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1. Introduction. In this paper we continue the study of algebraic algebras

that was begun in [2](2). The latter was devoted almost entirely to the com-

mutative case, which may be described as the case where xy — yx vanishes. A

weaker hypothesis is that some fixed polynomial vanishes; in the terminology

of [8] we assume a polynomial identity.

It turns out that many of the important features of the commutative case

survive in this generalization. From one point of view this may be ascribed

to the fact that the center is large enough to yield information on the struc-

ture of the algebra (a priori, the center need not have contained anything but

0). We cite an explicit, though rather crude result: if a semi-simple algebraic

algebra with a polynomial identity is infinite-dimensional, so is its center.

In greater detail, we show that the algebras studied are built by a finite

number of ring extensions out of "homogeneous" parts; and with a further

countability assumption we can describe the structure of the homogeneous

case. While this is by no means a complete structure theory, it is sufficiently

penetrating to yield, virtually at a glance, a theorem which does not seem to

be otherwise accessible: any algebraic algebra satisfying a polynomial identity

is locally finite(3). As noted in [8], this contains several earlier results on local

finiteness of algebraic algebras.

2. Construction of idempotents. We begin by recalling the definition of

regularity, and of the two variants which were introduced in [2].

(a) A ring is regular, if for every a there exists an x with axa = a.

(b) A ring is strongly regular if for every a there exists an x with a2x = a.

(c) A ring is biregular if every principal two-sided ideal can be generated

by a central idempotent.

In this paper we shall make use of still another variant introduced by

McCoy [14].
(d) A ring is w-regular if for every a there exists an element x and an

integer « (depending on a) such that a"xan = an.

The relations among these concepts may be summarized as follows : strong

regularity implies biregularity and regularity, and the latter implies ir-regu-

larity.
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(3) An algebra is locally finite if every finitely generated subalgebra is finite-dimensional.
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A good part of our study will be generalized by treating 7r-regular rings in-

stead of algebraic algebras. This is indeed a generalization since any algebraic

algebra is w-regular. To see this we note [2, p. 463] that if an element a in an

algebra satisfies a polynomial equation of degree m, then we may write am+1x

= am with x commuting with a (in fact a polynomial in a); then am = a2mxm

= amxmam. Further connections between Tr-regularity and other conditions are

noted in the appendix,

The equation anxa"=an implies that a"x is an idempotent, and moreover

it is 0 only if an = 0. This ability to construct idempotents will be of central

importance in the sequel. We note the following explicitly: in a ir-regular ring

every non-nil right ideal contains a nonzero idempotent. It would be of interest

to know how far one can get on the basis of this weaker assumption; the fact

that it is not preserved under homomorphism is a notable disadvantage. On

the other hand, it covers a decidedly wider class of rings, for example, all

primitive rings with minimal ideals. Moreover it is a sufficient hypothesis for

the following useful result.

Theorem 2.1. Let Abe a ring in which every non-nil right ideal contains a

nonzero idempotent. Then either A contains an infinite number of orthogonal

idempotents, or else it has the descending chain condition modulo its radical.

Proof. Our hypothesis implies that the radical R of A is a nil ideal. In view

of the known device for building orthogonal idempotents in A mapping on

given ones in A/R, we can confine ourselves to the case P = 0.

Suppose that A does not have an infinite set of orthogonal idempotents.

Then it is impossible for A to have a properly descending chain of right ideals

{eiA } generated by idempotents, for

(1 — e2)ei, (1 — e¡)e2ei, • ■ • , (1 — en)en-i • ■ • eu ■ ■ ■

would be a set of orthogonal nonzero idempotents. Select an idempotent e

such that eA is minimal among right ideals generated by idempotents. Since

every nonzero right ideal contains a nonzero idempotent, eA will be actually

minimal. The ideal AeA will then be a simple ring with minimal ideals. If it

violates the descending chain condition, it will have an infinite number of

orthogonal idempotents (this can be easily seen from the structure theory for

such rings in [3], or proved directly). So AeA satisfies the chain condition,

and in particular has a unit element and is a direct summand of A. We may

continue in this fashion to tear off simple direct summands. If the process does

not terminate, we get an infinite number of orthogonal idempotents.

Remark. Theorem 2.1 has connections with three earlier results in the

literature.

(a) It contains as a special case Lemma 2 of [ll], which asserts that a

regular ring either has the chain condition or infinitely many orthogonal

idempotents. In this connection we can go further: by a slight extension of
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the argument of [il, Lemma l] we can prove that a 7r-regular Banach alge-

bra is finite-dimensional modulo its radical.

(b) Theorem 2.1 can be used to simplify substantially the proof of [9,

Theorem 9]. It is evident that the hypothesis of [9, Lemma 8] rules out the

possible existence of an infinite number of orthogonal idempotents. Hence

parts (b) and (c) of the proof of that lemma can be suppressed.

(c) Malcev [13] has proved that a representable(4) semi-simple algebraic

algebra has the descending chain condition. Since it is clear that a represent-

able ring cannot have infinitely many orthogonal idempotents, this is a

special case of Theorem 2.1.

In the sequel we shall mainly be concerned with rings which are of

bounded index in the sense that there is a fixed upper bound to the indices of

nilpotent elements. If the precise upper bound in the ring A is », we shall

say that A is of index ». We note at this point that a semi-simple ring satisfy-

ing a polynomial identity is of bounded index; this follows from the main

result in [8], and a stronger theorem is proved in [12].

The effect of the assumption of bounded index on a 7r-regular ring is noted

in Theorem 2.3. The following is a preparatory lemma.

Lemma 2.2. Let B be a homomorphic image of the ir-regular ring A, and sup-

pose that B contains idempotents e, f with eBZ)fB. Suppose further that e* is

an idempotent in A such that e*A maps on eB. Then A contains an idempotent

f* such that e*A ~Z)f*A andf*A maps onfB.

There is a right multiple e*w of e* that maps on e. Let x be any element

mapping on/and y = e*wx. We have y"zyn = yn; pick/* —ynz. Then e*AZ)f*A ;

also yn maps on /, and so f* maps on a right multiple of / of which / is in

turn a right multiple. That is,/*^4 maps on/P.

Theorem 2.3. Let A be a ir-regular ring of index » and P a primitive ideal in

A. Then A/P is a matrix ring over a division ring, the matrices being at most

« by ».

Proof. Along with A, A/P is 7r-regular. Using Theorem 2.1 if necessary, we

see that if B=A/P is not as stated, we can find in B a properly descending

chain eiPZ) ■ ■ 0«ti+2P with e,- idempotents (if hard pressed, we take

en+2 = 0). By Lemma 2.2 we build idempotents gi, • • ■ , gn+2 in A with giA

properly descending and mapping on e¿P. We then pass to the orthogonal

idempotents

hi  =   (1   -  ft)ft.   ■  •  ■   ,   hn+X   =   (1   -  gn+i)gn+l      '  ' ft.

The h's will map on nonzero orthogonal idempotents /i, • • • , fn+i in P.

Now it follows from [5, Lemma 4] that/iP/2 • • • Bfn+i^0. Hence there exist

(4) A ring is representable if it is isomorphic to a ring of matrices over a field.
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at in A such that hiaxh2 • • ■ hnanhn+i9^0. The element hxaxhi-r-hiaih3-\- • • •

-r-hnanhn+i is then nilpotent of index w+1, a contradiction.

In §4 we shall make use of this result in the following way. Let A be a

•¡T-regular ring and X the set of primitive ideals P such that A /P is a matrix

ring over a division ring with matrices of order not greater than ». Let I

denote the intersection of the ideals comprising X. Then it is clear that A/I

has index not greater than ». Hence it follows from Theorem 2.3 that every

primitive ideal containing / lies in X. In other terminology: A is a closed

subset of the structure space of A.

3. Ideals and subrings. We shall later make use of the facts collected in

Theorem 3.1. Actually we shall be exclusively concerned with rings for

which every primitive image satisfies the chain condition, and the proof could

be simplified by confining ourselves to such rings. However, for the sake of

possible future application, it seems worth while to obtain the results in

complete generality.

Theorem 3.1. Let A be any ring and B either (a) a two-sided ideal in A,

(b) a subring of the form eAe, e an idempotent, or (c) a subring of the form

(1 — e)A(l— e), e an idempotent(b). Then there is a one-to-one correspondence

between the primitive ideals of B and those primitive ideals of A not containing

B. The mapping is implemented by P—>P(~\B, P primitive in A, and it is a

homeomorphism in the topologies of the structure spaces of A and B.

Proof. Suppose that B is an ideal in A and P a primitive ideal in A not

containing B. Then (P-\-B)/P, being an ideal in the primitive ring A/P, is

itself a (nonzero) primitive ring. Since B/(Pr\B)^(P+B)/P, PC\B is a

primitive ideal in P. We shall now show that this mapping is (1) onto, (2)

one-to-one, (3) a homeomorphism.

(1) Let Ö be a primitive ideal in P. For a suitable regular(6) maximal right

ideal N in B, Q is the set of all x in B with BxQN. Let gGB be a left unit

modulo N. We assert that N-\-NA-{-(l — g)A is a proper right ideal in A.

For if not, we have

n + J2 nißi -f- (1 - g)a = g

for suitable », »,GA, a, a^A. From this equation we first deduce a£P

(since all other terms are in B). Then (1 — g)a£A. A right multiplication by

g yields g2GN, a contradiction. Hence N+NA + (1 — g)A is proper and may

be expanded to a regular maximal right ideal M in A with g as left unit. Let

P be the primitive ideal in A consisting of all y with AyQM. We shall verify

(6) If A lacks a unit element, the notation (1— e)A(l— e) is shorthand for the set of all

x—ex—xe—exe.

(') A right ideal M is regular with left unit g if gx—x is in M for all x. We trust there will be

no confusion between this and the other meaning of "regular." It should be noted that a proper

right ideal cannot contain any power of its left unit.
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that PC\B = Q. (i) Let z^PC\B. To prove z£ö we have to show BzCZN. If

not, the right ideal in B generated by Bz and N would be all of B and would

in particular contain g; this is impossible since Bz and N are part of M. (ii) If

wÇ.Q, we have gAwCZBwCZNÇZM, and hence Aw(ZM, wÇ^P.

(2) Suppose Pir\B—P2r\B for Pi, P2 primitive in A. Then PiB maps into

0 in A/Pi. By [5, Lemma 4] either PCPi, which is excluded, or P2CPi-

Similarly P1CP2 and Pi=P2.

(3) In the direction P-^PC\B the continuity of the mapping is evident.

To prove continuity in the reverse direction we assume that PC\B contains

n(Pi^P) and have to prove that P contains f)Pi. Evidently P contains

(C\Pi)B. Since BQP is excluded, we have [5, Lemma 4] DPiCP-

(b)-(c). To treat these two cases together we write B =fAf where/stands

respectively for e and 1 — e. (The ensuing maneuvers are legal even if / is not

an actual ring element.) We begin with the readily verified assertion that

every two-sided ideal J in B is of the form J = IC\fAf=fIf where I is the two-

sided ideal in A generated by /; and that fAf/flf^f*(A//)/*, where/* is the

image of / mod I. Thus the mapping under discussion is P—rfPf. To see that

fPf is primitive when P is, we note that if G is a faithful irreducible (right)

module for A/P, then Gf* is a faithful irreducible module for f*(A/P)f*. As

in part (a) of the proof, we proceed to verify statements (l)-(3).

(1) Let öi N, and g be as in part (a) above. This time we argue that

R=N-\-NA-\-(l—f)A + (l— g)A is a proper ideal. For suppose that P=^4.

A left and right multiplication by /, and the observation that f(i—g)Af

= (1— g)fAfC.N, show that N contains fAf, a contradiction. Thus R can be

expanded to a regular maximal right ideal M; we let P denote the primitive

ideal attached to it, and shall prove Q=fPf = PC\fAf. To check the inclu-
sion ÖCP we have to show .4ÖCM, and this follows from gAQC.BQ<ZNC.M.

To prove the reverse inclusion fPfdQ, we must verify BfPfCZN. Now

BfPfQfAPCZfMQM (the last inclusion is a consequence of the fact that M

contains (1—f)A). Hence BfPf must be contained in N, for otherwise the

right ideal in B it generates with N would contain all of B and in particular g,

contrary to the fact that BfPf and N are both in M.

(2) Let C denote the two-sided ideal in A generated by//I. If fPif—fPif,
then Pi contains CP2C, and hence POP2, since PiZ)C is excluded. The proof

of (3) in (a) can similarly be adapted by using C in place of P.

The proof of the following lemma is left to the reader.

Lemma 3.2. If A is a ir-regular ring, so is any two-sided ideal in A and any

subring of the form eAe or (1— e)A(\— e), e an idempotent.

A. Reduction to strongly regular rings. Let A be a 7r-regular ring and let

In denote the intersection of the primitive ideals M such that A/M is an r by r

matrix ring over a division ring, r;2« (these ideals will of course also be regu-

lar maximal). From Theorems 2.3 and 3.1 it is readily deduced that all prim-
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itive images of the ring In-i/In are precisely » by w matrix rings over division

rings. Moreover, 7n_i/7„ is semi-simple. If A is semi-simple and of bounded

index, the chain of Ps will reach 0 in a finite number of steps (Theorem 2.3).

It follows that a semi-simple ir-regular ring of bounded index is built, by a

finite number of ring extensions, out of rings that are homogeneous in the

following sense.

Definition. A ir-regular ring is homogeneous if it is semi-simple and such

that for every primitive ideal P, .¡4/P is an « by » matrix ring over a division

ring (« independent of P).

Any strongly regular ring is homogeneous (with » = 1), and conversely a

homogeneous ir-regular ring with w = 1 is strongly regular. In the succeeding

theorems we shall see that a homogeneous Tr-regular ring is not much more

general than a matrix ring over a strongly regular ring.

Theorem 4.1. Let A be a homogeneous ir-regular ring. Then its structure

space S is locally compact and zero-dimensional, and A contains the character-

istic function of any compact open set in S(7).

Proof. The theorem is known from [2 ] for » = 1, and we proceed by induc-

tion on ». Let M, N be distinct points ( = maximal ideals) in 5. There exists

an element b lying in N and mapping on a primitive idempotent mod M.

Write e = b'x, where brxbr = br. Then e is an idempotent, and again lies in N

and maps on a primitive idempotent mod M. Let us introduce three subsets

of 5: (1) X, the set where e maps on 0, (2) Y, the set where e maps on 1,

(3) Z, the set where e maps on a primitive idempotent. We note that these

sets are disjoint and that X contains N and Z contains M; except for « = 2,

they presumably do not exhaust 5. By virtual definition of the topology, X

and F are closed. By Theorem 3.1, the structure space of the ring B = (1 — e)

A(i—e) is in a natural way homeomorphic to the complement Y' of Y; let

us simply identify it with Y'. Then X becomes the set of regular maximal

ideals of B modulo which we get » by « matrices. By the same token, the

complement of X in Y' is the set of ideals modulo which the matrices are

smaller than » by ». By Theorem 2.3, this latter set is closed in Y'. Hence X

is open in Y', and since Y' is open in S, X is open in 5 (as well as closed).

Next we note (Theorem 3.1 again) that the structure space of eAe is homeo-

morphic to the complement X' of X. Since eAe has a unit element, X' is

compact. We have thus constructed a compact open and closed set (namely

A') which contains M but not N. This proves that 5 is locally compact and

zero-dimensional.

It remains to prove the last statement of the theorem. For this purpose we

introduce next C, the intersection of the ideals comprising X, and D = (i— e)

C(l—e). The structure space of D is the complement (say W) of X*UY, and

C) We are following the terminology of [2 ] in the use of the terms "zero-dimensional" and

"characteristic function."
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the subset Z oí W constitutes precisely those ideals of D modulo which we

get (» — 1) by (»—1) matrices; moreover these are the largest matrices that

occur in the simple images of D. It follows (as in the preceding paragraph)

that Z is open in W and hence in .S.

We are now ready for the final construction. Let F denote the intersection

of the ideals comprising the closed set Z' = complement of Z; the structure

space of F is Z, and the rings eFe and (1 — e)F(i — e) likewise have Z for their

structure space. The presence of a unit in eFe shows that Z is compact. Now

by Lemma 2.3, (1— e)P(l— e) is again ir-regular, and moreover it is homo-

geneous of index » — 1. Its structure space being compact, it will have a unit

element / by induction. It is clear that e-\-f is a unit element in A modulo

every ideal of Z. Thus the point M has a neighborhood (namely Z) such that

A has a simultaneous unit element modulo all the ideals of the neighborhood.

We have now verified the hypothesis of [2, Lemma 1.4] and we have the de-

sired conclusion that A contains a characteristic function of every compact

open set in 5. This concludes the proof of Theorem 4.1.

Theorem 4.2. A homogeneous ir-regular ring with unit element is a matrix

ring over a strongly regular ring.

Proof. Given a point M in the structure space of our ring A, we pick an

idempotent mapping into a primitive idempotent there. As noted in the proof

of Theorem 4.1, it will continue to map into a primitive idempotent in a

neighborhood of M. Then Theorem 4.1 and a standard argument of [2 ] (see

particularly footnote 7) allow us to build an element en mapping on a prim-

itive idempotent everywhere. By induction on the index, the ring (1—en)

A(\— en) is a matrix ring, say with matrix units e,, (2 ^i,j£¡n).We proceed to

construct the still missing matrix units. At a given point M we pick x, y such

that xy, yx agree with en, e22 respectively, mod M. We write « = enxe22,

i> = e22yeii; then uv, vu still agree with en, e22 mod M. In the strongly regular

ring eiiAen we observe that uv maps on the unit en at the point corresponding

to M; hence it continues to map on en in a neighborhood of M. Likewise vu

maps on e22 in a neighborhood of M. The standard argument enables us to

build elements ei2, e2i with ei2e2i = en, e2iei2 = e22. Define eu = ei2e2t-, e,i = e<2e2i,

and it is readily verified that we have a set of matrix units. Let B be the sub-

ring of A commuting with all the e,/s. Then it is known [l, p. 19] that A is

isomorphic to the ring of all « by » matrices over B. That B is strongly regular

may be seen as follows. For &£P we have brzbr = br. Modulo any maximal

ideal M, b maps into a scalar matrix b*; either b*=0 or b* is a nonsingular

scalar matrix, and in either case b2z=b mod M.

Remark. The preceding theorem has shown that a decisive result is avail-

able for homogeneous rings if there is a unit. But it should be noted that in

analyzing a nonhomogeneous ir-regular ring, there is virtually nothing to be

gained by assuming a unit element; the "homogeneous parts" will in any
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event lack unit elements in general. Thus something must be done without

the assumption of a unit, and the next theorem shows that a countability re-

striction leads to a satisfactory result.

Theorem 4.3. Let A be a homogeneous ir-regular ring, with center Z. Then

A/AZ is a nil-ring and AZ is regular and biregular. If AZ is countably gener-

ated, it is the direct sum of a countable number of rings with unit elements, and

so is a matrix ring over a strongly regular ring.

Proof. First we prove that any idempotent e is in AZ. The set X of regular

maximal ideals not containing e coincides with the structure space of e^4e

(Theorem 3.1); the latter is compact since eAe has a unit. By Theorem 4.1,

A contains the characteristic function/of X. Then/£Z and e = e/G-4Z.

Next, if a is any element of A, then arxar = aT, arx is in ^4Z, and so is ar.

Hence A/AZ\s a nil-ring (of index at most that of A).

The ring Z is itself ir-regular [14, Theorem l]. Since A is semi-simple, Z

has no nilpotent elements. Hence Z is actually regular. It is then known that

for any finite number of elements of Z there is an idempotent acting as unit

element. Hence for every element of ^4Z there is a central idempotent g acting

as unit. The ideal B =Ag is a direct summand of A, and since B has a unit,

its structure is given by Theorem 4.2. It is then clear that B—and hence ^4Z—

is both regular and biregular.

Finally, suppose ^4Z is countably generated. It follows from [2, Lemma

8.1] that its structure space decomposes into a countable number of disjoint

open compact sets. This says that AZ is the direct sum of a countable number

of rings with unit. Each summand is a matrix ring by Theorem 4.2, and so is

all of AZ.

Remarks. 1. Without the countability assumption it need not be true that

^4Z is a matrix ring over a strongly regular ring. A counter-example can be

constructed on the same lines as the fundamental counter-example in [2].

2. The "fragment of radical" showing up in Theorem 4.3 can really occur.

An example is the ring of all sequences of 2 by 2 matrices which are ultimately

constant and of the form

C°\\0 0/

A suitable hypothesis stronger than semi-simplicity can, however, abolish

these traces of radical, as is shown in the following theorem, for example.

Theorem 4.4. Let A be a ir-regular ring of bounded index such that A and

all its homomorphic images are semi-simple. Then A is regular.

Proof. This is clear from Theorem 4.3 in the homogeneous case, and the ex-

tension to the nonhomogeneous case merely requires the following remark:

if I and A/I are regular, so is A.
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In Theorem 4.4 we cannot conclude that A is biregular: a counter-example

is the ring of all sequences of matrices which are ultimately diagonal. In this

ring the structure space is not Hausdorff. This simple example incidentally

illustrates how the different homogeneous parts can combine.

We shall conclude this section with the result referred to in the introduc-

tion concerning the size of the center. Since we prefer to delay as long as

possible the introduction of a field of scalars, we phrase the theorem as fol-

lows: in a semi-simple ir-regular ring of bounded index, either the descending

chain condition holds, or there are infinitely many central idempotents. This is

clear from Theorem 4.3 in the homogeneous case. The general case follows

from the following observation: let / be an ideal in a ring A with the prop-

erty that no element of I left-annihilates I; then the center of / is contained

in the center of A. For if z is in the center of I, then for any a, za — az anni-

hilates I.

5. Strongly regular algebras. Having substantially accomplished a re-

duction to the case of a strongly regular ring A, we now turn our attention

to the structure of the latter. We have that each A/M is a division ring, and

it is natural to proceed by classifying M according to the order of A/M over

its center. Let Xn be the set of all M such that A/M is of order not greater

than »2 over its center, and let In be the intersection of these ideals. Then:

Xn is a closed subset of the structure space. For(8) A/In satisfies the poly-

nomial identity that characterizes division rings of order not greater than »2

over their center, and hence so will A/M for any M containing In. We note

next (Theorem 3.1) that in Jn_i/Jn we have achieved the homogeneity ap-

propriate in the present context: uniform order over the center at all maximal

ideals. If A itself satisfies a polynomial identity, the chain of Ps will be

finite. As in Theorem 4.3, by a countability assumption we can reduce to the

case where there is a unit element. At this point, one might hope to effect a

complete reduction to the commutative case, but I have been able to do this

only when A is an algebra, and indeed an algebraic algebra.

Theorem 5.1. Let A be an algebraic algebra over a field P. Suppose that A

has a unit element ; that it is strongly regular (it is equivalent to assume that there

are no nilpotent elements) ; and that for every maximal ideal M, the order of A/M

over its center is n2, with » independent of M. Then A is the direct sum of a

finite number of algebras, each of which is the Kronecker product, over some ex-

tension field of F, of a commutative algebra and a central division algebra of order

w2.

Proof. The proof is similar to that of [2, Theorem 5.2], and indeed the

latter is essentially a special case of the present theorem. At a given maximal

(s) That there is such an identity follows from the results in §2 of [10]; in the nota-

tion used there, the identity in question is [xi, • • • , xr(„)] =0. In a paper to be published in the

Bull. Amer. Math. Soc, Amitsur and Levitzki prove that r(n) =2«.
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ideal M, let the algebra B—A/M have center Z, [B:Z] =n2. We pick a basis

Ui for B/Z and we have the multiplication table «¿% = /XaiUi, CijkÇzZ. The

elements cfjk generate a finite-dimensional extension K of P, and the u's

and c's generate a subalgebra C which is a central division algebra of order

n2 over K. Let us augment the u's to a basis v¡ of C/P with table V0¡ = ^dakVk,

dijk€zF, and let w< be elements of A mapping on Vi. Then the equations

W{Wj= /.diikWk will persist in a suitable open and closed neighborhood U

of M. A finite number of U's will account for all of A, and, by the usual use of

the characteristic functions, we can reduce to the case where U is the entire

structure space of A. To simplify notation we suppose that this has already

been done. Then wfiv¡ will actually equal ^dijkWk, and the w's will generate

a sub-division-algebra C* of A isomorphic to C, with center K* isomorphic

to A.

Let us now see what happens modulo some other maximal ideal M\. There

C* and K* will map say into Ci and Kx. Write Pi for A/Mx and Zi for its

center. Then the subalgebra CiZi of Pi is the Kronecker product over Ai of

Ci and Zx. We now use our hypothesis that [Bx'.Zx] = [Ci'.Ki] to conclude that

CiZi is all of Pi. This shows in particular that Ai is part of Zi. Hence K* is

in the center of A—because this is true modulo every maximal ideal. We can

now regard A as an algebra over K*, and C* becomes a central division sub-

algebra. It is known(9) that A is the Kronecker product, over K*, of C* and

the commutator D* of C*. That D* is commutative can be seen by verifying

it modulo every maximal ideal (D* is in fact the center of A). This completes

the proof of Theorem 5.1.

6. Kurosch's problem. In analogy with Burnside's problem for groups,

Kurosch has asked whether every algebraic algebra is locally finite. The previ-

ous results on this question (cf. [8] and the references given there) are ex-

tended in the following theorem.

Theorem 6.1. ^4»y algebraic algebra satisfying a polynomial identity is

locally finite.

Proof. The proof requires not much more than an inspection of the results

obtained in the two preceding sections. Let A be an algebraic algebra with a

polynomial identity. Since any finitely generated algebra is of countable

order, we may fortunately confine ourselves to the case where A is of counta-

ble order. We shall make systematic use of [6, Theorem 15] which asserts

that if / and A/I are locally finite, so is A. As a first application, we combine

this with [8, Theorem 5] to reduce to the case where A is semi-simple. Now

A is of bounded index (and of course ir-regular). Following the discussion in

§4, we reduce forthwith to the case where A is homogeneous in the sense of the

(9) [l, Theorem 4.6]. The theorem in question states that if B is a finite-dimensional

central simple subalgebra of A, then A is the Kronecker product of B and its commutator. The

proof given by Albert works for infinite-dimensional A.
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definition in §4. Theorem 4.3 then becomes available and (in its notation)

we reduce the problem to AZ by another application of [8, Theorem 5],

Since ^4Z is a matrix algebra over a strongly regular algebra, our problem

has now reached the strongly regular case. We pass next to algebras which

are homogeneous in the sense required for Theorem 5.1 ; because of countabil-

ity we can get hold of a unit element, and we may therefore apply that

theorem. Since commutative algebraic algebras are locally finite and since it is

obvious that the Kronecker product of locally finite algebras is locally finite,

the proof of Theorem 6.1 is thereby complete.

Remark. For possible future use, we observe that our results also prove

the following: if Kurosch's problem has an affirmative answer for algebraic

algebras without nilpotent elements, then it has an affirmative answer for

algebraic algebras of bounded index.

7. An approximation theorem. The results thus far obtained fall short of

a reasonably complete structure theory by virtue of the failure to discuss the

combination of the homogeneous parts, and the structure of the homogeneous

parts in the uncountable case. As a first step in filling these gaps, it appears to

be desirable to have a theorem of the Weierstrass-Stone type in order to

know what functions do arise once a functional representation is achieved.

Theorem 7.2 is such a result. For convenience in the discussion we introduce

a definition.

Definition. Let A be a ring, B a subring. B will be said to bi-approximate

A if for any element a and regular maximal ideals M, N in A, there is an

element ö£P such that b=a (mod M(~\N).

Lemma 7.1. If A is biregular, then any bi-approximating subring Bis all of A.

Proof. The proof is based on the same idea as that of [7, Theorem 32].

Let 5 be the structure space of A. (1) If A is a compact subset of S, and MES

is not in K, then P contains an element vanishing on K and mapping on 1 at

M. For if NEK, then P contains an element b with b(N) =0, b(M)=l. The

element b will continue to vanish in a neighborhood of N. The product of a

finite number of such b's gives us the desired element. (2) By multiplying by

a suitable element of B we may further assert that B contains an element

vanishing on K and taking an arbitrary value at M. (3) For any MES, B

contains the characteristic function of a suitable neighborhood of M. For let

bEB be any element with b(M) = l. There will be a compact neighborhood

K of M with b(K) = 1. Let L denote the (compact open) set where b does not

vanish. By part (2), B contains an element c which vanishes on K and at a

given point N in L — K takes the same value as b. Then b(b — c) is still 1 on

K and vanishes in a neighborhood of N. A finite number of these neighbor-

hoods cover the compact set L — K. The product of the corresponding ele-

ments b(b — c) is the characteristic function of K. (A) If e, / are character-

istic functions of sets, then e-\-f—e/is the characteristic function of the union
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of the two sets. It follows from (3) that B contains the characteristic function

of any compact open set. (5) At any given point, P contains an element agree-

ing with a given element aEA. It continues to agree in a neighborhood.

Use of the characteristic functions, which we know to be in B by (4), allows

us to build in B an element agreeing everywhere with a.

We leave to the reader the deduction of Theorem 7.2 from Lemma 7.1.

Theorem 7.2. If A is a regular(10) ring of bounded index, then any bi-ap-

proximating subring is all of A.

We shall now briefly sketch how Theorem 7.2 can be used to set up a

structure theory, under the further restrictive assumption that all A/M are

finite with a fixed upper bound. It amounts to the same thing to assume a

polynomial identity in one variable. Let then A be a regular(10) ring satisfying

a polynomial identity in one variable, and for simplicity let us assume that

A has a unit. Let G be a finite simple ring, large enough so that every A/M

is isomorphic to a subring of G. Let X denote the space of all homomorphisms

of A into G, topologized by point-wise convergence. Then X is compact and

zero-dimensional, and the elements of A are naturally represented as con-

tinuous functions from X to G. There remains the question: what functions

do arise? Theorem 7.2 in effect asserts that it is enough to know what we can

do at pairs of points. In other words, to construct all possible ,4's we must

name at every pair of points a semi-simple subring of G@G; this list (there are

of course compatibility conditions to be respected) determines A.

This is a rather unpleasantly complicated result, but it does not appear to

be possible to simplify it substantially. We remark though that if we add a

homogeneity assumption (for example that all A/M are isomorphic), then

the result can be simplified to read: A is determined by the way the auto-

morphisms of G induce certain homeomorphisms of X.

If we attempt to imitate the foregoing procedure without the assumption

of a polynomial identity in one variable—in other words, with infinite G—

we run into the obstacle that X need no longer be compact. Whether there

is always a suitable subspace of X which is compact is a question the author

has been unable to answer.

8. Appendix. This appendix is devoted to several remarks on chain condi-

tions. We have observed that if a is an algebraic element in an algebra, then

there exists » and x with an+1x=an. Now the latter condition is equivalent to

the fact that the chain (a)rD(a2)rD • • ■ terminates(n). Thus in an algebraic

algebra there is automatically a weak chain condition present.

(10) The restriction to regular rings is made to avoid the fragments of nil-rings that show

up in Theorem 4.3. It is possible to cope with this difficulty, but the added complication does not

seem worth while.

(11) The notation (a)r stands for the principal right ideal generated by a : the set of all ax+na

where x is a ring element and n an integer.
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Since it is customary in modern algebra to use chain conditions as a

fundamental hypothesis, it is natural to ask what can be deduced from just

the assumption an+lx=an. For example, does it enable one to construct

idempotents? I am unable to answer this, but add four related remarks.

(1) If it is assumed that x commutes with a, we get ir-regularity.

(2) If n is independent of a, it can be shown that x can be replaced by an

x' commuting with a (one uses [2, Theorem 3.1], and the fact that a matrix

over a division ring is the direct sum of a nilpotent matrix and a non-singular

matrix).

(3) The assumption of no nilpotent elements leads to strong regularity.

This was proved by Gertschikoff [4].

(4) If we strengthen the chain condition to include all principal right

ideals (instead of just descending chains of powers of a single element), we

can prove a decisive result. From Theorem 8.1 we can incidentally readily

deduce Gertschikoff's main theorem: if A satisfies the descending chain condi-

tion on principal right ideals and has no nilpotent elements, then A is the

direct sum of division rings.

Theorem 8.1. If a semi-simple ring satisfies the descending chain condition

on principal right ideals, then it is a direct sum of simple rings with minimal

ideals.

Proof. Take first the case of a primitive ring A. It has a minimal right

ideal (the concept of minimal right ideal does not change if you are dealing

only with principal right ideals). We take a representation of i as a dense

ring of linear transformations, and our task is to prove that these linear

transformations have finite-dimensional range [5, Theorem 30]. Suppose on

the contrary that r does not. Define ax = r, and having defined an-i (which we

assume has infinite-dimensional range), let x be a vector not annihilated by

an-i. Choose a linear transformation b in A with finite-dimensional range

sending xa„_i into —xa„_i, and define an = an-i(l+b). Then the chain (a„)r

is properly descending, since an annihilates x while an-i does not.

In the general case of semi-simple A, our hypothesis is inherited under

homomorphism, and so for every primitive ideal P, A/P is simple with

minimal ideals. Our task here is to prove that every element vanishes at all

but a finite number of the coordinates of the subdirect sum of {^4/P,}. Sup-

pose that r is nonzero at an infinite number of coordinates, set ai — r, and

suppose a„-x defined. Take two of the places where an-x is nonzero, and let

b be an element vanishing at one of them and acting as a right unit for an-x

at the other. If an-i b is still nonzero at an infinite number of coordinates, we

set an=an-ib; otherwise a„ = an_i(l — b). We thus build a strictly descending

chain(a„)r.
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