce v>—3
u
1/2
=f f”" 2Tl 6 (w.w) 0 dy _f .Eo( B )d_u
fzz gz B r Jud

-o(5m) -°(7)

16000, ) = fu — 1
y

by (3).
To estimate I}, we put u=f, and v=Ff,—fufzy/fze. Then
a b z
@2.3) 0 e e L Pt = oo+ Forf e,
o(x, y) fos

The absolute value of this expression is greater than Ar? if
| f=] < r'C1 /2.

Denote by Dy, the part of Dy; in which the inequality holds and by Djj the
remainder of Dy. Then
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I f , 'i’ﬂezw(z.wdxdy
Du

f
dudy et s
< 4Cff 7 e usf | 8(x, 1)/3(x, ) |

1 r 1 AC 1
= AC —_—— —
(BY?)? Bl 42 Bs/z r ( )
dxdy du
< ACff ACf dyf —
|fza| %

C U 1 CUr BC1 1
o ) o 5 o),
B (r’Ci1)? r B r r

by (3) and (4). Hence I3, is also O(1/r). Thus I;=0(1/r). It follows that

l zz
(2wd)*I = 0(—;—) +3 f — e (=) dxdy,

4
Dl z

by (3). Also

l f f”’ 2™V = dxdy
Dll

I

Repeating this argument we find

— i f“ 2xif (2,4) )
Iz—-O(r) +O<f o T ——e Wdxdy

Denote the last double integral by J, then

] ] e

say. We have, as before(13),

J Jlanie g o LY. prs
’ _me u“ff" CeE me r ) e
1 B¥1BY 1
) )
y B@E1)/2 y

To estimate J;, we write

Ji1= ff +ff,,—-71+]1
Dn D

As before (1), by (1) and (2.3),

(1) See the estimation of I, above (2.3).
(1) See the estimation of I,.
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L, du r/B1/3 dv
l"ll < AB"f —-'f
Btk | (u, v)/8(x, 5) |
1 r 1 1
—o(pr—L .. L =o(—),
BG@k1/2 Bl2 L2
zz dxd
|J{’|<ABk—1ff |/ I y<AB’°—1ff
Du z u2k

k—1 —1 2k—1
B U 1 B C 1
(r2C—l)2k—l r r4k—-3 r
by (5). Combining these results we find that J is O(1/7). Hence I; is O(1/r).
(2). Now consider the integral over D,. Putting f.=u, we have

B2 e2rif (z,9)
ff etV (= dxdy =f duf dy.
Dy, [1] - fzz

As in (1.2), we have df(¢(y, »), y)/dy=r/BY2 Hence the inner integral is
O((1/B)-(BY%/r)) =0(1/rBY?), The result follows for this part.
Finally, by (2) and (4) we have, using (3) and the fact that | f,l < B2,

BU2 r/BY2 a(x’ y)
lff leﬁ(z.ﬂ)dxdy' §f dxdy =f f
Dy Dyy 0 0

a(u, v)

B2 ,./Bm 1
=f f O( )dudv
0 0 r* — (B'?/B?%-C\B?
- 0(31/2. r .i) _ o(i)_
B2 42 r

(3). We have established the stated for D;+D,, that is, the region f,=0.
A similar proof can be applied to D;.

LEMMA 8. Let D' be the part of D cut off by a curve (or several curves) whose
equation is of the form x =g(y) where g(y) is an algebraic function satisfying

(6) | Ufeeg’(9) | < K7

where K is a sufficiently small constant. Then if we replace the condition (1)
in Lemma 7 by

(1) B S| fee| < AB, | foy| < AB, | fuu| < AB, foaf sy > 0

dudy

we have

ff il e dgdy = 0(1 + | log B| +| log UI)

r
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In particular, the curve may be a straight line x =py-gq.

Proof. If I f,,,,l = B/2, the condition (1) holds if we replace B by B/2.
Now suppose that |fy,| <B/2. We put x=£+7, y=n. Then

|§2—f<x, 9| =lrl 2 B,

B
= Ifzz+2fzzl+fﬂﬂ| >—2—'

a_rﬁ-f(x’ 3’)

Thus the condition (1) is restored. Conditions (2) and (3) remain true. So do
(4) and (5) since the expression on the left-hand side of (4) is an invariant
under our transformation. We may therefore assume that all these conditions
are satisfied. We need only to consider integrals of the form

e2*if o), v)

7o (141> B3
We divide the interval of integration into three parts:
(1) Ifzg,(y) +fv| 2 r/B'?,
(2) | 7:6G) + ful <7/BY% | faouf (3) + fuu| 2 7/2,
(3 |7:8) + 1| <r/B2% | fouf (9) + fuu| < 1/2

In the first part,
PXLACACY) .1/) e itdt 1
——dy = =0{—).
f=(8(3), :v) ffz(fzg, + 1) ( r)
In the second part,
e2%if (9 (v)v)
fz(g(y)’ y) ’ ’f l r
= 2| log 75, 1| = 0
r

Inthe third part, we put % =f,g’-+f,, then

fzzg'(y)+fzu d \
f(g(3), ¥
1+ |log B| + | log U|>

r

du
gy = It Ut S

= fesl(@fee+ fo)" + Fusfur = fou + Joef g”)
If |f.| > Ur, the theorem is true. If otherwise,
. du
dy

r2
>4—-
B
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Hence
e2*if (a(v),v) 1 /B2 , B 1
e =o(gie [ 21 <o (i) - o(2)
f=(g(5), ¥) B/ (BU2)2 2 r
The lemma follows.

3. Lemmas concerning network. Suppose there is a network of which
each cell is a rectangle Sy of area U and with sides of lengths ! and m. Suppose
S is a rectangle with sides parallel to lines in the network and of lengths a and
b respectively. Suppose L; and L, are parallel lines which bound with side
of S a strip of area 4. Let L be either of them and let the area of S under L
be 4 L

LEMMA 9. The number of rectangles Sy lying partially or entirely within S
and entirely under L is

dy
du

N —AL+0<a+b+1)
T I m ‘

The number of rectangles So lying partially or entirely within S and partially
or entirely under L is

N’—AL+o(a+b+1>
o L m )

Proof. (1) Without loss of generality, we may assume that the sides of .S
coincide with lines belonging to the network. For otherwise we may replace S
by one with this kind of sides so that the variations of 4, and N are re-
spectively ‘

a b a b
0[(——+~+ 1>U] and 0[—+— + 1].
l m l m

Without loss of generality we may assume that .Sy is a unit square so that
U=Il=m=1. For, only the ratios of areas and lengths really matter. Without
loss of generality we may also assume that L is of positive slope.

Now consider all the vertical lines of the network which are not entirely
outside S. Let the line nearest the left-hand side of S be /; and the next /;, and
so on. Let the first of them which meets L inside S be /;. Let the points of
intersection of L with l, Iy « - - be Py, Py, - - +

We draw from P; (i=Fk, k41, - - - ) a horizontal line toward the right until
it reaches /;;;. We denote the part of 4 ; which is below these horizontal line-
segments by 4% and the remaining part by Af. Then the first part of the
lemma follows from the fact that Af=0(), 04— N, =0(a).

(2) The second part of the lemma can be proved by drawing horizontal
lines toward the left instead of the right.
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LeMMA 10. The number of rectangles So lying partially or entirely between
L, and L, and partially or entirely within S is
y:| 10 ( a i b " 1)
U I ' m '

Proof. We have N=Np,— N;, and the lemma follows from Lemma 9.
4. We have to consider sums of the form

b b
(4.1) Si= D mit = Y gitlen a<b= 2a.

ne=a
} 1/2

By Lemma 2,

1 p—1 b—r
@D 5] s {46 - 9% +20-0) | S =) X estmcmorn
14 re=1 m=qa

provided that

(Gy) 0<p<b—a.
Let
1 b—r
(4.3) Sy= 2 (p— 1) X eitloa (mtn)im,
ro=l m=a
then, by Lemma 1,
il 2 e21n'¢(r,v)
Se=e"1tY (p—7 + O(ad/24-1/2p312)
(4‘4) * =l )aSvﬁﬂ I f”(mv) ]1/2
+ O(p? log &) + O(a—2/5¢2/5p12/5)
where
¢ y+r
f(y) = flr,y) = — —log )
27 y
4.5) ,
fim)) =», o) = f(m,) — vm,,
a=f'(b—r), B8 = f'(a), b < 2a.
Let
(Ca) b = O(*2);
then
ir Atr
v=f'(m) =——""——7>—> Ar

2am,(m, +7r) mi




1949] ON THE ORDER OF {(1/2+1t) 459

(4.6) p = 0(B).
Let
Z E ez, R R <2R<p, N<N Z£2N <6
ze=R41 y=N-+41

Applying Lemma 5 twice and Lemma 4 once, we have
RN (RN)'Ils A=1 PA—1 /21 N2 1/2q1/2y 1/
s=o(m) o EIE(Z 21s) )
8 AL/2 \8/2 “Z_l El z§l éo |l
(RN)7/8 (A2l a1 M-l A3 1/27q1/2y 1/2
wn (B[R (S E )T
A =1 L yy=1 zg=1  yg=1

where

R" Nl'
(4.8) Sy= ), 2, e¥=w), R'=R —a5, N' =N —3n—3—9

Z=R+41 y=N+1

with

1 38
4.9) Y(x,9) = f f f &(x + xats, ¥ + yitr + yabs + yabs)dbidtadls
0 atlatzats

and S/ is a similar sum. Here we assumed that
(Cs) 1< N2ZR, N2 N2 LN, NN = a2,

Since S{ can be estimated as Si, we consider the latter only.
5. In this section we shall reduce ¥(x, y) to a convenient form. We have

1

(5.1) we9) = o [ [ [ el + s Dindta
where

* 9 o y* * & * Ak
5.2) o = — oy i 2N Y, e = Pyee o (x*, %),

x* = x 4 xsts, y* =y + yit1 + yaba + yala.

We have
¢ 1 t 1 1
fo(x y) = “mrty fu(x, 9) = _;<;+—y—7)

From f,(x, m,(x)) =y we find, by choosing the proper sign,

5.3 _ x+x(1+ Zt)l”
(5.3) my(x) = 513

Ty
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Since

a
bo(%, ¥) = fa(x, my(x)) + fi(x, mu(x)) mv(x) -y ’a_o‘cmv(x) = fo(x, my(%)),

ool 3) = nmm@)mwrw%mw-m@——mm.

we have, by (5.3),

é(, y) = ;v(— - (1 +ri;) 2)

AN A e PR B ) |
2 T X2 2 2 8\ 2
(5.4) . y
sta ) =s(5-(1+2)")
2 XYy
x 20\1/2 x1/2 1 72y 1 fxxy\? ]
= e— - f—— —— 1 —_— e —_— | —_— o .
2 (r) y”’[ +2 2 8(2t)+

Differentiation gives

b 5y = (2t>w » */2[1 3
(% 9) =—(=) & - =
Wb Y =7\% 4 7 2

+ 15 rxy) ’+ ]
8\ 2 ’

(5.5
Sunsl ) 3 (Zt)m " 5/2[1 1 #mxy
x5y =——(—) = - =
vyyl%, Y 2\ V- 6 2
rxy ]
Hence
11/2t\? 1
¥(z, 9) = —(—) Y1¥2 f f f a*—12g¥ =812 (¥ — 3yzx*)dhidiadils
4i\\r 0
1 /2t\V2
(5.6) “s\%/)

x*—llzy*~5/2(3x,y* — ysx®)dtidbodts + + -+ .

fff

6. In this section we consider the Hessian of ¢(x, ), that is,
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H(x, y) = Y2byy — 1’::4-

We denote the first term on the right-hand side of (5.6) by ¥°(x, ¥) and write
B(x, y) =x~2y~52(x;y —3yx). Then

®2o(%, y) = 352y~ 5 1 (wsy + ysx)/4,
(6.1) Pay(%, y) = 3272y (x5y + Sysx)/4,
&, (x, y) = 32712902553y — 35y;3x) /4.
From this it is obvious that, for R+1<x<2R, N+1=<y<2N,
(6.2) ®,.=O(RY2N-52Q), &,, = O(R32N-1%Y)), &, = O(RVIN-YYQ)

where

(6.3) Q=N+ (y3+ DR

Hence
(6.4) &4 = O(RVIN-)), &5, = O(RTEN-TY)), B2 = O(RSIN-YY)),
and so on.

Using the expansion
(x*, y*) = ®(x, y) + xstsPo(x, y)
+ (yits + yata + ysts) By(x, ¥)
+ 27wt ®aa(x, 3) + 22sts(yibr + ot + Yobs) Bunl2, )
+ (yit + yata + yata)*@yy(x, 3)| + - -

we find that
1 /26\1 + 32 +
Y(x, y)i= —(—) Y1y2 [fb(x, y) + 5 (%, y) + NTHRTHR ®y(x, 3)
4 \r 2 . 2
2
' 1 (x3 Y1 + y2 ys
+ ) {? ®..(x, ) + 2xa( 1 + ?) Pa(2, y)
L+ 3+ + 293 +
" (3’1 3;2 ¥s n 1Yz yzzys yay1) B, y)} 4. ]
1 <2t)m [<I>(x’ )yt {xf bois, 3)
=\ ’ 4= Pz,
a\z/) 7" YT 12 4
2 2 2
% + y2 +
+ 86% ®.y(, y) + yl—:’;—“?j ®yy(x, y)} + - ]

where x’ =x+4x3/2, y'=y+(n+y:+y3)/2.
Hence, by (6.4) and (C3),




462 S. H. MIN [May

o = i(—t_)l/z -Q . 3) +O(R‘5/2N “’2Q( Qo )z>_
zz 4 y1y2 zz y RN | )

‘bo __l_(_zi)uz -<I> «, ')+O(R"/2N 71120 .9’.)2)
S Y1Y2] PaylX, Y V) )

1 /28\1/2 B Qe
T\7) v Py (o, y)+0(R‘”2N'°”Q(RN) )_

since N'2/R+N""2/N =0(Qo/RN) where Qo=N2N+4\'"2R.
Hence, by (5.6),

17 1(2;)1/2 ®..(2, ’)+0(tl/2 R-s12N-8/ Q”)z)
zz — 4 . V1Y2 P22 y V1Y2 R_N

+ 0( 2y RSN 1)),

(6 5) ,I, = i(z_t)l/2 ) (x I) + 0(t1/2 R—3/2N—7/2Q( QO) )
. zy 4\~ V1Y P2y y Y1)2 RN

+ 0 2y,5, RN -12Q),
1 [2t\!2 , Qo
Yyy = "Z(’;‘) 1Y Pyy(2', ¥') + O(t”zyly?R_”zN_’/zQ (RN)
+ O(t712y,y, RV2N-7/20),

-

0
Yo =

-

We may omit the second error term from each of these relations provided that
(Cy RN = 0(d).
Hence, by (6.2) and (C,),
6.6) Vaz = O(82y192:R-S1AN-SK)), Yoy = O(81/%y19,R-32N-71%Q),
w = O(tllﬁy1y2R—1/2N-9/2Q).

Further, by (6.1),

O 22 ,-8 -7, 2 2 42
Velluw — Yoy = —— yiyax 9" (w5y” — 10sysz’y’ — 15y52")

32x
oo (S)

or

H(x, y) = (9¢/327) yiyex v [2s3" + (2(10)"" = 5)xsy']
6.7) [wsy’ = (2010)" + 5)yax']

+ o(zy?yZR"N"Q” (RQN"-)’)
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ReEMARKs. The inequalities (6.5) to (6.7) obviously remain true if we
replace y(x, y) by a partial sum containing only the first » (=1) terms on the
right-hand side of (5.6). Further, the general term is of the form

1 x* k\ n
12y1ys f f f ( y) a*=12y*=502(crxsy* + Coysa*)diidtadts
n—1/2
= t”"'ylyszf ( > x1/2 —5/2(1 + xtt)

v (1 " yity + yabe + yat3>"_5’2
y

¢ 1
X I:clxsy<l + Pht yih + yat‘) + cgyxx(l + )] dtidtydts
y

X3 A
= fl/2y,y, g1 /2y3/2 [P(x—l' y 1) + 0{(_) }
x
W
1o {(yl + 32 + ys) }:I
y

where P(x~!, y~1) is a polynomial in 2™, y~! (depending on y;, ¥, ¥s, x3 and
k). Now suppose that

(Cs) N2 < R, Nt < Nt (e > 0)(19).

When % is large enough, the inequalities (6.5) to (6.7) remain true if we
neglect the terms which are

o) ]+l (7]

from each term on the right-hand side of (5.6). So we can write ¥(x,y)
=¢1(x, ¥) +¢2(x, y) where Y1(x, ) is an algebraic function satisfying (6.5) to
(6.7) and

e - o(2)} ol(E25)

which can be made as small as we please by taking % sufficiently large. In
fact, we can choose & so that, for a given positive 8, ¥a(x, ¥) =0(@¢).
7. Now return to the sum ;. Let
R5/2N5I2 R3/2N7/2
(7.1) h=¢c————) h=c——
£291y:0 £2y1y:0

(15) We use ¢ to denote a small positive number, which, like the symbol 4, may or may not
keep the same value.
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where ¢ is some positive constant.
By (4.6) we have

(7.2) R = O(N), L = 0(ly).
We divide the region of summation of S;, that is,
R+1=5=x2=5 R, N+1sys N

into rectangles with sides parallel to the axes and of lengths /; and I/, and
parts of such rectangles. We may enumerate these subregions and denote
them by A,, p=1, 2, - - - . If ¢ is small enough, the variations of ¥, and ¢,
in each A, will be less than 1/2. Hence to each A, correspond integers u and
v such that if Y, (x, ¥) =¢(x, ¥) —ux —»y the absolute value of the first deriva-
tives of ¥, is not greater than 3/4. So for each A, we have, by Lemma 6,

(7.3) Z Z e2riv(z,y) = E Z e2rivo(z,y) = ff e2ri¢,(z,y)dxdy + 0(l2)
4 4y Y3
provided that

(Ceo) a2 1.

Hence

e { ] s

The system of parallel lines
I X3y — (2(10 12 — S)yax| = 4", m=20,1--.,

divides each A, into strips. Hence

. -1
Sy = fo' e (= dxdy + Z fo e Vo (=) d xdy
b 4 Ap Ap,m

(7.49) p m=0
+ Eff . ezrivlrp(z.y)dxdy + 20(12) =Jo+J1+ T2+ T
p Ap »
say, where
L= [log () ]
log 4

A, . denotes the part of A, for which
(7.5) 47 <| 2y — (2102 = S)yex| <A™ (m=0,1,--,L— 1),
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A, denotes the part for which

(7.6) | %sy — (2(10)V% = S)ysx| < &

and A’ denotes the part for which

(7.7) | 25y — (2(10)1/2 — 5)yx| > 42E(> AQ).
Evidently '

- R’ N Re
=< dxd dxdy = .
(7.8) 76| Eff wy = fR Y= (x;;)

lzsv—(2(10)‘/ 2—8)ysz| <§

In the next section we shall prove, under certain conditions, that

R3/12N7I2 Jog ¢
ff 2 (20 dxdy = O( ),
- 11129, 9,Q1/2. I L2

R312N7I2 Jog ¢
ff 92"'%(zv!l)dxdy = O(————————).
a5 8%y1y:0

On assuming this,

L1(m)  R3I2NT2og ¢
Ji= 0( E Z 1/2 1/2 1/2)
m=0 p P2y1y:Q12- 27

where (m) denotes that the sum runs over only those p for which A, lie par-
tially or entirely in the strip (7.5). By Lemma 10, the number of such A, is

o) o+ +) =o(Gomt) + oG +1):

(C2)

xshle h 23 R3N® RS2
Therefore
L-1 2m l/2‘l/2 3/2 1/2N R8/2N7/2
.71=0|:10th{ ¢ 21940 +Q + . }]
m—0 xtRslﬁNﬁlz 2m£1/2 t1/2y1y2Q1/2. 2m£l/2
(7.9)

tl/? 2 1/2N R3/2N7/2
=0[log t{ ol | N }]
st3I2N5/2 el/z t1/2y1y2Q1/2$1/2

‘ N RY2N7I2 log
Jo=0 1 1y —— %~
? [( + )(lz + ) 112y,3,0

— ol iee 1 t”’ylng_'_ R32N2
= Y| "8 "\ Rennyane 11/2y,9,0

Similarly

(7.10)

since R/li=N/l; and (x+1)2=0(x2+1). Finally,
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R N RN
Js = 0[(—— + l)(—+ l)lz] = 0(— + lz)
hL Iy A

tlIZ R3I2N7/2
oLy | oKy
R3/2N8I2 t1/2y1y2Q

From (7.8) to (7.11)

tl/? 2 1/2N R3/2N7/2
S4=0(£)+0[log t{ Nyl | QPN }]
%3 23 R32N/2 g2 1112y, y,01/2¢112

since £<Q and Q=x;N, by (6.3).
If we put RE/x;=(QY2N/£Y?) log ¢, we shall get £ = ((xsNQV2/R) log £)2/3.
But we take the bigger value

(7.12) t=a2 ( AT )”21 23 g 4>1
. = o : )
R*3\y1y2(ys + 1) &

The value is certainly bigger by (6.3). The reason for doing so will be seen in
the following sections. We have

RY AS\/2 1/2 a2 2
Sy = 0[ 3Q( ) 10g2/8 t] + 0[ y1y2Q log t]
x5 \y1y2(ys + 1) %3 R3I2 512
R1/eNT/
[‘” 291900

ReMARKs. If (Cg) is not true, the second term is not less than O(RN).
Hence (7.13) remains true.

8. Proof of (C;) under certain conditions. We consider, for example, the
first relation in (C;) only. By the remarks at the end of §6, we can write
Yo =V¥p.1+V¥5,2 where ¢, 1 satisfies (6.5) to (6.7) and y¥,,2=0(t"*) where é can
be made as large as we please. Hence

ff errivo(z.0)d xdy =ff e ¥ (= dxdy
Apim Apim
L i
+ z 0[ f f M dxdy]
j=1 Ap,m .7!

= ff 2 Vo= dxdy
Apm

(7.11)

(7.13)

R3IZNTI2
Y (tl/2ylyzQI/2. 2m£1/2) *

Write ¥,,1=¢¥*. We need only to examine the conditions of Lemma 8. Let
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B = Af'12y,y,R-512N-512Q,
then

t”’ylyzR‘“’N‘”’Q( QJ‘;) O(Bt"")

by (Cs). By the remarks at the end of §6, y* satisfies (6.5) to (6.7). Hence, by
(6.1),

. . BR . BR?
(8.1) B<¥..<AB, 0<ysy <4 — | vaw| < 4 :

N N?

Thus condition (1’) of Lemma 8 is satisfied. In condition (2), we may take,
by (6.7), rz=Aty}y2R3N-7Q-4m£(*8), provided that ty2y2R-3N-7Q%(Qo/RN)?
< K7} for a sufficiently small K. By choosing the constant 4 in (7.12) suffi-
ciently large, this can be achieved, provided that

(Cs) Qo = O(R?3N).

In condition (3), we take C=ABR-!, U=min (N, l;). Then we want
BR1<AB%2? and BR'Nr<AB?, that is, R"2<AB and 7,N<ABR. Since
2mEU2L Q12 we have 7N <t'/2y,y,R-3/2N-8/2Q0 <A BR. The second condition is
satisfied. Since Q >x3V, we have B > AtV/2R-5/2N-%2 and the first condition re-
duces to

(Cy) RN = 0O(s).

By taking k sufficiently large, we can replace the conditions (4) and (5) by
a stronger condition

(8.2) B"’C, = 0(rii ).

By differentiating ¥}, with respect to y we get an extra factor N~ Hence
¥4, =0 (BRN™Y). Similarly ¢}, = O(BN-Y), Y}, =O(BR!). Therefore

I*z* * %k k% *2 %

‘l’zz‘l’zw 2\02::\0211'/’1:'&1/ + ¢zy¢zzz] < BSRN—’
We now take C;=BRN-2. Using (7.12) we find

_ _ _ x8>\”2 1/2
(8.3)  ro> AB'R'NQ t> ABR'N R (—————)
y1y2(ys + 1)

The relation (8.2) becomes

x8x”2 1/2
R = O[(B —————) r«].
y1y2(ys + 1)

Since Q> (y3+1)R, we have B> AtV2y,y,(y3+1)R-3/2N%2, So the last condi-

(1%) Here we write 7, for the 7 in Lemma 8 to avoid confusion.
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tion reduces to
(C1o) R-13 = Q[(s/2\3\"2R-3/2N-5/2)1/2<],

9. Now consider S;. Since S{ can be estimated as S; we have, by (7.13)
and (4.7),

RN
Ss = o ')FE
(RN)8 (x=1¥=1 A2 Ry AB/2\
9.1 +0< \3/2 {Z[E(E 2, { - 172,172 log?/*
. Yy=1 Lygml \ zgm=l ygml X3 yl y2 (y8 + ]')ll2
N 1112,9,0? logi 4 RUIENTI2y \ /2172y 1
xgR3IZNSI2 g At”’yxyzQ}) } z)

We choose A’ and A’/ such that A’2N =\'"2R, then, since N'A’" =2,

N 1/4 —1/4
9.2) N = (—) NN = (f) A
R R
This is possible provided that
(Cu) NR =\

Thus Q=0(\"2N) =0(\'"2R) =0(\2N"2R'/?), Hence

RN
Sy = o(—) + 0((RN 118 {RMN log®/ ¢

xl/2
£1/2)\5 RY3NS 1/8
2
+ 7N log?t 4 Y log t} )

(9.3)
RN

provided that
(9.4) RSN = O(2R-IN-1\5),  #U2\~SR4/3N3 log ¢ = O(f1/2R-1N-1\5),
Choose \ so that RNA—Y2 =116 R3/4 NBIA\/S |ogl/4s then

0 S) = R1/4N1/4 8/91 118 R2I9N2/9 "
9. =\ og18 ¢ = YT log—1/18 ¢,

Inserting this value in (9.4), we find that the first relation is more stringent.
It can be replaced by

(Ci) RN* = 0(t).

Inserting (9.5) into (9.3),
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(9.6) SS - 0(;1/36R8/9N8/9 ]_og1/86 t) - 0(‘1/3%:R8/9N8/9).

We now return to (4.4). We observe that the above argument applies
equally well if S; is over part of a rectangle cut off by either or both of the
curves v=a and »=0. In fact, the equations of the two curves are, by (4.5),

t(l 1 ) t( 1 1)
y= — —|—— , y=——\——---—).
2r\ b b—r 2r\a + r a

Hence along these curves d?r/dv?=0(a®/t?). In Lemma 8 the condition (6) is
satisfied if (see (Cy)) I\p,,ulza?‘t‘ﬂ <Kro where ¥, I, and 7o are given in §§7
and 8 and K is sufficiently small. By our choice of J, Ilﬁpulz| <NR-1, By (6.3)
and (7.12), ro>Atl/2yy,R-3I2N-T12QU2L2> AU2R-32N-T2NR-13, Thus the
condition reduces to KiY/2R-11/8N—92> NR~1q%~2 for a sufficiently small K.
That is, a3R5/6N7/2 < K18/2, Using the fact N =0(Rt/a?) or N¥2=0 (R¥%3/2/q3),
we reduced it to R"3N2<K¢. This is included in (Ci). Hence it is legiti-
mate to use Lemma 8 in estimating S;. We may also use Lemma 10 to get an
upper bound for the number of rectangles (or parts of rectangles) A, ., in a
strip (7.5), since the domain of summation lies entirely within a rectangle of
side-lengths R and N.
- We observe that | Sou(r, y)[ > Atra=3. Hence, by partial summations

52 = 0(pupa—3)—l/2tl/36+ep8/9ﬁ8/9) + 0(08/2t—ll2p8/2)
+ 0(p2 log t) _l_ O(a—2l6t2/5p12/5)
= 0(‘15/80+¢a—5/18p4l/18) + 0(a3/2t—1/2p8/2) + 0(p2 log t) + 0(0—2/5t2/5p12/6)
since 8=0(tpa~?). Therefore, by (4.2)
SI o O(ap—llz) + 0(;15/72+ta13/86p5/88) + 0(95/4t—1/4p—1/4)
+ O(a'/? log!!? §) + O(a/1041/5p115),

The first two terms are of the same order if
(9‘7) p= (t—15172—ea23/30)38/23 . t—lﬁl46—¢a.
This gives, for a =0(t'?),
S1 = O($15/9%+¢g1/2) + O(#-31/184+¢g) 4 O(al/? log!/? §) 4 O(31/28001/2)
= O(f18/9%+<q112),

Hence, by partial summation
b

(9.8) >

n—c nl/2+it

. 0(t16/92+e)'

10. Let us examine the conditions we assumed. The conditions (Cy),
(Cs) and (C,) are included in (Cys). By (9.2), (Cs) is not stronger than (C;).
By the remarks at the end of §7 and by §8, the conditions (Cs) and (C;) can
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be deleted. The conditions (C,) is satisfied so far as we do not consider the
case a>AtV2 It remains, therefore, to consider (Cs), (Cs), (Cu), (Cu) and
(Cr2).

Since Qo=0(\'2N) and N2N=\'"2R, (Cs) and (Cs) can be replaced by
N2=0(R?¥3%~¢). By (9.2) and (9.5), this can be reduced to the trivial condi-
tion REN-1=0(t*).

Using (9.2) and (9.5), (Ci0) can be written as

R10/9N10/9 7 N7\ 1/2 1/2
R-13 = [0) [(tln__ts_/l:‘___(}.) R—8/2N—5/2) t—-e]

which is actually equivalent to (Cy). Since N=0(Rt/a?) (use the relation
above (4.6)), (Cy2) is equivalent to R5#3t¢=0(a8). By (9.7), this reduces to
g—ms/463+e = ((g3). That is,

(®) a > Aidete
Now consider (Cy). By (9.5), the condition is
NR-1 < -*9R8IIN/9 Jog=/9 ¢

or
((e9) #log?t < ARVN,
Using N> ARta™?, this can be reduced to
t3 log2 1/16
(C!) £* log? ¢t = O(R'%?) or R > A( n l) .
a

11. If both (C) and (C’) are satisfied we have nothing to justify. Now
suppose that one of them is not true.

We shall not take the values for N’ and N’/ given in (9.2). We can, as did
Professor Titchmarsh('?) in his paper, take N’ =\? and omit the x;-summation.
This amounts to using Lemma 5 three times.

We are compelled to examine the whole proof afresh, keeping to its
original form as closely as possible. §3 is now useless. In §4, we omit all the
xs-summations and put x3=0, A’=1 whenever they occur elsewhere. In §5,
we put x3=0. In §6, we put x3=\’=0. Then, in (6.7), the first term on the
right-hand side is now “positive definite.”

Now §7 can be greatly simplified, for we have no need of redividing A,.
We may take A, as A)’ there and put Jy=J=0. By arguing as before, we
find

RN tl/2 Rl/2N7l2
S4=J2+J.~,=O(—l——+l2)logt=0[ 1275 Jlogt.
1

RY/2N3/2 tll2y1y2y

(") Loc. cit. p. 13.
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Inserting this result into (4.7) we obtain
SB . O (RN/AII2) + 0(R13Il6N11/16t111‘A7/8 logll8 t)

+ 0(R15/16N21116t—1/lﬁ)\—7/8 10g1/4 t).

The first two terms are of the same order if

R3N5 1/22
012 V= [(RY,
L\2 log? ¢

This gives
(11.3) Ss = O(R4/4N /4441144 |og1/22 f)

(11.1)

provided that the last term in (11.1) is negligible. This is true if RN® log ¢
=0(\¥). Using (11.2) and the fact that N <A{Ra~?, we reduce this to

(11.4) $18R10 Jog28 ¢ = O(a%9).

First, suppose that (C) is true and (C’) is false. Then (11.4) becomes
1%(a—2® log? t)%8 log® t=0(a*®). This can be reduced to a>"3/330 Jog7/1 ¢, a
consequence of (C).

We expect that (11.3) implies (9.6). This is true of RV N-1 << which is

weaker than the negation of (C’). Thus (9.6) is proved for this case.
Next, suppose that (C) is untrue. Then we have, as before,

52 . 0(p61/22t9/22a~—3/11 logl/22 t) _I._ O(a3/2t—l/2p3/2)

+ 0(p* log 1) + O(a=152151215),

Hence
S1 = 0(ap™1/2) 4 O(a*/11p7/449/44 1ogl/44 1)

+ O(ab/4p=114-114) + O(aV/2 log!/? §) + O(ad/19p1/54115),
The first two terms are of the same order if
(11.5) p = [(a®t2 log! £)1/29],
This gives

i n—it = O(a5/2949/8 1ogl/58 §) + O(g117/1164~5/29 Jogl/116 )

n=a

+ 0(a1/2 logll2 t) + 0(4148/29%4/29).

It can be verified that the last three terms are negligible and all condi-
tions except (11.4) can be removed. By partial summation,

> 1

_ 0(a1/58t9158 10g1/58 t) = 0(t15/92 logllﬁs t)

n—a pl/2tit
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since (C) is untrue and (21/46) X1/58+9/58=15/92. By (11.5) we mayl re-
duce (11.4) to
(C*) a > tl7/40 logl48/l76 .
Thus we have proved (9.8) completely under the sole condition (C¥*).

12. Completing the proof. We use, first, the inequality

N/
EN n1/12+“ = O(N'8/8211/82) . O(N-17/328461/338) (N > £11/36),

For N’ <17/40te the first term is O(8%/92+¢), for
17 5 11 105 15

4082 82 656 92
The second term is O(£18/92) if N = ¢172/391,
For N <1723 we use the result('®)

> molt = O(tkgi—E-12)
aSnsb

where a <b<2a<t/w, and k=97/696, I =480/696. The sum is O(t'/%?) since
97 (480 97 1) 172 97 35 X 172 15

696 ' \696 696 2.

. = 4+ <.
391 696 696 X 391 92
By the approximate functional equation, we have

£(1/2 + it) = O(#18/%%+9) (e>0)

where the constant implied by O depends only on e.

ExETER COLLEGE, OXFORD UNIVERSITY,
OxForp, ENGLAND.

(%) P, pp. 222-223.




