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Part I. Introduction.

1. Notation. Throughout the paper ß will represent a fixed positive num-

ber not exceeding 7r/2.

2. Notation. If y is any positive number not exceeding 7r/2, and if £ is any

real number, then by S 7(£) is meant the sector {xjxf^C, |arg(x — §) | <t}(1)-

3. Definition. A function 0(x) will be called admissible if it has the fol-

lowing two properties :

(3.1) for every positive number y less than ß there is a positive number £

such that 0(x) is analytic and bounded in S 7(£), and

(3.2) 0(x) approaches a limit as x becomes infinite on the positive real

axis.

4. Introductory remarks on the nature of the problem. The difference equa-

tions to be studied in this paper are algebraic in the unknown function and its

translations, and have coefficients which are admissible functions of x. Under

the hypothesis that the constants approached by the coefficients (as x be-

comes infinite on the positive real axis) do not satisfy certain equations, a

complete description is given of the totality 15 of all those solutions of the dif-

ference equations, which, like the coefficients, are admissible functions of x.

The zeros of a certain auxiliary polynomial being <n, • • • , o-c, it is shown

that 15 is the union of finitely many disjoint subsets 13x, • ■ • , 15c, all the

solutions in 15* tending to o-* on the positive real axis (k = 1, 2, • • • , c). Each

of the sets 15* is a finite-parameter family of functions, the number of param-

eters, qk, being the number of zeros of a certain auxiliary exponential poly-

nomial which lie in a certain sector of the complex plane. It may be remarked

that 13 is readily seen to be identical with the set of all those solutions which

satisfy only the single condition (3.1).

A precise statement of the result is given in Theorem 2 of §42, below.

The method of attack is a method of successive approximations, each ap-

proximation being obtained from the preceding by means of the solving of a

linear nonhomogeneous difference equation with constant coefficients. The

formula which is used to solve this linear difference equation is a slight modi-

fication of a formula obtained by the author in an earlier paper (2).

Presented to the Society, April 30, 1949; received by the editors April 20, 1949.
(') Throughout this paper it is understood that for every nonzero x the number arg x is

chosen to satisfy the inequalities — w <arg ïSt.

(2) Linear difference equations and exponential polynomials, Trans. Amer. Math. Soc. vol.

64 (1948) pp. 439-466; this paper will hereinafter be designated as [L].
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The concept of a finite-parameter family of functions is made precise by

the introduction of a suitable metric for the function-space 15*, a metric in

terms of which 15* is a manifold (3) of qk complex dimensions.

The results of this paper are in a certain sense continuations of results

which the author obtained in an earlier paper(4). Roughly speaking, the

hypothesis of [P] required that a certain auxiliary exponential polynomial

never vanish on the nonpositive real axis ; the present paper permits this ex-

ponential polynomial to vanish at any points except at 0 and at — °o. How-

ever, in the present paper the coefficients and solutions are required to be

"admissible," instead of "almost constant" as in [P]; this is a much weaker

restriction.

A step in the proof of Theorem 2 is Theorem 1, in §41, below. This de-

scribes, in an explicit manner, the totality of all admissible solutions of the

general linear difference equation 12*-1 -4¿y(x+coy) =0(x) with constant A,

and admissible 0(x), under the assumptions ^4x^0,   12*-1 Aj7¿0.

Part II. Preliminaries on exponential polynomials.

5. Notations. If y Is any positive number not exceeding ß, then by the

symbol J\L, will be meant the complement of the sector {x; x^O; | arg x| <y

+7r/2}. If in addition £ is any real number, then by (??(£) will be mean the

class of all functions which are analytic and bounded in the sector ST(£).

6. Lemma . Let n be a positive number greater than unity. Let coi = 0, and

let a», ' • • , co„ be any distinct complex numbers in Ss(0). Let Ai, • • ■, An be

any complex numbers such that Ai^O, and such that 12"-1 A¡5¿0. Let f(z) be

the exponential polynomial 12"-i Aje">z. Let ft, ft, • • • be the distinct zeros of

f(z). Let ô be any positive number. Let Z($) be the set of all points x such that

the distance of x from the set {ft, ft, ■ ■ • } is less than b. Let Çi(b), Ç2(8), • • • be
the connected components of Z(S). Then there are positive numbers ô0 and C, and a

non-negative integer p, and a sequence of real numbers yp+i. yP+2, • • ■ in the

open interval (—ß, ß), there being only finitely many distinct members in the

set {yp+i, Yjm-2, • • • }, such that if ô < 50, and if the ft and the Ç,(5) are suitably
numbered, then:

(a) ft, • • • , ft are precisely the zeros of f(z) in Jv^;

(b) There are at most n — \ distinct points ft in Çs(h) (s=p+\, p + 2, • ■ •);

(c) ft is the only zero of f(z) in ÇB(ô) (s = í, 2, • • • , p);

(à) The positively sensed complete boundary Js(o) of Ç„(o) (s = p+l,

p + 2, • • • ) is of length not more than 2ir(n — l)h.

(e)  There exists a positive number \(b) such that \f(z) | >X(ô) for all z on

J,(h) (s=p+\,p+2, • • ■);

(') That is, a connected separable metí ic space which is locally homeomorphic with gt-di-

mensional complex Euclidean space. 15* can be easily seen to be a complete space as well.

(4) Principal solutions of difference equations, Amer. J. Math. vol. 69 (1947) pp. 717-757;

this paper will hereinafter be designated as [P].
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(f) 9î(z) cos y, —$>(z) sin 7,>Cs if z is on J,(b) and s>p(6).

(g) \z\ >Cs if z is on J.(ô) (s = i, 2, • • • ).

Proof. This lemma follows immediately from [L: Theorem lc, Id, le,

Lemma 4a, 4d, and Lemma la]. The condition that the A¡ be all different

from zero [L: notation (7), p. 440] is not necessarily fulfilled under the hy-

potheses of the present lemma, but it is readily seen that the A y which are

zero can be ignored in applying the results of [L]. Also, it may be noted that

the number N defined in [L: notation 20, p. 441 ] is necessarily less than or

equal to n. Finally, it may be observed that the set >i(0, ß) defined in [L:

notation 26, p. 441 ] is precisely the set ty of the present paper.

7. Notation. We make a particular choice of the numbers 5o, 8, C, 7P+i,

Yjj+2, • • • , X(ô) satisfying the conditions of Lemma 1, and shall retain this

choice throughout this paper. With this in mind, we shall not exhibit in our

subsequent notation the fact that various functions may depend upon this

choice, as well as upon variables appearing explicitly as arguments.

8. Notation. Let ßi = \.u.b. {\ arg ui,], \ym\, |argft,| —ir/2;j = 2, •••,«;

m=p + l,p + 2, ■ ■ ■ }.

9. Lemma 2. ßi<ß.

Proof. Since the numbers arg u,- and ym are finite in number and lie in the

open interval (—ß, ß), it suffices to prove that l.u.b. {|arg ft,| ; m=p+l,

p + 2, • • • } <ß+ir/2. By [L: Lemma 4e], with i!7i = 0, there is a positive

number 6 less than ß such that ft, ■ • • , ft are precisely all the zeros of f(z) in

>{e. This implies that | arg ft»| <0+7r/2 (m=p+l, p+2, • • •). Hence l.u.b.

{\argfm\;m=p + l,p+2, • • • } S0+7r/2</3+ir/2.
10. Notation. It will be convenient to choose, once for all, a positive num-

ber a greater than ßu and less than ß. This choice we make now. In the inter-

ests of definiteness, we define a = (ßi+ß)/2.

11. Lemma 3. The zeros of f(z) which lie in J\T.a are precisely ft, ■ • -, ft.

Proof. This follows at once from the definitions of a and J^a.

Part III. Preliminaries on admissible functions.

12. Notation. If 0(x) is any function which is in (^T(£), then by By¡ [0(x) ] is

meant l.u.b. {|0(x) | ; x£S T(£)}. If 0(x) is any function which is analytic and

bounded on the half-line {x; x>£}, then bv Boí[0(x)] is meant l.u.b.

{|0(x)|;x>£}.

13. Definition. A function 0(x) will be called remotely bounded if it

satisfies condition (3.1).

14. Notation. If g(x, h, ■ ■ ■ , tm) is a function of the indicated arguments

which for a fixed set of values of h, ■ ■ ■ , tm tends to a limit as x becomes

infinite on the positive real axis, then by g(+ <x>, ti, ■ ■ ■ , tm) is meant that

limit.

(6) 8Î and 3 will mean real and imaginary part, respectively.
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15. Lemma 4. If g(x) is admissible, then for every positive y less than ß and

for every positive e there is a positive £, depending upon y and e, such that

By([g(x)-g(+oo)]<e.

Proof. This lemma follows readily from a classic theorem of Lindelöf(6).

16. Lemma 5. If g(x) is admissible, and if y<ß, and if £ is sufficiently
large so that g(x) is in (3y(£), then g(x)— g(+ °°) tends to zero as x becomes

infinite in the sector S t(£) •

Proof. Let 6 = (ß+y)/2. If i?=|x-£|, and x is inST(£), then xGêe(X),

where X=£+i? sin (6—y) csc 6. Since X becomes infinite with R, and since

0<ß, the lemma now follows from Lemma 4.

17. Lemma 6. If g(x) is admissible, and if y <ß, and if g(x) is in (3y(£),
then either g(x)=g(+=°), or else Byx[g(x) — g( + »)] decreases monotonically

(in the strict sense) as X increases (X ^ £).

Proof. Let £^Xx<X2. Suppose g(x)^g( + »). Then S7xs[g(x)-g( + <*>)]

>0. Also, by Lemma 5, g(x) — g(+ °°) tends to zero as x becomes infinite

S y(Xi). This implies that there is a point xo in the closed envelope of S y(X2)

such that |g(xo) — g(+ °°)| = Byx2[g(x) — g(+ =°)]. Hence, since g(x) is not a

constant (by virtue of the assumption g(x)f¿g(+ <»)), there is a point x in

every neighborhood of Xo at which |g(x) — g(+ °o)| > Byx2[g(x) — g(+ °o)].This

implies that ByXl[g(x) - g( + <x)]>Byx2[g(x) ~g( + »)]•

18. Notation. Throughout this paper the symbol D will be used to repre-

sent the operation of differentiation with respect to x. D*0(xo) will mean, as

usual, the &th derivative of 0(x), evaluated at x = x0.

19. Lemma 7. If g(x) is admissible, then Dg(x) is admissible.

Proof. This is an obvious consequence of the Cauchy integral formula for

the first derivative of g(x).

20. Lemma 8. If j is any non-negative integer, and if fi, • • • , ft, are the

numbers of Lemma la, then x'ei,x is admissible (s = \, 2, • ■ ■ , p), and its limit

at + co is zero. Moreover, for every positive number y less than ß there is a positive

number Gjs(y) such that ß7o[x'e*'8*] <GJ8(y).

Proof. Since ft is not zero (by virtue of the condition 12*-iAj^0), and

since it is in K[ß, we have9î(ft) cos 7+ | 3Kft)j sinY<0. But if x is in S7(0),

(') Cf., for example, Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936, p. 44.

The hypotheses of Lemma 4 imply information adequate for the application of the cited

theorem, if transformations log z = (w/6) log (x—X) and log z = (—ir/fl) log (x—X) are made,

with 0 = (ß+Y)/2and with X sufficiently large so that g(x) is bounded in the sector |arg (x—X)\

<B.



136 WALTER STRODT [January

then 9î(ftx) ^ | x| [9î(ft) cos 7+1 3i(ft) | sin 7]. From this the lemma follows
immediately.

Part IV. Preliminaries on certain linear difference operators and equa-

tions.

21. Remark. The formulas used in this part are motivated by [L: equa-

tions 42-45].

22. Notations. Using the notations of §6, let F(z) =l//(z), and let zm = ei~'m

(m=p+i,p+2, ..'.)•

23. Definition. Using the notations of §§6 and 22, and letting £ be any

real non-negative number, let the operators L¡¡ (s = l, 2, • • • , p) and the

operators Km (m=p+\, p + 2, ■ • ■ ) be defined by the following equations,

which are to be valid for every function 0(x) for which they are meaningful:

(23.1) 7£80(x) =   f   (2-n-i)-1 f      eT^-"><t>(u)F(T)dTdu

and

(23.2) Kmd>(x) = (2TÍ)-1 f       7(7)7"! f   e-»*r»TD<b(x + Pzm)zmdPdT
Jj„w Jo

where the contour of integration for u in (23.1) is the straight line segment

[£, 3î(x)] followed by the straight line segment [9î(x), x].

24. Notation. Let J, be the order of multiplicity of ft as a zero of f(z), and

\etP,(z) = 12if-iBsj(z-Çs)-ibethepr'mcipa\partoi F(z) atÇs(s = l,2, ■ ■ ■ ,p).

25. Lemma 9. Let y be a positive number less than ß. Let £ be any non-negative

number, and let <p(x) be any function which is in C?7(£). Then

(a) Lj„0(x) is in Qy(i) (i*l, 2, • ■ • , p), and moreover,

(b) There exists a positive number Vs(y) independent of 0(x), and of £,

such that 57£[L£s0(x)] = Vs(y)Byi[(p(x)] (s = i, 2, ■ ■ ■ , p), and, finally,

(c) There exist functions vs(X, 7), defined for positive X, for

s£(l,2, • • • , p), and for positive y inferior to ß, and functions Uu(y), U2s(y),

defined for positive y inferior to ß, such that r¡s(X, y) tends to zero as X becomes

infinite, and such that if £, X\, X2 is any triple of real numbers satisfying the

relations 0 5= £ < Xi < X2, and ifg(x) is any function which is analytic and bounded

on the half-line [x; x>£], and which is in Cy(X2), then the functions LiSg(x)

are in Qy(X2), and

ByXí[L(sg(x)] á 17.ÍX, - Xi, y)Bodg(x)] + Uu(y)BoXl[g(x)\

+ Ui,(y)Byx2[g(x)].

Proof. Let -7C(7)=max {$R(ft) cos 7+| 3(ft)| sin y; 5 = 1, 2, • • • , p\.

Since ft, • • -, ft are nonzero complex numbers belonging to Jiß, it is evident

thatJC(7)>0.



1950] NONLINEAR DIFFERENCE EQUATIONS 137

Now let 0(x) be any function which is in (?7(£).

When x is in S7(£), it is permissible, in the calculation of L£,0(x), to re-

place the polygonal contour [£, dt(x) ] + [9î(x), x] by the straight line contour

[£, x]. Let this replacement be made. As an immediate consequence of the

calculus of residues we have

LtMx) = Í,Bti[(j- l)!]-1/^*)

where Isj(x)=fx^>(u)e^{x-u)(x-u)'-1du. Let x=£+i?e<9, with R>0 and

with |0|<7. Then u=£+peie, with O^p^R. Hence 78J(x) =/o,0(£+peifl)

exp [U(R-p)eiS](R-Py-lei'edp. Now $R[fte*] ^ -K(y). Hence \l.j(x)\

= Byt[0(x)] ■föe-^'t'-'dt = Byi[0(x) ] [K(y)]~'(j-l)!. Hence Byi[7£s0(x)]

^Vt(y)By([<p(x)], where V,(y) = IZJU \B„-\ [K(y)]~'. This establishes (a)
and (b).

Now let £, Xi, X2 be any real numbers such that 0¿!;<Xi<X2. Let 7 be

any positive number less than ß. Let g(x) be any function which is analytic

and bounded on the half-line {x; x>£}, and which is in Qy(X2).

Let -7C(0)=max {i?(ft); s = l, 2, ■ ■ ■ ,p}. Then 7C(0)>0.
Let x be in S7(-X"2). In the calculation of L(Sg(x) we may, and do, replace

the polygonal contour of integration  [£, 3t(x), x] by the polygonal contour

[£, Xi, x].

Then Lisg(x) = £$. 1 bsj(Isji(x) + Isj2(x) + Isi3(x)), where b„- = Bej [(j—1) !]~l,

and 7syi(x) =ffíRej(x, u)du, Is¡2(x) =/|,i?SÍ(x, m)¿m, and 7„y3(x) =Jx2RSj(x, u)du,

with i?8j(x, u) =g(u) exp [ft(x — w)](x — u)1"1, the contours of integration

being straight line segments.

It is easy to see that 7SJi(x)=exp [ft(x — X{)] 12lZl C(j—1, t)(x— Xi)1
•/j'ij.y-^Ji, u)du, where C(j—l, t) is a binomial coefficient. Now x = Xi

+peie, where p>X2-Xi and where \d\ <y. Hence 9î[ft(x-Xi)] =p9î(ftei9)

<-pi¡:(7). Also \RsJ-t(Xi, u)\ áSoí[g(x)]e-x(0,(x'-'')(Xl-M)''-,-l. Hence

J-l p X!

I I.n(x) I = e~"K^12 C(j - 1, ¿)p< j     B0([g(x)]erK^<x'--''>(X1 - uY'^du
(=0 J (

= rfwi;c(i - 1, t)p'Bot[g(x)](j - t - 1)1 [£(0)]-'H
i-0

Hence

(25.1) I 7„i(x) I S 5,(X2 - Zi, 7)ßo{[g(x)J,

where 5y(X, 7) = l.u.b. {e~^> ££¡ C(/-l, t)p'(j-t-l)l[K(Q)]-«■'; p>X}.
In like manner one can show that

(25.2) |7si2(x)| =g Fî^yÎBoxx[«(*)],

where Vn(y) = l.u.b. {<r*«' J£i C(j-1, flr*-»-1 [ä'(0) h«-1*!; r > 0}, and that
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(25.3) I /.„(*) I g (Byx2[g(x)])-([K(y)]-'(j - 1)!).

Relation (25.0) now follows from (25.1, 2, 3), the quantities rj,(X, y), Uu(y),

U2s(y) being obvious.

26. Lemma 10. Let a be the number defined in §10. Let y be any number such

that a^y<ß- Let X be any non-negative real number, and let <p(x) be any

function which is analytic inSy(X) and which has a bounded first derivative in

Sy(X). Then 7Cm0(x) is bounded inSy(X) (m=p + l, p+2, ■ • •). Moreover,

there is a positive number Vo independent of y, X, <p(x), and m such that

(26.1) Byx[Km<b(x)] ^ m-2VoByx[D<b(x)].

Proof. Let p be any non-negative number. Let T be any point on Jm(5).

Then \ F(T)\ ¿1/X(5), and | T\-l^(Cm)-\ and |exp [-pzmT]\ ^e~"Cm

(m=p+l, p+2, ■ • •), by Lemma 1. By the same lemma, the length of Jm(o)

does not exceed 2tt(w-1)5. Hence (26.1) holds, with F0 = O2(«-l)ô/X(S).

27. Notation. Using the notations of §§22 and 24, let g* = 7(0)
- ELiP.(O).

28. Definition. Using the notations of §§23 and 27, let the operator M£

be defined by the following equation, which is to be valid for every function

0(x) for which it is meaningful:

p 00

Mi(p(x) - g*0(x) + 12 Lts<b(x) -   12 Km<b(x).
s—l m=p+l

29. Lemma 11. Let £ be any non-negative real number. Let <p(x) be analytic

and bounded, and have a bounded first derivative, in S a(£), where a is the number

defined in §10. Then the function g(x) = M#p(x) is a solution of the difference equa-

tion

(29.1) ¿¿ *(* + «,-) = *(*)•

Proof. This can be proved directly by the calculus of residues, but in the

interest of brevity we shall apply [L: Theorem 2], with il7 = 0 and 5=0,

and with ß replaced by a.

Let 0 be any number greater than £. Let gi(x) =g(x+ß). Let 0i(x)

=0(x+i2). Then gi(x) = gi(x) + R(x), where gi(x) =Mo<pi(x), and R(x)

= ¿Xi j¡-a(^i)~lí^s)eT{x-u)4>x(u)F(T)dTdu. Now it is easy to see that R(x)

is of the form XXi l^li'-nCtiX' exp (ftx) for some constants C„y. Hence

7c(x) is a solution of the equation 12"-1 AjR(x+a)j) =0. Now 0i(x) is in

Ç„(0), and is analytic at x = 0. Hence 0i(x) is surely of type (0, a), in the

notation of [L: p. 439]. Comparison of the function ilio0i(x), written out in

full, with the formulas 41-45 of [L] (cf. also the definition of J^m on page 460

of [L]) shows that in consequence of Theorem 2 of [L] we may conclude that

gi(x)    is   a    solution   of    the   equation    2I"_i^4,g2(x+Wj) =0i(x),    whence
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12"-iAigÁx+ui) =0i(*)- Hence  12*-iAig(x+tí¡) =<p(x).

30. Lemma 12. There exists a function Wi(y) defined for every number y

satisfying the conditions a^y<ß, and a number W2, such that if £ is any non-

negative real number, and if <p(x) is a function which is in Ç7(£) and has a

bounded first derivative in S7(£), then M¡<p(x) is in (3r(£), and

B7£[M£0(x)] = Wi(y)Bn[<p(x)] + WiBn[Dd>(x)].

Proof. This follows, with Wi(y) = \g*\ + 12LiVe(y), and Wi = ir2Vo/6,
from Lemmas 9 and 10.

31. Definition. Let the operator A be defined by the following equation,

which is to be valid for every function 0(x) for which it is meaningful:

n

Mix) = - (Aiyi'EAMx + oùC).
J=2

32. Notation. Let ro = min {distance of coy from the boundary- of S<«(0);

j = 2, 3, ■ • • , n\, where a is the number defined in §10.

33. Lemma 13. r0>0.

Proof. This follows at once from the definition of a.

34. Lemma 14. Let y be any number such that aSy<ß- Let X be any non-

negative real number. Let <p(x) be in Qy(X). Then A 0(x) is in Qy(X), and its

first derivative is bounded inSy(X). More precisely, if A*= |-<4i|-1E"-2 \Aj\

and    A**=A*/r0,    then    ByX[A(p(x) ] SA*ByX[<t>(x) ]    and    ByX [DAcp(x) ]

^A**ByX[<p(x)].

Proof. The first inequality is obvious. The second follows from the fact

that as an immediate consequence of the Cauchy integral formula we have

ByX[D<b(x + coy)] = 57X[0(x)]Ao.

35. Definition. Let the operator JV£ be defined by the following equation,

which is to be valid for every function 0(x) for which it is meaningful:

N(d>(x) = aT<p(x) + MtAd>(x).

36. Lemma 15. Let y satisfy the inequalities a^y<ß. Then there is a posi-

tive number W(y) such that if £ is any non-negative real number and if <p(x) is in

(3y(£), then ¿V£0(x) is in Ç7(£)> and

(36.1) Bn[N(<p(x)] ^ W(y)Bn[<p(x)].

Proof. This follows at once from Lemmas 12 and 14; we may take W(y)

(*) It may be worthwhile to emphasize the fact, which is of crucial significance in the sequel,

that the summation on the right begins at j =2.
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= \Ai\-1+A*Wi(y)+A**W2.

37. Lemma 16. Let £bea non-negative real number, and let 0(x) be in (?<.(£)■

Then g(x)=N^<p(x) is a solution of the difference equation 12"-1 A¡g(x+w¡)

=0(x).

Proof. This follows from Lemmas 14 and 11.

38. Lemma 17. Let y satisfy the inequalities a^y<ß. Then there exists a

function r¡(X, y), defined for positive X and tending to zero as X becomes in-

finite, and numbers Ui(y), U2(y), such that if £, Xi, Xi are any real numbers

for which 0^£<Xi<X2, and if <p(x) is any function which is in (?„(£) and in

Qy(X2), then the function ¿V£0(x) is in Qy(X2) and

Byx2[N^(x)] g v(Xi - Xi, y)Ba([<p(x)]

+ tVi(7)Bax1[0(x)] + Ui(y)ByxA<t>(x)].

Proof. This follows readily, with r,(X, y) =A*12*-iV*(X, y), Ui(y)

=A*12U Uu(y), Ui(y) = \Ai\-i+A*\g*\+TT2A**Vo/6+A*12Ps,iUi,(y),
from Lemmas 9, 10, and 14.

39. Lemma 18. If <p(x) is admissible, then every solution of the difference

equation (29.1) which is remotely bounded (cf. §13) is admissible.

Proof. Let 0(x) be admissible, and let g(x) be a remotely bounded solution

of (29.1). Let £ be a positive number such that g(x) is in (^a(£). Let X be any

number greater than £. Now 12*-i A¡g(x) =0(x) — 12*-i ^4y[g(x+wy) — g(x)].

Hence g(x) = ( 12".i ^4y)_1{0(x) - 12*-i ^y[g(x + wy) —g(x)]. Evidently, as a
consequence of the Cauchy integral formula, we have BaX[Dg(x)]

^ Ba([g(x) ](csc a)(X —J)-1, whence Bax[g(x + a¡) -g(x)] = B„£[g(x)](csc a)

■ (X—£)-1| Wy|. This implies that g(x) — ( 12"-i Aj)~1<p(x) approaches zero as

x—>+ =o, whence g(x) has a limit as x—>+ <=o ; thus g(x) is admissible.

40. Lemma 19. 7/0(x) is admissible, and if £ is any non-negative real num-

ber such that 0(x) is in (j?a(£), then N¡<p(x) is admissible.

Proof. Let y be any number such that a^y<ß. Let Xi be larger than £

and such that 0(x) is in Qa(X2). Let Xi be chosen arbitrarily so that £<-X\

<X2. Then it is evident from (38.1) that W£0(x) is in Qy(X2). Thus 7V£0(x)

is remotely bounded. Hence, by Lemmas 16 and 18, N$p(x) is admissible.

41. Theorem 1. If <p(x) is admissible, then the totality of all admissible

solutions of the difference equation

(41.1) 12 A,h(x + ur) = <p(x)

is given by the formula
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(41.2) h(x) = 7Y£0(x) + 12   ÉCíief",
3—1        ¡ — 0

where £ is any non-negative real number such that 0(x) is in fj?a(£), and the C»y

are arbitrary constants.

Proof. According to Lemma 8 the function x'es,x is admissible for every

non-negative integer j, and it is readily seen that if j ^js — 1, then x'e!,x is a

solution of the homogeneous equation

»

(41.3) 12 Arg(x + co,) = 0.

Hence, by Lemmas 16 and 19, every function of the form (41.2) is an admis-

sible solution of (41.1).

Conversely, if h(x) is any admissible solution of (41.1), then g(x)=h(x)

— N(4>(x) is an admissible solution of (41.3); from equation (41.3) itself,

solved for g(x) in terms of the g(x+co„) (v = 2, •••,»), it is apparent that

g(x) can be continued analytically into an integral function G(x), and that

G(x) is bounded in every sector S 7(0), with y<ß. Hence G(x) is of type (0, ß)

(in the terminology of [L: p. 439]) and is therefore, by Theorem 2 of [L]

(with 0(x) =0), of the form 12Ps-i 12^-0 Csjx'e^x.

Part V. The statement of Theorem 2.

42. Theorem 2. Given the difference equation

(42.1) A(x, y(x + coi), ■ ■ ■ , y(x + <o„)) = 0,

where A(x, yi, ■ ■ ■ , yn) is a polynomial of degree d^l in the indeterminate

yu ' • " > Vn, the coefficients being admissible functions of x, and where «i = 0

while «2, • • • , «n are points of S/s(0). Let J(o) be the polynomial

A(+°°, a, • • • , a) in one indeterminate a, obtained by replacing every y¡

0 = 1, 2, • • • , n) in A(+ °°, yi, • • • , yn) by the same indeterminate a. Let

(42.2) <zy(x, yi, ■ ■ • , yn) = ó>A(x, yh • ■ ■ , y„)/dyj

(j — 1, 2, ■ ■ ■ , n). Assume that J(o~) is not identically zero, and that its zeros(*)

en, ffi, • • • , a, are all simple zeros. Assume also that di(+ °°, o>, • • • , tr*)

is different from zero for every k in the set (1, 2, • • • , c). Under these assump-

tions the totality 15 of all admissible solutions of (42.1) can be described as

follows :
(a) 15 is the union 15i+152+ ■ • • +15c where 15* is the totality of all ad-

missible solutions y(x) of (42.1) such that y(+ <*>) =<r* (k = l, 2, ■ ■ ■ , c).

(b) 13* is a nonempty finite-parameter family of functions. More precisely,

(8) We do not exclude the case where J(<r) reduces to a constant different from zero. In this

case the statements below are to be understood as asserting merely that the set 13, below, is an

empty set.
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if g* is the number(9) of zeros (multiplicities counted) of the exponential poly-

nomial
n

(42.3) fk(z) = 12 a,-(+ «, ffh, <n, • • '• , <t*)«"í',
j'-i

which lie in J{p, then 15* is a qu-parameter family (k = 1, 2, • • • , c).

(c) Moreover, 13 contains not only every admissible solution of (42.1), but

contains also every remotely bounded(10) solution of (42.1).

(By the statement that 13* is a g*-parameter family is meant that in terms

of a suitable metric (see Part VII below) the space 13* is a manifold of g*

complex dimensions, that is, a connected separable metric space each of

whose elements has a neighborhood homeomorphic with g*-dimensional com-

plex Euclidean space. The number of parameters in 13* is also indicated by the

following property of 13*: If yo(x) is any element of 15*, then there exist posi-

tive numbers(H) £o, t/o, E0, and a0, such that a0<ß and such that if £ is any

number greater than £0, and if Xo, Xi, • ■ • , XQi_i are any g* complex numbers

such that |X(| <vo (t = 0, 1, ■ • • , g* —1), then there exists one and only one

element y(x) of 13* such that y(x) is analytic in S a0(£) and at x=£, and such

that 7J'y(£) = D'y0(£)+X, (¿ = 0, 1, 2, • • • , g*-l) and such that |y(x)-y0(x)|

<Eo throughout S a0(£)(12).)

Proof. The proof is given in Parts VI and VII, below.

43. Generalization. If the hypothesis that 7(cr) have only simple zeros be

dropped, then Parts (a) and (c) of Theorem 2 still hold, and the methods of

this paper, exactly as they stand, allow the conclusion to be drawn that for

each simple zero <r* of J(a), the set 13* satisfies all the statements of Theorem

2, Part (b). However, it is not known to the author whether or not the de-

scription of 13* given in Part b will still apply when cr* is a multiple zero.

44. Alternative hypotheses: If each coefficient C(x) in A, instead of being

required to be admissible, is required to satisfy the more stringent restriction

of being in ßs(£) for some positive £ depending upon C(x), and of approaching

a limit C(+ <») in the sense that Bßx[C(x) — C(+ °°)] tends to zero as X be-

comes infinite (let us refer to this set of restrictions as Conditions B), then the

set of all solutions of (42.1) which satisfy Conditions B can be given a de-

scription closely paralleling that given 15 in Theorem 2, provided however,

that in addition to hypotheses analogous to those of Theorem 2 still another

hypothesis is assumed, namely that the exponential polynomial/*(z) have no

zeros on the boundary of JSfp (& = 1, 2, • • • , c). If this last hypothesis is not

assumed, then the set of solutions satisfying Conditions B can fail to answer

(9) This number is finite, as is seen below.

(10) The definition of remotely bounded is given in §13.

(") The numbers 170, E0, and a0 (but not {0) are independent of y<s{x).

(") When ç* = 0, 15* contains exactly one function.
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such a description. For example, the equation y(x) —2y(x+\) =2~x has co-

efficients satisfying Condition B, with /3=7r/2, and the J(a) in this case is

—a, with only one zero (namely, the simple zero <r = 0), and f(z) = 1 — 2ez,

with just one zero (namely the negative determination of log 1/2) in X[ß,

which in this example is the nonpositive real axis. There is in this example a

one-parameter family of admissible solutions, but no solutions whatever

satisfying Conditions B.

Part VI. Existence and uniqueness proofs.

45. Lemma 20. If y(x) is any solution of equation (42.1) which is remotely

bounded, then y(x) is admissible and y(+°°) is one of the numbers o-*

(4-1,2, • ■■ ,c).

Proof. Let e¡(x) =y(x + Wj) — y(x) (j = l, 2, • • • , n). Then ty(x) tends to

zero as x becomes infinite on the positive real axis. (Cf. the discussion in

the proof of Lemma 18.) Now A(x, y(x+ui), • • • , y(x + w„)) =A(x, y(x)

+ei(x), • ■ • , y(x)+e„(x))=A(x, y(x),y(x), ■ • • , y(x))+ 12oesKx) ■ ■ ■ &(x)

C[si, ■ • • , sn; x; y(x), y(x), ■ ■ ■ , y(x)] =0, where 12o is the summation over

all indices Si, ■ ■ ■ , sn such that 1 ̂ 5i+ • • • +s„^d and

C[si, ■ ■ ■ , sn;x;yu ■ ■ ■ , yn]

(45.1) d1+'"+'nA(x, yi, ■ ■ • , yn)/dyi ■ ■ ■ dy':

sil ■ ■ • sj.

Letting P(x, y) be the polynomial in y defined as A(x, y, y, ■ ■ • , y)

+ ]Co«î'(*) • • • 4?(x)C[si, ■ ■ • , Sn] x; y, y, ■ ■ ■ , y], we see that the coeffi-

cients in P(x, y) are, when x is large and positive, arbitrarily near the coeffi-

cients in A(+ œ, y, ■ ■ ■ , y) so that when x is large and positive, y(x) is

either near the set (ox, cr2, • • • , <rc) or else is very large (a possibility, at first

glance, if the initial coefficient of A(x, y, ■ ■ • , y) tends to zero as x becomes

positively infinite). Since y(x) is remotely bounded, the possibility that y(x)

be very large is excluded. Since y(x) is continuous, it must, for all sufficiently

large x, be near a fixed one of the numbers <r*.

46. Lemma 21. Parts (a) and (c) of Theorem 2 are valid.

Proof. This is an immediate consequence of Lemma 20.

47. Lemma 22. Let k be any one of the numbers 1, 2, • • • , c. Then equation

(42.1) is equivalent, under the transformation y(x) =o*+Ä(x),   to the equation

n n

12 akjh(x + toy) = \j/k(x) + 12 ekj(x)h(x + coy)

(47.1) H1 ^      *-1
+   Z^l gk(Íl,   •   ■   ■   ,  in',  X)h"(x + COl)   •   ■   ■   Â*»(X + (0„)

where
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(47.2) aki = a¡(+ », ak, • • • , <r*) (cf. (42.2)),

(47.3) l^*(x) = — A(x, <r*, ■ • • , <r*),

(47.4) «*»(*) — «j(+ 00,«r*, •••,«■*) — <*/(*, ff*. ■ ■ • . ^*),

(47.5) gk(ii, • • • , in; x) = — C[îi, • • • , *'«; x; er*, tr*, • • • , <7*]

(cf. (45.1)), a«¿
(47.6) 53x is the summation over all indices ii, ■ ■ ■ , in such that 2=^

+ • • • +in-ûd.

Proof. This is obvious.

48. Lemma 23. The functions \pk(x),ek¡(x), and gk(ii, • • • , in\ x) are admis-

sible, and ^*(+ oo) =e*y(+ oo) =0 (j —1, 2, • • • , «; ¿ = 1, 2, • • • , c). .á/so

53?-i o,kjeu''=fk(z), where fk(z) is defined by (42.3).

Proof. This is obvious.

49. Definition. Let k be in the set (1, 2, • • • , c). Let Qk(x, hi, ■ ■ ■ , hn)

be the polynomial in indeterminates hi, ■ ■ ■ , hn, with coefficients functions

of x, defined by the equation

n

ö*(x, Ax, A2, • • • , AB) = 0*(x) + 53 ekj(x)hj
(49.1) 3-_i

+ 53i f*(**ii • ' • , in, x)hi  ■ ■ • hn.

50. Definition. Let the nonlinear difference operator 0* be defined by

the following equation, which is to be valid for every function A(x) for which

it is meaningful:

Qkh(x) = Qk(x, h(x + coi), ■ • • , A(x + «„)).

51. Definition. In the sequel we shall use a fixed value of k in the set

(1, 2, • • • , c), and define Aj = akj (j=l, 2, • • • , n). The operators 7V£ we

then define in terms of the ^4y and coy as in Part IV. Certain of the functions

to be used in the sequel will be designated by symbols which do not display

the fact that the function depends upon the choice of k.

52. Lemma 24. Let y(x) be an admissible solution of equation (42.1). Let

y(x) =<r*+A(x). 7/£ is any non-negative real number sufficiently large so that

y(x) is in (?«(£) and so that the coefficients in A are in C<*(£), then

(52.1) h(x) = NtQkh(x) + 12   12 C.yx'ef-*
s-l      j'-O

for some constants Cs¡.

Proof. This follows at once from Theorem 1 and equation (47.1). It may be

noted that the hypotheses [^i^O], [ 53"= i Aj¿¿0] (cf. Lemma 1) of Theorem
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1 are equivalent, respectively, to the hypotheses [ax(+ oo, <t*, • • • , o>)?£0],

[ah is simple] of Theorem 2.

53. Notation. Let £i be the greatest lower bound of all non-negative real

numbers X such that every coefficient in Qk(x, hi, ■ ■ ■ , A„) is in Qa(X), and

such that

(53.1) BaX[ekj(x)] = [2nW(a)]-i (j = 1, 2, • • • , n),

where W(a) is defined in §§10 and 36. Let £2 = l+£i.

54. Definition. Let £ be any real number such that £^£2. Let

%= [Csjm; s = l, 2, • • • , p; j = 0, 1, • • • , j,— 1; w = 0, 1, 2, • • • } be a se-

quence of complex numbers. Then by the sequence {Am(x, £, $);

m = 0, 1, • • • } will be meant the sequence of functions defined recursively by

the equations

(54.1) A„(x, £, g) = ¿   £ C.,.(* - f) V.Í-»,

4«+i(*. f, g) = ^{@*Am(x, f, g)

(54.2) *    (p?+ 53 Ec.,m(ï-ov«w».
s=i    y—0

55. Notation. If ® is any bounded sequence of complex numbers (finite or

infinite), then by £/[©] is meant the least upper bound of the moduli of

the terms of ®.

56. Notation. For any £ which is greater than or equal to £2 the symbol ô£

represents 2?a£[^*(x)].

57. Lemma 25. Let M be any non-negative real number, let 6 be any positive

number less than unity, and let d be any positive integer. Then for every positive

e there is a largest positive 5 such that the equation

X = 5 + 6X + M(X2 + Xs + ■ ■ ■ + Xd)

has a positive solution less than or equal to e.

Proof. This is obvious.

58. Lemma 26. Let 53m-o €™ oe a convergent sequence of non-negative real

numbers and let r be a positive number less than unity. Let \am\ be a sequence of

non-negative numbers satisfying the inequalities

am+i á ram + e„ (m = 0, 1, 2, • • • ).

Then 53w-o am converges.

Proof. Let sm=a0+ai+ ■ ■ • +am. Then Sm+i ¿rsm+ (e0+ • • • +em)

+aB.   Let   7170 = a0+ 53»"-o«™-   Then   sm+i^rsm+M0.    Hence   sm+i^s0rm+1
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+ M0(í+r + • • • +rm)^s0+Mo/(l-r). Hence 53>«-oßm converges.

59. Lemma 27. For every positive number E there exists(n) a positive number

pE and a positive number r¡E such that if £^£2, and if S£^pjs, and if g is any

bounded sequence of complex numbers such that U[%]Sve, then the sequence

{Am(x, £, g)} satisfies the inequalities

(59.1) Bai[hm(x, £, g)] = E (w=l, 2, •••)•

Proof. Let rm(x, £, g) = 53?-1 £JS>IC.*,(*-8i«w*"*. let Hm = Bai[hm(x, £,

g)], and let Rm = Bai[rm(x, £, g)] (m = 0, 1, 2, • • • )• Let

(59.2) Si = max \Bah{ekj(x)]; j = 1, 2, • • • , «},

let

(59.3) Mt - max {Bah[gk(iu ■ ■ ■ , in; *)]; 2 á ¿1+•••+*'» á ¿},

let

(59.4) Z» = max [number of terms of degree s in l^i; s = 2, 3, ■ ■ ■ , d\,

and let

(59.5) G(a) = ¿   £g„(«),
•—1      )'=0

where the GSj(a) are defined in Lemma 8. Then

77„ = Ro £G(a)C/[g].

Also

77m+i g Ba£ [¿V£0*Am(x, £, g)] + 22^+x.

Hence, by Lemma 15, we have

77^1 = W(a)Bai[Qkhm(x, £, g)] + Rm+i.

Therefore

/7m+1 g W» {h + »«*&» + ^(#1 + ■ ■ ■ + HÍ)) + G(a) t/[g].

Now let E be any positive number. Let 0 = 1/2. Let 0 be the largest positive

number such that the equation t = b + dt + M2bW(a) ■ (t2+ti+ ■ ■ ■ +td) has

a positive solution ¿0 less than or equal to E. (Cf. Lemma 25, with

M=MibW(a).) Obviously t0>5.

(13) In this lemma pe, ve are asserted to exist. Plainly they are not unique. However, in

the application of this lemma, where we wish to make use of a particular choice of pe and tie,

we shall refer, loosely, to the pe and tie of Lemma 27, meaning thereby that a particular choice

from among the infinitely many possibilities is made, once for all. This remark applies to several

other lemmas following this.
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Let PE = b/(2W(a)). Let r¡B = e(2G(a))(u). Then if £^£2, and if 5£gpB,

and if t/[g] ÚVe, we have

Ho Ú 8/2 < to,

and also, using (53.1), we have

Hm+i ̂ 8 + 6Hm + MibW(a)(H2m + ■ ■ ■ + HÍ),

so that if Hmúto, then Hm+i^Ô + 6to+M2bW(a)(t0! + • • ■ +t%)=to. Thus by

complete induction we have Hm^to<E (m=0, 1, 2, • • • )•

60. Lemma 28. Let E and e be positive numbers, with e_£. There exists a

positive number W0= W0(E, e) such that if ps and ve are the numbers of Lemma

27, and if £ is any number greater than or equal to £2, for which 5£ gps, and if

U[%]^ve, then BaX[hm(x, £,%)]^e whenever X^£+Wo (m=0, 1, ■ ■ ■).

Proof. Let £ be any number such that £^£2 and 5^pB- Let 17 [g ];£?/#.

From Lemma 16, and the fact that rm+i(x, £, g) is evidently a solution of the

difference equation 12n-iAjg(x+o)j) =0, we have that 12"-i A jhm+i(x+(j}¡, £, g)

= Qkhm(x, £, g). Hence

n

12Ajhm+i(x, £, g) = Qkhm(x, £, g)

(60.1)   i=1

+ 53 -4y[Am+i(x, £, g) -  h^i(X + coy, £, g)].
1=1

Let X be any number such that A">£. Then, by the Cauchy integral formula

we have BaX[Dhm+i(x, £, g)]g(X — f)-1 csc a• B„£[Am+i(x, £, g)], whence

ßax[Am+i(x, £, g)-Am+i(x + wy, £, g)] ^(X-Q-^csc a)E\u>j\. Hence, letting

a*=| 53"= i -<4/|_l> we have, from (60.1),

BaX[h^i(x, £, g)] = a*{BaX[Qkhm(x, £, g)]

(60 2) n
+ 7(A--£)-lCSCa53Uy||c0y|   }.

j'-l

Thus, letting M2 be defined by (59.3), letting R=R(W)= 53"-1 \AÁ l«y|
■(E csc a)W~\ letting 5 = 5(X)=max {Bax[^k(x)], BaX[eki(x)], ■ ■ ■ ,

BaX [e*„(x) ]}, letting 7 = T( W) = max BaW [xtf*] ; j = 0, 1, • • • , j,-1 ;

5 = 1, 2, • • • , p], and letting vm = BaX[hm+i(x, £, g)], we have

(60.3) vo = B„x[ro(x, £, g)] = r?B7(X - £),

and from (60.2) we have

(60.4) vm+i = a*[5(X) + R(X - £)] + a*«5(X)»m + a*M2b(vl H-h »m).

(") If £ = 0, there is no sequence % and no number C(a). The changes of language needed

to cover this case are, however, sufficiently obvious.
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We note that S(X) tends to zero as X becomes infinite. (Cf. Lemmas 23 and

4.) We note also that R(W) and T(W) tend to zero as W becomes infinite.

(Cf. Lemma 8.)

Let 8 = 1/2. Let o be the smallest positive number such that the equation

t = 5 + dt + a*M2b(t2 + ■ ■ ■ +td)

has a positive solution to less than or equal to e. Let W3 be the smallest positive

number such that W3=-1, and such that t]eT(W3) Sto, and such that a*R(W3)

= 52. Let X3 be the smallest positive number such that a*S(X3) = 5/2 and

a*nS(X3)^6. Let W„ = max [W3, X3-£2]. Then if X^+Wo, we have

X = X3, so that a*S(X)^ô/2 and a*nS(X)^d. Also, if X^+W0, then

X-fèWt, so that a*R(X-Ç) go/2 and, using (60.3), v0^veT(W3). Thus

Vo^zto, and if vm^to, then, by (60.4), we have vm+i^5 + 6to+a*Mib(tl+ ■ ■ ■

+Ù —to, so that »mge (m =0, 1, • • • ).

Thus this number Wo has the required properties.

61. Lemma 29. Qk(x, h, ■ ■ ■ , hn)-Qk(x, h, ■ ■ • , ln) = 53"-1 Gw(#)(&y—W
+ 12*Gki(si, ■ ■ ■ , sn; h, ■ ■ ■ , tn; x)(Ay-lj)(A?A£ • • • A^)(/?/22 • • • &),
where 53s iJ ^e summation over a certain set of indices j; Si, ■ • ■ , s„;

h, • • • , tn such that j is in the set (1, 2, • • • , n) and such that 1 gsi+ • • •

+sn+h+ ■ ■ ■ +t„=:d—l, and where Gkj(si, ■ ■ ■ , sn; ti, • ■ ■ , t„; x) is one

of the functions gk(ii, ■ ■ ■ , in; x).

Proof. This is obvious.

62. Notation. Let bi be the total number of terms in 53a-

63. Notation.    Let   E0   be   the   largest   positive   number   such   that

biMi(Eo+E%+ ■ ■ ■ +7¿ri)gl/4.

64. Lemma 30. Let E be any positive number less than or equal to E0. Let

Pe and r\E be the numbers of Lemma 27. Let £ be any number greater than or equal

to £2 and such that 5£gp£, let g satisfy the condition f/[g]i£?7.E, and let it be

given that g satisfies the additional condition that for each fixed pair s,j the series

53m=o I Csy,m+i — Csjm I converges. Then the sequence {AOT(x, £, g)} converges

uniformly in S «(£)•

Proof. Let AAm(x, £, g)=Am+J(x, £, g)-Am(x, £, g), Arm(x, £, g)

= rm+i(x, £, %)-rm(x, £, g), Ym = Bai[AAm(x, £, g)], and em = Ba([Arm(x, £, g)]

(m = 0, 1, • • ■ )• For brevity, we shall omit the arguments £, g in the follow-

ing equations.

Now Ahm(x) =Nè(Qkhm(x) — Qkhm-i(x))+Arm(x). Thus, by Lemma 29 we

have AAm(x)=7\7£{ 53"-1 ekj(x)Ahm-i(x+u¡) + 12i Gkj(si, ■ ■ ■ , sn; h, ■ ■ ■ ,

tn; x)Ahm-i(x+(j¡j)hn\(x+üii) ■ ■ ■ h%(x + Un)h'ù-i(x+c)i) ■ ■ • A^_i(x + w„)}

+Arm(x). Therefore, using the notations of Lemmas 15 and 27, we have

Ym = W(a){n82Ym^i+ 532 M2Yn-iE^■■■+*»+h+ •••+<»} + tm,
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and therefore we have

Ym = Ym-i{n8iW(a) + biM2(Eo + e\ + ■ ■ ■ + Ef1)} + em.

Now no2W(a)^l/2, by (53.1), and &2il72(£0+ ■ • ■ +Ed0~1)^l/4, by §63.

Hence n82W(a)+b2Mi(E0+ ■ ■ ■ +£^1) g3/4. Hence, by Lemma 26,

53m=o^"> converges. This implies that the sequence {Am(x, £, g)} converges

uniformly in S <«(£).

65. Lemma 31. Let Eo be the positive number defined in §63. Let E be a

positive number less than or equal to Eo. Let pB, ve be the numbers of Lemma 27.

Let £ be a number such that £^£2 and o^ps- Let g be a sequence {C,3-m} such

that U[\S]^riE, and such that for each s, j the series 53m=o I C„-,m+i— C,jm\

converges.

Then for every positive e and for every y greater than a and less than ß there

is a positive X" = X"(y, e), such that hm(x, £, g) is analytic throughout S y(X")

and Byx" [hm(x, £, g) ] <e.

Proof. The asserted analyticity of Am(x, £, g) follows readily from the

nature of the operators 0* and ¿V£. We shall consider, therefore only the

estimation of BaX"[hm(x, £, g)].

Let A"*^£2 be such that every g*(ii, ■■-,*„; x) is in Qy(X*). Let M"

= max {ByX*[gk(ii, ■ ■ , •»; x)]; 2fLix+i2+ ■ ■ ■ +in^d}. Let X' and X"

be chosen as any numbers such that %<X'<X", and such that X'>X*;

these two numbers will be subjected to further restrictions in the sequel.

Then, using Lemma 17, we have

ByX"[hm+i(x, $,$)] á v(X" - X', y)Bai[Qkhm(x, £, g)]

+ Ui(y)BaX>[Qkhm(x, £, g)]

+ Ui(y)ByX-[Qkhm(x, £, g)]

+ Byx"[rm+i(x, £, g)].

Letting ô2, il72, b be defined, as usual, by (59.2), (59.3), and (59.4),

and letting Jm = ByX>> [hm(x, £, g)], L = l.u.b. {BaX>[hm(x, £, g)]; m

= 0, 1, 2, • • • }, ô* = max {BaX> [^t(x)], BaX> [eki(x) ], • • • , BaX> [ekn(x)]},

ô** = max {ß7x"[^*(x)], Byx"[eki(x)], ■ ■ ■ , ByX"[ek„(x)]}, p = l.u.b.Jß7x"

• [rm+i(x, £, g)], m = 0, 1, • • • }, we have 70^p and

2 3d

7m+l  =  Co + ClJm + Cl(Jm + Jm +   '   '   "   + J tn)

where

Co = v(X" - X', y) {5£ + nSiEo + MJ>{e\ + e\-\-h4

+ Ui(y){8* + n8*L + M2b(L2 + V -\-+ Ld)}

+ Ui(y)8** + p,
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where Ci=U2(y)no**, and where Ci = U2(y)M"b.

Let e be any positive number. Let 0 = 1/2. Let ô be a positive number

such that the equation t = o + dt+C2(t2+tz+ • ■ ■ +td) has a positive solu-

tion /o less than e. Obviously t0>8. Let X' be so large that Ui(y) {b* + nb*L

+ M2b(L2+U+ ■ ■ • +Zd)}<0/2. (Cf. Lemma 28.) Then let X" be so

large that V(X"-X', y)- {ôi+nô2E0+M2b(E20+E30+ ■ ■ ■ +Ed0)\ <S/6, and

Ui(y)o**<è/6, and p<o/6, and Ui(y)nô**<6. Then J0^ô/6<t0, and

Jm+iúb + BJm+C2(Jm+Jm-r- ' • • + 7^), so that by complete induction we

have 7m = /o (m=0, 1, 2, • • • ). Hence Jm<e. That is, ByX"[hm(x, £, g)]<«

(m=0, 1, • • • ).

66. Lemma 32. Let E0, E, pE, r¡E, £, and g satisfy the hypotheses of Lemma 31-

7Aew the sequence }Am(x, £, g)} converges, with local uniformity, in a region %_

which, for every positive y less than ß, contains a sector § y(X(y)), for some non-

negative number X(y). The limit function h(x, £, g) of the sequence {Am(x, £, g)}

is admissible and is a solution of the difference equation (47.1).

Proof. Let A*(x, £, g) =lim„H.0O Am(x, £, g), xES«(£). For every y

greater than a and less than ß let X(y) be a positive number such that

£7x(7) [hm(x, £, g) ] < 1. (Cf. Lemma 31.) The family of functions {hm(x, £, g)},

is thus equi-bounded in S7(A"(7)), and therefore, by the well known com-

pactness theorem for bounded families of analytic functions (16), every sub-

sequence of the family contains a partial subsequence convergent in S y(X(y)),

with local uniformity, to a limit function A(x, £, g). Evidently A(x, £, g) is

an analytic continuation of A*(x, £, g), and therefore the limit function in

S 7(X(7)) is independent of the particular subsequence. Hence the sequence

{Am(x, £, g)} itself converges, with local uniformity, in S y (.ST (7)), to a limit

function A(x, £, g).

Evidently B7x(7)[A(x, £, g)] = l. Also A(+oo, £, g)=0, by Lemma 28.

Hence A(x, £, g) is admissible.

Now it follows from (54.2) that 53"-1 akjhm+i(x + co3; £, g) = Qkhm(x, £, g),

from which 53"-ia*;' A(x+coy, £, g) = 0*A(x, £, g), which coincides with (47.1)

when A(x) is replaced in (47.1) by h(x, £, g).

67. Lemma 33. 7Ae set 13* of Theorem 2 is not empty.

Proof. Let y(x) =tr*+A(x, £, g), where A(x, £, g) is the function in Lemma

32. (We might, for example, choose all the CsyOT = 0.) This function y(x) is

evidently an element of 15*.

68. Notation. Let  F = max  {|wy|  sin (ß— a) csc a;j = 2, ■ ■ ■ , n\.

69. Lemma 34. If £ is any non-negative number, and if x is in S «(£), then

x + coy is inS*(£+V) Q' = 2, • • • , n).

Proof. This follows readily from the law of sines, together with the fact

0s) Cf. Montel, Leçons sur les familles normales . . . , Paris, 1927, p. 21.
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that |arg coy| g/3x (cf. §8), and the fact that a—ßi=ß — a.

70. Lemma 35. There exists a positive number M3 such that if vt

(t=0, ■ ■ • , g* — 1) are any g* complex numbers and if a function p(x, £)

of the form 53«-1 53jJ=VCsy(x — £)'#•(*-*> is determined by the conditions
7><p(£+F, £)=*>, (t = 0, 1, • • • ,qk-l),then U[C„] = M,U[v,].

Proof. This is obvious.

71. Lemma 36. There exists a positive number Mi such that if f(x) is any

function   which   is   in   (?<*(£),   then   U[D'f(£+V);    (t = 0,   1, • • • , g* —1)]

£MiB«t\f(x)].

Proof. This follows at once from the Cauchy integral formula.

72. Lemma 37. There exists a positive number M6 such that if p(x, £) is any

function of the form 53?-1 Tff-o C,y(x-£)>e^*-«>,/Aew 5«£[p(x, £)] = MbU[Cej].

Proof. This follows at once from Lemma 8.

73. Lemma 38. Let M6 = M3Mi,. Then if p(x, £) is any function of the

form   53?,i   53í*=o   C,y(x-£)''ef.<-«>,   the  inequality   Ba([p(x,   £)] ^M6U[D'
■p(£+V, £); (t-0, 1, • • ■ , g*-l)] is valid.

Proof. This is a trivial consequence of Lemmas 37 and 35.

74. Lemma 39. Let H = H(x) be an admissible solution of (47.1) such that

H(+ oo ) =0. Then under the transformation h(x) =H(x)+g(x), equation (47.1)

is equivalent to the equation

n n

,„,   «■;    53 ak,g(x + toy) = 53 Eki(x, H)g(x + Wf)
(74.1)   y„i 3=i

+ 53i/(i"i, • • • > *»,; *; H)gii(x + »i) • • ■ g\(x + oin)),

where the coefficients Ekj(x,H) (j = l,2, • • • , n) and the coefficients f(iu • ■ ■ , in;

x; 77) (2=¿i+ • • ■ +inúd) are admissible, and where 7s*y(+oo, H)=0

(j' = l, 2, • • • , »).
Moreover, for every positive e there is a positive ô3iC, independent of the choice

of H(x), such that if S„£[77(x) ] = 53,t, and if £^£2, then S„£[7i*y(x, 77)]
= Ba£[e*y(x)] + e(j = l, 2, • ■ • , n).

Finally, there exists a positive number Mi independent of H(x) such that if

£^£2 and if Ba([H(x)] = 1, then Bai[f(iu ■ ■ ■ , in; x; H)] = M7 (2=*i+ • • •

+in^d).

Proof. This is obvious.

75. Notation. Let Rk]j(x; gi, ■ ■ • , gn) be the polynomial in indeterminates

gi, " " • , gn, with coefficients admissible functions of x, defined, in the nota-
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tions of Lemma 39, by the equation

n

Rich(x; gi, ■ ■ ■ , gn) «■ 53 Ekl(x, H)gi + 12if0u • • ■ , in; x; H)gi ■ ■ ■ gl".
j-i

76. Notation. Let the operator RkH be defined by the following equation,

which is to be valid for every function g(x) for which it is meaningful:

RkHg(k) - ic*ff(x; g(x + on), • • • , g(x + co„)).

77. Notation. Let €X= [6nMsW(a)]-1, where M8 = 1 + il74./l76. (Cf. Lemmas

36, 38.)
78. Notation. Let 54 be the minimum of two numbers, the first of which is

unity, and the second of which is the value which 53i, assumes when e = ei.

(Cf. Lemma 39.) We note that ô4 is independent of 77.

79. Notation. Let £3 be the greatest lower bound of all non-negative real

numbers X such that X^£2 and such that Bax[ekj(x)] =ei (j = l, 2, • ■ • , n).

80. Notation. Let £4,^ be the greatest lower bound of all non-negative real

numbers X such that I^^j, and ¿?ax[77(x)] =o4.

81. Lemma 40. 7/£e£4,Ji, then

(81.1) Ba([Ekj(x, H)] = [3nMsW(a)]-i (j = 1, 2, • • • , n)

and

(81.2) Ba([f(ii, • • • , in; x; 77)] = M,.

Proof. This follows immediately from Lemma 39.

82. Definition. Let g={Cym; j = 0, • • • ,j,—l; $ —1, ■ ■ • , p; m

= 0, 1, • • • } be an arbitrary sequence of complex numbers. Let £è£4,H.

By the sequence {gm(x; 77; £; g)} will be meant the sequence of functions

defined recursively by the equations

(82.1) go(x; 77; £; g) = ¿   £ C,i0(x - ©'**<-»
„_1      j_0

and

gm+i(x; H; £; g) = N(RkHgm(x; 77; £; g)

(82.2) .£,   ^+ 12   EC„Mi(x-Ö'<f'M)-
8„I ]-_0

83. Lemma 41. For ewery positive number E there exists a positive number

771,s independent of 77 such that if £^£4,^ and U[%]^t¡i,e, then the sequence

{gm(x; 77; £; g)} satisfies the inequalities

Bas[gm(x;H;Ç;$)]^E (m = 0, 1, • • • ).
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Proof. This follows from exactly the same argument as was used to prove

Lemma 27. Inequality (81.1) is to be compared with the analogous inequality

(53.1), and it is to be noted that since there is in RkH (x; gi, ■ • -, g„) no term

free of the gy corresponding to the term ^k(x) in Qk(x; hi, • ■ ■ , h„), there is

no analogue to the number pE of Lemma 27.

84. Lemma 42. There exists a positive number Ei, independent of 77, which

has the following property :

Let E be any positive number less than or equal to Ei, let g satisfy the condi-

tion C/[g]^?7i,B, let £2:£4,ff, and let it be given that for each fixed pair s, j the

series 53™=o | Csy,m+i — Cym| converges. Then the sequence {gm(x; 77; £; g)}

converges, with local uniformity, in a region 'R. which contains S «(£), to an ad-

missible solution of the difference equation (74.1).

Proof. This follows from the same arguments as those used to prove

Lemmas 28-32.

85. Definition. Let V be the positive number defined in §68. Let X*

(t = 0, • • • , qk — 1) be any qk complex numbers. Let £^£4,», and let a se-

quence of functions {gm(x; 77; £; g)} be defined by (82.1) and (82.2), where

the Csjm are to be determined by the requirements D'gm(£+ V; 77; £, g) = X¡

(í = 0, 1, • • • ,g*-l).
86. Notation. Let Ei be the largest positive number such that

MiW(a)bMn(2Ei+ ■ • ■ +dEdr1)^l/3. (Cf. §§74 and 77.) Let t?2 be the

value which the 771,e of Lemma 41 assumes when E = Ei. Let E3

= min {Ei, n2/(M3Mi)}.

87. Notation. Let S6 be the largest positive number such that the equation

X = Sb+X/3+bM7MsW(a)(X2+ ■ ■ • +Xd) has a positive solution Xi less

than or equal to E3.

88. Notation. Let v3 = S6/il76.

89. Lemma 43. If U[Xt]^r)3, then the sequence {gm(x; II; £; g)} defined

in §85 converges, with local uniformity, in a region 'R. which contains Sa(£),

to an admissible solution g(x; 77; £; g) of the difference equation (74.1). il7ore-

OTerD'g(£+F;77;£;g)=Xi (¿ = 0,1, • • • , g*-l). AlsoBa([g(x; 77;£; g)] ^E3,

and Bat[g(x; II; £; g)] approaches zero with U[Xt], uniformly in 77.

Proof. Let Pm(x; 77; £; g) = E?-o E^=oC8ym(x-£)^<-«, let Gm

= Bai[gm(x; 77; £; g)], and let Pm = Ba([pm(x; 77; £; g)]. Let Ô,,H

= max [BaçiH[Ekj(x)]; j = l, 2, ■ ■ ■ , n\. Let ô- = .M6r7[Xi]. For the next few

paragraphs we shall drop the arguments 77, £, and g.

By Lemma 38 we have Pm^MsU[D'pm(£+ V); (m = 0, 1, • • • )]. But

7>'po(£+ V) =Xi (t = 0, 1, • ■ • , g*-l). Hence P0gô7. Hence G0 = d7.

Now pm+i(x)=gm+i(x) — NiRkgm(x). Hence D(pm+i(£+ V) =Xt-D'NtRkgm

(£+F). Therefore, using Lemma 36, we have

E7[D'Pm+i(£ + V)] = U[Xt] + M4Ba£[iV£Ä*gm(x)].



154 WALTER STRODT [January

Consequently, using Lemma 38, we have

(89.1) Pm+i = 87 + MoMtBatlNtRtg^x)].

But Gm+iúBa([N(Rkgm(x)]+Pm+i. Hence Gm+i^57+MsBai[NiRkgm(x)],

where M» is defined in §77. Therefore, using (81.2), we have

(89.2) Gm+i ¿S7 + MsW(a){n8e,„Gm + bM ■,{<£, + ■ ■ ■ +GÍ)}.

Now MsW(a)nd6,H^l/3, by (81.1). Hence

(89.3) Gm+i ̂ 87+ (1/3) Gm + M,W(a)bM7(Gl + • • • + ct).

Now the number Xi appearing in §87 is surely greater than ô6, which in turn

is not less than S7. Hence Go^Xi. But if Gm^Xi, then Gm+i^S5+(l/3)Xi

+ MsW(a)bM7(X2i+ ■ ■ ■ +Xd)=Xi. Hence Gm = Ai («=0, 1, • • • ). Hence,

using (89.1), we see readily that Pm=^Xi (m — 0, 1, • • • )• Thus Gm^E3 and

Pm^E3 (m = 0, 1, ■ • • ). Hence by Lemmas 35 and 36,

(89.4) C7[g] = MiM3E3 ^ r,2.

Now let Agm(x) = gm+x(x) — gm(x), let Apm(x) =pm+1(x) — pm(x), let Qm

= Ba( [Agm(x) ], and let Sm = Ba( [Apm(x) ]. Then Agm(x) = vm(x) +Apm(x), where

vm(x) = Nt(Rkgm(x) — Rkgm-i(x)). Hence

£>'(APm(£ + V)) = 7»'(Agm(£ + V)) - D<vm(lt + V)

= 0 - Dh>m(t + V).

Hence U[D'Apm(£+ V)]£MtB«([vm(x)l Therefore Sm = MeMiBa([vm(x)].

But Qm-^Bai[vm(x)] + Sm. Hence Qm1kMsBai{vm(x)]. Therefore

Qm Ú MsW(a){8o,HnQm-i + bM7Qm-i(2E3 + 3e\ + ■ ■ ■ + dE^)}.

Hence, from §86 and (81.1), it follows that Qm^(2/3)Qm-i. Hence Qm

g (2/3)mQo ^ (2/3)m(2E3). Now Sm = M,MiBai [vm(x) ] = MoMtW(a) {bo,HnQm-i

+ bM7Qm-i(2E3+3El+ ■ ■ ■ +dEt1)\-â(2/3)Qm-i. Hence Sm^(2/3)™(2E3).
Hence 53m-o Sm converges. But Apm(x)=53?-i 53i"-ol (C8y,OT+i — C,m)

■(x—0'et''-"^t)- Hence U[CSj,m+i — Ceim]^M3M4Sm, by Lemmas 35 and 36.

Thus, for each s, j the series 53m-o | C3j,m+i — C,jm\ converges.

This last statement, taken in conjunction with (89.4), allows us to apply

Lemma 42, and to conclude therefore that the sequence {gm(x; 77; £; g)}

converges with local uniformity to an admissible solution g(x ; 77; £ ; g) of (74.1) ;

evidently g(x; 77; £; g) will be analytic inS*(£), and Bai[g(x; 77; £; g)]^£3.

AlsoDig(£+F;77;£;g)=Xi (¿ = 0, 1, • • • , g*-l).
Now if €* is any positive number, let ô* be the largest positive number

such that the equation X = 8* + (l/3)X+MsW(a)bM7 (X2+ ■ ■ ■ +Xd) has

a positive solution X* less than or equal to e*. If ô7^ô*, then ô7^X*, whence
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G0 = X*. But by equation (89.3) we have, if ô7 = o*, the inequality Gm+i^o*

+ (l/3)Gm + MsW(a)bM7(Gl+ ■ ■ ■ +Gi), and therefore, by complete induc-

tion, Gra=X* = e*. Thus Ba£[g(x;77; £; g)]^e*, provided S7 = ô*. This estab-

lishes the last statement of the lemma.

90. Lemma 44. If U[Xt] ^v3 and £^£4,//, then there exists at most one ad-

missible solution g(x) of (74.1) such that Bai [g(x) ] = E3 and such that D'g(£+ V)

= Xt (t = 0, 1, • • • , g*-l).

Proof. Assume gi(x) and g2(x) are two admissible solutions of (74.1) such

that Bai[gi(x)]^E3 and D'g¡(£+ V) =X( (t = 0, 1, ■ • • , g*-l; * = 1, 2).

LetM(x)=g2(x)-gi(x).

Then 53"=i akju(x+03,) =J?*g2(x) — i?*gx(x). Hence, by Theorem 1, we

have u(x)=v(x, £)+p(x, £) where v(x, £) = N^[Rkg2(x) —Rkgi(x)], and where

p(x, £) is a function of the form 53?-153i="o1C„y(x — £)'ef»(*-i>. Let u*

= Ba([u(x)], v* = Bai[v(x, £)] and p* = Ba£[p(x, £)]. Now 7>p(£+ V, £)

= D'm(£+F, £)-DV(£+F, £)=0-D'î;(£+F, £). Hence U[Dlp(^+V, £)]

= U[D>v(£+ V, £)] = .M>*. Hence p* = il76.M>*. But «*=»*+p*. Hence

w*^(l + M4i76>* = .M>*. Noting §§77 and 81 we see that u*^M8W(a)

■ {2nau*+bM7u*(2E3+3E%+ ■ ■ ■ +dEdT1)]. But, noting §§77 and 86, we

see that 2neiMsW(a) = 1/3 and that MsW(a)bM7(2E3+ ■ ■ ■ +dEt~1)^l/3.

Hence u*^(2/3)u*. Hence m* = 0. Hence gi(x)=g2(x).

91. Lemma 45. Let yo(x) be any admissible solution of (42.1) such that

yo(+ 00) =ff*. Let H(x) =yo(x) —<r*, and let £4,b- be the number defined, in terms

of H(x), in §§77-80. Let E3, r¡3 be the numbers, independent of 77, defined in

§§86 and 88. Let £^£4,w. Let Xt (t = 0, 1, • • • , g* — 1) be any complex numbers

such that U\Xi\ ^r¡3. Then there exists one, and only one, admissible solution y(x)

of (42.1) such that Ba([y(x) — yo(x)] = £3, stich that y(+ 00) =ak, and such that

D'y(£+V) = 7J>'y0(£+ V)+X, (¿ = 0, 1, • • • ,g*-l). Moreover there exists a

positive-valued function 7)4(e)^Ti3, independent of 77(x) and of £, such that

Ba([y(x)—yo(x)]<e whenever U[Xt] íá 174(e).

Proof. Let g(x; 77; £; g) be the function appearing in the statement of

Lemma 43. Let y(x) = H(x) +cr*+g(x; 77; £; g). Then y(x) satisfies all the re-

quired conditions.

Suppose on the other hand that there are two functions y(x) satisfying all

the stated conditions. Let one be called yi(x), the other y2(x). Let g¿(x) =y,(x)

—H(x)—ak (i = l, 2). Then g<(x) is a solution of (74.1) which satisfies the

conditions Ba£[g<(x)]á£3, 7>ígi(£+ V) =Xt (t = 0, 1, • • • ,g*-l) (* = 1, 2).

Hence, by Lemma 44, gi(x)=g2(x). Hence yi(x)=y2(x).

The last statement in the lemma follows from the last statement in

Lemma 43.

92. Notation. Let p* be equal to one-half the distance from the number ak

to the set of all finite roots yi other than <rk of the equation A(+ 00, yu ak,
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ff*, • • • , ff*)=0.

93. Lemma 46. There exists a positive number £s^£3 and a positive number

og <p* such that

(a) For each set of complex numbers x, y2, • • ■ , yn with x in S a(£s) and with

\yi — ff*| =às there is exactly one complex number yt satisfying the equation

A(x, yi, yi, ■ ■ ■ , y„) =0 and lying in the circle \yi — <r*| <p*, and

(b) 7Ae yi of (a) is given by the formula

... ..        p, ,i  f r^A(x, r, y«, • • •, y,)/ar Jfc
(93.1)    yi = Pk(x, y2, ■ ■ ■ , yn) m —-I-—-¿f

2inJ Q     A(x, f, y2, • • • , y„)

where Q is the positively sensed circle [f — tr*| =p*, a«¿

(c) A(x, f, y2, • • • , yn) is bounded away from zero provided the relations

|f — ff*| =p*, x£S«ßs), a«d |yi —ff*| =°8 0 = 2, 3, • • ■ , n) are all satisfied.

Proof. This is an immediate consequence of the fact that A(+oo,

ff*, • • • , ff*) =0, while dA(+ », <r*, • • • , cr^/dyi^O.

94. Lemma 47. 7e¿ £^£5. 7e¿ y(x) èe a solution of (42.1) wAî'cA is in (%(£)

area satisfies the inequality ¿?a£[y(x) —ff*]_ ô8. Theny(x) =P*(x, y(x+w2), • • -,

y(x+w„)) throughout S <«(£).

Proof. This is a corollary of Lemma 46.

95. Lemma 48. 7e¿ £^£5+^. 7eí y(x) &e a solution of (42.1) wAicA is

analytic in S <*(£) and satisfies the inequality Sa£[y(x) —<rk] = S8. 7Ae» /Aere ¿5

an analytic continuation Y(x) of y(x) throughout the sector S <*(£— V), which is

given by

(95.1)     Y(x) = Pk(x, y(x + co2), • • • , y(x + «„))    wAen    x G S *(£ - F).

Proof. When xGS«(£-F), then x + coyGSa(£) (j-2, •••,«). (Cf. Lemma

34.) Hence the right-hand member of (95.1) is analytic throughoutS <<(£— V).

Since this right-hand member coincides with y(x) when xGS<*(£) (cf. Lemma

47), it follows that Y(x) as given by (95.1) is an analytic continuation of

y(x) throughout S«(£— V).

96. Notation. Let £«=£5+ V.

97. Lemma 49. For every positive e there exists a positive ô9(e) such that if

ïGS „fe)   and  y'2, ■ ■ ■ , y„;  y2, - - ■ , y"  are  complex  numbers  such  that

y')-o-k\ áS8,    |yy"-ff*| ^o8,    and     |yy'-y"| ^ô9(e)    (j = 2, ■ ■ ■ , n),    then

Pk(x, yi---, yn)-P(x, yi', ■ ■ ■ , yn')\ ^e.

Proof. This is an obvious corollary of Lemma 46.

98. Notation. Let 5i„ = min {(l/2)o8, (l/2)o4}. (Cf. §78.)

99. Notation. Let £4 = min {E3, d9(E3), (1/2)S8}.

100. Notation.  Let   775 = 774(714)  where ?74(e)  is the function defined  in
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Lemma 45.

101. Lemma 50. Let yo(x) be any admissible solution of (42.1) such that

yo(+ o°) =ff*- Let 775 be the number defined in §100. Let £7,j,0d) be the greatest

lower bound of all real numbers X such that A"^£6 and such that Bax\jo(x) — ff*]

= oio. Let £^ F+£7,„oW and let Xt (/ = 0,1, • • • , g* —1) be any set of g* com-

plex numbers such that U\Xt]^r¡&. Then

(a) There exists one and only one admissible solution y(x) of (42.1) such

that y(+oo)=<r*, such that Ba£[y(x)—y0(x)] =£4, and such that D'y(£)

= £>'yo(£)+Xi (t = 0, 1, • • • , g*-l). Moreover,

(b) If e^£4, then 2?„£[y(x)—y8(x)] =e whenever U[Xt] ^774(e). (Cf. Lemma

45.)

Proof. Let 77 = 77(x) =y0(x)—cr*. We have £— V^r,n^t,H- Hence by

Lemma 45 there is an admissible solution y(x) of (42.1) such that

5a,£_y[y(x)-y0(x)]=£4, such that D'y(£- V+ V) =Diy0(£- V+ V)+Xt,

(t — 0, 1, ■ • • , g* —1), and such that y(+oo)=<j-i.. A fortiori we have

¿?a£[y(x) — yo(x)] =£4. This proves the existence of at least one y(x) of the

required sort.

Suppose now that y(x) is any function of the required sort. Evidently

sai[y(x)-ff*]=B«£[y(x)-y0(x)] + £«£[y0(x)-ff*]=E4+ôio = o8. Hence, by

Lemma 48, y(x) has an analytic continuation Y(x) throughout S«(£— V)

given by

(101.1) Y(x) = Pk(x, y(x + coi), ■ ■ - ,y(x + co„)),

and also yo(x)  has an   analytic   continuation   F0(x)   throughout S<*(£— V)

given by

(101.2) Fo(x) = Pk(x, y0(x + co2), • • • , y0(x + con)).

Now if xGSa(£-F), then x + wyGSa(£) (j = 2, ■ ■ ■ , n). Hence, if

xES«(£- V), then |y(x + coy)-o-*| = |y(x+wy) -y0(x+wy)| + | (yo(x+coj) -ff*|

a£4+ôioa(l/2)ô8+(l/2)Ô8 = Ô8. Also |y0(x+coy)-o-*| ^(l/2)o8and |y(x+c»y)

— yo(x+wy)| ¿Ei^oo(E3). Hence, by Lemma 49 and equations (101.1) and

(101.2), we have | Y(x) - Y0(x) \ ^Es if xGSa(£- V). Thus F„(x), Y(x) are

admissible solutions of (42.1) with Ba,^v[Y(x) - F0(x)] =£3 and 7>'F(£- V

+ F)=D'Fo(£-F+F)+Xi (t = 0, 1, 2, ■ ■ • ). Since £-F^£4lir, it follows

from Lemma 45 that Y(x) is unique. Hence y(x) is unique.

Statement (b) follows readily from the last statement of Lemma 45.

Part VII. A metric for the space 15*.

102. Notation. Let y(x) be any function in 15*. By p. [y(x) ] will be meant the

greatest lower bound of all positive numbers X such that A"è£e (cf. §§96, 93)

and such that BaX[y(x) — ak] <ôi0 (cf. §98). (In other notation, /j[j(i)]

= £t,!/W, as defined in §101.)

103. Definition. Let yi(x), y2(x) be any two functions in 15*. Let X'



158 WALTER STRODT [January

= max    {í*[yi(x)], p-[y2(x)]}.   By   the   step from yi(x)   to  y2(x),   written

S[yi(x), y2(x)\, will be meant |p.[y2(x)]—p-[yi(x)]| + BaX-[y2(x) — yi(x)].

104. Definition. Let yi(x), y2(x) be any two functions in 15*. Then by

the distance from yi(x) to y2(x), written d[yi(x), y2(x)], is meant the greatest

lower bound of all numbers 53m=o S[f™(x),fm+i(x)] where N is an arbitrary

positive integer and the fm(x) (m—0,---, N+Í) are any functions in 15*

such that/0(x)=yi(x) and fN+i(x) =y2(x).

105. Lemma 51. The function <f[yi(x), y2(x)] is a metric; that is to say

(a) <i[yi(x), y2(x)] = <f[y2(x), *(»)],

(b) d[yi(x),y2(x)]^0,

(c) d[yx(x), y2(x) ] =0 if and only if yi(x) =y2(x),

(à) d[yx(x), y2(x)]gd[yx(x), y3(x)]+d\y3(x), y2(x)].

Proof, (a), (b), (d), and the first part of (c) are obvious. Also it is easy to

see that if d\yi(x), y2(x)]<e, then Ba,x*+e[y2(x) —yi(x)] <e, where X*

= p[yi(x)]. This obviously implies the second part of (c).

106. Lemma 52. Let yo(x) be any function belonging to 15*. Let X be any

non-negative real number such that yo(x) is in Qa(X). Then if \ym(x)}

(rw = l, 2, • ■ • ) is any sequence of functions belonging to 15* swcA that the se-

quence {BaX[ym(x)—y0(x)]} is a null sequence, then the sequence \d[ym(x),

yo(x) ]} is a null sequence.

Proof. By Lemma 48 we have the result that if £ is any real number such

that £è£B+F, then any element y(x) of 15* can be continued analytically

throughout the region S a(£— F) by means of the equation

(106.1) y(x) = Pk(x, y(x + co2), ■ ■ ■ , y(x + co„)),

provided y(x) is analytic in §<*(£) and Bal[y(x)— <rk] = S8. Similarly yo(x) can

be continued analytically throughout the region Sa(£— V) by means of the

equation

(106.2) y0(x) = 7*(x, y0(x + u2), ■ ■ ■ , y0(x + <o„)),

provided £=^£5+ Fand provided yo(x) is analytic in Sa(£) with 2?a£[y0(x) —<r*]

^58.

Suppose   first  that   X<p.[y0(x)]=G.   Then   the   sequence   {ßao'[yo(x)

— ym(x)]} is a null sequence for some G' less than G (namely, for G'=X).

Suppose on the other hand that X^G. Then X^£6=£b+F. Also

BaX[y0(x) — ak] = ôio^(l/2)ô8<S8. Hence equation (106.2) can be applied

with £ = A\ Also, there exists a positive mi such that if m^mi, then

Bax[ym(x)— ff*],  which  is not greater than  BaX[ym(x)—y0(x)] + Bax[yo(x)

— ff*], is less than (l/2)ô8+(l/2)ô8 = 58. Hence, if m^mi, equation (106.1)

can be applied, with £ = X and y(x) =ym(x). Then by Lemma 49 the sequence

{Ba,X-v[ym(x)— yo(x)]} (mïï»îi) is a null sequence.
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Suppose now that X—V<G. Then the sequence B„G'[ym(x) — y(x)]

(m^m-i) is a null sequence for some G' less than G (namely, for G' =X— V).

If, on the other hand, X—V^G, then the discussion of the preceding

paragraphs, with X replaced by X— V, can be applied to the sequence

{y™(x); m^mi} to show that for some m2^mi the sequence {Ba,x-2v[ym(x)

— y0(x)]} (wí=wí2) is a null sequence. A finite number of repetitions of this

argument leads to the result that there exists a positive integer m* such that

if m ¡im*, the function ym(x) can be continued analytically over a sector

S«(£) with £<p-[yo(x)], and for some G' less than G the sequence {BaQ\ym(x)

— yo(x)]; m^m*} is a null sequence.

Now if £ is any number greater than G, we have 5a£[y0(x) — ff*] <5io

(by definition of p[yo(x)]). Hence if m is large, Ba([ym(x) — <r*] <Sio. Hence,

since £>£6, we have u [ym(x) ] ^£ if m is large. Thus

(106.3) limsupp[ym(x)] ¿G.
m—*°o

Let £ = lim inf p[ym(x)]. Suppose that F<G. Let SO? be an infinite se-

quence of positive integers such that

(106.4) 7=      lim      p[ym(x)].
m->«,m(E5ï»

Let 77 be a number which is less than G but which is greater than G' and

greater than F. Then if m is large, p[ym(x)]<77 (mESJi). This implies that

if m is large, BaH[ym(x)— ff*] <Si0 (mÇfSH).   But the sequence {BaH[ym(x)

— yo(x)]; m^m*} is a null sequence. Hence B„#[yo(x) — ak] =Si0. Hence if £

is any number greater than 77, Sa£[y0(x) —a*] <5io. (Cf. Lemma 6.) This last

inequality, together with the fact that 77>£8 (since f^^), leads to the con-

clusion that ju[y0(x) ] =77 This contradiction to the definition of G forces us

to reject the possibility that F<G.

Hence 7 = G. This, together with (106.3), shows that lim p[ym(x)] exists

and equals p[yo(x)]. This, taken in conjunction with the fact that

lim BaG[ym(x)—yo(x)] is zero, shows that {S [yo(x), ym(x)]} is a null sequence,

whence {d[y0(x), ym(x)]} is a null sequence.

107. Lemma 53. The set 15* is a connected space, in the metric d[yi, yi].

Proof. Let o* = min {(l/2)54, (l/2)£3} (cf. §§78 and 86). Let yi(x), y2(x)

be any two functions belonging to 15*. Let £ be any number such that £sï£3,

such that ¿?a£[yi(x)— <r*] ̂ (l/2)54, such that Ba£[y2(x) — yi(x)] =£3, and

such that |7>'[y2(£+F)-yi(£+F)]| ^774(6*) (cf. Lemma 45) (/ = 0, 1, • • • ,

qk— 1). (Obviously such a £ exists since every derivative of y2(x) — yi(x) tends

to zero as x becomes positively infinite.)

Let \t = Dty2(t+V)-Dtyi(t+V) (/ = 0, 1, • • • , g*-l). Then U[Xt]

:S774(5*) ̂773. Let y(x, r) (0 = r^l) be that function, which by Lemma 45 is

unique, which belongs to 15* and satisfies the relations ¿?o£[y(x, r) — yi(x)]
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^£3, D'y(£+V, r)=D'yi(£+V)+r\t (t = 0, 1, • • • , g*-l). Evidently y(x, 0)

=yi(x) and y(x, l)^y2(x). Now U[r Xt] ^774(0*). Hence Ba([y(x, r) — yi(x)]

= ô*. This implies that if 0 = r ^ 1 and 0 =s = 1, then Ba( [y(x, r) -y(x, s) ] ¿E3.

Also it implies that Bal [y(x, r) -yi(x) ] = (l/2)54. But Ba( [yi(x) -<r*] = (l/2)54.

Hence Ba£[y(x, r) — cr*]^54. Hence if r is any number in [O, l] and if {rm}

is a sequence of numbers in [O, l] converging to r, it follows that since

{U[D'y(£+V, rm)—D'y(£+V, r)]} is evidently a null sequence, the last

statement of Lemma 45 can be applied, with yo(x) replaced by y(x, r), to

show that Sa£[y(x, rm) —y(x, r)] is a null sequence. Hence by Lemma 52 the

sequence {<i[y(x, rm), y(x, r)]} is a null sequence. Hence the continuum of

functions [y(x, r); O^r^lJ is a continuous curve in the space 15*. Hence

15* is a connected space.

108. Lemma 54. 15* is separable.

Proof. Let Wk be the subset of 15* consisting of all functions y(x) belonging

to 15* and having the property that there exists an integer N (depending upon

y(x)) such that the numbers D'y(N) are all rational-complex num-

bers (t = 0, 1, • • • , g*—1), such that N}ip.[y(x)] + V, and such that

BaN[y(x) — ff*]^(l/2)£4. Now there exists for each choice of N, and each

choice of rational-complex numbers D'y(N), at most one function y(x) with

the properties described. For if yo(x) is one such, and y(x) is another, then

BaN-[y(x) — yo(x)] =£4, and therefore Lemma 50 can be applied with X( = 0

(t = 0, 1, • • • , g*— 1) to show that y(x)=y0(x). Hence Wk is countable.

Now if yo(x) is any function belonging to 15*, let a positive integer

N be chosen, greater than p[yo(x)]+F, and sufficiently large so that

Bay[yo(x) — ff*] <(l/2)£4. Let {y™(x)} (w = l, 2, • • • ) be a sequence of

functions belonging to 15*, such that Sajv[ym(x) —y0(x)] =£4, and such that

{ U\plym(N)— D'yo(N)]} is a null sequence, and such that D'ym(N) is ra-

tional (t = 0, 1, • • • , g*— 1; m = \, 2, ■ ■ ■). Then {BaN[ym(x) — y0(x)] ]

is a null sequence (by Lemma 50b), and therefore, by Lemma 52,

{d[ym(x), y0(x)]} is a null sequence. But d[ym(x), yo(x)] ^ |p[y,„(x)]

—p[y0(x)]| and therefore p.[ym(x)]+V<N if m is large. Also, since

\Baff[ym(x) — yo(x) ]} is a null sequence, it follows that if m is large,

BaN[ym(x)— <r*]<£4/2. Thus if m is large, ym(x)Ç_Wk. Since d[ym(x), yo(x)]

is a null sequence, Wk is dense in 15*.

Thus 15* is separable.

109. Lemma 55. 15* is locally homeomorphic with qk-dimensional complex

Euclidean space.

Proof. Let yo(x) belong to 15*. Let X = u [yo(x) ]. If {ym(x)} is any sequence

of functions in 15* such that {Ba,x+v [y,n(x) —ya(x) ]} is a null sequence, then

(cf[ym(x), yo(x)]} is a null sequence, by Lemma 52. Hence {p[ym(x)]

—p;[yo(x)]} is a null sequence. Hence if m is large, p,[ym(x)]<X+V. Thus
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there exists a positive number £5, which we shall take less than or equal to

(l/2)£3, such that if y(x) is in 15* and if Ba,x+V[y(x) — y0(x)]<£6, then

p[y(x)]<X+V. (Ei is, at least at first sight, dependent upon yo(x).)

Now Sa,x+v[yo(x)-ff*]=5ioè (1/2)04.

Let 7/6 = 774(£6). Let £ be the set consisting of all g*-tuples of complex

numbers {X¡; / = 0, 1, ■ • • , g* — l} such that r7[X¡]<7/6. Let J*{ be the set in

15* consisting of all functions in 15* for which BaiX+v[y(x) — yo(x)] <Eit and

for which the set {Dt[y(X+2V)-y0(X+2V)]; t = 0, 1, • • • , g*-l)} is in

£. Let that mapping from 7v[ to £ be defined which maps each element y(x)

of Ji into the set {D'[y(X+2V) -y0(X+2V)]} belonging to £. By Lemma

45 the mapping is one-to-one.

If y(x) is in ?i, then Ba,x+v[y(x)—yo(x)]<Et. Hence p[y(x)] <X+ V.

This implies that for every y(x) in J\[ we have

(109.1) X + V > £4,B(*)-,4.

Now K[ is an open set in 15*. For if y(x) is any element of 7\\ and if {ym(x)}

is any sequence of elements of 15* such that {d[ym(x), y(x)]} is a null se-

quence, then {p[y7»(x)]—p.[y(x)] } is a null sequence, so that if m is large,

p[ym(x)]<X+V. Consequently, since p,[y(x)] <X+ V and {d[ym(x), y(x)]}

is a null sequence, it follows that {Ba¡x+v[ym(x) —y(x)]} is a null sequence.

Hence if m is large, {Dt\ym(X+2V)-yo(X+2V)]\ is in £. Also, since

{Ba,x+v\ym(x) —y(x) ]} is a null sequence and since Ba¡x+v\y(x) —yo(x) ] <£b,

we see that if m is large, then Bafx+v[ym(x) —yo(x) ] <£6. Hence if m is large,

ym(x) is in >I. Hence ?{ is open.

Now the mapping from >£ to £ is continuous. For if {ym(x)} is a sequence

of functions in J^ converging to a function y(x) in 7\[, then, since p[/(x)]

<X+Ffor every/(x) in JsJ, we conclude that {S„,x+r [ym(x) — y(x)]} is a

null sequence. Hence { U[D'[ym(X+2V), y(X+2F)]]} is a null sequence.

Hence the point of £ corresponding to ym(x) tends, as m becomes infinite, to

the point of £ corresponding to y(x).

Finally, the mapping from £ to >{ is continuous. For if { \Xmt;

f = 0, 1, ■ • ■ , g* —1} ; m = l, 2, • • • } is a sequence of elements of £ tending

to the element {Xt; t = 0, 1, • • • , g* —1} of £ and if y(x), ym(x) are the ele-

ments of ^corresponding to {X¡}, {Xmt\ respectively, then { r7[D'[y">(-^+2F)

—y(X+2F)]]| is a null sequence, and therefore we see, using Lemma 45

with yo(x) replaced by y(x), and y(x) replaced by ym(x), and with £ = X+F

(note (109.1)), that {Ba,x+v[ym(x)—y(x)]} is a null sequence. Hence, by

Lemma 52, {d[ym(x), y(x) ]} is a null sequence. Thus the mapping from £ to

>i is continuous.

110. Lemma 56. Theorem 2 is valid.

Proof. This follows immediately from Lemmas 21, 50a, 51, 53, 54, and 55.

111. Remark. With very slight changes it is possible to introduce in a
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natural way a metric for the whole set 15, in terms of which the sets 15*

become precisely the connected components of 15, and as before the 15*

become g*-dimensional manifolds.

Part VIII. Examples.

112. Example I.

(112 1)   (1 + ^'(•M* + 1} " Vy2(x + 1}

+ 15(1 + x-2 log x)y(x + 1) + y(x) - x<r* = 0.

Here w = 2, and A(x, yi,y2) = (l+x_1)3'i3'2 — 17y^ + 15(l+x-2 log x)y2+yi—xe~x>

so that

2 2

A(+ », yu y2) = yiy2 — 17y2 + 15y2 + yi,

whence

J(0-)   =  0-3 -   17<72 +   16(7,

and therefore e = 3, and ffi = 0, ff2=l, ff3=16. The corresponding exponential

polynomials are/i(z) m 1 + 15e2, f2(z)=3- 18e2, f3(z) =513-273e2. It is readily

seen, therefore, on the basis of Theorem 2, that if, for instance, ß = ir/36,

then the parameter numbers are given by gi = 10, q2 = 7, and g3 = 0. Similarly

if /3 =tt/12, then gi = 4, g2 = 3, and g3 = 0. If /3=7r/6, then gi = 2, g2 = l, and

g3 = 0. If /3=tt/3, then gi = 0, g2 = l, and g3 = 0.

113. Example II.

(113.1)     16y2(x+ 1) - 8y(x)y(x+ 1) + y2(x) + 4y(x + 1) - 2y(x) = 0.

This example is similar to Example I. However, it has the very special prop-

erty that it is possible to determine the set of all analytic solutions (admissible

or not) explicitly, and to see exactly how the admissible solutions fit into the

totality of all solutions. It is possible also to see that the uniqueness of the

admissible solution satisfying assigned initial conditions, as described in

Theorem 2, is a uniqueness which is strictly local; in general there will be in

the set of all admissible solutions of (113.1), with limit cr* at + °o, exactly two

functions satisfying a given set of g* assigned initial conditions.

We have « = 2, and A(x, yu y2)=A(+oo, yu y2) =16y^ —8yiy2+y?+4y2

-2yx. Hence 7(tr) =9ff2+2<r. Hence c = 2, and ffx = 0, while o-2=-2/9.

For the auxiliary exponential polynomials we have fi(z) = — 2+4e*, f2(z)

= (\ + 2e')( — 2/3). Thus, on the basis of Theorem 2, if, for example, tt/2

^j8>arc cot (ir/log 2), then it is easy to see that gi = l and g2 = 0, while if

arc cot (7r/log 2)^|3>arc cot (27r/log 2), then gi = l and g2 = 2, and if arc

cot (27r/log 2) 2:/3>arc cot (37r/log 2), then gi = 3 and g2 = 2.

Now (113.1) can be solved explicitly by the following device. We note that

(113.1) is equivalent to



1950] NONLINEAR DIFFERENCE EQUATIONS 163

(113.2) y(x) = [4y(x + 1) - y(x)]2 + [4y(x + 1) - y(x)].

If in (113.2), multiplied by 4, we replace x by x+1, and if we subtract (113.2)

from this resulting equation, we get

4y(x + 1) - y(x) = 4[4y(x + 2) - y(x + l)]2

+ 4[4y(*+2)-y(x+l)]

- [4y(x+1)- y(x)l2

- [4y(x+l)-y(x)J.

If we set v(x) =4y(x+l) —y(x), we see that (113.3) can be written

(113.4) v(x) = 4v2(x + 1) + 4d(x + 1) - v2(x) - v(x),

whence

(113.5) [v(x) + 1]2= [2v(x+ 1) + 1]2,

so that either

(113.6a) v(x) + I = 2v(x+ 1) + Í

or

(113.6b) v(x) + 1 = - 2v(x + 1) - 1.

The totality of analytic solutions of (113.6a) is

(113.7a) v(x) = Ci(x)2-*,

where Ci(x) is an arbitrary analytic function of period 1. From (113.7a) we

we have 4y(x+l)— y(x) = Ci(x)2~x, whence

(113.8a) y(x) = Ci(x)2~* + C2(x)4"*,

where C2(x) is an analytic function of period 1. If (113.8a) is substituted into

(113.2), it is seen at once that y(x) as given by (113.8a) is a solution of (113.2)

if and only if C2(x) =C2(x). Thus (113.6a) leads to the set of solutions

(113.9a) y(x) = Ci(x)2~X + Ci(x)4~*,

where Ci(x) is an arbitrary analytic function of period 1.

Similarly (113.6b) leads to the set of solutions

(113.9b)     y(x) = (-2/9) + (-l/3)e"XC3(x)2~X + e2"XC¡(x)4~X,

where C3(x) is an arbitrary analytic function of period 1. Thus the totality of

analytic solutions of (113.1) is given by the union of the families of functions

(113.9a) and (113.9b). Consequently it is easy to see, by examination of

(113.9a) and (113.9b), that when 7r/2^j3>arc cot (7r/log 2) the set <5x is the

set
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(113.10) y(x) = C2-* + C24-*,

where C is any arbitrary constant, while 152 is the set consisting of the unique

function y(x) = —2/9. When arc cot (ir/log 2)^/3>arc cot (27r/log 2), 15i is

the set (113.10) while 152 is the set

y(x) = (-2/9) + (-l/3)(Kierix + Kie~rix)2~X

(113.11) 1 Irix 1 -2iii     _i
+ (Kie       + 2KiK2 + K2e       )4    ,

where Kx and K2 are arbitrary constants. When arc cot (27r/log 2)^/3

>arc cot (37r/log 2), 15i is the set

y(x) = (7x + Lie2-" + L3e~2Tix)2-x

+ (7i + Lie2"" + L3e-2-ix)H-x,

where L\, Li, and 73 are arbitrary constants, and 152 is the set (113.11).

To verify the assertion made at the beginning of this example, that the

uniqueness is only local, let us consider the case of 15x when ß=Tx/2. If £ is

any positive number and 7 is any complex number different from ( — l/4j

there are clearly two functions y(x) in the set (113.10) such that y(£)=7.

Similar remarks apply in this example to all those cases for which the number

of parameters is different from zero.
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