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1. Introduction. This work is concerned with the problem of the existence

and multiplicity of solutions z(x, y) "neighboring" a given initial solution

Zo(x, y) of the differential equation

(1.1) F(x, y, 2, p, q, r, s, t) = \¡/0(x, y)

where p, q, r, s, t denote dz/dx, dz/dy, d2z/dy, d2z/dxdy, d2z/dy2 respectively

and Zo(x, y) is elliptic relative to P, that is,

EJ-*œj<»
when 2o and its derivatives are substituted for z and its derivatives in

dF/ds, dF/dr, dF/dt. The solution z0 is defined on the closure K of an open

circle K in the xy-plane (that is, K= [(x, y)/(x — a)2+(y — b2) <r2]). If <po is

the boundary value of so, that is, 4>o = z0/K — K, the function z0 regarded on

K — K only, then by a "neighboring" solution of z0 is meant a function Zj(x, y)

whose boundary value </>i is close to </>0 and which is such that

P(x, y, zi, pi, qu rlt St, h) = i£i(x, y)

where \pi is close to \po ("close" in the sense of a function space topology to be

defined later) and pi, qu ru Si, ti denote the derivatives of Zi.

Except for the slight generalization caused by the introduction of the

varying \[/(x, y), this is the classical problem. In the earlier work (for a de-

scription of this, see [3, pp. 1324-1327(2)) existence theorems were obtained

by making the assumption that the Jacobi equation associated with equation

(1.1) has only the zero function as solution in K if the given boundary value

is the zero function. Under this assumption, it was proved by S. Bernstein

that equation (1.1) has a solution for each boundary value c6 sufficiently close

to </>o. (The function i¡/ does not appear in Bernstein's work, that is, ^ = 0

throughout his work.)

It was shown by Lichtenstein [9] that if the Jacobi equation has just one

linearly independent solution, then for certain quasi-linear elliptic differential

equations, there exist two solutions. More extended results concerning the
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number of solutions were obtained by Iglisch ([5] and [6]) for the equation:

A« =/(«).
The use of topological techniques to obtain existence theorems was intro-

duced by Schauder [13]. Schauder assumed a uniqueness condition and from

this obtained existence theorems for the neighboring solutions of (1.1). Leray

and Schauder [8] extended the work in [13 ] by defining a topological degree

for a certain class of mappings in Banach space. One difficulty in applying

the topological degree theory is that, in general, the value of the degree for a

given mapping cannot be computed. In order to obtain existence theorems

by using the degree theory, Leray and Schauder assumed that the associated

Jacobi equation has only the zero solution. By making this assumption, they

were able to show that the topological degrees of the mappings studied were

different from zero and hence to obtain existence theorems.

The object of the present work is to set up and apply a topological tech-

nique which may be used to study the solutions of equation (1.1) without

making the assumption that the Jacobi equation has only the zero solution.

The omission of this assumption leads, in general, to multiple solutions. This

is, we obtain solutions whose multiplicity (in a sense to be defined later) is

greater than one, or we obtain several distinct solutions. In this work, exist-

ence theorems for solutions of equation (1.1) are obtained which are more

extensive than the known theorems in that it is not necessary to assume that

the Jacobi equation has only the zero solution. Also we demonstrate the

existence of several distinct solutions for certain quasi-linear elliptic equations

of the type

d2z d2Z d2Z
A(x, y) -- + B(x, f)— + C(x, y) -

dx' dxdy dy2
(1.2)

/ dz      dz\
+ f[x,y,z,—t   —) = Hx,y).

\ dx     dy/

The results are obtained by following, in part, a technique due to Schauder

[l3] and some of the theory of [2]. We study those solutions of equation (1.1)

which are contained in the Banach space Ea,3 defined in [13], that is, those

solutions which have third derivatives satisfying an a-LipschitZ condition.

In §2, we define, following [2], a multiplicity of solutions for a certain

class of equations in Banach space. This multiplicity has some of the proper-

ties of a topological degree which are useful in studying the existence and

number of solutions of a given equation. A method for determining the

multiplicity is also given.

In §3, by following the technique of [13], we derive from equation (1.1)

an equation in Banach space which is such that the theory of §2 may be

applied to it. It is shown that to each solution of this equation, there cor-

responds a solution of (1.1). Hence the solutions of (1.1) may be investigated
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by studying the solutions of this equation in Banach space. Existence

theorems for solutions of this equation are obtained and these are applied to

(1.1). These theorems contain the classical theorem for the case when the

Jacobi equation has only the zero solution. We also obtain existence theorems

for the case when the Jacobi equation associated with (1.1) has one or more

linearly independent solutions.

In §4, we restrict our considerations to equations of the type (1.2). It is

shown that when applied to this case, the multiplicity of solutions defined in

§2 has all the properties of a topological degree. Actually it is shown that the

multiplicity is equal to the Leray-Schauder topological degree of the mapping

described by the derived equation in Banach space. By utilizing a particular

property of the Leray-Schauder topological degree (Theorem 4.1), we are

enabled to show that if the Jacobi equation associated with (1.2) has two or

more linearly independent solutions and if certain conditions on the derived

equation in Banach space are satisfied, then equation (1.2) has two or more

distinct neighboring solutions. That is, for certain pairs <p and \p, there are

several distinct solutions z.

Finally, in §5, we indicate how to obtain extensions of the classical

theorems concerning the existence of solutions of quasi-linear elliptic differen-

tial equations with a parameter, that is, equations of the type:

<32z d2z d2z
A(x, y) — + B(x, y)— + C(x, y) —

or                    dxdv dy2
(1.3)

/ dz dz      \
+ /( x, y, z, — ; —, X J = t¡/(x, y)

\ dx dy     /

where X is a real parameter.

2. Multiplicity of solutions of equations in Banach space. In this section,

a multiplicity of solutions is defined for a certain class of equations in Banach

space. This multiplicity is a special case of the multiplicity defined in [2].

For convenience, the definition is repeated in brief form here.

Let Ï be a Banach space. Consider the equation in H:

(2.1) (I + C+ T)x = y    or    (I + C)x + T(x) = y

where x, y£ï, / is the identity mapping of ï into itself, C is a linear, com-

pletely continuous (3) mapping of H into itself, and P is a mapping of a subset

of 9£ into itself which satisfies the following conditions:

(Pi)   P(0) =0 where 0 is the zero of ï.

(P2) There exist a neighborhood N of 0 and a positive constant B such

that if Xi, x2ÇzN, then

(') A completely continuous mapping is a continuous mapping which has the property

that it maps bounded sets into sets which are compact in the space, compact in the sense

that every infinite subset has a limit point in the space.
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II T(xi) - T(x2)\\ :g B [\\ xi\\ + || x2\\ ][\\Xl - x2\\].

The object of the discussion is to investigate the local solutions of (2.1),

that is, the solutions x of (2.1) which are sufficiently close to 0, when y is

given sufficiently close to 0. From condition Pi, it follows that x = y = 0 is an

initial solution of equation (2.1). Then the following theorem holds:

Theorem 2.1. If the transformation (I-\-C) is nonsingular, that is, if (I+C)

is a 1-1 transformation, then equation (2.1) has a unique local solution x for

each y which is sufficiently close to 0, that is, there exist ei>0, «2>0 such that if

\\y0\\ <€i, then there exists exactly one x0 such that \\xo\\ <e2 and such that (xo, yo)

satisfies equation (2.1), that is,

(I + C)xo + T(x0) = y0.

Proof. The proof of this theorem is a straightforward application of [4,

Theorem 2, pp. 134-135]. Condition P2 makes it possible to apply Theorem 2

of [4].
If the transformation (I-\-C) is singular, then the solutions x of (2.1)

may be studied in the following way. Suppose Xi is the null space of I-\-C,

that is, ïiis the linear space of elements w Gesuch that (I-\-C)u = Q. From the

Riesz theory of completely continuous transformations [ll], it is known that

& is finite-dimensional and that there exists a complete linear subspace ï1

of ï such that

ï = ïi + ï1 (direct sum),

and a nonsingular linear transformation R such that

R(I + C)x = x- Ei(x)

where Ei is the projection of H onto ïi. Applying transformation R to equa-

tion (2.1), we obtain

(2.2) x - Ei(x) = R(y) - RT(x).

Multiplying equation (2.2) by E1, the projection of 3£ onto ï1, we obtain:

(2.3) Ex(x) = ElR(y) - ElRT(x).

Multiplying equation (2.2) by Ei, we obtain:

(2.4) 0 = EiR(y) - ExRT(x).

(The symbol 0 is used to designate the zeros of all the linear spaces dealt with

in this work.)

If El(x) and Ei(x) are denoted by x1 and Xi, then equations (2.3) and (2.4)

become:

(2.3') x1 = ElR(y) - ExRT(xi + x1),
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(2.4') 0 = EiR(y) - EiRT(xi + x1).

Now if y is given, it is clear that the study of solutions x of equation (2.1)

is equivalent to the study of the simultaneous solutions Xi and x1 of equations

(2.3') and (2.4'). From conditions Pi and P2 on transformation T and the

fact that the linear part of (2.3') in x1 is nonsingular, it follows that the

implicit function theorem of Hildebrandt and Graves [4, Theorem 2, pp.

134-135] may be applied to solve equation (2.3') for xl uniquely in terms of

Xi and y. That is, we have

(2.5) xl=F(xi,y)

where the function F is uniformly continuous simultaneously in Xi and y.

Substituting from (2.5) into (2.4'), we obtain

(2.6) EiR(y) - EiRT[xi + F(xu y)] = 0.

Thus the study of the solutions x of equation (2.1) when y is given is reduced

to a study of the solutions Xi of equation (2.6) which is an equation in the finite-

dimensional Euclidean space ïi, the null space of (I-\-C).

To determine the solutions Xi of (2.6) when y is fixed, that is, to de-

termine the zeros of the function

(2.7) EiR(y) - EiRT[xi + F(xi, y)],

when y is fixed, is not possible in general. However, it is known that when y

is fixed, the function (2.7) is a continuous function of xi. Hence knowledge of

the number of zeros of the function may be obtained by determining the

topological degree at 0 of (2.7). In [2], it is proved that the topological degree

of (2.7) can be determined in some cases if |[xi|| is sufficiently small (<e)

and that the topological degree is constant for all sufficiently small y. It fol-

lows that there exist ei>0 and e2>0 such that we may investigate the solu-

tions x such that ||x|| <e2 of equation (2.1) for each y such that ||y|| <«i.

Throughout the remainder of this work, the term local solution will refer to

such a solution x.

Combining these considerations with Theorem 2.1, we make the following

definition.

Definition 2.1. If the transformation (I-\-C) is nonsingular, the multi-

plicity of local solutions x of equation (2.1) for each fixed yo such that ||yo||

<ei is one. If (I+C) is singular, the multiplicity of local solutions x of (2.1)

for each fixed y0 such that ||yo|| <«i is the topological degree at 0 of the

mapping in &,

EiR(yo) - EiRT[xi+F(xu y0)]

relative to a sphere in & with center 0 and radius e (where e is determined

as described in [2]).
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Theorem 2.2. The multiplicity of Definition 2.1 has the following properties:

1. If the multiplicity is different from zero, there is at least one local solution

x of equation (2.1).

2. The multiplicity is constant for all y in a sufficiently small neighborhood

of a.
3. If the Leray-Schauder topological degree [8] is defined for the trans-

formation I+C+T, then the Leray-Schauder degree at y o is the same as the

multiplicity of solutions at y o except for at most a factor — 1.

Proof. For the case when (I-\-C) is singular, the proofs of 1, 2, 3 are con-

tained in [2]. When (I-\-C) is nonsingular, statements 1 and 2 are clearly true

from the definition of the multiplicity and Theorem 2.1. The proof of 3 fol-

lows from [8, pp. 55-59]. For a more detailed discussion of some of this

work of [8], see [12, Lemma 3].

It should be noted that this multiplicity, defined in terms of a topological

degree, gives the same kind of information concerning solutions of equation

(2.1) as a topological degree does. For example, if the multiplicity is 5, the

only definite statement which can be made is that equation (2.1) has a solu-

tion. There may be just one solution whose part in & has index 5 ; or there may

be 5 solutions each of whose parts in Hi has index 1, and so on. (In §4, we shall

show how more definite information may be obtained if the Leray-Schauder

degree is defined for I-\-C+T.) Moreover, if the multiplicity is zero, we

obtain no information concerning the existence of solutions. That is, there

may be no solutions, or two solutions whose parts in & have indices i and — i

respectively, and so on.

In order to be able to compute the multiplicity when I-\-C is singular,

we assume that the transformation T satisfies the following additional con-

ditions :

(P3) There exists a maximal integer £2:2 such that if a is a scalar, then

T[ax]=akT1[a, x] where T1 is a continuous mapping of an open subset 5

of the product space ZX3Ë into Ï where Z denotes the space of scalars.

The set 5 contains the point (0, 0).

(P4) If the dimension of 3Ei is greater than 1, then the transformation T is

split into a term of order k (k^2) and a term of higher order, that is, T(x)

= P(i)(x) + P(*+1,(x) where T{h) and Z"c*+1> are both continuous and:

(1) T(k) is homogeneous of degree k, that is, if m is an arbitrary integer,

then

T^l 22 aiXi) =  X «i* • • ■ amTbl...bm[xu ■ ■ ■ , xm]
\ »=1 /       (&,)

where the summation is over all sets of non-negative integers [bu ■ - ■ , bm]

suchthat ^2T=i bi = k, and Tbl..-bm is a continuous mapping from ÏX ■ ■ ■ Xï

(m times) into ï.
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r(i+1,(*)
(2) The   lim "    „   ,,      " = 0.

*-»°      II*!!

(P6) If the dimension of Hi is one, then EiRT1 [O, Xi] ̂ 0 where x\ is a basis

for Hi such that ||xi|| is sufficiently small (see [2]).

(P6) If the dimension of Hi is greater than one, then PiPP(i) [x]^0 for

all x£& such that x^O.

If these conditions hold, then the following theorems concerning the value

of the multiplicity can be proved. (In Theorems 2.3, 2.4, 2.5, and 2.6, it is

assumed that I+C is singular.)

Theorem 2.3. The multiplicity of the solutions x of equation (2.1) is equal

to the topological degree at 0 of the following mapping of the n-dimensional

Euclidean space Hi into itself:

(A-l) 2 cuUi + X cbn...binuin ■ ■ ■ u„" = mÍ,
<-l (hu)

(A) .,

/A \     V* 4      I        V1 bnl hn" '

(A-n)   ¿^ CniUi +   ¿-I c»nl- • ■»..«!      ■••«-.       =   «»

where the summation ]C(¡>,¿) 0*"1, •••,») is taken over all sets of non-negative

integers [b¡i, • • • , b¡n] such that XXi b¡i = k. The coefficients c,i are the num-

bers P ¡EiRTk[xi] where Xi, ■ • ■ , xn is a basis for Hi and P¡ is the projection of

Hi into the subspace spanned by x<. The coefficients C»«...*«. are the numbers

PjEiRTbi-.-¡.„[xi, • • • , xm].

Proof. For the proofs of Theorems 2.3, 2.4, 2.5, and 2.6, see [2].

Thus the multiplicity is equal to the topological degree at (0, • • • , 0)

of the mapping taking (mi, • • • , m„) into (u[, • ■ ■ , un), which is given by n

polynomials in n variables (n is the dimension of Hi), the polynomials homo-

geneous of degree k (k is the order of P described in conditions P3 and PC).

The topological degree is always taken relative to the sphere described in

Definition 2.1.

In this work, H will be a Banach space over the real numbers. Hence ïi

is a real Euclidean «-space and the coefficients in the mapping (A) are all real

numbers. Then the topological degree of mapping (A) can be computed in a

number of cases. In particular, the following theorems hold:

Theorem 2.4. If cu^Q for i = l, • • • , n and if the variables «»,•••, m,_i

do not appear in equation (A-i) for i = l, ■ ■ ■ , n, then the topological degree

of mapping (A) at (0, • • • , 0) is +1 or — 1 if k is odd. The degree is 0 if k is

even. In particular, if n = \, then the topological degree is +1, or — 1 if' k is odd

and is 0 if k is even.
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Theorem 2.5. If n = 2rei, and (A) is the mapping from real Euclidean n-space

into itself which corresponds to the mapping in complex Euclidean ni-space

k , k ,

¿1  = ¿1,   *     *     *   J ^ni  = ^ni,

then the topological degree of (A) at (0, • • • , 0) is kni = knl2.

Theorem 2.6. If n = k = 2 and if (A) is written in the form

2 2 ,
aiUi -+- ciu2 = «i,

2 2 ,
a2Mi + b2Uiu2 -+- c2u2 = u2

(mapping (A) can always be written in this form by applying a diagonalizing

transformation, see [10, pp. 169-170]), then if

&iC2 — a2Ci

(1) - 1 <-.- < 1,
b2(- CiaiY'2

the topological degree of (A) is 2 or —2. If ( — Ciczi)1'2 is complex or

aiC2 — a2Ci üiC2 — ct2Ci
(2)- > 1    or    -—- < - 1,

b2(- CiaiY'2 b2(- cißi)!'2

then the topological degree is 0. (If (aic2 — a2Ci)/b2( — ci<zi)1/2 = +1, the topological

degree is not defined.)

Remark for §2. In the applications in §§3, 4, and 5 of this multiplicity,

it will be seen that conditions Pi, P2, P3, and P4 can be shown to be satisfied

in all the cases dealt with. Proving that conditions Ps and Pß are satisfied is a

different problem. There is no reason why P6 and Po should, in general, hold.

Hence it will be necessary to incorporate Ps or P& in the hypotheses of the

existence theorems obtained. This is justified, in part, by two facts. First,

the special cases of this work that have been considered by other writers (see

[5], [6], and [15]) all contain hypotheses of this type. For example, it can be

shown that Schmidt's assumption "Lt^O" [15, p. 394] is a special case of P6.

Secondly, although P6 and P6 are difficult to verify in special cases, they

are not unreasonable from a theoretical viewpoint. They are analogous to the

fundamental assumption used in the definition of topological degree of a

mapping in Euclidean re-space, that is, the assumption that the image under

the mapping of the boundary of the domain does not contain the point at

which the topological degree of the mapping is taken. (See [l, p. 474].) It is

not difficult to show that Ps and P6 each imply that if x^O and if x is suffi-

ciently small, then (I+C+T)x^0.

3. Application of the multiplicity to elliptic differential equations. In

order that the multiplicity theory of §2 may be applied to the differential

equation (1.1), it will be necessary to study an equation in the Banach space
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Ea,m,KXea,n,K which is the topological product of the Banach spaces Ea,m,K,

ea,n,k introduced by Schauder [13.] We recall first the definition given by

Schauder of these spaces.

Let K be an open circle in the xy-plane(4). The space Ea,m,K, where m is

an integer and a is a fixed number such that 0<a^l, is the linear space of

continuous real-valued functions defined on K, the closure of K, which are m

times differentiable at each point of K and which are such that the deriva-

tives of order v (1 _v _?re) are all a-Hölder continuous (are elements of Lip a).

That is, if f(x, y) G-E<«,m,x, then there exists a constant C/,„ such that

\f\xi, yi) -/<"(*i, y2)\ ÚQ „(no-

where (ri2)2 = (xi — x2)2+(yi — y2)2, f-^ is an arbitrary vth order derivative of

/, and (xi, yi), (x2, y2) are an arbitrary pair of points in K. It is easy to show

that for fixed / and v, there exists a minimum C¡,, which we denote by C/,r.

The norm of the elements of £„,m,x is defined as follows: first if gG-Ea,m,/r.

or g is a yth derivative of an element of Ea.m,K, we define ||g||a as:

||g|[„ =   max    | g(x, y) | + ca.o.
U,y)GK

The norm of f(x, y)Çz.Ea,m,K is defined as

Qi+if

'   dx*dy'

Under this norm, Ea,m,K is a Banach space. Also if/i,/2G-E«,m,x, then |(/i/2||a.m

á||/i||a,™-||/2||a,m. (See [l3, pp. 667-668].) Hence Ea,m,K is a normed ring

under pointwise multiplication.

In an entirely similar way, we define the Banach space ea,m,K of continuous

functions defined on K — K, the boundary of K, which are such that the

derivatives of order v (lfZv^n) are all a-Hölder continuous.

Finally we define the space Ea,miKXea,n,K, the topological product of

Ea¡m,K and ea,n,K. The norm of Ea¡m,KXea.n,K is defined as follows: if (/, g)

GEa,m,KXea,n,K, that is, fE:Ea,m_K and g£ea,„,K, then

\\(f,i)\\ =||/IU + ||g|U
the sum of the norms of/and g in Ea,miK and ea,„,K, respectively. It is clear

that Ea.m.K Xea,m,K is a Banach space with this norm. In the work which

follows, we shall, for convenience, denote Ea,m,K and ea,n,K by £„,,„ and ea,n

respectively.

Now we consider the equation

(3.1) F(x, y, z, p, q, r, s, I) = yp(x, y)

(4) From a remark of Schauder [13, footnote 33, p. 690 and III, pp. 702-703] it follows

that all the results of this work are valid also if K is a bounded connected open set in the xy-plane

whose boundary consists of a finite set of disjoint curves of class Ch.
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where F has a-Hölder continuous fifth derivatives in all its variables(6) and

ip(x, y)É£„,i. It is assumed that equation (3.1) has an initial solution in K

which is elliptic relative to P, that is, we make the following assumption.

Assumption 3.1. There exist \¡/o(x, y)G.Eaii and <po(t;)(E.ea,3 such that

if \p(x, y) =\po(x, y), then equation (3.1) has a solution Zo(x, y)GP«,3 whose

boundary value is 0o(£). Also the solution Zo is elliptic relative to P, that is,

[dF/ds]2 - 4 [dF/dr] [dF/dt] < 0

when Zo and its derivatives are substituted for z and its derivatives in

dF/ds, dF/dr, dF/dt.
The question to be answered is this: if e is sufficiently small, do there exist

solutions z(x, y) £Pa,3 of equation (3.1) for given í/'GPa.i and given boundary

values e/>£ea,3 such that ||^— <Ao||<*,i<e and \\<p — <po\\a,3<e, and what are the

multiplicities of these solutions if they exist?

In order to answer this question, we shall derive, following a technique

due to Schauder [13, pp. 693-694], an equation in the Banach space Ea,i

Xea,3 and show that the problem of studying the solutions of equation (3.1) is,

in a certain sense, equivalent to the problem of studying the solutions of this

abstract equation.

In deriving the equation in Ea¡iXea,3, we shall assume that the functions

\po and e/>o of Assumption 3.1 are both identically zero. This will simplify the

computations. The same type of derivation may be carried out if it is not

assumed that \po and <po are identically zero. (Cf. [13, pp. 693-694].)

We write equation (3.1) in the form:

F(x, y, z, p, q, r0, sQ, t0)

dF
+ (r — ro)-(x, y, zo, po, go, r0, s0, t0)

dr

dF
+ (s — So)-(x, y, Zo, po, <?o, r0, s0, to)

ds

dF
+ (t — k) -(x, y, zo, po, ?o, ro, s0, to)

dt

r1 (dF
+ (r - r0) |    <- [x, y, z, p, q, r0 + X(r - r0),

Jo   y dr

so + X(s — So), t0 + \(t — t0)]

dF •)
-(x, y, Zo, po, ?o, r0, So, h) > dX

dr )

(6) We state the hypothesis on F in this way for simplicity. Actually, only certain of the

fifth derivatives are needed. An examination of the proofs in this section shows which deriva-

tives of fifth order and which of lower order are needed.

n«, y)

(3.2)
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r1 (dF
+ (s - s0)  I     <-[x, y, z, p, q, r0 + \(r - r0),

Jo   \ ds

so + X(s — So), h + \(t — to)]

(3.2)

dF
-(x, y, Zo, po, qo, r0, s0, to) > d\
ds

C    I dF   r
+ (t - to)  I    <-[x, y, z, p, q, r0 + \(r - r0),

Jo    \ dt

So + X(s - So),ío + X(¿- to)]

dF )
-(x, y, zo, po, qo, ro, so, h) > d\

dt )

where po, qo, r0, So, to denote the derivatives of zo-

In order to derive the equation in Ea,iXea,3, we shall, roughly speaking,

solve the linear part of equation (3.2). For this, we recall the following im-

portant lemma:

Lemma 3.1. Consider the elliptic differential equation

d2w d2w d2w
(3.3) A (x, y)-+B(x,y)--+ C(x, y) — = P(x, y)

dx2 dxdy dy*

where B2 — 4AC<0 for (x, y)£P, p(x, y)£P«,i, and A(x, y), B(x, y), C(x, y)

GPa.i- Then for a given boundary value 4>Çiea,3, equation (3.3) has a unique

solution w(p, <p)ÇiEai3in K which satisfies the following inequality:

(3.4) ||w(p,*)||-.i^ Jf(||p||-.i + |kll-.i)

where M is a positive constant. Inequality (3.4) implies in particular that

||w(p,«)||i.i

\Diw(p, 0)|| 1,1

\D2w(p,<t>)\\a,i

\D,wQ>,4>)\\a   J

■ g Jf(||p||„.i+ IMI.,,)

where D\w(p, </>), D2w(p, <p), D3w(p, <p) denote arbitrary first, second, and third

derivatives, respectively, of w(p, <p) regarded as a function of x and y.

Moreover, w(p, cp)  regarded as an operator on Ea.iXea,3 is  linear and

w(p, <p) is 1-1 in p and 1-1 in <p.

Proof. See [14, Satz II', p. 277] and [13, Hilfssatz 11, p. 687].
The third derivatives of zo(x, y) are cx-Hölder continuous. Hence

A dF
*A(x, y) =-(x, y, zo, po, qo, r0, s0, t0),

dr
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dF
<B(x, y) =-(x, y, z0, pa, go, r0, s0, h),

ds

dF
G(x, y) =-(x, y, Zo, po, go, r0, s0, to)

dt

are elements of Ea.i. Now we consider the differential equation

d2w d2w d2w
(3.5) <tA(x, y)-¿-2 + <B(x, y) ^-r- +G(x,y)--= p(x, y)

ox2 axa y ay2

where p(x, y)G£a,i- Applying Lemma 3.1 to equation (3.5), we obtain the

solution w(p, <p). Hence equation (3.2) may be written in the form:

T d d 1
\f/(x, y) = F\ x,y,z0+ w(p, <j>), po H-w(p, <p),q0 H-w(p, <f>), r0, s0, t0

L dx dy J

d2w(p,<p)  r1   ÍdFT
+ p(x, y) H-— I     <—   x, y, Zo + w(p, 4>), po

dx1      Jo    \dr\_

d d d2w
-\-w(p, </>), g0 -\-w(p, <t>), r0 + X —- (p, </>), so

dx dy dx2

d2w ^2
+ X- (p,<b),to+ X

ôxây dy

(3.6)

d2w 1

dF \
-[x< y< zo. Po, go, r0, So, to] >d\

dr )

d2w   r1 IdFT d d
H-I     S—   x, y, zo + w, po -\-w, g0 H-w, r0

dxdyJo    KdsL dx dy

d2 d2 d2     "I
+ X-w, So + X-w, to + X-w

dx2 dxdy dy2    J

dF r n)
— — [x, y, zo, po, go, r0, s0, to]>d\

ds J

'Jo   \dt L

d2w Ç»  ÍdFT d d
-\-: I     i—   x, y, zo + w, po H-w, g0 H-w, r0

dy2J o    1Ó7 L dx dy

d2 d2 a2
-w, So + X-w, /o + X-
dx2 dxdy ¿)y2

dF \
— [x, y, z0, po, go, r0, So, to]>d\
dt )



1950] SOLUTIONS OF ELLIPTIC DIFFERENTIAL EQUATIONS 117

where </> is the given boundary value of the sought for solution and \p(x, y) is

also given.

We define the transformation from Ea,iXea,3 into Eay.

T d d 1
P(1)(p. <p) = F \ x, y, zo + if, Po + — w, c/o H-w, r0, s0, h   .

L ¿>x 3y J

Since F(x, y, z0, £o, So, r0, So, ¿o) —0, then by using Taylor's expansion, R(tí(p, <p)

may be written in the form :

R(1\p, <t>) = r[1\p, <t>) + R2\p, <p)

where

(i) dF
Ri   (p, 4>) = w(p, <>) — (x, y, zo, />o, go, r0, s0, /o)

ôz

r d    -] rdF -|
(3.7) +    — w\\ — (x, y, zo, po, go, r0, s0, to)

Td     -\VdF -\
+    — w\\ — (x, y,Zo, po, go, r0, s0, ¿o)

and

rd2F ( d(i) r n2 C Ta/,Y a
P2   (p, «/>) =  |w(p, 0)J    I       —-I   x, 3/, Zo + tw, po + t — W,"i

Jo  Ldz2\ dx

+ t — w, r0, So, t0 J   [l — r]dr

(3.8)

/3w \ r1 / 92F\

+2Wb)/.(^)<1-*'
/aw \ r1 / d2F\

+2WUXu>-T)iT
/3w\2 r1 /a2P\

/dw\ /dw\   r1 / d2F\

\dx)\dy)Jo  \dpdq), dy / J 0   \dpdq

/dw\2 r1 /d2F\

\~dy~) J 0   W/

We define also the transformation

nf! (¥
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â2W  r1   ídFV
Rm(p, 4>) = —: I     {—   x, y, zo+ w, po -\-w, g0 + — w, r0

âx2J o    \dr\_

d â
— w, g0 -j-
dx dy

d d2 d2     -
+ X-w, So -f- X-w, h + X-w

dx2 dxdy dy2    _

dF )
■ — (x, y, zo, po, go, rQ, s0, t0) > d\

d2w   r1 IdFT d d
- I      }—   *• ?> zo+ w, po -\- w, g0 H-
âxdyJo    \.dsL dx dy

d â2 d2     ~
(3.9) + X-w, So + X-w, to + X-w

dx2 dxdy dy2    _

dF \
— (x, y, Zo, po, go, r0, So, to)>d\

â2w r1  (dFf d d
T~2)    )I7  *' y'Zo+ w,p0 + 7~ w'?° + —
dy2 J o    \dt L dx d\

d d2 d2      1
+ X-w, So + X ■—— w, to + X-w

dx2 dxdy ây2   J

dF )
-(x, y, zo, po, go, r0, s0, t0) > d\.

dt '

Now equation (3.6) may be written:

(3.10) * = p + i?iX)(p, c6) + R?(p, <p) + Rm(p, j).

Instead of studying this equation directly, we shall study the equation in

Ea,iXea,3:

(3.11) (p, <b) + (AÍX'(p, 0), 0) + (R?\p, $), 0) + (Rm(P, 4>), 0) = (Ï, <b)

where 0 is the zero of the space ea,3.

Denoting (R?\p, <j>), 0) by C(p, <p) and denoting (R$\P, <p)+R™(p, <j>), 0)

by T(p, <p) where Cand Tare then transformations from Ea,iXea,3 into itself,

we may write equation (3.11) as:

(3.12) I(p, 4,) + C(p, 4) + T(p, <j>) = (i>, c6)

where I is the identity transformation.

In the remainder of this section, we investigate the solutions (p, <p) of

equation (3.12) when (\¡/, <j>) is given. The investigation is made by applying

the theory of §2 to equation (3.12). The information obtained concerning the

solutions of equation (3.12) yields, in turn, results concerning the existence
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of solutions of equation (3.1).

We show first the relationship between the solutions z(x, y) of equation

(3.1) for given \p and <p and the solutions of equation (3.12) for given (ip, <p).

If for given (\¡/ít (pi) ££a,iXe«,3 there exists a solution (pu (pi)^Ea,iXea,3

of equation (3.12), then there exists a solution Zi(x, y) ÇzEa,zoi equation (3.1)

when \j/=\pi. The boundary value of z¡ is cpi and Zi = Zo+w(pi, <pj) where z0

is the initial solution of Assumption 3.1. The existence and properties of

Zi follow from the derivation of equation (3.12). Conversely, if there exists

a solution Zi of equation (3.1) when \p =\pi such that Zi has boundary value cpi,

then there exists a solution (pi, epi) of (3.12) when (\p, <p) — (iplt <pi) and

d2 d2
pi(x, y) = tA(x, y) —- [zi - zo] + <B(x, y) —— [zi - z0]

dx2 dxdy

a2  .
+ Q(x, y) — - [zi - zo].

dy2

The fact that (pi, <pi) is a solution of equation (3.12) follows from the deriva-

tion of equation (3.12).

Since w(p, <p) is 1-1 in p and </> (Lemma 3.1), it is clear that corresponding

to n distinct solutions of (3.1), there are exactly n distinct solutions of (3.12)

and vice versa.

However, by using the theory of §2, we shall be able to investigate only

the local solutions of equation (3.12). If it is shown that equation (3.12) has a

local solution, that is, for each (ip, <p) in a neighborhood Ni of (0, 0), there is a

solution (p, <p) of (3.12) contained in a neighborhood N2 of (0, 0), this will

imply only that equation (3.1) has, for given ip and </>, a solution in the set

Zo+w(H2) where H2 is the set of solutions of (3.12) which correspond to

(*\ 4>) G-A^i and which are contained in A^. (The operator w was defined in

Lemma 3.1. It will be shown later (Lemma 3.3) that w is completely continu-

ous. Hence since H2 is bounded, w(H2) is compact.) There is, however, no

reason to exclude the possibility that equation (3.1) may have a solution out-

side the set Zo+w(H2). So the number of local solutions of equation (3.12)

is a lower bound for the number of solutions of equation (3.1).

We summarize this discussion in the following theorem.

Theorem 3.1. The number of distinct local solutions of equation (3.12) for

given (\p, <p) is a lower bound for the number of distinct solutions of equation (3.1)

for given yp and <p. The number of local solutions of equation (3.12) for given

(\p, cp) is equal to the number of solutions of equation (3.1) in the compact set

Zo-\-w[H2] defined above.

Theorem 3.1 and the discussion preceding it justify the following defini-

tion.

Definition 3.1. The multiplicity of solutions of equation (3.1) is the
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multiplicity of solutions (in the sense of Definition 2.1) of equation (3.12).

(In Theorem 3.2, it will be shown that Definition 2.1 can be applied to equa-

tion (3.12).)

The relationship between equations (3.1) and (3.12) is further revealed

by the following lemma which shows that the linear parts of equations (3.1)

and (3.12) are essentially the same.

Lemma 3.2. The dimension of the null space of the operator I(p, <j>) + C(p, </>)

is equal to the number of linearly independent solutions of the Jacobi equation

associated with equation (3.1).

Proof. The Jacobi equation associated with equation (3.1) is the linear

differential equation

(3.13)

■dF-]

.dr.

d2u      rdFl    d2u        FdFl    d2u

dx2      Lddo  dxdy      LoVJo dy2dxdy

du

-dpJo   dx

dy2

du      rdF~\

LdpJo   dx      LôgJo   dy      LdzJo
0

where the notation [ ]0 means that the expression in the brackets has sub-

stituted in it Zo and its derivatives for z and its derivatives.

By a solution of the Jacobi equation, we mean a function u(x, y) which is

an element of Ea,3, which satisfies equation (3.13), and which is zero on the

boundary of the set K.

Suppose (pi, c/>i) is an element of the null space of I(p, <p) + C(p, <p), that is,

(pi, <pi) is a solution of the equation

(3.14) I(p, <t>) + C(p, 4>) = (0, 0).

By definition of C(p, <p), this implies that ci>i = 0 and

rdFl       d rdFl       d RFl
(3.15) pi+ w(pi,<f>i) \—   +— w(pi,<bi)   —   + — w(pi,c4i)   —    = 0.

LdzJo     dx l_d/>Jo     dy LdgJo

But w(pi, <pi) is a solution of (3.5) when pi and </>i = 0 are given; that is,

•-E d2w(pi, 4>i)

dx2

dF

LdsJ

d2w(pi, 0i)

dxdy
+

dF

LdtAo

d2w(pi, (pi)

dy2

Hence equation (3.15) may be written as:

"dFl   d2w(pi, <pi)   ,   r^~l   d2w(pu <pi)

dx21=1LdrJo

w(pi, c4i)    —

H dFl   d2w(pi, c>i)

+
Ld/>Jo

o      ditdy

dw(pi, <6i)

Lddo

+

dy2

dF"|    dw(pi, c6i)rdF

Ldg
= 0.

dx LdgJo dy

Hence since cp^O, w(p, cpi)=w(pi, 0) is a solution of the Jacobi equation.
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Since w(p, ep) is linear and 1-1 in (p, ep) (Lemma 3.1), it is clear that if (pi, 0)

and (p2, 0) are linearly independent solutions of (3.14), then w(pi, 0) and

w(p2, 0) are linearly independent solutions of the Jacobi equation.

By following a similar procedure, it can be shown that corresponding to

two linearly independent solutions of the Jacobi equation, there are two

linearly independent solutions (pi, 0) and (p2, 0) of equation (3.14). This

completes the proof of the lemma.

We show now that equation (3.12) is an example of equation (2.1) and

hence that the multiplicity theory of §2 can be applied to equation (3.12).

Theorem 3.2. Equation (3.12) is an example of equation (2.1). That is,

the transformation C(p, <p) is linear and completely continuous and the trans-

formation T satisfies conditions Pi, P2, P3, P4 of §2.

Proof. The proof will be broken up into lemmas.

Lemma 3.3. The transformation C(p, <p) is a linear, completely continuous

transformation of Ea,iXea,3 into itself.

Proof. The linearity follows from the definition of C(p, <p) and the linearity

of w(p, ep) (Lemma 3.1). From the definition of C(p, <j>), it is clear that in

order to prove that C(p, ep) is completely continuous, it is sufficient to prove

that w(p, ep), dw(p, <p)/dx, and dw(p, <p)/dy are completely continuous in £a,i

because [dF/dp]0 and [dF/dq]o are bounded in K. The proof that w(p, ep),

dw(p, <p)/dx, and dw(p, <p)/dy are completely continuous is a direct conse-

quence of [13, Hilfssatz 12, p. 691 ]. Hilfssatz 12 shows that w(p, <p) is

"vollstetig" in the sense of [13, Definition 5, p. 674]. But "vollstetig" implies

complete continuity in the usual sense.

Lemma 3.4. The transformation T(p, ep) satisfies the conditions Pi, P2, Pj,

and P4 described in §2.

Proof. By Lemma 3.1, w(p, <p) is linear in (p, ep). Hence w(0, 0)=0. From

this and from the definition of T(p, ep), it follows that P(0, 0) =0, hence that

T(p, <p) satisfies Pi.

In order to prove that T(p, ep) satisfies P2, we recall that T(p, <p)

= (R21)(p, <p), 0) + (P<2)(p, </>), 0). That Rm(ß, <t>) satisfies condition P2 is

proved in [13, pp. 697-701 ]. Hence to show that T(p, <p) satisfies condition P2,

it is only necessary to show that R2)(p, <t>) satisfies condition P2. We prove that

P2 holds for

ClrdiF d
[w(p, <p)J2 I       —-(x, y, zo + tw(p,4>), po + r— w(p, ep),

Jo   L dz2 dx

(3.16) d
go + t — w(p, ep), r0, So, to)   [l — r]dr.

dx J

The same type of proof holds for the other five terms in R2\p, <f>).
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For convenience, we introduce, following [13, p. 695], the nota-

tions X, Z0, Ro, W(p, <p), V(p, có) for (x, y), (z0, po, go), (ro, sa, t0), (w(p, <p),

dw(p, <p)/dx, dw(p, <p)/dy), and (d2w(p, <p)/dx2, d2w(p, <p)/dxdy, d2w(p, 4>)/dy2)

respectively. Then (3.16) becomes

[w(p, <p)]2j    p^ (X, Zo + rW(p, <p), Fo)1 [1 - r]dr.

By definition,

X1 |~d2F -|
I — (X, Zo + tW(Pu ¿O, F„)J [1 - r]dr, 0)

- ([w(P2, <¡>-2)]2  f    Ï— (Z,Zo + rlF(p2,<p2),Fo)l[l - r]dr,0)

(Wi)2j     l^- (X, Zo + rW(pi, «pi), Fo)l [1 - r]dr

- (w2)2f     Ï-- (X, Zo + rW(p2, <p2), Fo)l [1 - r]dr

(3.17)
(where w¿ denotes w(p¿, <pi) for i = 1,2)

c1 rd2F
(Wl)2 — -(X,Z0+rW(pi, <Pi),Ro)

Jo l_<

d2F

.dz2

d2F 1 r
—- (X, Zo + rIF(p2, <p2), Fo)    [1 - r]dr
dz2 J |„,i

2 2       r^Y^P lr
+    (wi-w2)J       —-(X,Zo + TW(p2,<p2),Ro)   [1 -r]¿i

The expression

f » Td2F 1
J     ̂ — (X, Z„ + rTF(p2, <p2), F0)J [1 - r]dr = G(z, y)

is a function defined on ¿Í. Since F has a-Hölder continuous third derivatives,

there exists ilfi>0 such that

\\G(x,y)\\a,i<Mi.

Hence

M 2 2 m j|     2 2||

II (wi — w2)G(x, y)||«,i < Mi||wi — Wi\\a,i

^ Afi[||ii>i — w2||a,i][||wi + w2||«,i]

since Ea,i is a normed ring. But
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Mi[||îOi — ic2||„,i] [|| wi + w2||a,i]

= ifi[||w(pi, <pi) - w(p2, <j>2)\\a,i][\\w(pi, <pi) + w(p2, c62)||«,i]

- Ml ^ W(-Pl ~ P2' *l ~~ *2^ "'^ ^ W^Pl + P2' *' + *2^ a'3-'
y<j . Lo) i, II II II jil1 M M || i

á   MlM2[||pi — p2||a,l + ||<Pl — <>2||a,3j [||pi + P2||a,l + ||<Pl + «Hi«-']

=   MlM2 [\\ (pi  -  p2, 4,1  -  <p2)|| ] [|| (pi + P2, Cfi + C62)|| ]

=   MlM2 [j (Pl, <t>l)   -   (P2, 0O|| ] [|| (PL *l)  +   (P2, *»)|| ]•

Now we deal with the term

2    f     fW
<(—I(X,Zo + TlF(p1, epO.Po)

- ^— (X, Z„ + rW(p2, cp2), Po)] [1 - t]¿,
ÖZ2 J

By Taylor's expansion, this may be written as:

wi I       t[TF(Pi, epO - TF(p2, 0,)]-(X, Zo + rTF(p2, c62), Po)
|l      Jo   L 5Zdz2

/■i r <34p——r[X,Xr[lF(p1,e>1)
o   L dZ2dz2

- W(p2,<t>2)],Ro]\d\\{l-r}dT        .

(We use in this expression the same type of abbreviation as is used in [13, p.

695. See especially footnote 37].) It readily follows that this expression

satisfies condition P2. This completes the proof that R2y(p, <t>) satisfies condi-

tion P2 and hence that T(p, <p) satisfies condition P2.

Now we prove that T(p, ep) satisfies condition P4, regardless of the dimen-

sion of the null space of I(p, <p)-\-C(p, <p). We prove first that R(2ü(p, ep) satis-

fies condition P4. It is sufficient to show that P4 is satisfied by the expression

(3.19) [w(p,4>)]2f    r^-(X,Z0+ rIF(p,çi»),Po)l[l - r]dr.

The same type of proof holds for the other terms in R2l)(p, <p).

Expression (3.19) may be written as:

[w(p,<p)]2j    I— (Z,Z„,Po)][l -r]dr

+ [w(p, <p) ]2 — (X, Zo + rTF(p, <p), Po)-(X, Zo, Po)   [1 - t]¿t.
J o  Ldz dz
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It is clear that the expression [w(p, <p)]2f01[(dF/dz)(X, Z0, F0)][l— r]dr re-

garded as an operator on (p, <p) satisfies the conditions of part (1) of P4. Also

it is easy to show that the expression

,   r'pF dF ir
[w(p, <p)]2 — (X,Zo + rW(p, <p), R0)-(X,Zo,Ro)   [l - r]dr

J o   Ldz dz J

regarded as an operator on (p, <p) satisfies the condition of part (2) of P4.

Hence R21>(p, <p) satisfies condition P4.

Now we show that R(2)(p, <p) satisfies P4. From the definition of F(2)(p, <p),

it is clear that it is sufficient to prove the statement for the expression :

d!w r1   fdF

-7 (p. *)        \— (X, Zo + W(p, <p), F0 + XV(p, <p))
dx2 J 0    \dr

(3.20)
dF )

-(X,Zo,Ro)\ d\.
dr )

By Taylor's expansion, the integrand in (3.20) may be written in the form:

d2F        dw(p, <p) r d2F 1       dw(p, <p) r d2F 1
w(p, 4>)-1-■-    -\-

dzdr dx       Ld^drJo dy       LdgdrJo

d2w(p, <t>) rd2Fl d2w(p, <f>)  T d2F 1

dx2       L dr2Jo da;dy       LdsdrJo

d2w(p, <p) r d2F ■r d2F 1       . n    C ! r d3F 1
+ x

dy-       i_otorj

(3.21)

+ wrarTJLi|1_Tli,
\_dx_\Jo   LdzdpdrJr

LdyJJo   LdzdgdrJr

2 Fd2wl fd2wl  r1 V d3pl 1

' Lâ^JLd/JJo LdTdT2],"
rd^wi2 r1 r d3F -]

^ LdxdyJ Jo    Lds2drJT
r d2w 1 rd2wT|   r ' T   d3F   1 ,

+ X2- -      1 - r ¿7
Ld*dyJLdy2J Jo    Ldsdtdr Jr

rd2wn2 r1 r a3F -1

Idyll J„    Lds2drJr
where
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T  d2F T d2F

\-rr \=-T^(X,Zo,Ro),
L dzdr Jo      dzdr

T d3F "I d3F
-——    = ■—— (X, Zo + tW(P, c6), Po + r\F(p, <p))

Lôz3rJT     3z2dr

and the other symbols have similar meanings.

When the integrand of (3.20) is written in this form, it is clear that (3.20)

satisfies P4.

Thus we have shown that (R<2\p, ep), 0) + (P<2>(p, ep), 0) is of the form

P(2) + P(3). If the second order terms, that is, the terms in P(2), vanish, then

by further application of the mean value theorem, it may be shown that

the transformation is of the form Ti3)-\-Tl4) or, in general, Tm-\-T<-k+l) where

k ^ 3. In order to apply Taylor's expansion in these cases, it may be necessary

to assume that the function F has derivatives of order higher than 5.

Since we have shown that condition P4 is satisfied, regardless of the

dimension of the null space of I-\-C, condition P3 is a consequence of P4.

This completes the proof of the lemma and hence the proof of Theorem 3.2.

Theorem 3.2 shows that the theory of §2 may be applied to investigate

the local solutions of equation (3.12) and hence, by Theorem 3.1, to investi-

gate the solutions of equation (3.1). We prove first a version of the classical

existence theorem.

Theorem 3.3. If the Jacobi equation (3.13) associated with equation (3.1)

has only the zero solution, then equation (3.1) has a neighboring solution in the

following sense: there exists ei>0 and e2>0 such that for each pair f££„,i

and ep(Ee„,3 satisfying the conditions

\\yp0  — IAH«,!  <  «1, ||<P0  — <t>\\a,3  <  «1,

there is at least one function z(x, y)GP«,3 such that:

(1) ||zo —z||a,3<62.

(2) The boundary value of z(x, y) is ep.

(3) In K, z(x, y) satisfies the differential equation

F(x, y, z, p, q, r, s, t) = \p(x, y).

Proof. By Lemma 3.2, the hypothesis implies that I(p, 4>) + C(p, <p) is a

nonsingular, 1-1 transformation. Hence by Theorem 2.1, equation (3.12) has

a unique local solution. The theorem then follows from Theorem 3.1.

Theorem 3.3 is contained in the work of Leray and Schauder (see [8, pp.

74-78]) except for the generalization introduced by varying \{/. The proof

given here is new. Theorem 3.3 is more general than the classical result of

S. Bernstein (see [3, p. 1325]) in that solutions in Ea,3 rather than just

analytic solutions are considered, the varying \p is introduced and a bound,

||Zo||a,3+e2, is given for the solutions z.
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Now we consider the case when the Jacobi equation associated with

equation (3.1) has a nonzero solution. This means, by Lemma 3.2, that the

operator I+Coi equation (3.12) has a null space different from zero. We have

first:

Theorem 3.4. If the multiplicity of solutions of equation (3.1) (Definition

3.1) is different from zero, there exist neighboring solutions for equation (3.1)

in the following sense: there exist «i>0 and «2>0 such that for each pair \pG-E«,i

and <pGe«,3 satisfying the conditions:

Hlr'O  —  Ir'Ha.l   <   «ll ||<P0   —   <p||a,3   <   «1,

there exists at least one function z(E.Ea,3 such that:

(1) ||z0-z||a,3<e2.

(2) The boundary value of z is <j>.

(3) In K, z is a solution of the differential equation:

F(x, y, z, p, q, r, s, t) = i(x, y).

Proof. This follows from Theorem 2.2 and Definition 3.1.

Combining the results concerning the value of the multiplicity that are

given by Theorems 2.4, 2.5, and 2.6 with Theorem 3.6, we obtain more con-

crete existence theorems. In particular, by applying Theorems 2.4, we obtain:

Theorem 3.5. If the Jacobi equation associated with equation (3.1) has just

one linearly independent solution, if the transformation T in the corresponding

equation (3.8) is of the form Tw + T(k+1'> where k is odd (see condition P4),

and if condition P5 is satisfied, then equation (3.1) has at least one neighboring

solution in the sense described in Theorem 3.4.

Proof. This follows from Theorem 3.4 and Theorem 2.4.

The significance of the hypothesis F= rt*) + r(*+1) where k is odd may

be seen by considering an example: k=3. By definition,

T(p, <p) = (F21;(p, «p), 0) + (RW(p, <p), 0)

where R^fß, 4>) and F(2)(p, <p) are defined by equations (3.8) and (3.9) re-

spectively. An examination of (3.8) and the treatment of F(2)(p, <p) in the

proof of Lemma 3.4, in particular equations (3.20) and (3.21), shows that if

the terms [d2F/dudv]0, where u, v = z, p, q, and the terms [d2F/dudr]0, where

m = z, p, q, r, s, t, are identically zero, then T=Tis)-\-Tw.

By making similar application of Theorems 2.4, 2.5, and 2.6, other

existence theorems analogous to Theorem 3.5 may be obtained.

An example of these results is the work of R. Iglisch ( [5] and [6]). Iglisch

considers the equation

(3.22) Am = F(u)
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where F(u) is a real, analytic function. By using Green's function, an integral

equation is derived from (3.22). The problem of solving (3.22) is equivalent

to the problem of solving the integral equation. The study of the integral

equation runs parallel to the study of equation (3.12). Iglisch obtains a

theorem [5, p. 101 ] which is a special case of Theorem 3.3. He also obtains

a theorem which is, in a certain sense, a special case of Theorem 3.5. It is

not strictly a special case of Theorem 3.5 because while it is a special case of

equation (2.1), it is not a special case of equation (3.12). Iglisch assumes that

the Jacobi equation associated with (3.22) has just one linearly independent

solution. His hypothesis that Lk9^Q [5, p. 110] is a special case of the hy-

potheses that p=pc*>-|-p(*+1> and that P6 is satisfied. Hence this hypothesis

is exactly analogous to the application of the hypotheses p=p<*>-|-p(*+1>

and P6 in the statement of Theorem 3.5.

Remarks for §3.

1. It can be seen that the crucial statement in §3 is Lemma 3.1. This

lemma is applied repeatedly in the work. It is because of the hypotheses of

this lemma that we are restricted to studying solutions of the differential

equation (3.1) that are in the space £„,3. The possibility of generalizing the

theory of §3 to a study of solutions of (3.1) in Ea,2 depends entirely upon the

possibility of generalizing Lemma 3.1 in an analogous fashion. According to

a footnote in [13] (footnote 43a, p. 703), Giraud asserted in a letter to

Schauder that Lemma 3.1 can be generalized in this way.

2. In this and the following sections, we consider, for simplicity, the case

of two independent variables. All the discussion can be carried through for

the case of n variables. The only change which has to be made is that Lemma

3.1 has to be generalized to a statement in n variables. The statement in n

variables of Lemma 3.1 can be obtained from [14].

4. The relation between the multiplicity of solutions and the number of

distinct solutions. The multiplicity of Definition 2.1 gives no criterion for

determining if there is more than one solution of equation (2.1). That is,

the multiplicity may be m such that \m\ > 1, but there may be just one local

solution x of the equation. From Definition 2.1 it can be seen that this in-

ability of the multiplicity to distinguish whether or not there are several

distinct solutions stems directly from the corresponding inability of the

topological degree of a mapping in Euclidean space. That is, if the topological

degree at point p of a mapping M which takes Euclidean w-space En into it-

self is m such that \m\ > 1, then the equation M(x) =p has at least one but

not necessarily more than one solution. A simple example of this is the equa-

tion in E2: Zm = 0 where m>\. This equation is said to have m roots and the

mapping Z—*Zm has topological degree m at 0. But there is just one point,

the point 0, which is taken into 0 by this mapping.

Hence the applications of the multiplicity in §3 yield no information

concerning the number of distinct solutions of equation (3.1). However, by
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restricting our considerations to a class of quasi-linear elliptic differential

equations, we show in this section how the theory of §2 may be used to

demonstrate the existence of several distinct local solutions for certain quasi-

linear elliptic equations.

The class of differential equations considered will be restricted so that

the abstract equation (equation (3.12)) associated with the differential equa-

tion has the form

7(p, <p) + D(p, <p) = (p, <p)

where D is a completely continuous transformation. For a mapping of the

form I+D, the Leray-Schauder degree (hereafter to be designated as the

LS degree) [8] is defined. Moreover the LS degree and the multiplicity of

Definition 2.1 differ at most by a factor —1 (Theorem 2.2). Hence for this

class of differential equations, the multiplicity has the properties of the LS

degree. In particular, the property of the LS degree that is described in

Theorem 4.1 is used to demonstrate the existence of several distinct solutions

for certain equations.

We consider the following quasi-linear elliptic differential equation :

d2Z d2Z
F(x, y, z, p, q, r, s, t) = A(x, y) —- + B(x, y) ——

dx2 dxdy

(4.1)
d2z

+ C(x, y) — - + f(x, y, z, p, q) = i(x, y)
dy2

where A(x, y),B(x, y), C(x, y) GF«,i, / has a-Hölder continuous fifth deriva-

tives in all its variables, and ip(x, y)GF-a,i- We also make the following as-

sumption.

Assumption 4.1. There exists 4o(x, y)GF„,i and <p0Ge«,3 such that if

\p—\po, equation (4.1) has a solution z0(x, y)GFa,3 whose boundary value

is <po.

The theory of §3 may be applied to equation (4.1) and we obtain as be-

fore equation (3.11) in £a,iXea,3- However, in this case, dF/dr, dF/ds,

dF/dt are A(x, y), B(x, y), and C(x, y) respectively. Hence from the defini-

tion of Ri2)(p, <j>) (see equation (3.9)) it follows that, in this case, F(2)=0.

Hence the abstract equation associated with equation (4.1) is

(4.2) I(p, co) + (RW(p, «p), 0) + (Ri\p, if), 0) = Or-, <p).

Denoting (R^(p, <p), 0) by C(p, cf>) and (R2n(p, <p), 0) by T(p, <p), we may write

equation (4.2) as

(4.3) I(p, <p) + C(p, <p) + TO», 0) = (*, «p).

Lemma 4.1. The LS degree is defined for the transformation I+C+T in

equation (4.3).
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Proof. The LS degree is defined for transformations of the type I+D

where D is completely continuous [8]. In [13, pp. 694-697] it is proved that

R?(ßi <p)+7?<i2)(p, ep) is completely continuous. Hence C+T is completely

continuous. This completes the proof of the lemma.

Now by Theorem 2.2, the LS degree of I+C+T and the multiplicity of

solutions of equation (4.2) are the same except for at most a factor —1.

That means that in this case, the multiplicity of solutions has all the proper-

ties of the LS degree besides the multiplicity properties described in §2.

We want to determine when equation (4.3) (and consequently equation

(4.1)) has more than one solution. We suppose that equation (4.3) has a

multiplicity of solutions m such that \m\ >1. If (4.3) has more than one dis-

tinct solution, then we are all through. However, the fact that the mul-

tiplicity is m does not imply that (4.3) has more than one solution. All that

is known is that the sum of the topological indices of the solutions is m.

(See [8, pp. 54-55].) There might be just one solution with topological

index m.

However, we shall show that in this case, if ep and \p are varied, no matter

how slightly, then equation (4.3), and hence equation (4.1), will have at least

two distinct solutions. In order to show this, we prove the following theorem

concerning the Leray-Schauder topological index.

Theorem 4.1. Suppose I-\-D is a mapping of a subset of Banach space H

into H for which the LS degree is defined. Suppose (I-\-D)p=pi and that the

LS topological index of p is m such that \m\ > 1. Then if U is an arbitrary

neighborhood of pi, there exists qÇLU and a neighborhood V of p such that V

contains at least two distinct points which map under I+D into q.

Proof. We prove first:

Lemma 4.2. Let I+D be a 1-1 mapping. If Q is a closed bounded subset in

the domain of I+D, then I+D is a homeomorphism of Q onto (I+D)Q.

Proof. We show that I+D, regarded as a mapping on Q, is an open map-

ping. Let N be an open set in the induced topology on Q. Then Q—N is closed

in the topology of Q and the topology of X. But (I+D)(Q — N) is closed be-

cause D is completely continuous. Since I+D is 1-1,

(/ + D)N =(! + D)Q - (I + D)[Q- N]

is an open set in the induced topology on (I+D) Q. This completes the proof

of the lemma.

Lemma 4.3. If I+D is a homeomorphism of 0, the closure of a bounded,

connected, open set, onto (I+D)0, and if qC_(I+D)0, then the LS degree of

I+D at qis 1 or —1.
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Proof. The proof of this lemma is given in [7].

Now the theorem can be proved. We suppose that there exists a neighbor-

hood Ui of pi such that each point of Ui is the image of just one point under

the mapping I+D. Let Fi be a connected open neighborhood of (I+D)_1pi

such that ViC(I+D)-lUi. Then since I+D is 1-1 on Vi, I+D is a homeo-

morphism of Fi onto (I+D) Vi, by Lemma 4.2. Hence by Lemma 4.3, the

LS degree at pi relative to Fi of I+D is 1 or — 1. This is in contradiction to

the hypothesis. This completes the proof of the theorem.

Theorem 4.1 makes it possible to demonstrate the existence of at least

two distinct solutions for certain elliptic equations. From Theorem 3.1,

Lemma 4.1, and Theorem 4.1, we obtain:

Theorem 4.2. If the multiplicity of solutions of equation (4.1) (Definition

3.1) is m such that \m\ > 1, then equation (4.1) admits at least two distinct solu-

tions in the following sense: if e>0, there exists ^i(E£a,i and <pi£ea,3 such that

ll^i — \H|a,l < e, ||<Pi — 0o||«,8 < e,

and such that there exist I  (5:2) distinct functions zu, • • • , zi¡(EPa,3 which

have <pi as their boundary value and which satisfy the equation:

dh d2z d2z
A(x, y) —- + B(x, y) —— + C(x, y) —- + f(x, y, z, p, q) = \pi(x, y).

dx2 dxdy dy¿

Criteria for determining when the absolute value of the multiplicity is

greater than one are given by Theorems 2.5 and 2.6. These theorems to-

gether with Theorem 4.2 yield the desired existence theorems. A typical

such theorem is:

Theorem 4.3. If the Jacobi equation associated with equation (4.1) has two

linearly independent solutions (then by Lemma 3.2, the null space of I+C

in equation (4.3) has dimension two); if in equation (4.3), T=Ti2) + T(3)

(cf. condition P4); if condition (1) of Theorem 2.6 is satisfied, then equation

(4.1) has at least two distinct solutions in the sense described in Theorem 4.2.

Proof. This is an immediate consequence of Theorems 2.6 and 4.2.

5. Quasi-linear differential equations with a parameter. The techniques

of §§3 and 4 may also be used to study the existence of multiple solutions of

quasi-linear equations with a parameter. For this work, it is necessary to

know how the multiplicity of solutions of the differential equation changes

when the parameter is varied. Now it is known [8] that the LS degree is

invariant under homotopy. Hence if we restrict ourselves as in §4 to quasi-

linear equations, that is, to equations for which the multiplicity is equal to

the LS degree of the associated mapping given by equation (3.12) (equal ex-

cept possibly for sign), then it will be certain that the multiplicity remains

constant (except possibly for a change of sign) when the parameter is varied.
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By using the same methods as in §3, theorems which are generalizations

and extensions of the classical existence theorems for differential equations

with a parameter may be obtained for the quasi-linear elliptic differential

equation :

d2z d2z d2z
(5.1)    A (x, y) —- + B(x, y) ——- + C(x, y) —~ + f(x, y, z, p, q, X) = \p(x, y)

dx1 dxdy dy*

where A(x, y), B(x, y), C(x, y)GFa,i, X is a real parameter such that 0^X<1,

/ has a-Hölder continuous fifth derivatives in all its variables, and

\¡/(x, y)GFa,i-

Just as in §4, it is also possible to demonstrate the existence of several

distinct solutions if the multiplicity of solutions of equation (5.1) is greater

than one.
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