ON A CLASS OF NONLINEAR DIFFERENCE
EQUATIONS IN THE COMPLEX DOMAIN

BY
WALTER STRODT

Part 1. Introduction.

1. Notation. Throughout the paper 8 will represent a fixed positive num-
ber not exceeding 7 /2.

2. Notation. If v is any positive number not exceeding w/2, and if £ is any
real number, then by S ,(£) is meant the sector {x; x#E, Iarg (x—t-)l <y } .

3. DEFINITION. A function ¢(x) will be called admissible if it has the fol-
lowing two properties:

(3.1) for every positive number 7 less than 8 there is a positive number £
such that ¢(x) is analytic and bounded in § ,(£), and

(3.2) ¢(x) approaches a limit as x becomes infinite on the positive real
axis.

4. Introductory remarks on the nature of the problem. The difference equa-
tions to be studied in this paper are algebraic in the unknown function and its
translations, and have coefficients which are admissible functions of x. Under
the hypothesis that the constants approached by the coefficients (as x be-
comes infinite on the positive real axis) do not satisfy certain equations, a
complete description is given of the totality G of all those solutions of the dif-
ference equations, which, like the coefficients, are admissible functions of x.

The zeros of a certain auxiliary polynomial being o1, * * * , 7, it is shown
that G is the union of finitely many disjoint subsets Gy, + « + , O, all the
solutions in G, tending to o on the positive real axis (k=1, 2, - - -, ¢). Each
of the sets T, is a finite-parameter family of functions, the number of param-
eters, qi, being the number of zeros of a certain auxiliary exponential poly-
nomial which lie in a certain sector of the complex plane. It may be remarked
that G is readily seen to be identical with the set of all those solutions which
satisfy only the single condition (3.1).

A precise statement of the result is given in Theorem 2 of §42, below.

The method of attack is a method of successive approximations, each ap-
proximation being obtained from the preceding by means of the solving of a
linear nonhomogeneous difference equation with constant coefficients. The
formula which is used to solve this linear difference equation is a slight modi-
fication of a formula obtained by the author in an earlier paper (%).

Presented to the Society, April 30, 1949; received by the editors April 20, 1949.

() Throughout this paper it is understood that for every nonzero x the number arg x is
chosen to satisfy the inequalities — 7w <arg x <.

(%) Linear difference equations and exponential polynomials, Trans. Amer. Math. Soc. vol.
64 (1948) pp. 439-466; this paper will hereinafter be designated as L]

132



NONLINEAR DIFFERENCE EQUATIONS 133

The concept of a finite-parameter family of functions is made precise by
the introduction of a suitable metric for the function-space G, a metric in
terms of which G, is a manifold (3) of ¢ complex dimensions.

The results of this paper are in a certain sense continuations of results
which the author obtained in an earlier paper(*). Roughly speaking, the
hypothesis of [P] required that a certain auxiliary exponential polynomial
never vanish on the nonpositive real axis; the present paper permits this ex-
ponential polynomial to vanish at any points except at 0 and at — «. How-
ever, in the present paper the coefficients and solutions are required to be
“admissible,” instead of “almost constant” as in [P]; this is a much weaker
restriction.

A step in the proof of Theorem 2 is Theorem 1, in §41, below. This de-
scribes, in an explicit manner, the totality of all admissible solutions of the
general linear difference equation D 7., 4;¥(x+w;) =¢(x) with constant 4;
and admissible ¢(x), under the assumptions 4,%0, D 5., 4;7%0.

Part II. Preliminaries on exponential polynomials.

5. Notations. If v is any positive number not exceeding 3, then by the
symbol N, will be meant the complement of the sector {x; x7#0; |arg xl <v
+7/2 } If in addition £ is any real number, then by (3,(§) will be mean the
class of all functions which are analytic and bounded in the sector § ,(£).

6. LEMMA . Let n be a positive number greater than unity. Let w, =0, and
let ws, + + -, wa be any distinct complex numbers in S5(0). Let Ay, + - +, An be
any complex numbers such that A15£0, and such that Y ., A;#0. Let f(z) be
the exponential polynomial D 3, Ase“. Let &1, ¢ay - - - be the distinct geros of
f(2). Let & be any positive number. Let Z(8) be the set of all points x such that
the distance of x from the set {{1, o, + + - } 4s less than 8. Let G1(8), G2(3), - - - be
the connected components of Z(8). Then there are positive numbers 8o and C, and a
non-negative integer p, and a sequence of real numbers Ypi1, Ypie, * * - in the
open interval (—pB, B), there being only finitely many distinct members in the
set {Yp+1, Y4z, + * + }, Such that if § <8, and if the {, and the G.(8) are suitably
numbered, then:

@) &1, - - -, $p are precisely the zeros of f(2) in Ng;

(b) There are at most n—1 distinct points §,in Gu(8) (s=p+1, p+2, - - -);

(c) ¢» is the only zero of f(2) in G.(8) (s=1,2,---,p);

(d) The positively sensed complete boundary F.(8) of G.(8) (s=p+1,
p+2, - - - ) is of length not more than 2w (n—1)4.

(e) There exists a positive number N(8) such that I f(z)l >N(8) for all z on
J:(8) (s=p+1,p+2, - - - );

(®) That is, a connected separable metric space which is locally homeomorphic with gg-di-
mensional complex Euclidean space. Gk can be easily seen to be a complete space as well.

(4) Principal solutions of difference equations, Amer. J. Math. vol. 69 (1947) pp. 717-757;
this paper will hereinafter be designated as [P].
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) R(2) cosv: —(2) siny,> Cs if z1s on Fs(8) and s> p(5).

(@) |3| >Cs if 245 on Fu(8) (s=1,2,---).

Proof. This lemma follows immediately from [L: Theorem 1c, 1d, le,
Lemma 4a, 4d, and Lemma 1a]. The condition that the 4; be all different
from zero [L: notation (7), p. 440] is not necessarily fulfilled under the hy-
potheses of the present lemma, but it is readily seen that the 4; which are
zero can be ignored in applying the results of [L]. Also, it may be noted that
the number N defined in [L: notation 20, p. 441] is necessarily less than or
equal to . Finally, it may be observed that the set N(0, 8) defined in [L:
notation 26, p. 441] is precisely the set N; of the present paper.

7. Notation. We make a particular choice of the numbers 8o, 8, C, Yp41,
Yo+2, - -, N(8) satisfying the conditions of Lemma 1, and shall retain this
choice throughout this paper. With this in mind, we shall not exhibit in our
subsequent notation the fact that various functions may depend upon this
choice, as well as upon variables appearing explicitly as arguments.

8. Notation. Let B;=1.u.b. {|arg w,~| R I'y,,.| s Iarg §‘,,.I —m/2;7=2, - --,m;
m=P+1: p+27 .t

9. LEmMA 2. 3 <B.

Proof. Since the numbers arg w; and ., are finite in number and lie in the
open interval (—8, B), it suffices to prove that lLu.b. {|arg ,(‘,,.I; m=p+1,
42, - }<ﬂ+1r/2. By [L: Lemma 4e], with M;=0, there is a positive
number 8 less than 8 such that {1, - - -, {, are precisely all the zeros of f(2) in
Ne. This implies that |arg §‘,,.l <0+7m/2 (m=p+1, p+2, - - - ). Hence L.u.b.
{|arg ¢m|; m=p+1, p+2, - - - } S04+7/2<B+7/2.

10. Notation. It will be convenient to choose, once for all, a positive num-
ber a greater than B3;, and less than B. This choice we make now. In the inter-
ests of definiteness, we define a=(3:+8)/2.

11. LEMMA 3. The zeros of f(2) which lie in N. are precisely ¢1, - - -, $p.

Proof. This follows at once from the definitions of o and Ne.

Part III. Preliminaries on admissible functions.

12. Notation. If ¢(x) is any function which is in 3,(£), then by B,¢[p(x) ] is
meant Lu.b. { |¢>(x)| 1 xES 4(£) }. If ¢(x) is any function which is analytic and
bounded on the half-line {x; x>£}, then by Bye(x)] is meant lLu.b.
{lo@)]; x>£}.

13. DEFINITION. A function ¢(x) will be called remotely bounded if it
satisfies condition (3.1).

14. Notation. If g(x, t1, - - - , tm) is a functlon of the indicated arguments
which for a fixed set of values of #;, - - -, t» tends to a limit as x becomes
infinite on the positive real axis, then by g(+ «, #, - - -, ts) is meant that
limit.

(%) ! and I will mean real and imaginary part, respectively.



1950] NONLINEAR DIFFERENCE EQUATIONS 135

15. LEMMA 4. If g(x) is admissible, then for every positive vy less than 3 and
for every positive € there is a positive £, depending upon v and €, such that

By [g(x) —g(+ )] <e
Proof. This lemma follows readily from a classic theorem of Lindelsf(5).

16. LEMMA 5. If g(x) is admissible, and if v<B, and if & is sufficiently
large so that g(x) is in (Cy(£), then g(x) —g(+ «) tends to zero as x becomes
infinite in the sector S .(£).

Proof. Let 0= (8+7)/2. If R=|x—%|, and # is in §,(£), then xES4(X),
where X =£+4R sin (§—+) csc 0. Since X becomes infinite with R, and since
0<B, the lemma now follows from Lemma 4.

17. LEMMA 6. If g(x) 2s admissible, and if v <B, and if g(x) is in Cy(£),
then either g(x)=g(+ »), or else Byx[g(x) —g(+ »)] decreases monotonically
(in the strict sense) as X increases (X Z£).

Proof. Let £ <X, <X,. Suppose g(x)#g(+ ). Then Byx,[g(x) —g(+ «)]
>0. Also, by Lemma 5, g(x) —g(+ «) tends to zero as x becomes infinite
S 4(X2). This implies that there is a point x, in the closed envelope of S ,(X5)
such that | g(xo) —g(+ ©)| =Byx,[g(x) —g(+ »)]. Hence, since g(x) is not a
constant (by virtue of the assumption g(x) #g(+ «)), there is a point x in
every neighborhood of x¢at which | g(x) —g(+ =) | > B, x,[g(x) —g(+ ©)]. This
implies that B, [¢(x) —g(+ ) | > Byx[g(x) —2(+ =) .

18. Notation. Throughout this paper the symbol D will be used to repre-
sent the operation of differentiation with respect to x. D*¢(xo) will mean, as
usual, the kth derivative of ¢(x), evaluated at x =x,.

19. LemmMma 7. If g(x) s admissible, then Dg(x) is admissible.

Proof. This is an obvious consequence of the Cauchy integral formula for
the first derivative of g(x).

20. LemMA 8. If j is any non-negative integer, and if {1, -« +, {p are the
numbers of Lemma 1a, then x'et** is admissible (s=1,2, - - -, p), and its limit
at + s zero. Moreover, for every positive number v less than (3 there is a positive
number G;,(v) such that By[xiet=] < Gjo(7).

Proof. Since {, is not zero (by virtue of the condition ) ., 4,;50), and
sinceitis in Ng, we have R(¢,) cos v+ | S(¢)| sin ¥ <0. But if x is in §,(0),

(%) Cf., for example, Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936, p. 44.
The hypotheses of Lemma 4 imply information adequate for the application of the cited
theorem, if transformations log 2=(7/8) log (x—X) and log 2=(—=/6) log (x—X) are made,
with 6 =(84~)/2 and with X sufficiently large so that g(x) is bounded in the sector Iarg (x—X) |
<6.
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then R(¢.x) < | x| [R(S,) cos v+ §(&s)| sin v]. From this the lemma follows
immediately.

Part IV. Preliminaries on certain linear difference operators and equa-
tions.

21. REMARK. The formulas used in this part are motivated by [L: equa-
tions 42-45].

22. Notations. Using the notations of §6, let F(2) =1/f(2), and let z, =¢'™
(m=p+1, p+2, - - -).

23. DEerFINITION. Using the notations of §§6 and 22, and letting £ be any
real non-negative number, let the operators L (s=1, 2, - - -, p) and the
operators K, (im=p+1, p+2, - - - ) be defined by the following equations,
which are to be valid for every function ¢(x) for which they are meaningful:

(23.1) Lep(x) = f:(Zwi)—‘fyme""‘“’da(u)F(T)deu

and

0

F(T) T_lf e *mTDG(x + p2m)zmdpdT

0

(23.2) Knp(x) = (2mi)t f

m (8)

where the contour of integration for # in (23.1) is the straight line segment
[£, R(x)] followed by the straight line segment [R(x), x].

24. Notation. Let j, be the order of multiplicity of {, as a zero of f(z), and

let P,(z) = > %, B,j(2—{,)~# be the principal part of F(z) at {, (s=1,2, - - -, p).

25. LEMMA 9. Let vy be a positive number less than (3. Let £ be any non-negative
number, and let ¢(x) be any function which is in C,(E). Then

(@) Luop(x) s in (&) (s=1, 2, - - -, p), and moreover,

(b) There exists a positive number V,(y) independent of $(x), and of &,
such that By [Lfld’(x)]é Vs(’Y)B'rﬁ [‘;b(x)] (S=lr 2, -, P): and, ﬁnallyy

(c) There exist functions n,(X, %), defined for positive X, for
sE(,2, - - -, p), and for positive vy inferior to 8, and functions Ui (y), Us(?),
defined for positive vy inferior to B, such that 1,(X, vv) tends to zero as X becomes
infinite, and such that if £, X1, X is any triple of real numbers satisfying the
relations 0 SE <X, < X,, and if g(x) is any function which is analytic and bounded
on the half-line {x; x>t}, and which is in C,(X,), then the functions Lgg(x)
are in (°4(X,), and

B'YXz[LEeg(x)] = 773(X2 - X1, ‘Y)Bog[g(x)] + U1¢(7)Boxllg(x)l
+ Un(7)Byx,[e(0)].

Proof. Let —K(y) =max {fR({,) cos 'y+l 3((.)[ siny;s=1,2,---, p}.
Since {1, - ¢ -, {p are nonzero complex numbers belonging to N, it is evident
that K(y)>0.

(25.0)
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Now let ¢(x) be any function which is in (2,(£).

When x is in S ,(£), it is permissible, in the calculation of Lg@(x), to re-
place the polygonal contour [£, R(x) ]+ [R(x), x] by the straight line contour
[£, x]. Let this replacement be made. As an immediate consequence of the
calculus of residues we have

1s
Lug(x) = 22 Bui[(G — D! Li(w)

=1
where I,;(x) = [{p(w)et*@ ) (x —u)i~'du. Let x=%f+Re®, with R>0 and
with |0| <v. Then u=£+pe®, with 0<p=<R. Hence I,;(x)=[Ed(E+pe®)
exp [f.(R—p)e®|(R—p)i-teiitdp. Now R[sie?]<—K(y). Hence |I.(x)]
<Bulo@)]- [eeEO41dt=Ba[6(x) | [K(y) |i(G—1)!. Hence By[Lub(x)]
< V.(v)Bylo(x)], where V,(y)= D> i, |B.j| [K(y)]~. This establishes (a)
and (b).

Now let &, X, X, be any real numbers such that 0 =¢{ < X; <X, Let v be
any positive number less than 8. Let g(x) be any function which is analytic
and bounded on the half-line {x; x>£}, and which is in (3,(X>).

Let —K(0) =max {R(g‘,); s=1,2,---, p}. Then K(0)>0.

Let x be in § ,(X5). In the calculation of Lgg(x) we may, and do, replace
t[he poly%onal contour of integration [§, R(x), x] by the polygonal contour

Er X2v X |-

Then Lyyg (%) = 201 boj(Lon (%) + Loja(x) + Ljs(x)), where b= B, [(G— 1) 1],
and Li(x) = [BR;(x, w)du, I;s(x) = [ R.;(x, w)du, and I,;(x) = [§,Rei(x, u)du,
with R,;(x, u)=g(u) exp [{.(x—u)](x—u)i~!, the contours of integration
being straight line segments.

It is easy to see that I,j(x) =exp [{o(x—X1)] D iZs CG—1, £)(x—Xy)
. ff‘R,,j_,(Xl, u)du, where C(j—1, ¢) is a binomial coefficient. Now x=X;
+pe®, where p> X,— X; and where |0| <7v. Hence R[¢.(x—X1)]=pR({.€?)
< —pK (7). Also | R, ;—«(X1, u)| < Bot[g(x) e XX 0 (X, —u)i~t-1, Hence

i—1 X
| Li(x) | £ ePEMY C(j — 1, t)pt f Bot[g(x) e E@O E-w (X — u)i~t-1dy
H

t=0

= 8"”.‘"’% C(j — 1, 9p'Butlg()](G — ¢ — DIK(©)]-7+.

Hence
(25.1) | Lin(%) | < 8:(X2 — X1, v)Boelg(0) ],

where §;(X, v) =Lu.b. {e=#K® 321 C(j—1, Hpt(j —t—1)![K(0) ]-7*; p> X }.
In like manner one can show that

(25.2) | Ii2(2) | = Via()Box,[g(%)],
where V;i(v) =L.u.b. {eE®r 37121 C(j—1, £)ri—1—t[K(0) ]-*%!;7>0}, and that



138 WALTER STRODT [January

(25.3) | Lis(x) | £ Brvx,[g@ - ([KM)]-iGG — 1)Y).

Relation (25.0) now follows from (25.1, 2, 3), the quantities 7,(X, v), Uw(Y),
U () being obvious.

26. LEMMA 10. Let o be the number defined in §10. Let vy be any number such
that a <v<B. Let X be any non-negative real number, and let ¢(x) be any
Sfunction which is analytic in S ,(X) and which has a bounded first derivative in
S+(X). Then Kup(x) is bounded in § (X) (m=p+1, p+2, - - - ). Moreover,
there is a positive number Vo independent of v, X, ¢(x), and m such that

(26.1) Byx[Kn¢(x)] £ m2VB,x[Dé(x)].

Proof. Let p be any non-negative number. Let T be any point on F.(5).
Then |F(T)| <1/A(@), and |T|7'<(Cm)-1, and |exp [—pz.T]| Se—vom
(m=p+1, p+2, - - - ), by Lemma 1. By the same lemma, the length of %.(5)
does not exceed 2w (n—1)8. Hence (26.1) holds, with Vo=C"2(n—1)8/\(8).

27. Notation. Using the notations of §§22 and 24, let g*=F(0)
- Zf-lP 0(0)'

28. DEeFINITION. Using the notations of §§23 and 27, let the operator M;
be defined by the following equation, which is to be valid for every function
¢(x) for which it is meaningful:

P ©
Mb(2) = g*¢(2) + 2 Led(2) — 22 Knd(2).
g=1 m=p+1
29. LemMA 11. Let £ be any non-negative real number. Let ¢(x) be analytic
and bounded, and have a bounded first derivative, in S (£), where o is the number
defined in §10. Then the function g(x) = Mp(x) is a solution of the difference equa-
tion

(29.1) Z‘; Aig(x + w)) = ¢(x).
o

Proof. This can be proved directly by the calculus of residues, but in the
interest of brevity we shall apply [L: Theorem 2], with M =0 and B=0,
and with $ replaced by «.

Let @ be any number greater than £ Let gi(x) =g(x+Q). Let ¢1(x)
=¢(x+Q). Then gi(x)=gs(x)+R(x), where go(x)=Mpi(x), and R(x)
=D 2, [ o(2mi) " [5,meT = (u) F(T)dTdu. Now it is easy to see that R(x)
is of the form D 2., D> 4 !C.xi exp (¢sx) for some constants C,;. Hence
R(x) is a solution of the equation Y 7., A;R(x+w;)=0. Now ¢(x) is in
(C«(0), and is analytic at x=0. Hence ¢:1(x) is surely of type (0, &), in the
notation of [L: p. 439]. Comparison of the function Myp:(x), written out in
full, with the formulas 41-45 of [L] (cf. also the definition of L on page 460
of [L]) shows that in consequence of Theorem 2 of [L] we may conclude that
g:(x) is a solution of the equation Y 7,4;g(x+w;)=¢i(x), whence
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Do g(x+w;) =¢i(x). Hence D) ,A4g(x+w;) =¢(x).

30. LEMMA 12. There exists a function Wi(y) defined for every number vy
satisfying the conditions a =y <B, and a number Ws, such that if & is any non-
negative real number, and if ¢(x) is a funciion which is in (C,(§) and has a
bounded first derivative in S ,(£), then Mip(x) is in Cy(§), and

By [Mp(x)] < Wi(y)Bre[o(x)] + WaBv[Do(x)].

Proof. This follows, with Wi(y)=|g*| 4+ 221 Vi(y), and We=72V,/6,
from Lemmas 9 and 10.

31. DEFINITION. Let the operator A be defined by the following equation,
which is to be valid for every function ¢(x) for which it is meaningful:

46(3) = — (D Aib(s + 0) ().

32. Notation. Let ro=min {distance of w; from the boundary of §4(0);
7j=2,3,-.-, n}, where « is the number defined in §10.

33. LEMmMA 13. 7¢>0.
Proof. This follows at once from the definition of a.

34. LEMMA 14. Let v be any number such that a <y <p. Let X be any non-
negative real number. Let ¢(x) be in Cy(X). Then A ¢(x) is in (X)), and its
first derivative is bounded in S ,(X). More precisely, if A*= |A1| -1y, IA ,-|
and A**=A*/r,, then B,x[Ap(x)]SA*B,x[¢p(x)] and B,x[DAp(x)]
SA**Bx[o()].

Proof. The first inequality is obvious. The second follows from the fact
that as an immediate consequence of the Cauchy integral formula we have

Byx[D¢(x + w;)] < Byx[¢(2)]/r0.
35. DEFINITION. Let the operator N; be defined by the following equation,
which is to be valid for every function ¢(x) for which it is meaningful:
-1
Nep(x) = 41 ¢(x) + M Ad(x).

36. LEMMA 15. Let «y satisfy the inequalities o Sy <. Then there is a posi-
tive number W(v) such that if £ is any non-negative real number and if ¢(x) is in
Cx(8), then Negp(x) is in Cy(£), and

(36.1) By¢[Nep(2)] £ W(x)Bre[o(2)].

Proof. This follows at once from Lemmas 12 and 14; we may take W(y)

(?) It may be worthwhile to emphasize the fact, which is of crucial significance in the sequel,
that the summation on the right begins at j =2.
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=| 4y 1+ A*Wi(y) +A** W

37. LEMMA 16. Let £ be a non-negative real number, and let ¢(x) be in (Ca(£).
Then g(x)=N:p(x) is a solution of the difference equation D 1., A;g(x+w;)
=¢(x).

Proof. This follows from Lemmas 14 and 11.

38. LEMMA 17. Let v satisfy the inequalities a =y <B. Then there exists a
Sfunction 7(X, ), defined for positive X and tending to zero as X becomes in-
finite, and numbers Ui(y), Us(y), suck that of &, X1, X. are any real numbers
for which 0 SE<X,<X,, and if ¢(x) is any function which is in (Co(£) and in
C+(Xs), then the function Np(x) is in (C,(X2) and
Byx,[Neg(%)] < (X2 — X3, 7)Baz[6()]

+ Ui(y)Bax,[6(%)] + U2(v)Brx,[s(x)].
Proof. This follows readily, with (X, v)=4* ) (X, v), Ui(y)

=A* 32, Unly), Us(y)=|ds|71+A4*|g*| +m24**Vo/6+4* 32, Un(v),
from Lemmas 9, 10, and 14.

(38.1)

39. LEmMA 18. If ¢(x) is admissible, then every solution of the difference
equation (29.1) which is remotely bounded (cf. §13) is admissible.

Proof. Let ¢(x) be admissible, and let g(x) be a remotely bounded solution
of (29.1). Let £ be a positive number such that g(x) is in («(£). Let X be any
number greater than £. Now D7, A;g(x) =¢(x) — D11 A;[glx+w;) —g(x)].
Hence g(x) = (2 7-1 45~ {o(x) — 231 4;[g(x+w;) —g(x)]. Evidently, as a
consequence of the Cauchy integral formula, we have B.x[Dg(x)]
SBu[g(x)](csc a)(X —£)', whence Bax[g(x+w;) —g(*) ]| = Bae[g(x)](csc @)
(X —E)“I O.’jl . This implies that g(x) —( D1, 4;)~'¢(x) approaches zero as
x—+ o, whence g(x) has a limit as x—+ « ; thus g(x) is admissible.

40. LEMMA 19. If ¢(x) s admissible, and if & is any non-negative real num-
ber such that ¢(x) is in (Co(£), then Nep(x) is admissible.

Proof. Let ¥ be any number such that a <y <B. Let X, be larger than £
and such that ¢(x) is in (P.(X?2). Let X; be chosen arbitrarily so that £ <X,
< Xo. Then it is evident from (38.1) that Nip(x) is in (3,(X2). Thus Nep(x)
is remotely bounded. Hence, by Lemmas 16 and 18, Nyp(x) is admissible.

41. THEOREM 1. If ¢(x) is admissible, then the totality of all admissible
solutions of the difference equation

(41.1) E Ah(x + «)) = ¢(x)

is given by the formula
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P je—1
(41.2) h(x) = Nep(x) + 25 20 Cjuietes,
g=1 =0
where £ is any non-negative real number such that ¢(x) is in Ca(£), and the Ci;
are arbitrary constants.

Proof. According to Lemma 8 the function x’ef** is admissible for every
non-negative integer j, and it is readily seen that if j<j,—1, then xief** is a
solution of the homogeneous equation

(41.3) ﬁ) A,g(x + @) = 0.

Hence, by Lemmas 16 and 19, every function of the form (41.2) is an admis-
sible solution of (41.1).

Conversely, if k(x) is any admissible solution of (41.1), then g(x)=h(x)
— Nip(x) is an admissible solution of (41.3); from equation (41.3) itself,
solved for g(x) in terms of the g(x+w,) (#=2, - - -, n), it is apparent that
g(x) can be continued analytically into an integral function G(x), and that
G(x) is bounded in every sector S ,(0), with v <B. Hence G(x) is of type (0, )
(in the terminology of [L: p. 439]) and is therefore, by Theorem 2 of [L]
(with ¢(x) =0), of the form Y _?_, > 47! C,xiete=,

Part V. The statement of Theorem 2.

42. THEOREM 2. Given the difference equation

(42.1) Alx, y(x 4+ w1), - - -, ¥(x + w,)) =0,

where A(x, y1, - - -, Yu) ©s a polynomial of degree d=1 in the indeterminate
Y1, * ¢+, Yn, the coefficients being admissible functions of x, and where w,=0
while w2, - - -, wa are points of Sp(0). Let J(o) be the polynomial
A(+ >, a,---,0) in one indeterminate o, obtained by replacing every y;
G=1,2,---,n)in A(+o, y, - - -, ¥.) by the same indeterminate o. Let
(42-2) d,'(x, 2 VIR yn) = aA(xr 4 VR yn)/ayl

G=1,2, -, n). Assume that J(o) is not identically zero, and that its zeros(®)
a1, 02 * * +, 0 are all simple zeros. Assume also that a;(+ =, o, * * +, Ok)
is different from zero for every k in the set (1,2, - - -, ¢). Under these assump-
tions the totality G of all admissible solutions of (42.1) can be described as
Sfollows:

(@) G s the union Gi+Go+ - - - +G, where Ty, 1s the totality of all ad-
missible solutions y(x) of (42.1) such that y(+ ) =0 (k=1,2,---,¢).

(b) ©x is a nonempty finite-parameter family of functions. More precisely,

(®) We do not exclude the case where J(o) reduces to a constant different from zero. In this

case the statements below are to be understood as asserting merely that the set T, below, is an
empty set.
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if qx s the number(®) of zeros (multiplicities counted) of the exponential poly-
nomsial

n

(42.3) fk(Z) = Z aj(+ Dy Oky Oky * * * o'k)ewizr
=1
which lie in Ng, then Cy is a qu-parameter family (k=1, 2, - - -, ¢).

(c) Moreover, G contains not only every admissible solution of (42.1), but
contains also every remotely bounded('®) solution of (42.1).

(By the statement that Gy is a gi-parameter family is meant that in terms
of a suitable metric (see Part VII below) the space Ti is a manifold of g
complex dimensions, that is, a connected separable metric space each of
whose elements has a neighborhood homeomorphic with g;-dimensional com-
plex Euclidean space. The number of parameters in Gy is also indicated by the
following property of Gk: If yo(x) is any element of Gy, then there exist posi-
tive numbers(*!) &o, 7o, Eo, and ay, such that ap<fB and such that if £ is any

number greater than £, and if No, A1, - - -, Ng—1 are any g, complex numbers
such that I)\gl <no (¢=0,1, - - -, gx—1), then there exists one and only one
element y(x) of Ty such that y(x) is analytic in § 4,(£) and at x =¢£, and such
that Dty(§) =D'yo(§)+X: (¢=0,1, 2, - - -, gx—1) and such that [y(x) ——yo(x)|

< E, throughout § 4,(£)(12).)

Proof. The proof is given in Parts VI and VII, below.

43. Generalization. If the hypothesis that J(¢) have only simple zeros be
dropped, then Parts (a) and (c) of Theorem 2 still hold, and the methods of
this paper, exactly as they stand, allow the conclusion to be drawn that for
each simple zero a; of J(o), the set Gy satisfies all the statements of Theorem
2, Part (b). However, it is not known to the author whether or not the de-
scription of G, given in Part b will still apply when ¢}, is a multiple zero.

44. Alternative hypotheses: If each coefficient C(x) in A, instead of being
required to be admissible, is required to satisfy the more stringent restriction
of being in (%(£) for some positive £ depending upon C(x), and of approaching
a limit C(+ =) in the sense that Bgx[C(x) — C(+ )] tends to zero as X be-
comes infinite (let us refer to this set of restrictions as Conditions B), then the
set of all solutions of (42.1) which satisfy Conditions B can be given a de-
scription closely paralleling that given G in Theorem 2, provided however,
that in addition to hypotheses analogous to those of Theorem 2 still another
hypothesis is assumed, namely that the exponential polynomial f;(2z) have no
zeros on the boundary of Ny (k=1, 2, - - -, ¢). If this last hypothesis is not
assumed, then the set of solutions satisfying Conditions B can fail to answer

(*) This number is finite, as is seen below.

(19) The definition of remotely bounded is given in §13.

(*) The numbers 7o, Eo, and a, (but not &) are independent of yo(x).
('2) When ¢,=0, G, contains exactly one function.
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such a description. For example, the equation y(x) —2y(x-+1) =272 has co-
efficients satisfying Condition B, with 8=w/2, and the J(s) in this case is
—o, with only one zero (namely, the simple zero ¢ =0), and f(3)=1-—2¢,
with just one zero (namely the negative determination of log 1/2) in Ng,
which in this example is the nonpositive real axis. There is in this example a
one-parameter family of admissible solutions, but no solutions whatever
satisfying Conditions B.
Part VI. Existence and uniqueness proofs.

45. LEMMA 20. If y(x) s any solution of equation (42.1) which is remotely
bounded, then y(x) is admissible and y(+ ) is one of the numbers o
(k=1,2,---,0).

Proof. Let €;(x) =y(x+w;) —y(x) (j=1, 2, - - -, n). Then ¢;(x) tends to
zero as x becomes infinite on the positive real axis. (Cf. the discussion in
the proof of Lemma 18.) Now A(x, y(x+wi), - - -, y(x+wa)) =A(x, y(x)
+e1(x), Tt y(x)+5»(x)) =A(xr y(x)’y(x)v tee »y(x))+ Eoé?(x) cte e:"(x)

Clsy, = =+, Sa; 25 9(x), ¥(x), - - -, ¥(x)] =0, where Do is the summation over
all indices sy, + -+, s, such that 1<s;4+ - - - +s,=d and

C[sly cr Sy Xy V1 0, yn]
(45.1) _ aa1+-.-+8nA(x’ yl’ e, yn)/aysll .. ay:."

51!"‘57,!

Letting P(x, y) be the polynomial in y defined as A(x, ¥, », -, 9)
+ Zoe?(x) cee e‘},"(x)C[sl, Ce e, S X Y, Y, - -+, ], we see that the coeffi-
cients in P(x, y) are, when x is large and positive, arbitrarily near the coeffi-
cients in A(4+ <, ¥, - - -, y) so that when x is large and positive, y(x) is
either near the set (a1, 02, - - -, 6.) or else is very large (a possibility, at first
glance, if the initial coefficient of A(x, ¥, - - -, ) tends to zero as x becomes
positively infinite). Since y(x) is remotely bounded, the possibility that y(x)
be very large is excluded. Since y(x) is continuous, it must, for all sufficiently
large x, be near a fixed one of the numbers gy.

46. LEMMA 21. Parts (a) and (c) of Theorem 2 are valid.
Proof. This is an immediate consequence of Lemma 20.

47. LEMMA 22. Let k be any one of the numbers 1, 2, - - -, ¢. Then equation
(42.1) s equivalent, under the transformation y(x) =ar+h(x), to the equation

> uih(s + ) = ¥a(s) + 3 eri(@)h(x + w)

47.1) " =
( ) + 21 8u(6n, -+ dn; ) BA(E + @1) - - - Bin(® + @)

where
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(47.2) arj = aj(+ ©, 08 -+, 0%) (¢f. (42.2)),
(47.3) Yi(x) = — A(=, ok, -+, o8),
(47'4) eki(x) = a’i(+ D, Ok * o'k) - a,-(x, Oky * " ° o'k)’
(47~5) gk(ily Tty in; x) = - C[ily M) in; X350k Oky * * O'k]
(cf. (45.1)), and

(47.6) Zl is the summation over all indices 1, + - - , in such that 2=
+ -+ =d.

Proof. This is obvious.

48. LEmMMA 23. The functions Yr(x), exj(x), and gi(s:, * - - , in; x) are admis-
sible, and Yr(+ ©) =ex;(+©)=0 (=1, 2, -, m; k=1,2,...,¢). Also
> h1 arjerir=fi(2), where fi(2) is defined by (42.3).

Proof. This is obvious.

49. DEFINITION. Let k be in the set (1, 2, - - -, ¢). Let Qw(x, k1, - - -, hn)
be the polynomial in indeterminates 4y, - - -, k., with coefficients functions
of x, defined by the equation

(49.1) (%, hay oy + - -, ha) = () + geu(x)hi

+ D21 gk(in, -y in; x)hil <. hf,".

50. DEeFINITION. Let the nonlinear difference operator @i be defined by
the following equation, which is to be valid for every function %(x) for which
it is meaningful:

Qkh(x) = Qk(xr h(x + “’l)x Tty h(x + wn))'

51. DEFINITION. In the sequel we shall use a fixed value of k in the set
Q, 2,---,¢), and define A;=ax; (j=1, 2, - - -, n). The operators N; we
then define in terms of the 4; and w; as in Part IV. Certain of the functions
to be used in the sequel will be designated by symbols which do not display
the fact that the function depends upon the choice of &.

52. LEMMA 24. Let y(x) be an admissible solution of equation (42.1). Let
y(x) =0r+h(x). If £ is any non-negative real number sufficiently large so that
y(x) s in Ca(E) and so that the coefficients in A are in Ca(£), then

P 71
(52.1) h(x) = Ne@uh(x) + 2 D C,jxiete

8=1 j=0
for some constants C,;.

Proof. This follows at once from Theorem 1 and equation (47.1). It may be
noted that the hypotheses [4,7%0], [ D 7., 4,%0] (cf. Lemma 1) of Theorem
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1 are equivalent, respectively, to the hypotheses [a:(4+ ®, 0%, - - -, ax) #0],
[0+ is simple] of Theorem 2.
53. Notation. Let £ be the greatest lower bound of all non-negative real

numbers X such that every coefficient in Qi(x, %1, - - -, k) is in Ca(X), and
such that
(53.1) Bux[eri(®)] = [20W ()] G=12---,m),

where W(a) is defined in §§10 and 36. Let & =144,
54. DErFINITION. Let £ be any real number such that £=&. Let

%={C3im; s=1,2,--- »P;j=0» 1,--- yjt—l; m=0, 1, 2, e } be a se-
quence of complex numbers. Then by the sequence {h,,.(x, £ B
m=0,1, - - - } will be meant the sequence of functions defined recursively by
the equations

p 1
(54.1) ho(x, £, F) = 2o D Cajo(x — £)iets0),

s=1 j=0

hmir(%, § F) = NeQrhm(x, & &)
(54.2) P il )
+ 2 20 Coiimir(x — E)iehr =9,
8=1 ;=0

55. Notation. If ® is any bounded sequence of complex numbers (finite or
infinite), then by U[®] is meant the least upper bound of the moduli of
the terms of ©.

56. Notation. For any £ which is greater than or equal to & the symbol &;
represents B[ (x)].

57. LEMMA 25. Let M be any non-negative real number, let 0 be any positive
number less than unity, and let d be any positive integer. Then for every positive
€ there is a largest positive & such that the equation

X =5+6X+ MX2+ X2+ -+ + X9
has a positive solution less than or equal to e.
Proof. This is obvious.

58. LEMMA 26. Let D .o €n be a convergent sequence of non-negative real
numbers and let r be a positive number less than unity. Let {an} be a sequence of
non-negative numbers satisfying the inequalities

am—‘-lgfam'l‘em (m=011v2;"')°
Then D o Gm converges.

Proof. Let sm=ao+ai+ - - - +amn. Then sp1Srsmt(et+ - - - +€n)
+ao. Let My=ao+ Z;’,‘;_oem. Then spy1=<7sn+ M, Hence sny1Sser™t!
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+Mo(1+r+ - - - +7™) <so+Mo/(1—r). Hence Z;‘I_oa,,. converges.

59. LEMMA 27. For every positive number E there exists(®®) a positive number
pE and a positive number ng such that if £2 %, and if 8;<pg, and if § is any
bounded sequence of complex numbers such that U[F]<nz, then the sequence
{hn(x, &, §)} satisfies the inequalities

(59.1) Bat[hm»(x, Er 8‘)] <E (m = 1: 2v ttt )'

Proof. Let rm(x, & §) = 271 2150 Cojm(x —£)ie5*@D, let Hp=Bog[hm(x, £,
%) ], and let R=Bat[rm(x, & F)] (m=0,1,2, - - - ). Let

(59.2) 82 = max {Bag,[eri(%)];5=1,2,---, n},

let

(59.3) My =max {Bag,[gi(is, -+ + ,dn; 2)]:2 S i+ -+ - + 40 < 4},
let

(59.4) b = max {number of terms of degree s in 21; §s=2,3,---,d},
and let

Y4 ja—1
(59.5) Gla) = 20 2. Giila),

=1 j=0

where the G,;(a) are defined in Lemma 8. Then
Ho = Ry = G(a)U[F].
Also
Hpir < Bog[NeQihn(%, £ F)] + Rotr.
Hence, by Lemma 15, we have
Hpy < W(2)Bat[@ihn(, £ §)] + Ruia.

Therefore

Hois < W(a){6¢ + n0eHm + Mb(Hu+ - - - + Hi)} + G(o) U]

Now let E be any positive number. Let § =1/2. Let 6 be the largest positive
number such that the equation ¢=040t+ MbW(a) - (£2+3+ - - - +¢¢) has
a positive solution o less than or equal to E. (Cf. Lemma 25, with
M= MbW(c).) Obviously £,>é.

(®3) In this lemma pg, 7z are asserted to exist. Plainly they are not unique. However, in
the application of this lemma, where we wish to make use of a particular choice of pr and 7z,
we shall refer, loosely, to the pg and ng of Lemma 27, meaning thereby that a particular choice
from among the infinitely many possibilities is made, once for all. This remark applies to several
other lemmas following this.
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Let pe=06/(2W(a)). Let n£=0(2G()) (). Then if £=£,, and if §;=ps,
and if U[§] <7z, we have
HO é 6/2 < tO)

and also, using (53.1), we have
Hup1 8+ 0Hp 4+ MW (o) (Hm + - - - + Hn),

so that if Hn=<to, then Hpy1 <8-+40t+ MbW(a)(2+ - - - +13) =to. Thus by
complete induction we have H, <to<E (m=0,1,2, - - -).

60. LEMMA 28. Let E and e be positive numbers, with e < E. There exists a
positive number Wo= W(E, €) such that if pg and ng are the numbers of Lemma
27, and if £ is any number greater than or equal to &, for which 6; <pg, and if
U[§] <7z, then Box[hn(x, £, §)] S€¢ whenever X 2(+ W, (m=0, 1, - - -).

Proof. Let £ be any number such that £=£; and 8;<pg. Let U[F]=<nz.
From Lemma 16, and the fact that 7mu(x, £ §) is evidently a solution of the
difference equation Y_r, 4 ;g(x+w;) =0, we have that D 7.1 A jhmi(x+w;, £, §)
= Qihm(x, £, §). Hence

Z Aihm+l(xv £ %) = Qkh'n(xa £ %)
(60.1) )
+ Z Ai[hm+l(x, Ey %) - hm+1(x + @3, Ey %)]'
=1
Let X be any number such that X >£. Then, by the Cauchy integral formula
we have Bux[Dhmu(x, & §) ]S (X—£)"" csc @ Bat[hni(x, £ )], whence
Bux[lnia(x, £ §) —hmur(x+wj, £ §)] S (X —§)'(csc @) E| w;| . Hence, letting
=| hIyv A,-I"‘, we have, from (60.1),
Bax[hni1(%, £ §)] S 0*{Bax[Quhn(x, £ F)]

60.2 3
( ) +E(X—£)’1cscaZ|Aini|}-

=1
Thus, letting M, be defined by (59.3), letting R=R(W)= > 7., |4; ||w,[
(E csc o)W1, letting S=S(X)=max {Bax[¥s(x)], Bexlean(x)], -

Bax[ew(x)]}, letting T=T(W)=max B.w[xie+=]; j=0, 1,---, J.—l
s=1,2,---, p}, and letting om = Bax [Ans1(x, £, F) |, we have
(603) Yo _S.. BaX['O(xr Er %)] é ‘”ET(X - ‘E)’

and from (60.2) we have
(60.4) vmis < G*[S(X) + R(X — 8] + ¢*nS(X)vm + ¢*Msb(om + - - - + vm).

(1) If p=0, there is no sequence § and no number G(a). The changes of language needed
to cover this case are, however, sufficiently obvious.
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We note that S(X) tends to zero as X becomes infinite. (Cf. Lemmas 23 and
4.) We note also that R(W) and T(W) tend to zero as W becomes infinite.
(Cf. Lemma 8.)

Let §=1/2. Let 6 be the smallest positive number such that the equation

t=08+0t+ a*Mb@ + - - - + 19

has a positive solution £, less than or equal to €. Let W; be the smallest positive
number such that W31, and such that T (W3) <to, and such that a*R(W3)
<08, Let X; be the smallest positive number such that a*S(X;) <6/2 and
a*nS(Xs) <0. Let Wo=max [W; Xs—&]. Then if X=&4+ W, we have
X =X;, so that ¢*S(X)=<6/2 and a*nS(X)=6. Also, if X=£+W,, then
X —£2Ws;, so that a*R(X —£) <6/2 and, using (60.3), vo=<neT(W;). Thus
v0=to, and if v, <to, then, by (60.4), we have v, <840t+a*Mb(2+ - - -

+15) =to, so that v,<e (m=0, 1, - - - ).

Thus this number W, has the required properties.

61. LEMMA 29. Qu(x, sy + -+, Ba) — Qi by, + -, L) = Dy exi(%) (B;—1))
+ Z?Gki(slv tt oty Say tly Sty tn; x)(h’:l_ll)(hilh;z cet h:l")(ltlll;2 st l:{.)r
where Zz is the summation over a certain set of indices j; S1, * * *, Sn}
bi, * * *, tn Such that j is in the set (1, 2, - - -, n) and such that 1 <s;+ - - -
+sottt - - -+t =d—1, and where Gij(si, - - -, Saj by ¢ - ¢, bay X) 1S One
of the functions gi(t1, « - -, %a; X).

Proof. This is obvious.

62. Notation. Let by be the total number of terms in D _s.

63. Notation. Let E, be the largest positive number such that
bsMy(Eo+Eg+ - - - +Eg7Y) S1/4.

64. LEMMA 30. Let E be any positive number less than or equal to E,. Let
pe and g be the numbers of Lemma 27. Let £ be any number greater than or equal
to £y and such that 8;Zpg, let § satisfy the condition U[F]<ng, and let it be
given that § satisfies the additional condition that for each fixed pair s, j the series
Z,‘;’;,o | Cojymt1— C,j,,,l converges. Then the sequence {h,,.(x, £ D) } converges
uniformly in S «(£).

Proof. Let Ah.(x, & T) =hnulx, & F)—lalx, & §), Arulx, & T)
=7M+l(x» £, %) _rm(x’ £, %)r V=B [Ahm(x, £ %)]y and €n=2DBat [Arm(xr £ %)]
(m=0,1, - - - ). For brevity, we shall omit the arguments &, § in the follow-
ing equations.

Now Ahu(x) = Ny(Qrhm(x) — Qubim—1(x)) +Ara(x). Thus, by Lemma 29 we
have Ah,,.(x)=Ng{ Sry eri(X)Ahm 1 (x+w;)+ D2 Gri(st, »+ vy Sn; b1y - v -,
tn; X)Ahm (x+w)h(x4wr) - - - Btk (xtw) - Ba_(x+w.)}
+Ar.n(x). Therefore, using the notations of Lemmas 15 and 27, we have

Vi £ W) {n8:Vmoy + Do MoV maEnte ottt bl g
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and therefore we have

Vi S Voa[n8:W (@) + bsMo(Eo+ Eo+ - - - + Es )} + ém

Now n8:;W(a) £1/2, by (53.1), and bMa(Eo+ - - - +E& 1) <1/4, by §63.
Hence nd;W(a)+bMy(Eo+ - - - +E¥ ') <3/4. Hence, by Lemma 26,
Ym0 Ym converges. This implies that the sequence {hm(x, £ %)} converges
uniformly in § «(£).

65. LEMMA 31. Let E, be the positive number defined in §63. Let E be a
positive number less than or equal to E,. Let pg, 1 be the numbers of Lemma 217.
Let £ be a number such that £=§» and 6;<pg. Let § be a sequence {C.;,,.} such
that U[F|<ngs, and such that for each s, j the series D o [ Csjomir— C.j,,.]
converges.

Then for every positive € and for every v greater than o and less than 3 there
is a positive X''=X"'(vy, €), such that hn.(x, £, §) s analytic throughout S ,(X'")
and Byxr [hn(x, £, §) ] <e.

Proof. The asserted analyticity of Zn.(x, £ §) follows readily from the
nature of the operators @, and N; We shall consider, therefore only the
estimation of Ba.x: [kn(x, & §)].

Let X*=&, be such that every gi(é1, - - -, 2a; %) 1s in (%5 (X*). Let M'’
=max {B,x*[gi(1, - + -, 4a; %)]; 2Sd1+42+ - - - +4.=d}. Let X’ and X"’
be chosen as any numbers such that §<X’<X’’, and such that X'>X*;
these two numbers will be subjected to further restrictions in the sequel.

Then, using Lemma 17, we have

Byxo [hmi1(2, £ )] £ n(X” — X', v)Bat[@Quhm(x, & )]
+ Ur(v)Bax [@ihm(x, & §)]
+ U2(v)Byx [@ukim(x, £ §)]
+ Byxo[rma(x, & §) ]

Letting 0s, M., b be defined, as usual, by (59.2), (59.3), and (59.4),
and letting Jn=Byx|ku(x, & §)], L=Lub. {Bex[lta(x, & §); m
=0’ ly 2’ ot }» 0* =max {Bax' [¢k(x)]r B.x: [ekl(x)]v Tty B.x: [ekﬂ(x)]}r
3**—max {Byx [a(®)], Byxv [en(@)), - - -, Byxe les() 1}, p=lub.,{ By
Nrapa(x, £, §) ), m=0,1, - - - }, we have Jo=p and

Tnt1 S Cot Cim+ ColTm+ Tm+ -+ + T

where
Co = n(X" — X', v){6¢ + n82E0 + M:b(Eo + Ey + - - - + Ep)

+ Ul(‘Y){‘S* + né*L + Mob(L: 4 L3+ - - - +Ld)}
+ Uz(‘y)&** + p,
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where C;= Us(y)ndé**, and where Co= Us(y) M'’b.

Let € be any positive number. Let §=1/2. Let § be a positive number
such that the equation ¢{=06+0:+ Co(£2+£2+ - - - +¢%) has a positive solu-
tion #o less than e. Obviously £,>8. Let X’ be so large that Ui(y){8*-+n8*L
+ Mpb(L2+L3+ - - - +L9)} <§/2. (Cf. Lemma 28.) Then let X'’ be so
large that (X' —X", )+ {8:+nd:Eo+ Mob(Es+E3+ - - - +E8} <8/6, and
Us(y)8**<8/6, and p<8/6, and Us(y)nd** <. Then Jy=8/6<ty, and
In1 20+0Tpm+Co(JE+T34 - - - +J2), so that by complete induction we
have Jn<t, (m=0, 1, 2, - - - ). Hence J,<e. That is, Byx [hn(x, £, F)]<e
(m=0,1,---).

66. LEMMA 32. Let Eo, E, pg, 15, &, and § satisfy the hypotheses of Lemma 31.
Then the sequence {hn(x, £, %)} converges, with local uniformity, in a region R
which, for every positive 7y less than (3, contains a sector S ,(X (7)), for some non-
negative number X (v). The limit function h(x, £, §) of the sequence {hn(x, £, F) }
s admissible and is o solution of the difference equation (47.1).

Proof. Let A*(x, & §) =limm.w hu(x, & §F), xES(£). For every vy
greater than « and less than § let X(y) be a positive number such that
Byx [hn(x, £ §) ] <1. (Cf. Lemma 31.) The family of functions {.(x, £, §)},
is thus equi-bounded in §,(X(v)), and therefore, by the well known com-
pactness theorem for bounded families of analytic functions(!®), every sub-
sequence of the family contains a partial subsequence convergent in § ,(X (v)),
with local uniformity, to a limit function k(x, £, §). Evidently k(x, &, §) is
an analytic continuation of A*(x, £, ), and therefore the limit function in
S (X(%)) is independent of the particular subsequence. Hence the sequence
{h,,.(x, & %)} itself converges, with local uniformity, in §,(X(v)), to a limit
function A(x, &, §)-

Evidently Byxy[h(x, £, §)]1=1. Also k(4 =, & §) =0, by Lemma 28.
Hence h(x, &, §) is admissible.

Now it follows from (54.2) that D _m; Gxihmsr(x+wj, £ §) = Qulim(x, &, ),
from which D a4k h(x+w;, £ §) = Qih(x, £, §), which coincides with (47.1)
when h(x) is replaced in (47.1) by k(x, £ §).

67. LEMMA 33. The set Gr of Theorem 2 is not empty.

Proof. Let y(x) =or+h(x, & §), where h(x, & §) is the function in Lemma
32. (We might, for example, choose all the C,;»=0.) This function y(x) is
evidently an element of G;.

68. Notation. Let V=max {ij[ sin (B—a) csc a; j=2, - -, n}

69. LEMMA 34. If £ is any non-negative number, and if x is in S «(§), then
xtw;isinS LE+V) (=2, - -, n).
Proof. This follows readily from the law of sines, together with the fact

() Cf. Montel, Lecons sur les familles normales . . . , Paris, 1927, p. 21.
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that [arg O)jl =B (cf. §8), and the fact that a—p1=F—c.

70. LemMA 35. There exists a pésitive number M; such that if v,
t=0,---, q—1) are any qr complex numbers and if a function p(x, &)
of the form D 2., D A7 Cei(x—E)iete=d 4s determined by the conditions
Do+ 7V, &) =v, (t=0,1, - - -, @x—1), then U[C.;] < M3U[v.].

Proof. This is obvious.

71. LEMMA 36. There exists a positive number My such that if f(x) is any
function which is in (Ca(§), then U[DY¥E+V); (¢=0, 1,---,q—1)]
S MBy[f(x) ).

Proof. This follows at once from the Cauchy integral formula.

72. LEMMA 37. There exists a positive number My such that if p(x, ) is any
function of the form 3 2., D 40 Cos(x—£)iet+=, then Bu[p(x, £) | < MsU[Cy;).

Proof. This follows at once from Lemma 8.

73. LEMMA 38. Let My=M;Ms. Then if p(x, £) is any funciion of the
form Y., Y4k Cux—E)ieh=D, the inequality Bulp(x, £)]<MU[D*
pEFV,8); ¢=0,1, - - -, gx—1)] 45 valid.

Proof. This is a trivial consequence of Lemmas 37 and 35.

74. LEMMA 39. Let H=H(x) be an admissible solution of (47.1) such that
H(+ »)=0. Then under the transformation k(x) = H(x)+g(x), equation (47.1)
s equivalent to the equation

> nig(x + 03) = 3 Eui(x, Hg(x + )

(74.1) j=1 =1
+ i, -y ey 25 H)ga(x + @1) - -0 gin(x 4 @),
where the coefficients Ev;(x, H) (j=1,2, - - - ,n) andthe coefficients f(4y, * + + , tn;

x; H Q2249+ - - +1.5d) are admissible, and where Ei(+ «, H)=0
G=1,2,--+,m).

Moreover, for every positive € there is a positive 8s,., independent of the choice
of H(x), such that if Bu[H(x)]<08e and if §=&, then Bag[Eii(x, H)]
éBaE[eki(x)]"l"e (j=1y 2, n)

Finally, there exists a positive number M, independent of H(x) such that if
£2& and if By[H(x) |1, then Bagl[f(dy, - -+, n; %3 H) ]S M7 2S5+ - - -
+i. Zd).

Proof. This is obvious.

75. Notation. Let Riu(x; g1, + - + , ga) be the polynomial in indeterminates
g, * -, gn, with coefficients admissible functions of x, defined, in the nota-
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tions of Lemma 39, by the equation

RkH(x; 81, ° gn) = E E”(x, H)g: + Zlf(ily D) in; x; H)g;.l A g:."-
i=1
76. Notation. Let the operator R.x be defined by the following equation,
which is to be valid for every function g(x) for which it is meaningful:

Ring(k) = Rin(x; g(x + w1), - - -, g(x + wa)).

77. Notation. Let e, = [6nMsW(c) |-, where M= 1+ M,M;. (Cf. Lemmas
36, 38.)

78. Notation. Let 04 be the minimum of two numbers, the first of which is
unity, and the second of which is the value which ;. assumes when e=e.
(Cf. Lemma 39.) We note that é, is independent of H.

79. Notation. Let &; be the greatest lower bound of all non-negative real
numbers X such that X 2§, and such that Bux[erj(x)]|<e (j=1,2, - - -, n).

80. Notation. Let £, 1 be the greatest lower bound of all non-negative real
numbers X such that X =&, and B.x[H(x)]<3..

81. LEMMA 40. If £=&, n, then

(81'1) BaE[Eki(xy H)] § [SnMsW(a)]“ (j = 1, 2, e, n)
and
(81.2) Bat[f(ilp RN M H H)] = M.

Proof. This follows immediately from Lemma 39.

82. DEFINITION. Let §={Cijm; =0, -+, fu—1; s=1,---,p; m
=0,1, .- } be an arbitrary sequence of complex numbers. Let £=&.1.

By the sequence {gn(x; H; {; §)} will be meant the sequence of functions
defined recursively by the equations
jo—1

(82.1) (@ HiEF) = 3 3 Conle — )iefet==0

8=1 j=0
and
gmi1(x; H; £, ) = NiRiugnm(x; H; £; F)

P je—1
+ Z Z Cu',m-{-l(x —_ E)fel'u(z—e).

=1 j=0

(82.2)

83. LEMMA 41. For every positive number E there exisis a positive number
m.z independent of H such that if £=¢su and U[F] Sz, then the sequence
{g,,, (x; H; &; %)} satisfies the inequalities

Butlgn(x; H; £, §)] < E (m=0,1,---).



1950] NONLINEAR DIFFERENCE EQUATIONS 153

Proof. This follows from exactly the same argument as was used to prove
Lemma 27. Inequality (81.1) is to be compared with the analogous inequality
(53.1), and it is to be noted that since there is in Rig (x; g1, * * -, ga) NO term
free of the g; corresponding to the term ¥ (x) in Qu(x; by, - - -, ha), there is
no analogue to the number pg of Lemma 27.

84. LEMMA 42. There exists a positive number E,, independent of H, which
has the following property:

Let E be any positive number less than or equal to E,, let § satisfy the condi-
tion U[F)Sm,z, let £=%4,u, and let it be given that for each fixed pair s, j the
series D oo |C.,~,m+1-C,,~m| converges. Then the sequence {gm(x; H; &; §)}
converges, with local uniformity, in a region R which contains S (&), to an ad-
missible solution of the difference equation (74.1).

Proof. This follows from the same arguments as those used to prove
Lemmas 28-32.

85. DEFINITION. Let V be the positive number defined in §68. Let A,
(t=0,---,qg—1) be any ¢ complex numbers. Let £=&, 54, and let a se-
quence of functions {g,,.(x; H; & %)} be defined by (82.1) and (82.2), where
the C.jm are to be determined by the requirements D'g.(§+V; H; &, §) =\,
(t=0,1,: -, q—1).

86. Notation. Let E; be the largest positive number such that
MsW(a)bM7(2E;+ - - - +dES") <1/3. (Cf. §§74 and 77.) Let 7y be the
value which the 7, of Lemma 41 assumes when E=E,; Let E;
=min {Ez, 772/(M3M4) }.

87. Notation. Let 85 be the largest positive number such that the equation
X=08+X/3+bMMsW(a)(X2+ - - - +X9 has a positive solution X; less
than or equal to Es.

88. Notation. Let 773=65/M3.

89. LEMMA 43. If U[N]=ns, then the sequence {ga(x; H; £; §)} defined
in §85 converges, with local uniformity, in a region R which contains S «(£),
to an admissible solution g(x; H; &; §) of the difference equation (74.1). More-
over D'g(§+V; H £, F) =\, (¢=0,1, - - -, gx—1). Also Bu[g(x; H; §;F) | S Es,
and Bu[g(x; H; & F) ] approaches zero with U[N,], uniformly in H.

Proof. Let pu(x; H; & )= 2ieo2 i T0Com(x—5)ies 0, let Gn
=Balgn(x; H; & §)], and let Pn=Bulon(x; H; & §)] Let dox
=max [Bag"H[Ekj(x)];j=1, 2, -, n} Let 8;=MsU[\.]. For the next few
paragraphs we shall drop the arguments H, £, and §.

By Lemma 38 we have P,<MU[D%p.(§+V); (m=0, 1,---)]. But
Do+ V) =N\ (¢t=0, 1, - - -, ¢x—1). Hence Py <87. Hence Go=<ds.

Now pmi1(x) =gms1(x) — NeRign(x). Hence D'pmii(§+ V) =Ni—D'N¢Rign
-(§+7V). Therefore, using Lemma 36, we have

UD*%msr(t + V)] = U] + MiBog[NeRigm(%)].
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Consequently, using Lemma 38, we have
(89.1) Poy1 = 87 + MeM B [NeRign(%) .

But Gm+1§Ba5 [Nnggm(x)]+Pm+1. Hence Gm+1§57+MsBag [Nngg,,.(x) ],
where My is defined in §77. Therefore, using (81.2), we have

(89.2)  Gumir < 81+ MsW () {1064 + bM+(Gon + - - - +Go)}.
Now MW (a)nds,# =1/3, by (81.1). Hence

(89.3)  Gumir = 614 (1/3) Gm + MW (@)bM (G + + - - + Gom).

Now the number X, appearing in §87 is surely greater than 85, which in turn
is not less than &;. Hence Go=X,. But if G.=X), then G, =8+ (1/3)X;
+ MsW(a)bM.(Xi+ - - - +X})=X,. Hence Go<X; (m=0,1, - - - ). Hence,

using (89.1), we see readily that P,=X; (m=0, 1, - - - ). Thus G, <E; and
P.<E; (m=0,1, . -). Hence by Lemmas 35 and 36,
(89~4) U[%] = MUME; < n2.

Now let Agm(x) =gmni1(x) —gm(x), let Apn(x) =pmi1(x) —pm(x), let On
=B [Agn(x)], and let Sp=Bat[Apm(x) . Then Agm(x) =vm(x) +Apm(x), where
Um(x) = Ni(Rigm(x) — Rigm-1(x)). Hence

D!(Apn(§ + V) = D'(Agn(E+ V) — Dom(t+ V)
= 0 - Dtvm(s + V).

Hence U[Dpn(§+ V)] < MiBut[va(x)]. Therefore Sn<MsMiB[vn(x)].
But Qm < Bat [vm(x) |+ Sm. Hence Qm < M3But[vm(x) ]. Therefore

On < MoW () {86.070ms + bMQn-s(2Es + 3Es + - - - + dEs )}

Hence, from §86 and (81.1), it follows that Q.=(2/3)Qn1. Hence Q.
<(2/3)"Qo= (2/3)™(2E3). Now Sp < MsMiB ot [vm(x) | < MeM W (ct) { 86, 21Qms
+OM1Qn1(2Es+3E3+ - - - +dESY)} £(2/3)Qm. Hence S.=<(2/3)"(2Es).
Hence Y m.o Swm converges. But Ap.(x)= D 7., o (Cojumir— Cojm)
- (x—§)7ef*=®. Hence U|[Csjims1— Cojm | £ MsM4S,., by Lemmas 35 and 36.
Thus, for each s, j the series Y m_o | C,,-,,,,+1—C.]~,,.| converges.

This last statement, taken in conjunction with (89.4), allows us to apply
Lemma 42, and to conclude therefore that the sequence {gnm(x; H; £; §)}
converges with local uniformity to an admissiblesolution g(x; H; £; §) of (74.1);
evidently g(x; H; £; §) will be analytic in § «(£), and Bu[g(x; H; §; §) | < Es.
Also D'g(¢+V; H; &; F) =N (¢=0,1, - - -, gz —1).

Now if €* is any positive number, let 6* be the largest positive number
such that the equation X =6*+(1/3) X+ M:W(a)bM; (X?+ - - - +X9) has
a positive solution X* less than or equal to e*. If §; <48*, then 6; < X*, whence
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Go=< X*. But by equation (89.3) we have, if 8;<6*, the inequality Gn41<6*
4+ (1/3)Gn+MsW(a)bM+(Go+ - - - +G2), and therefore, by complete induc-
tion, Gn < X*<¢*. Thus Bu[g(x; H; &; F) ]S ¥, provided 87 <6*. This estab-
lishes the last statement of the lemma.

90. LEMMA 44. If U[N\:]| <03 and £= &4, then there exists at most one ad-
missible solution g(x) of (74.1) such that Ba[g(x) ] < Es and such that D*g((+ V)
=\ (¢t=0,1, - -+, @z—1).

Proof. Assume gi(x) and gu(x) are two admissible solutions of (74.1) such
that Bu[gi(x) ]S Es and Digi(§+ V) =\ (¢=0, 1, - - -, qu—1; ¢=1, 2).

Let u(x) = ga(x) —g1(x).

Then D 1., aru(x+w;) = Riga(x) — Rigi(x). Hence, by Theorem 1, we
have u(x) =v(x, £)+p(x, £) where v(x, £) = N;[Riga(x) — Rigi(x) ], and where
p(x, £) is a function of the form D 7, > % 1C,i(x—§)iehs@d, Let u*
=Buux)], v*=Buxlv(x, §] and p*=Bulo(x, §]. Now Dip@E+V, §)
=D'u((+V, §—Dw(E+V, §=0—Dw(E+V, £). Hence U[Dp((+V, £)]
=U[Dw(E+V, §)]<Mw* Hence p*=<M;Mg*. But u*=<v*+4p*. Hence
u* < (14 M Me)v* = Mew*. Noting §§77 and 81 we see that «*=< MzW(a)
A 2neu*+bMu*(2E;+3E3+ - - - +dES")}. But, noting §§77 and 86, we
see that 2ne,MsW(a) £1/3 and that MsW(a)bM:(2E;+ - - - +dE3 ") <1/3.
Hence »* < (2/3)u*. Hence #*=0. Hence gi1(x) =gs(x).

91. LEMMA 45. Let yo(x) be any admissible solution of (42.1) such that
Yo(+ ©) =0 Let H(x) =yo(x) —0x, and let £s, i be the number defined, in terms
of H(x), in §§77-80. Let Es, ns be the numbers, independent of H, defined in
§886 and 88. Let =4 m. Let N, (¢=0, 1, - - -, gx—1) be any complex numbers
such that U[N,) S7s. Then there exists one, and only one, admissible solution y(x)
of (42.1) such that B.[y(x) —yo(x) | £ Es, such that y(+ ©) =0, and such that
Dy((+ V) =Dtyo(§+ V)+N, (=0, 1, - - -, gx—1). Moreover there exisis a
positive-valued function n4(e) <ms, independent of H(x) and of &, such that
B.:[y(x) —yo(x) ] < e whenever U[N,]<n4(e).

Proof. Let g(x; H; £; §) be the function appearing in the statement of
Lemma 43. Let y(x) =H(x)+or+g(x; H; £; §). Then y(x) satisfies all the re-
quired conditions.

Suppose on the other hand that there are two functions y(x) satisfying all
the stated conditions. Let one be called y:(x), the other y(x). Let g;(x) =y:(x)
—H(x)—o: (¢=1, 2). Then gi(x) is a solution of (74.1) which satisfies the
conditions By [gi(x) | < Es, D'gi(§+V)=A, (¢=0, 1, - - -, g —1) (z=1, 2).
Hence, by Lemma 44, gi(x) =g.(x). Hence y:(x) =y,(x).

The last statement in the lemma follows from the last statement in
Lemma 43.

92. Notation. Let p; be equal to one-half the distance from the number o,
to the set of all finite roots y; other than ¢, of the equation A(4 o, y,, o,
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Ok, * * * ,O'k)=0.

93. LEMMA 46. There exists a positive number £5=£; and a positive number
83 <pr Such that

(a) For each set of complex numbers x, ¥s, = - - , Yo With x in S (£s) and with
Iyz-—akl <03 there is exactly one complex number y, satisfying the equation
A(x, y1, ¥2, * * +, ¥n) =0 and lying in the circle Iyl—akl <px, and

(b) The v, of (a) is given by the formula
(93.1) y1=Pk(x, y2’...’y”)_=__1_. faA(x,{, Ye, 1yn)/a§‘d§_

2w e A(xy g.r Y2, =, yn)

where (° is the positively sensed circle [¢ —akl =pi, and

(c) A(x, &, ¥z, * * +, ¥a) 15 bounded away from zero provided the relations
|§‘—<rk| =pr, XES «(&5), and Iy,»—-akl <63 (j=2, 3, - -, n) are all satisfied.

Proof. This is an immediate consequence of the fact that A(4 =,
ok, + - -, 0x) =0, while A(+ o, 6k, + - -, 01) /01 570.

94. LEMMA 47. Let £= &5 Let y(x) be a solution of (42.1) which is in Co(£)
and satisfies the inequality B a;[y(x) —or] < 8s. Then y(x) =Pi(x, y(x+ws), - - -,
y(x+w,)) throughout S (£).

Proof. This is a corollary of Lemma 46.

95. LEMMA 48. Let £=&s+ V. Let y(x) be a solution of (42.1) which is
analytic in S «(£) and satisfies the inequality Bat|[y(x) —or) <8s. Then there is
an analytic continuation Y(x) of y(x) throughout the sector S o(§— V), which is
given by

(95.1) Y(x) = Pi(x, y(x + w2), -+, ¥(& + wn)) when 2 ESL(E— V).

Proof. When x€ S.(£— V), then x+w;ES () (j=2, - - -, n). (Cf. Lemma
34.) Hence the right-hand member of (95.1) is analytic throughout § .(§— V).
Since this right-hand member coincides with y(x) when x € S4(§) (cf. Lemma
47), it follows that Y(x) as given by (95.1) is an analytic continuation of
y(x) throughout S«(§— V).

96. Notation. Let =&+ V.

97. LEMMA 49. For every positive € there exists a positive dg(€) such that if

xES (&) and y3, - - -, yay ¥4, c -, yi are complex numbers such that

yj—or| <85, |y —oi| S8, and |yj—3| S8(e) (j=2,---,n), then
Pk(x, y2,’ D] yf’l)_P(xi yé,r R y”l,)l Se.

Proof. This is an obvious corollary of Lemma 46.

98. Notation. Let 8;0=min {(1/2)8s, (1/2)8,}. (Cf. §78.)

99. Notation. Let Eq=min {Es, 8o(Es), (1/2)8s}.

100. Notation. Let ns=n4(E:) where 7(e) is the function defined in
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Lemma 45.

101. LeEmMA 50. Let yo(x) be any admissible solution of (42.1) such that
yo(+ ©) =0 Let 15 be the number defined in §100. Let £7,44) be the greatest
lower bound of all real numbers X such that X = & and such that B .x [yo(x) — o]
<o1w. Let £Z V£, and let Ny (¢=0,1, - - -, gx—1) be any set of qi com-
plex numbers such that U[N,| <ns. Then

(a) There exists one and only one admissible solution y(x) of (42.1) such
that y(+ ) =0x, such that Ba[y(x) —yo(x)|<Es and such that Diy(f)
=D'yo(§)+N: (¢=0,1, - - -, gx—1). Moreover,

(b) If €S Ey, then Bu[y(x) —yo(x) ] < € whenever U[N\.]| Snu(e). (Cf. Lemma
45.)

Proof. Let H=H(x)=yo(x) —ox. We have £—V=§&7,,2&4,5. Hence by
Lemma 45 there is an admissible solution y(x) of (42.1) such that
B.: v|[y(x) —yo(x) | Es4, such that D'y(§—V+V)=Dly(—V+TV)+A,,
(¢t=0, 1,---,q—1), and such that y(+ «)=0: A fortiori we have
B [y(x) —y0(x) | S Es. This proves the existence of at least one y(x) of the
required sort.

Suppose now that y(x) is any function of the required sort. Evidently
By [y(x) —01] £ But[y(x) — yo(x) |4 Bat [yo(x) =02 ] S E4+810<85. Hence, by
Lemma 48, y(x) has an analytic continuation Y(x) throughout S.(¢—V)
given by

(101.1) Y(x) = Pi(x, y(x + @), - - -, y(x + wa)),

and also ¥¢(x) has an analytic continuation Y,(x) throughout S.(¢—7V)
given by

(101.2) Yo(x) = Pi(x, yo(x + w2), - - -, yo(2 + wa)).

Now if xES.((—V), then x+4w;ES.¢) (=2,:--, n). Hence, if
X ESu(E— V), then | y(x+w;) —ox| S| y(x+w;) —yo(x+w)) | + | (yo(x+w;) —ou|
SEi+810=(1/2)854(1/2)85=0s. Also | yo(x+w;) —ar| <(1/2)8sand | y(x+w;)
—yo(x+w,~)| <E;<6y(E;). Hence, by Lemma 49 and equations (101.1) and
(101.2), we have | ¥(x) — Yo(x)| SE; if xE8a(§— V). Thus Yo(x), ¥(x) are
admissible solutions of (42.1) with Ba;_v[V(x) — Yo(x) | £E; and D'V (§—V
+V)=DYo((—V+V)+N (¢=0, 1, 2, - -). Since £—V=&4,n, it follows
from Lemma 45 that ¥ (x) is unique. Hence y(x) is unique.

Statement (b) follows readily from the last statement of Lemma 45.

Part VII. A metric for the space G;.

102. Notation. Let y(x) be any function in Gy. By u[y(x) | will be meant the
greatest lower bound of all positive numbers X such that X =& (cf. §§96, 93)
and such that B.x[y(x)—o:] <80 (cf. §98). (In other notation, u[y(x)]
=§£7,9(), as defined in §101.)

103. DEFINITION. Let y1(x), y2(x) be any two functions in Gi. Let X’
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=max {p[n(x)], uly:(x)]}. By the step from yi(x) to y:(x), written
S[y(x), 32(x)], will be meant |u[ys(x) | —p [3:1(2) ]| +Bax: [32(2) =3:(x) ]

104. DEFINITION. Let y:1(x), y2(x) be any two functions in G;. Then by
the distance from y,(x) to y:(x), written d[y.(x), y2(x)], is meant the greatest
lower bound of all numbers D _N_; S[fm(x), fms1(x)] where N is an arbitrary
positive integer and the f.(x) (m =0, - - -, N+1) are any functions in Gy
such that fo(x) =31(x) and fyi(x) =ya(x).

105. LEMMA 51. The function d[yi(x), y2(x)] is a metric; that is to say
(@) d[n(x), y2(x) ] =d[r2(x), 3:(x) ],

(b) dy(x), y:(x)] 20,

(©) dn(x), y2(x)]1=0 if and only if y:1(x) =y(x),

@) dy(x), y2(2) ] Sd[3:(x), y3(x) ]+ d[ys(x), y2(x) ].

Proof. (a), (b), (d), and the first part of (c) are obvious. Also it is easy to
see that if d[y(x), y:(x)]<e, then Ba x*i[ya(x)—m(x)]<e, where X*
=u[y1(x)]. This obviously implies the second part of (c).

106. LEMMA 52. Let yo(x) be any function belonging to Cr. Let X be any
non-negative real number such that yo(x) is in (Ca(X). Then if { y,,.(x)}
(m=1, 2, - - -) is any sequence of functions belonging to Ty such that the se-
quence {Bax [yn(x) —vo(x)]} is a null sequence, then the sequence {d[ym(x),
yo(x) ]} is a null sequence.

Proof. By Lemma 48 we have the result that if £ is any real number such
that £=£5+ V, then any element y(x) of G, can be continued analytically
throughout the region § .(£— V) by means of the equation

(106.1) y(x) = Pi(x, y(x + w3), - - =, y(x + wa)),

provided y(x) is analytic in Sa(£) and B [y(x) —or] < 8s. Similarly yo(x) can
be continued analytically throughout the region S «(¢— V) by means of the
equation

(106.2) yo(%) = Pi(x, yo(x + w2), - -+, yo(x + @a)),

provided £ 2 £;+ V and provided yo(x) is analytic in Sa(§) with B [yo(x) —a:]
<és.

Suppose first that X <u[yo(x)]=G. Then the sequence {Bas[yo(x)
— y,,.(x)]} is a null sequence for some G’ less than G (namely, for G’ =X).

Suppose on the other hand that X=G. Then X=&=&+V. Also
B.x[yo(x) —0:] £810= (1/2)83<ds. Hence equation (106.2) can be applied
with £=X. Also, there exists a positive m; such that if m=m;, then
Box [ym(x) —0x], which is not greater than B..x[ym(x) —yo(x) ]+ Bax [ye(x)
—o1], is less than (1/2)8s+(1/2)ds=0s. Hence, if m =m, equation (106.1)
can be applied, with { =X and y(x) =ya(x). Then by Lemma 49 the sequence
{Bax—v[yn(x) —ye(x)]} (m=m,) is a null sequence.
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Suppose now that X—V<G. Then the sequence B¢ [ym(x) —y(x)]
(m =m,) is a null sequence for some G’ less than G (namely, for G'=X—-7T).

If, on the other hand, X — V=G, then the discussion of the preceding
paragraphs, with X replaced by X—V, can be applied to the sequence
{ym(x); mgml} to show that for some ms=m; the sequence { Ba,x—av [ym(x)
—9o(x)]} (m=ms) is a null sequence. A finite number of repetitions of this
argument leads to the result that there exists a positive integer m* such that
if m=m*, the function ¥,(x) can be continued analytically over a sector
Sa(£) with £<u[yo(x)], and for some G’ less than G the sequence {Bag/[ym(x)
—9yo(x)]; m=m*} is a null sequence.

Now if £ is any number greater than G, we have B [yo(x) —ox] <810
(by definition of u[yo(x)]). Hence if m is large, Ba:[ym(x) —0x]<810. Hence,
since £> £, we have u[yn(x) | £ if m is large. Thus

(106.3) lim sup u[yn(x)] £G.

Let F=lim inf u[yn(x)]. Suppose that F<G. Let M be an infinite se-
quence of positive integers such that
(106.4) F= lim puly.(2)].

m—o,meEIN

Let H be a number which is less than G but which is greater than G’ and
greater than F. Then if m is large, u[yn(x) | <H (mEM). This implies that
if m is large, Bou[ym(x) —0x] <810 (mEM). But the sequence {Bau[yn(x)
—9yo(x)]; m=m*} is a null sequence. Hence Bax[yo(x) —ai] <810. Hence if ¢
is any number greater than H, Ba[yo(x) —0+] <810. (Cf. Lemma 6.) This last
inequality, together with the fact that H>&g (since F= &), leads to the con-
clusion that u[yo(x) ] < H. This contradiction to the definition of G forces us
to reject the possibility that F<G.

Hence F=G. This, together with (106.3), shows that lim u[y.(x)] exists
and equals w[ys(x)]. This, taken in conjunction with the fact that
lim B.g[ym(x) —yo(x) ] is zero, shows that {S [yo(x), ¥m(x)]} is a null sequence,
whence {d[yo(x), ym(x)]} is a null sequence.

107. LEMMA 53. The set Ty is a connected space, in the metric d[y1, v:).

Proof. Let 8*=min {(1/2)8s, (1/2)Es} (cf. §§78 and 86). Let y1(x), y2(x)
be any two functions belonging to Gi. Let £ be any number such that £=§&;,
such that Bu[yi(x) —0:] £(1/2)8s, such that B[ys(x) —yi(x)] <Es; and
such that |D‘ [y2(£4+ V) — (£ + V)]I <74(6*) (cf. Lemma 45) (¢t=0,1, - - -,
gr—1). (Obviously such a £ exists since every derivative of ys(x) —y1(x) tends
to zero as x becomes positively infinite.)

Let N\,=D'y(§+V)—Dy((+V) (t=0, 1,---,q—1). Then U[\,]
<n4(6%*) <93 Let y(x, ) (0=<r=1) be that function, which by Lemma 45 is
unique, which belongs to G, and satisfies the relations Ba:[y(x, 7) —y1(x)]
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<E;, Dy(¢+V,r)=D'y:1(§+ V) 47\ (¢=0,1, - - -, ¢x—1). Evidently y(x, 0)
=y(x) and y(x, 1) =y,(x). Now Ul[r ] £14(8*). Hence Bu[y(x, ) —y1(x)]
<&*. This implies that if 0<7=<1and 0<s=<1, then Bu[y(x, r) —y(x, s) | S Es.
Also it implies that Bae[y(x, 7) —y1(x) ] £(1/2)8s. But Bag[y(x) —or] S (1/2)8s.
Hence Bo[y(x, #) —01] <8, Hence if 7 is any number in [0, 1] and if {ra}
is a sequence of numbers in [0, 1] converging to r, it follows that since
{U [Diy(E+V, 7m) —Dy(E+V, r)]} is evidently a null sequence, the last
statement of Lemma 45 can be applied, with y,(x) replaced by y(x, 7), to
show that B.:[y(x, ) —¥(x, #) ] is a null sequence. Hence by Lemma 52 the
sequence {d[y(x, .), ¥(x, r)]k} is a null sequence. Hence the continuum of
functions {y(x, 7); 0§r§1} is a continuous curve in the space Gi. Hence
Gr is a connected space.

108. LEMMA 54. Gy is separable.

Proof. Let W, be the subset of Gy, consisting of all functions y(x) belonging
to Gy and having the property that there exists an integer V (depending upon
y(x)) such that the numbers D!y(N) are all rational-complex num-
bers (¢=0, 1,---,q—1), such that N2u[y(x)]+V, and such that
By [y(x) —0x] =(1/2)E.. Now there exists for each choice of N, and each
choice of rational-complex numbers D!y(N), at most one function y(x) with
the properties described. For if y,(x) is one such, and y(x) is another, then
By [y(x) —yo(x) | £E4, and therefore Lemma 50 can be applied with A\;=0
(t=0,1, - - -, gx—1) to show that y(x) =yo(x). Hence @, is countable.

Now if yo(x) is any function belonging to T, let a positive integer
N be chosen, greater than u[yo(x)]+V, and sufficiently large so that
By [yo(x) —ar] <(1/2)E4. Let {ym(x)} (m=1, 2,---) be a sequence of
functions belonging to Gy, such that By [ym(x) —ye(x) ] S E4, and such that
{U[D‘ym(N)—D‘yo(N)]} is a null sequence, and such that D'y,.(N) is ra-
tional (t=0, 1,---,q—1; m=1, 2,---). Then {Bay[ym(x)—y0(x)]}
is a null sequence (by Lemma 50b), and therefore, by Lemma 52,
{d[y,,.(x), yo(x)]} is a null sequence. But d[ym(x), yo(x)]= lu[ym(x)]
—p[yo(x)]| and therefore wlyn(x)]+ V<N if m is large. Also, since
{Ban [ym(x) —y0(x)]} is a null sequence, it follows that if m is large,
Bon[ym(x) —01] <E4/2. Thus if m is large, ym(x) EW;. Since d[y.(x), yo(x) ]
is a null sequence, @, is dense in Gy.

Thus Ty is separable.

109. LEMMA 55. Gy s locally homeomorphic with g-dimensional complex
Euclidean space.

Proof. Let y,(x) belong to Gy. Let X =p[yo(x)]. If {yn(x)} is any sequence
of functions in Gy such that { B xiv[¥m(x) —¥e(x)]} is a null sequence, then
{d[ym(x), yo(x) ]} is a null sequence, by Lemma 52. Hence {u[y,,,(x)]
—ulyo(x)]} is a null sequence. Hence if m is large, u[ym(x)] <X+ V. Thus
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there exists a positive number Ej;, which we shall take less than or equal to
(1/2)E;, such that if y(x) is in Gr and if Ba,xiv[y(x) —yo(x)] <Es, then
uly(x)] <X+ V. (Es is, at least at first sight, dependent upon yo(x).)

Now Ba,X+V [yo(x) —0'1;] _S_ng (1/2)34.

Let ns=74(Es). Let € be the set consisting of all gi-tuples of complex

numbers {)\t; t=0,1, .- -, qk—l} such that U[)\,]<716. Let N be the set in
Gy consisting of all functions in G, for which B, x4v [y(x) —yo(x) ] < Es, and
for which the set {D![y(X+2V)—yo(X+2V)]; t=0,1,---,@—1)} is in

€. Let that mapping from N to € be defined which maps each element y(x)
of N into the set {D‘[y(X—i—Z V) —yo(X+2V) ]} belonging to €. By Lemma
45 the mapping is one-to-one.

If y(x) is in N, then Ba x4v[y(x) —yo(x)] <Es. Hence u[y(x)] <X+ V.
This implies that for every y(x) in N we have

(109.1) X+ V> biyiermon

Now N is an open set in ;. For if y(x) is any element of N, and if { Ym () }
is any sequence of elements of G such that {d[y.(x), ¥(x)]} is a null se-
quence, then {u[y.(x)]—nr[y(®)]} is a null sequence, so that if m is large,
[yn(x) ] <X+ V. Consequently, since p[y(x) ] <X+ V and {d[ya(x), ¥(x)]}
is a null sequence, it follows that { Ba,x4v[yn(x) —3(x)]} is a null sequence.
Hence if m is large, {D![yn(X+2V)—yi(X+2V)]} is in €. Also, since
{ Ba,x1+v [¥m(x) —y(x) ]} is a null sequence and since Ba,x+v [y(x) —yo(x) ] < Es,
we see that if m is large, then B, x4v [ym(x) — 0 (x) ] < Es. Hence if m is large,
ym(x) is in N. Hence N is open.

Now the mapping from N to € is continuous. For if { Ym () } is a sequence
of functions in N converging to a function y(x) in N, then, since u[f(x)]
<X+ 7V for every f(x) in N, we conclude that {B,.,;Hv [ym(x) —y(x)]} is a
null sequence. Hence {U[D‘ [ym(X42V), y(X+2 V)]]} is a null sequence.
Hence the point of € corresponding to y.(x) tends, as m becomes infinite, to
the point of € corresponding to y(x).

Finally, the mapping from € to N is continuous. For if { {)\,,.t;
t=0,1, -, qk—l};m=1, 2, - } is a sequence of elements of € tending
to the element {)\t; t=0,1, .-, qk—l} of € and if y(x), yn(x) are the ele-
ments of N corresponding to {X;}, {An:} respectively, then { U[D![yn(X+2V)
—y(X+2 V)]]} is a null sequence, and therefore we see, using Lemma 45
with y(x) replaced by y(x), and y(x) replaced by y.(x), and with é=X4V
(note (109.1)), that {Ba xiv[ym(x) —9(x)]} is a null sequence. Hence, by
Lemma 52, {d [ym(x), ¥(x) ]} is a null sequence. Thus the mapping from € to
N is continuous.

110. LEMMA 56. Theorem 2 is valid.

Proof. This follows immediately from Lemmas 21, 50a, 51, 53, 54, and 55.
111. REMARK. With very slight changes it is possible to introduce in a
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natural way a metric for the whole set G, in terms of which the sets G
become precisely the connected components of G, and as before the Ty
~ become ¢i-dimensional manifolds.

Part VIII. Examples.

112. ExampLE 1.

1+ )y @) y(x + 1) — 17y*(x + 1)
+ 15(1 4+ 22 log x)y(x + 1) + y(x) — 2= = 0.

Here n=2,and A(x, 1, y2) = (1 +x"1) 93y, — 1792+ 15(1 +x2 log x)y:+y1—xe=
so that

(112.1)

A(+ », 1, 32) = yfyz - 17y: + 15y2 4+ 3,
whence
J(o) = o® — 17¢% 4 160,

and therefore ¢=3, and ¢,=0, d2=1, d3=16. The corresponding exponential
polynomials are f1(z) =1-+15¢7, f2(2) =3 — 18¢?, f3(2) =513 —273¢>. It is readily
seen, therefore, on the basis of Theorem 2, that if, for instance, 8=7/36,
then the parameter numbers are given by ¢, =10, ¢2=7, and g;=0. Similarly
if B=m/12, then ¢:=4, ¢2=3, and ¢;=0. If B=x/6, then ¢ =2, g2=1, and
¢;=0. If =7/3, then ¢:=0, g2=1, and ¢;=0.

113. ExampLE II.

(113.1)  16y*(x + 1) — 8y(x)y(x + 1) + y*(x) + 4y(x + 1) — 2y(x) = 0.

This example is similar to Example I. However, it has the very special prop-
erty that it is possible to determine the set of all analytic solutions (admissible
or not) explicitly, and to see exactly how the admissible solutions fit into the
totality of all solutions. It is possible also to see that the uniqueness of the
admissible solution satisfying assigned initial conditions, as described in
Theorem 2, is a uniqueness which is strictly local; in general there will be in
the set of all admissible solutions of (113.1), with limit ¢x at 4 «, exactly two
functions satisfying a given set of ¢ assigned initial conditions.

We have n=2, and A(x, y1, y2) =A(+, 1, y2) =163 —8y1y2+i+4y:
—2y,. Hence J(0)=902+420. Hence ¢=2, and ¢,=0, while o;=—2/9.
For the auxiliary exponential polynomials we have fi(z)=—2-4e* f:(2)
=(1+2¢*)(—2/3). Thus, on the basis of Theorem 2, if, for example, w/2
=B>arc cot (w/log 2), then it is easy to see that ¢1=1 and ¢:=0, while if
arc cot (r/log 2) =B >arc cot (2r/log 2), then ¢1=1 and ¢g:=2, and if arc
cot (2w /log 2) =B >arc cot (3n/log 2), then ¢1=3 and g2=2.

Now (113.1) can be solved explicitly by the following device. We note that
(113.1) is equivalent to
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(113.2) y(x) = [4y(x+ 1) — y@) ]2+ [49(x + 1) — y(x)].

If in (113.2), multiplied by 4, we replace x by x+1, and if we subtract (113.2)
from this resulting equation, we get

4y(z+ 1) — y(2) = 4[4y(z + 2) — y(x + D]’
+ 4[4y(x +2) — y(= + 1]
- [4y=+ 1) - y@ 1
— [4y(x 4+ 1) — y(x)).
If we set v(x) =4y(x+1) —y(x), we see that (113.3) can be written

(113.3)

(113.4) o(x) = 4v2(x + 1) + 4o(x + 1) — 22(x) — v(x),
whence

(113.5) [o(x) + 1]2 = [20(x + 1) + 1]3,

so that either

(113.6a) o(x) +1=20(x+ 1)+ 1

or

(113.6b) 2x) + 1= — 20(x+ 1) — 1.

The totality of analytic solutions of (113.6a) is
(113.7a) v(x) = Ci(x)2-2,

where Ci(x) is an arbitrary analytic function of period 1. From (113.7a) we
we have 4y(x+41) —y(x) = Ci(x)2~*, whence

(113.8a) y(x) = C1(2)27* + Ca(x)47%,

where Ca(x) is an analytic function of period 1. If (113.8a) is substituted into
(113.2), it is seen at once that y(x) as given by (113.8a) is a solution of (113.2)
if and only if Ca(x) = C3(x). Thus (113.6a) leads to the set of solutions

(113.9a) y(x) = Ci(x)2”" + Ci(x)4 ",

where Ci(x) is an arbitrary analytic function of period 1.

Similarly (113.6b) leads to the set of solutions
(113.9b)  3(x) = (—2/9) + (—=1/3)e" Ca(x)2 "+ ¢ Co(x)a™",
where C;(x) is an arbitrary analytic function of period 1. Thus the totality of
analytic solutions of (113.1) is given by the union of the families of functions
(113.9a) and (113.9b). Consequently it is easy to see, by examination of
(113.9a) and (113.9b), that when w/2 =8> arc cot (w/log 2) the set G, is the
set
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(113.10) y(x) = C2-= + C*4—,

where C is any arbitrary constant, while B. is the set consisting of the unique
function y(x)= —2/9. When arc cot (w/log 2) =8>arc cot (2w/log 2), G, is
the set (113.10) while G; is the set

y(x) = (=2/9) + (—1/3)(K1e” " + Kse )2
(113.11) 2 2riz 2 —2xiz —z
+ (Kle + 2K:1K: + Kse )4 ’
where Kjand K. are arbitrary constants. When arc cot (27/log 2) =8
>arc cot (3w/log 2), G is the set

y(x) = (Ll + L282riz + Lae—Zri:c)Z—z

(113.12) , .
+ (Ll _I,_ L282‘nz + Lae—2153)24—-z’

where L;, L;, and L; are arbitrary constants, and G, is the set (113.11).

To verify the assertion made at the beginning of this example, that the
uniqueness is only local, let us consider the case of Gy when B=w/2. If { is
any positive number and I is any complex number different from (—1/4)
there are clearly fwo functions y(x) in the set (113.10) such that y(§)=1.
Similar remarks apply in this example to all those cases for which the number
of parameters is different from zero.
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