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Every continuous linear functional defined on a vector subspace of a real

normed space can be extended to the whole space so as to remain linear and

continuous, and with the same norm(2). The extension of continuous linear

transformations between two real normed spaces has been studied by several

authors and for a long time it has been recognized that this problem has a

close connection with the question of the existence of projections of norm

one, and moreover that the nature of the space where the transformations

take their values is much more important than that of the space where the

transformations have to be defined. It is not known, as far as we can say,

what are the precise conditions for the possibility of extending a transforma-

tion without disturbing its linearity, continuity, and norm. In this paper we

shall give a necessary and sufficient condition, which refers only to the space

where the transformation takes its values and does not involve the trans-

formation itself or the space where it is to be defined, for such an extension

to be possible: the condition is expressed in terms of a certain "binary inter-

section property" of the collection of spheres of the normed space (see

Theorem 1). After that we proceed to the study of the structure of real

normed spaces whose collections of spheres have this property. A first step

in this direction is given by the theorem asserting that these normed spaces

(provided they contain at least one extreme point in the unity sphere) are

simply those that can be made into complete vector lattices with order unity

in such a manner that the norm derived from the order relation and the

order unity in the natural way is identical to the given norm (see Theorem 2,

and Theorem 3 for the finite-dimensional case). In this connection we point

out a conjecture which we have not been able to settle, namely that, if the

collection of spheres of a normed space has the binary intersection property,

then its unity sphere must contain an extreme point. By using some results

of S. Kakutani and M. H. Stone, we establish the connection between the

normed spaces having the binary intersection property and the spaces of real

continuous functions over certain compact Hausdorff spaces (see Theorem 4),

or the complete Boolean algebras (see Theorem 6).

Presented to the Society, September 2, 1949; received by the editors February 23, 1949.

(') Fellow of the U.S.A. State Department.

(2) This is known as the Hahn-Banach theorem: see Banach [2] and Dieudonné [4] where

the result is presented as a theorem on convex sets. Numbers in brackets refer to the bibliog-

raphy at the end of the paper.
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Besides the problem which we consider in this paper, it would be interest-

ing to investigate in the same direction the extension of transformation with

preservation of linearity and continuity, but not necessarily of the norm. In

this paper we have restricted ourselves to real normed spaces. It is known, as

a consequence of the real case, that the Hahn-Banach theorem holds good for

normed spaces with the complex numbers or quaternions as (archimedean)

scalars. The Hahn-Banach theorem for normed spaces over fields with (non-

archimedean) valuations has also been studied (8). It would be interesting to

examine the extension of linear continuous transformation in these more

general situations.

The author wishes to acknowledge his indebtedness to Professors A. A.

Albert and M. H. Stone, of the University of Chicago, for encouraging him in

his work.

Notations and terminology. We shall say that an ordered set is a complete

lattice whenever every nonempty subset bounded from above, or from below,

has a supremum, or an infimum. An ordered set is said to have the interpola-

tory property if whenever x\, x2^yi, y2 there exists some z such that Xi, x2^z

= yi7 VA*)- By a segment [a, b] in an ordered set we shall mean the set of all x

such that aiíxíSo.

All normed spaces to be considered are supposed to be real. The norm || T\\

of a continuous linear transformation T between two normed spaces is defined

to be the supremum of ||F(x)||/||x|| for all x^O in the domain of T. All

spheres in normed spaces are supposed to be closed. The unity sphere of a

normed space is the sphere of center at the origin and radius unity. By the

segment [a, b] in a vector space we mean the set of points of the form

x=Xa + (l— \)b for O^X^l. An extreme point of the unity sphere is a point

of this sphere which cannot be written as Xa + (1— X)o, with 0<X<1, a^b

and a and b in the unity sphere.

We notice that the word segment has two distinct meanings. However it

will be clear in every case whether we are referring to one or the other notion

of segment.

When we write T: X—»F we mean a function with A as domain and with

values in Y. If Tx and T2 are functions, we write Tx > T2 to denote that T\ is an

extension of T2, that is, the domain of 7\ contains that of T"2and 7\(x) = 2"2(x)

whenever the right-hand side has a meaning. If Tx and T2 are real functions

on the same domain, we write Tx =S T2 to indicate that Fi(x) ^ T2(x) for any x.

1. The extension property. Let Gs be a given normed space. © is said to

have the extension property if, for any normed space 3£ and for any vector sub-

space © of %, every continuous linear transformation /: ©—»fë has at least

one extension F:3i—>@ which is linear, continuous, and has the same norm,

(3) See Cohen [3] and the references to A. F. Monna given there.

(4) This notion was introduced by Riesz [12] in a different but equivalent form (see his

condition 4, p. 175) in the case of ordered groups.
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that is, || F||= 11/11. The Hahn-Banach theorem says simply that every one-

dimensional normed space has the extension property.

It is clear that every normed space (S with the extension property must

be complete. For consider its completion ï, put © = @ and call /:©—>E

the identity mapping. Then the continuous linear extension F:3c—>(g. of /

will have ® as its range and will be a continuous mapping of the Hausdorff

space 3£ into itself which coincides on a dense subset (S of ï with the identity

mapping of •£; therefore F is the identity mapping of X, and therefore 3£ = @.

In order to state a necessary and sufficient condition for (S to have the

extension property, we shall need the following definition. A collection Q of

sets will be said to have the binary intersection property if every subcollection

of Q, any two members of which intersect, has a nonvoid intersection. This

binary intersection property belongs to the same family as the compactness

property. For each integer »^2 we can define in a natural way the »-ary

property so as to include the above definition when » = 2. This more general

property is well known in the theory of convex bodies: let us quote only

Helly's theorem according to which the collection of compact convex sets

in (»—l)-dimensional euclidean space has the »-ary intersection property.

Our purpose will be to prove the following theorem.

Theorem 1. A normed space has the extension property if and only if the

collection of its spheres has the binary intersection property.

Before going into the proof of this result, we shall indicate two well known

normed spaces having the binary intersection property. The first example is

given by the space of all real bounded functions on a set fl, considered as a

vector space in the usual way, the norm of each function/ being the supremum

of |/(x) | for xGß- Another example is given by the space of all real bounded

measurable functions on a set fl endowed with a non-negative completely

additive measure such that fl can be expressed as a union of countably many

measurable sets with finite measure, the vector space operations being de-

fined in the usual way and the norm of each function / being the essential

supremum of |/(x)| for ï£S2. We omit the proof that these two normed

spaces have the binary intersection property, because they are complete

vector lattices with order unity in the natural way and therefore they are in-

cluded in a more general situation that we shall consider later (see §4).

It is not without interest to notice that the extension property is equiva-

lent to the projection property which is defined in the following way. A given

normed space (S is said to have the projection property if, for any normed

space ï containing © as a normed subspace, there is a projection of norm one

of ï onto (S. One-half of the equivalence is clear from the remark that a pro-

jection of X onto @ is simply a linear extension defined on X with values in ©

of the identity transformation of @. On the other hand it is known that

every normed space is isomorphic to a normed subspace of the space of all
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bounded real functions over a certain set: since, as we have already noticed,

this space of bounded functions has the extension property, it follows that

every normed space © is a normed subspace of a normed space (5' with the

extension property. If (5 is assumed to have the projection property, there

exists a projection p: (§'—>-© of @' onto (5 with norm unity. Consider then any

normed space ï, any vector subspace © of ï and a continuous linear trans-

formation/:®—>©. Then/ may also be considered as having its values in @':

therefore it has a continuous linear extension F'-.TH—>@' such that ||F'|| =||/||.

If we put F = p o F', it is clear that i-^ï—>© is a continuous linear extension

of/:©—>® such that ||f|| =||/||, showing that S has the extension property.

2. Sufficiency in the main theorem. Consider the normed space @ and

assume that its collection of spheres has the binary intersection property.

Let X be another normed space, © a vector subspace of ï, and /:©—»(§ a

continuous linear transformation.

Denote by ß the collection of all continuous linear transformations

0:25—»-S, where S3 is a vector subspace of ï, such that <j>>f and \\<p\\ —\\f\\-

Since/Gß, we see that ß is not empty. Moreover ß is a set ordered by the

relation ■<, and ß is inductive, that is, every nonempty totally ordered set

rCß has a least upper bound in ß. In fact, let SB be the point set union of the

domains of all </>GF: since these domains are totally ordered by set inclusion,

it follows that SB is a vector subspace of X. Define the transformation

^:SB—>-@ in the following way: if xGSB, there exists some <£:93—>S belonging

to r such that xG93 and then we put \p(x) =<j>(x). It is not hard to verify that

the transformation so defined is single-valued, linear, continuous, and

\p>f, || l^ll =||/||- Therefore f£S2 and 0 clearly is the least upper bound of T
in ß, as desired. Having proved this, we can make use of Zorn's theorem(6)

and we see that ß contains at least a maximal element.

It will then be sufficient to prove that an arbitrary <£Gß whose domain S3

is not the whole H cannot be maximal in ß. In fact, let f be in X but not in 93.

Consider the transform 11=0(23) of 93 under <p. For each «£U define

p(u) = Ä-inf ||x — f||,

where x runs over the set <£-1(M) and £ = ||/||. If Ux and u2 are in U, then

(1) p(«i) + p(«2) è ||«i - «s||.

In fact, if xiG0_1(Mi) and x2G<£-1(m2), then

||*i - r|| + II* - rll ¿ Ik - «ill
together with

||«i — «s|| = \\<t>(x\ — xt)\\ g ¿||Xi — *i||

imply

(') See Lefschetz [l0].
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¿HXx-  f||   +   k\\x2 — i\\ è \\ux — «2 |

from which (1) follows. Knowing this, call Su the sphere in the space (5 whose

center is mGU and whose radius is p(u). It is not hard to see that two spheres

of a normed space intersect if and only if the sum of their radii is not less than

the distance of their centers. Therefore relation (1) shows that any two mem-

bers of the collection {5«} do intersect. By the binary intersection property,

there is a point £GS common to all these spheres, that is,

(2) ||*<*)-i|| Ml*-fll
for all xG93. Call SB the vector subspace of H spanned by 93 and by f. Every

element xGSB can be uniquely written as x = o-f-Xf, where z>G23 and X is a

real number. Define the transformation 0:2B—>Ë by ip(x) =<p(v)-\-\!;. It is not

hard to verify that \f/ is linear. Moreover \j/ is continuous and ||^|| ^k, that is,

U(v) + X*|| S k\\v + U\\

for all v and X ; this is clear if X = 0, and if X ̂  0 it is equivalent to

(-iHH(-r)-'
and therefore follows from (2). On the other hand it is clear that \¡/><¡>: this

implies \p>f and also ||^|| è||/|| =k. Therefore ||^|| =||/||. We can then assert

that i^Gß and since yp^cp, we see that <p is not maximal in ß, as desired.

The above proof differs from Banach's proof, the difference being the fact

that a priori we do not have an order relation on E reasonably related to the

norm and vector operations (besides the fact that we have used Zorn's

theorem, now more popular than transfinite induction). Later, however, we

shall see that this difference is not really very strong (see the remark at the

end of §4).

3. Necessity in the main theorem. Consider a normed space @. By an

immediate extension of @ we shall mean every normed space 3£ containing (g

as a normed subspace, such that GÊ^Ï and (§ is a maximal vector subspace of

ï. Consider some f in £ but not in ©, and define p(x) = ||x —f|| for xG@- We

have then a real function on (5. The knowledge of this function together with

the norm on ß determines the norm on £. In fact, every element yÇz.x' can be

written as y = 2+Xf, where ¿G@ and X is a real number and then

-{
Ml if    X = 0,
|x|p(-//X)    if    X^O.

The real function p

(I) p(x)+p(y)^

(II) |p(x)-p(y)

possesses the following properties:

x-y\ for x, ySd,

-y\\ forx, yÇE&,
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(III) p[Xx+(l-X)y]^Xp(x) + (l-X)p(y) for x, yE® and O^X^l,
(IV) p(x)>0forxG<S.

Properties (I) and (II) are obvious consequences of the triangle inequality

applied to the vertices x, y, and f. To prove (III) we remark that

||Xx + (1 - X)y - r|| « ||X(X - r) + (1 - X)(y - f)||

g x||* - r|J + a - x)||y - r||.

Finally (IV) means that xj^f. The following lemma shows precisely that the

converse of all that has just been stated is true.

Lemma 1. If p is a real function on the normed space @ satisfying the condi-

tions (I), (II), (III), and (IV) above, then there exists an immediate extension •£

of d and a point f in 1 but not in (S such that p(x) = ||x — f|| for xG@.

To prove the lemma, consider some (not normed) vector space ï contain-

ing S as a vector subspace such that (S^X and (US is maximal in Ï. Take some

f in H but not in ®. Every element yÇz.% can be uniquely written as y = i+Xf,

where /G@ and X is a real number. Define the function p on ï by

P(y) = iM , "  X = °'
I | X | p(- t/\)    if    X ̂  0.

We shall prove that this is a norm function on H. It is obvious that

/x(y);>0. By property (IV), if X^O, then certainly ju(y)>0. Therefore, if

p(y) =0, then not only X = 0 but also ||¿|| =0, that is, t = 0 and therefore y = 0.

We have p(ay) = \a\p(y): if a = 0 this means simply that p.(0)=0; if a^O

and X = 0, then p(ay) =\\od\\ = |a| -||i|| = |«|m(:v), and if a^O and X^O, then

p(ay) = \ák\p( — ax/ák) = \a\p(y). Finally we prove that p satisfies the

triangle inequality p(y-\-z) ^p(y)+p(z). We find it necessary to divide this

part of the proof into the following cases:

(a) y and z belong to @. Then the inequality follows from the triangle

inequality on Gs.

(b) One and only one of the points y and z belongs to @: for instance yG®

and z(El& Then we can write y = t+\C, with ¿G@ and X5¿0, and we have to

prove that

|X|p(-i±l)Sfxu(-l) + H.

This follows simply from property (II) where we have to replace x and y by

— (t+z)/\ and — t/X, respectively.

Before considering the remaining cases, let us assume that y, zG® and so

y = i+XJ", z = u-\-t\ with /, wGÊandX, r^O.
(c) X and r have the same sign, for instance both are positive. Then we
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have to prove that

<x + 'K-^)sx'(-t) + "(-7>

This follows simply from property (III) with —t/\, — u/r, andX/(X+T) in the

places of x, y, and X, respectively.

(d) X and r have different signs and X+r ?¿ 0. Then X+t has the same sign

either of X or of t. Assume for instance X>0, t<0, and X+t >0. Then we have

to prove that

which is equivalent to

(x+'"(-ït;)-(x+')'(-t)s--(-t)-"(-t)-

If we replace x and y by — (/ + m)/(X+t) and — i/X respectively in property

(II), we see that the left-hand side of the above inequality is at most equal to

||m—tí/X||. On the other hand, if we replace x and y by — tfk and —u/r re-

spectively in property (I), we see that the right-hand side of the above in-

equality is at least equal to ||m—tí/X||. Therefore the inequality is proved.

(e) X= —t. Assume for instance X>0. Then we have to prove that

-tMt>
This follows simply from property (I) where we have to replace x and y by

— i/X and m/X, respectively.

We have thus finished the proof that p is a norm function on X and now

we may use the standard notation ||y|| for p(y). From the definition it is clear

that ® is then a normed subspace of ï, and so H becomes an immediate ex-

tension of @ for which ||x — f|| =p(x) for xGS, and the lemma is proved.

For a moment we shall forget about property (IV) and be interested only

in properties (I), (II), and (III).

If p and rare real functions on (2, where p has properties (I), (II), and (III)

and r^p, then we can say that r has property (I), that is, fix)+r(y) ^||x—y||.

The next lemma shows that the converse is also valid.

Lemma 2. If r is a real function on a normed space @ such that

r(x) + r(y) ^ \\x - y\\

for all x, yG<5, then there exists a real function p on (§ satisfying (I), (II), a»¿

(III) and such that r^p.

\t + u\\ Xp
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To establish the above lemma, let us consider the class A of all real func-

tions / on @ satisfying the inequality

f(x)+f(y)^\\x-y\\

for all x, yG®, so that r is simply a member of this class. If we make x = y in

this inequality, we see that/^O for every/GA. We shall consider A as a set

ordered by the relation fx á/2- This ordered set is inductive in the sense that

every nonempty totally ordered subset TCA has a greatest lower bound. In

fact, for each xG@ call (p(x) the greatest lower bound of the number/(x) for

/GT. If x, yÇ£G£ and e>0, there exists some/iGr such that/i(x) ^<p(x)+e,

and also some/2Gr for which f2(y) 5i</>(y)+e. Since Y is totally ordered, we

have either/ig/2 or/2g/i. Assume the first case. Then/i(y) ^/2(y) and so

||* - y|| á fx(x) + /i(y) á 4>(x) + 4>(y) + 2*.

Making e—»0 we see that <p satisfies the inequality that shows that <£GA. It is

then clear that <p is the greatest lower bound of Y in A. Having proved this,

we can apply Zorn's theorem and conclude the existence of an element p

minimal in A for which r^p.

The lemma will then be proved if we show that every p minimal in A

satisfies conditions (II) and (III) besides condition (I). Consider a number

h^Q and a point xG@, and define the function <p by

( h      if    t = x,
<p(t) =  \

\p(t)     if     ¡7^1

It is not hard to verify that </>GA if and only if

(3) h à sup {||¿ - x|| - p(t))

as t runs over ©. Since p is minimal we cannot have <f>^p, (p^p for the func-

tion <j> corresponding to such an h and therefore h^p(x). Thus every h^O

satisfying (3) is not less than p(x). Therefore

(4) OVsup {||*- x|| - p(t)\ ^p(x).

Now we remark that

(5) ||x-y||+P(y)èsup {\\t - x\\ - p(t)\

for any yÇzfë, that is to say

pW + o(y) è ||*- x|| - ||x- y||,

for the left-hand side is not less that ||¿ — y||. From (4) and (5) we get

\\x-y\\ ^p(x) - p(y).

Since x and y are arbitrary, we can interchange x and y and conclude that p

satisfies condition  (II).  Consider now two points x, y(E.(£, a number X,
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O^X^l, and define z=Xx+(l—X)y. We shall verify that

(6) Xp(x) + (1 - \)p(y) è sup: f ||* - z|| - „(<)}.

In fact, this amounts to

\{P(x) + p(t)} + (1 - \){P(y) + p(*)} ^ ||* - z||,

and therefore follows from

||¿ - S|| = ||X(* - x) + (1 - X)(< - y)||

á X||* - «II + (1 - X)||* - y||

^ X{p(*) + p(x)} + (1 - X){p(0 + p(y)\.

Now if we compare (3) and (6), we see that we can take h = Xp(x) + (1 —X)p(y)

and conclude h^p(z), which means exactly that p satisfies condition (III).

The lemma is therefore proved.

Having these two lemmas, we can now prove the necessity in Theorem 1.

Consider a normed space © and assume that there exists a collection Q0 of

spheres of Gs any two of which have a nonempty intersection, but such that

Qo has a void intersection. Call A the set of centers of members of this collec-

tion. For each xG-4 call r(x) the greatest lower bound of the radii of the

members of Qo with x as center. It is not hard to verify that

(7) r(x) + r(y) ¡> ||x - y||, x, y G A.

For each xÇzA, consider the sphere of center x and radius r(x) and call Qx the

collection of spheres obtained in this way. By a remark already used, any

two members of Qx intersect, but the collection Qx has a void intersection, for

a point common to all members of Qx would be common to all members of Q0.

Moreover two distinct members of Qx have distinct centers. If A is not the

whole space ®, we can enlarge Qx as follows. Let £ be a fixed point of A and

for each x in S but not in A consider the sphere of center x and radius

||x — £||+>*(£). Since this sphere contains the sphere of center £ and radius

r(if), it is clear that the collection Q formed by adding the new spheres to the

collection Qx has the property that any two of its members intersect, but the

intersection of the whole Q is void. Every point xG@ is then the center of

one and just one member of Q: call r(x) its radius. Then we have the in-

equality (7) satisfied for all x, yÇzdï. Moreover for any given £G®, the in-

equality r(x) è||x — ¿|| cannot be valid for all xG@, for if it could, £ would be

common to all members of Q. Now apply Lemma 2 and consider a real func-

tion p on @ satisfying conditions (I), (II), and (III) and such that r^p. It is

then clear that, for any given £G®, the inequality p(x)^||x — £|| cannot be

valid for all xGS- This implies, in particular, that p satisfies also condition

(IV), for p(£) ±S0 for some £G@ would imply

p(x) ^ p(x) + p(0 â ||*-f||,
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which is impossible.

Having this function p, we can apply Lemma 1 and obtain an immediate

extension X of ® containing a point £" not in © such that p(x) =||x — f|| for all

xGS- We say that there is no projection P of % onto © with norm equal to

1. For otherwise f would have an image £ = -P(f)G® and we would have

\\P(y)-i\\ = ||P{P(y)-f}|| ik \\P(y) - rU

for any yÇJL: since P(y) =x is an arbitrary point of (§, this would mean that

||* —£|| =p(x) for all xGS, which is impossible.

Consider then the vector subspace © = Ê of ï and the identity mapping

/:©—>©. Then ||/||=1, but there is no linear extension F:£—>(5 such that

II F\\ =1, for such an extension would be a projection of .¥ onto (S with norm

equal to 1.

The proof of Theorem 1 is therefore completed.

4. Structure of normed spaces whose collections of spheres have the binary

intersection property. The binary intersection property for the collection of

spheres of a normed space is a very strong one, as one can see by remarking

that any real Hubert space of dimension not less than 2 does not have this

property. This fact, however, does not prevent the existence of a large num-

ber of normed spaces of any dimension with that property. In this and in the

next section, we shall investigate the structure of normed spaces enjoying

the binary intersection property.

Suppose that we have a vector space @ which is ordered in such a way as

to become a complete vector lattice, that is:

(1) S is an ordered vector space: this means that xi=y implies x-\-z^y-\-z

and Xx^Xy for any x, y, zG® and any scalar X=ï0,

(2) (S is a complete lattice.

We shall also assume that:

(3) @ has an order unity e: this is an element e>0 such that, given any

xG® we have —Xe^x^Xe for some scalar X.

Consider a fixed order unity e. For each xG@, call ||x|| the greatest lower

bound of all scalars X for which —Xe^xgXe. It is not hard to verify, and in

fact it is well known, that ||x|| is a norm function on the vector space @ and

that the sphere of center £ and radius r^O is identical to the segment

[£ — re, £+re]. Therefore every order relation on S making @ into a complete

vector lattice with an order unity and every choice of this unity allow us to

make @ into a normed space in a natural way.

We say that the collection of spheres of (5 has the binary intersection prop-

erty. Since every sphere is a segment, it will be sufficient to prove that the

more inclusive collection of segments of S has the binary intersection prop-

erty. This follows from one-half of the lemma below. Later we shall need

the other half.

Lemma 3. An ordered set Qt is a complete lattice if and only if it has the in-
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terpolatory property and the collection of its segments has the binary intersection

property.

In fact, if S is complete and xi, x2^yi, y2, then Xi and x2 are bounded from

above and so xiVx2 has a meaning; similarly, yiAy2 has a meaning and we

have xiVx2^yiAy2. Then if z satisfies xiV*2=Sz^yiAy2, we shall have

*ii x2^z^yi, y2 showing that (5 has the interpolatory property. Consider now

any nonempty collection of segments [x\, y\] any two of which intersect,

that is, for each pair a, ß there exists some zaß such that xa, Xß^zaß^ya, yß-

This implies xa ^y# for any a, ß. In particular, the x„ are bounded from above

and so Vax« has a meaning; similarly, AßVß has a meaning and we have

Vax„^A|sys- Take any z for which V^x^^z^A^- Then xa^zSyß for any a,

ß and in particular for a=ß = \, that is, zG [xx, yx] for any X, showing that

the collection of segments of S has the binary intersection property.

Conversely, assume that ® satisfies the two conditions of the lemma. Let

Íxxj be a nonempty collection of points of (§ bounded from above. Call

yMj the collection of upper bounds of {x\}. Consider the collection of seg-

ments [xx, y„]. From the interpolatory property it follows that any two of

these segments have a point in common. From the binary intersection prop-

erty it follows then that these segments have a point z in common, that is,

x\^z^yu for any X, p: the first half means that z is an upper bound of {xx},

and the second half that z is the least upper bound, as desired.

The order unity e is an extreme point of the unity sphere U of @. In fact,

assume that x and y belong to U, x^e, y^e. Then e does not belong to the

segment [x, y] : in fact, we have —e^x^e, — e^y^e and therefore x<e, y <e.

From this it follows that Xx+(1—X)y <Xe+(l —X)e = e and a fortiori Xx

+ (1 — X)y ¿¿e for any X, 0 ^X 5= 1, showing that e is an extreme point of U.

Finally we say that the knowledge of the order unity e together with the

norm function on © determine uniquely the order relation on (5. It is equiva-

lent to determine the set of all positive elements. We say that x|S0 if and only

if it can be written as x=X(«+e), where X^O and ||«|| SI. In fact, if x has

this form, then — e^u^e and so M-fe^O from which x2:0. Conversely, if

x>0 (the case x = 0 being trivial), we take Xä||*||/2, from which ||x||^2X

and 0^x^2Xe or equivalently —e^(x—Xe)/X^e; now if we define u

= (x—Xe)/X we obtain the desired decomposition of x.

Conversely, suppose that we have a normed space @ and an extreme point

e of its unity sphere U. If the collection of spheres of Gs has the binary inter-

section property, then there exists one and only one order relation on © with

respect to which Gî is a complete vector lattice having e as order unity such

that the norm deduced from the order relation and the order unity is pre-

cisely the norm already given in @. Since the uniqueness of the order relation

has just been proved, it remains only to prove its existence.

Call P the set of all elements xG® of the form x=X(w + e), where X^O



1950] A THEOREM OF THE HAHN-BANACH TYPE 39

and ||m|| á 1(6). It is clear that OGP and that XPCP for any X^O. Moreover

P+PCP. In fact, if x=X(w+e), y=p(v+e) with X^O, ||«||ál, M = 0 and

||o||ál, then x-\-y = v(w-\-e), where w = (\u-\-pv)/(\-\-p) and v=\+p (we

have excluded the trivial case X=p. = 0). But v¡í0 and \\w\\ :S1 and therefore

x+yGP- Finally Pf~\( — P) =0. In fact, assume that x=X(w+e), — x=p(v-\-e)

withX^O, ||«||ál, M^O and ||i>||ál. Then (k+p)e+\u+pv = 0. If ~k+p = 0,
that is, X=p; = 0, then we get x = 0. If X+p->0, then — e = (\u+\v)/(\+p)

together with the fact that — e is also an extreme point of the unity sphere

imply either —e = u or — e = v, and in any case we have x = 0. Therefore P

has all properties that are needed in order that @ be an ordered vector space

underthe definition x^y<=*y — xGP, with Pas the set of all positive elements.

We have the relation

(8) U - (e - P) H (- e + P).

In fact, if u G U, then u = e — l(e — u)Ç_e — P and u= — e + l(« + e)G— e-\-P,

proving that relation (8) is valid with = replaced by C- To prove the inclu-

sion in the reversed sense, consider u G (e — P)C\(—e+P). Then u = e — a(v-\-e)

and u= —e+ß(w+e), where a^O, \\v\\ gl, 02:0 and \\v\\ £1. From the first

expression for u we get w = (l— a)e+a( — v): since e and —v belong to U, the

relation a ¿ 1 would imply u G U as desired ; therefore let us assume that a > 1.

Similarly u = (1 — j3)( — e)+/3w and the fact that — e and w belong to U show

that ß i= 1 would imply m G £7 as desired; therefore we shall assume that ß> 1.

Let us submit (V to the translation taking — e into 0, next to the similitude

of positive ratio a—1 and center at the origin, and finally to the translation

taking 0 into u. The final result A =u + (a— l)(e+ U) will be the sphere with

center w + (a — l)e and radius ce —1. We have

(9) A C u + (a - i)P = m + i5

because UÇ_— e+P. Moreover « = (1 — a)e+a( — ») implies that — w = w

+ («— l)(e+fl)G-4 and so ^ an<^ ^ have the point —v in common. Let us

start again and submit U to the translation taking e into 0, next to the simili-

tude of positive ratio ß — 1 and center at the origin, and finally to the transla-

tion taking 0 into u. The final result B=u-\-(ß —1)( —e+ U) is the sphere with

center u + (ß —1)( — e) and radius ß — 1. We have

(10) B C u + (ß - 1)(- P) = « - P

because UC.e — P. Noticing that w= (1— /3)( — e)+/3w implies w = u

+ (|3 —1)( —e —w)GP we see that B and £7 have the point w in common.

On the other hand u = u-\-(a — l)(e — e)G-4 and m = m + (/3—1)( —e+e) GP

show that A and P have the point u in common. By the binary intersection

(s) The idea we use here of determining an order relation in a normed space from an extreme

point is known.
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property of the collection of spheres, we see that Af~\BC\U is not empty.

Now from the relations (9) and (10) we see that

A C\ B C (u + P) H (u - P).

Moreover the relation P(~\ ( — P) = 0 submitted to the translation taking 0 into

u gives

(u + p) r\ (u - P) - u.

This shows that A (~\B is reduced to the point u and this implies that u G U.

The proof of the equality (8) is therefore finished.

Every closed sphere is identical to a segment. First of all we prove that U is

identical to [ — e, e]. In fact, xG[ — e, e] if and only if —e^x^e, that is,

e + xjäO which is equivalent to e±xÇ.P or to xGi(e-P): this shows that

[- e,e] = (e-P)i\(-e+ P)

and it is then sufficient to apply relation (8). From this it follows readily that

the sphere of center £ and radius r is identical to the segment [l; — re, £+re].

Every segment in S ca» be expressed as an intersection of two spheres. In fact,

consider the segment [x, y] and set

r = \\y — x\\/2,        x = y — 2re,        y = x + 2re,

m = (x + y)/2,        n = (x + y)/2.

Consider the spheres M and A of centers m and n, respectively, and radii equal

to r. Then

M = [m — re, m + re] =  [x, y],        N = [n — re, n + re] = [x, y].

Since ||y —x||=2tv, we have y — x^2re and so x^x and y^y. From this it

follows that M(~\N= [x, y] for x^t^y is obviously equivalent to x^t^y

plus xSt^y.

The collection of segments of the ordered set (S has the binary intersection

property. In fact, let {Sx} be any nonempty collection of segments of (S, any

two of which intersect. Write Sx = M\i^N\, where M\ and Ax are spheres.

Then the collection of spheres formed by all M\ and all Ax has the property

that any two of them intersect; this follows simply from the relation:

Ma C\ Na C\Mß(~\ Nß = Sar\ Sß.

Therefore there is a point common to all these spheres, and this point will

clearly be common to all segments Sx-

The ordered set © has the interpolatory property. In fact, let Xi, x2, yi, y2G@

be given with Xi, x2:£yi, y2. Consider the segment [x¿, y¿] and write it as the

intersection of two spheres: [x¿, y<] = MiC\Ni, where

Mi = [xi, yA,        Ni = [x„ ,v,],
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Xi = y i — 2r{e,        y i = X¡ + 2r(e,        rf = |¡y¿ — Xj||/2.

We say that any two of the spheres Mi, Nlt M2, and A2 do intersect. This is

obvious for the pair Mi, Nx and for the pair M2, N2. Let us prove it for the

pair Mi, Mí. We have to show only that the distance of the centers of Mx

and Mi is not greater than the sum of their radii, that is:

xx + >'i      *2 + y2
âfi-f r2.

Replacing Si and x2 by their expressions, we get the equivalent condition

||yi — y2 + (r2 — rx)e\\ ^ rx + r2,

which amounts to

— 2r2e ^ yx — y2 ^ 2rie.

But

yi - y2 = (yi - *i) + (*i — y2) ^ yi - *i 2s 2rie

because ||yi — *i|| = 2ri. Also

yi — y2 = (yi — x2) + (x2 — y2) S: x2 — y2 ¡^ — 2r2e

because ||y2—x2|| = 2r2. We have thus proved that Mx and M2 do intersect. By

using the same type of reasoning, we complete the proof that any two of

those four spheres do intersect. By the binary intersection property of the

collection of spheres, there is a point z common to these spheres: then z is in

MxC^Nx and also in M2C\N2, showing that Xi, x2^z^yi,y2 as desired.

Gi is a complete lattice. This follows readily from the two lastly proved

properties and from Lemma 3.

e is an order unity for Gi. In fact, we have clearly e>0. Moreover, given

any x, it is contained in the sphere of center 0 and radius X=i||x||. Since this

sphere is identical to the segment [— Xe, Xe], we have —Xe^xáXe.

The norm deduced from the order relation on Gs and the order unity e is identi-

cal to the original norm. This follows simply from the fact that both norms

have the same unity sphere, namely the segment [ — e, e].

We have thus completed the proof of the following theorem:

Theorem 2. If Gs is a complete vector lattice with an order unity e, then @,

endowed with the norm deduced from its order relation and e, becomes a normed

space whose collection of spheres has the binary intersection property and whose

unity sphere has e as an extreme point. Conversely, given any normed space Qj

whose collection of spheres has the binary intersection property and whose unity

sphere contains e as an extreme point, there is one and only one way of making

Gî into a complete vector lattice having e as an order unity such that the norm

deduced from the order relation and e is identical to the given norm.
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As we have stated in the introduction, we do not know whether the unity

sphere of every normed space, whose collection of spheres has the binary

intersection property, must contain an extreme point. It seems that this is

likely to be the case. In this situation we cannot apply the standard theorem

of Krein and Milman about the existence of extreme points(7) because the

unity sphere is not weakly compact, except in the trivial case where Gi is

finite-dimensional (see next section). However, the binary intersection prop-

erty for the collection of spheres of a normed space has a certain compact-

ness character. In any case, Theorem 2 gives us a first information about the

structure of a normed space whose collection of spheres has the binary inter-

section property, and satisfying the additional condition (that may be re-

dundant) that its unity sphere contains an extreme point.

Let us now examine the finite-dimensional case in which a simple result is

to be expected. Call 9fn the »-dimensional euclidean space considered as a

vector space in the usual way, ordered component by component and

normed by

(11) ||*|| = | *l| V ■ • • V | *»|     if    * =  {xi, ■ ■ ■ , xn\.

This is the norm that we have to consider on 9Î" when we think of it as the

normed space of all (continuous) functions over the (compact) space

{1, 2, ••-,«}. It is not hard to see that the collection of spheres of 9Î" has

the binary intersection property: this follows from the existence of the order

unity e = {1, 1, • • ■ , l}. Therefore every normed space that is isomorphic to

3{n has dimension » and its collection of spheres has the binary intersection

property.

Conversely, if a normed space Gt, whose collection of spheres has the

binary intersection property, is of finite dimension », then its unity sphere

contains an extreme point e. We can then apply Theorem 2 and set up an

order relation on Gï as was described before. Applying a known theorem(8),

we can say that the order relation on (g has a component character, that is,

there exists a base ei, e2, ■ ■ ■ , en for G? such that x = J^ï *¿e» = 0 if and only if

x¿^0 (i=l, 2, • • • , m). We can assume, of course, that ||e<|| =1. Then we

assert that e = ~YJ[ e¿. In fact, write e = 2^" X¿e,. Since e ̂  0, we have all X¿ >. 0.

Moreover ||ci|| = l implies ei=Se = ^" X,e< and therefore 1 5=Xi. On the other

hand ||ei|| = 1 and e^O imply that ei^0e= X,i0X¿e, is false for any 6, O<0<1:

this requires that OXi < 1 and making B—*\ we see that Xi ^ 1. Therefore Xi = 1

and similarly for all X,-. Having proved this, we see that x= ^x *>e< satisfies

—Xe^x^Xe if and only if — X^x,^X which amounts to Xsï|x,-| for

î' = l, 2, • • • , ». Therefore ||*|| = |*i| V ■ ■ • V|*t>|- This shows that the

mapping x—>■ {Xi, ■ • • , xn} is not only a vector space isomorphism between

(7) See Krein and Milman [9] or Godement [ó].

(8) See Youdine [16] and Nagy [11 ].
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Gi and 9îM, but it is also an isometry. Therefore we have proved the following

theorem (9).

Theorem 3. The collection of spheres of a normed space Gi of dimension n has

the binary intersection property if and only if Gi M isomorphic in the norm and

vector sense to the vector space 9t" normed by (11).

The above theorem shows, in particular, that in the finite-dimensional case

the unity sphere of a normed space whose collection of spheres has the binary

intersection property looks like a cube.

Finally, let us remark that if a normed space is actually given as a com-

plete vector lattice with an order unity related to the norm as described be-

fore, then the proof that it has the extension property can be carried out ex-

actly as is given in Banach's book.

5. Relation to complete Boolean algebras. Suppose that we have a

normed space S whose collection of spheres has the binary intersection

property and whose unity sphere has e as an extreme point. Then we can make

Gi into a complete vector lattice with e as order unity as was described before.

It is not hard to verify that Gi is then an (M)-space in the sense of Kaku-

tani(10). Therefore there is a compact Hausdorff space K whose normed lat-

tice Sx of real continuous functions is isomorphic in the vector, norm, and order

sense to Gi in such a way that e is mapped into the unity function. We can

also say, by the Banach-Stone theorem(n) that K is unique up to homeo-

morphisms, even if we know only that Gix is isomorphic in the norm and vector

sense (but not necessarily in the order sense) to Gi.

The space K has however to be more than a simple compact Hausdorff

space because its lattice of real continuous functions, being isomorphic to Gi,

has to be complete. We shall need at this moment the following definition.

A topological space will be said to be extremally disconnected if it is a

completely regular space in which the closure of every open set is open. It is

not hard to see that the lattice of all real continuous functions over a com-

pletely regular space is complete if and only if it is extremally disconnected.

Since the unity function on K is an order unity for GCx when K is compact, we

have the following theorem.

Theorem 4. Every normed space whose collection of spheres has the binary

intersection property and whose unity sphere contains an extreme point is iso-

morphic in the vector and norm sense to the normed space of all real continuous

functions over an extremally disconnected compact Hausdorff space, which is

unique up to komeomorphisms. Conversely, if a normed space is isomorphic in

(9) A more general proposition is as follows: let C be a given compact set with nonempty

interior in a finite-dimensional real vector space. Then the collection of all translates of C has

the binary intersection property if and only if C is a cube.

(10) See Kakutani [7] and also Krein and Krein [8],

(u) See, for instance, Arens and Kelley [l].
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the vector and norm sense to the normed space of all real continuous functions

over an extremally disconnected compact Hausdorff space, then its collection of

spheres has the binary intersection property.

From the above theorem and known results, we can deduce the following

theorem.

Theorem 5. The unity sphere of a normed space whose collection of spheres

has the binary intersection property is weakly compact if and only if the space is

finite-dimensional(12).

In fact, if the unity sphere is weakly compact, we can apply the theorem

of Krein and Milman(7) and say that it contains some extreme point. Then by

the previous theorem Gi is isomorphic to the normed space of all real continu-

ous functions over a compact Hausdorff space: but it is known that the unity

sphere of such a space is weakly compact if and only if A is a finite set(13).

Therefore Gi must be finite-dimensional. The converse is of course trivial.

Theorem 4 says that, roughly speaking, there are as many normed spaces

whose collections of spheres have the binary intersection property and whose

unity spheres contain extreme points as there are extremally disconnected

compact Hausdorff spaces. However the extremally disconnected compact

Hausdorff spaces are to be considered as highly pathological, and they must

be used only as auxiliary tools. It seems therefore convenient to replace them

by a perfectly equivalent notion, that of a complete Boolean algebra, which

has no pathological aspect.

Suppose that we have an extremally disconnected compact Hausdorff

space K. Let <B be the collection of all closed and open subsets of K. It is not

hard to verify that <B is a complete Boolean algebra, the supremum in S of

any collection of elements of 33 being the closure of their point set union.

Since every extremally disconnected space is totally disconnected, we can

say(") that the knowledge of <B up to an isomorphism determines the

knowledge of A up to a homeomorphism. Conversely, given any complete

Boolean algebra <B, by virtue of Stone's theorem it is isomorphic as a Boolean

algebra to the Boolean algebra of all open and closed sets of a totally dis-

connected compact Hausdorff space K: it is not hard to see that from the

completeness of <B we can infer the extra property that K is extremally dis-

connected (15). Therefore via Stone's theorem there is a natural one-to-one

correspondence between extremally disconnected compact Hausdorff spaces

(12) In other words (see Dieudonné [5]), the space is reflexive if and only if it is finite-

dimensional.

(13) We use here the known fact that the unity sphere of the normed space of all real

bounded continuous functions over a completely regular space is weakly compact if and only

if this space is finite.

(») See Stone [13].

(u) See Stone [14], [15] for more complete results in this connection.
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and complete Boolean algebras, of course up to the corresponding admissible

equivalences.

It is not hard to see that a function is an extreme point of the unity

sphere of the normed space of all real continuous functions over a compact

Hausdorff space if and only if it takes on the space only the values 1 and — 1.

Therefore there exists a natural one-to-one correspondence between the ex-

treme points of this sphere and the open and closed subsets of the space. All

that we have said leads to the following theorem.

Theorem 6. Let S be a normed space whose collection of spheres has the

binary intersection property and let e be an extreme point of its unity sphere U. If

we make Gi into a complete vector lattice with e as order unity and the segment

[ — e, e ] as the unity sphere, then the collection £ of all extreme points of U en-

dowed with the induced ordering relation will be a complete Boolean algebra with e

as the last element. Different choices of e make £ into different but isomorphic

complete Boolean algebras. Conversely, given any complete Boolean algebra, there

is a normed space, unique up to an isomorphism, whose collection of spheres has

the binary intersection property and whose collection of extreme points is not

empty and is a complete Boolean algebra (for any choice of a particular extreme

point) isomorphic to the given one.

Roughly speaking we can then say that there are as many normed spaces

whose collections of spheres have the binary intersection property and whose

unity spheres contain extreme points as there are complete Boolean algebras.

We finish this section by stating the following as yet unsolved problems:

(1) Does the unity sphere of a normed space whose collection of spheres

has the binary intersection property have at least one extreme point? By

virtue of Theorem 4, the existence of at least one extreme point is equivalent

to the fact that the convex hull of the set of all extreme points is dense in the

unity sphere.

(2) Suppose that we have a Banach space Gi with the following properties :

(a) If we have any finite collection of spheres any two of which intersect,

then the collection has a nonvoid intersection.

(b) There is an extreme point in the unity sphere.

Is this normed space isomorphic to the normed space of all continuous func-

tions over a compact Hausdorff space?

If G? is finite-dimensional, then the answer is yes: in fact, in this case every

sphere is compact and from the property (b) above it follows easily that the

collection of spheres has the binary intersection property. It remains only to

apply Theorem 3.

In this case it is easy to see that (a) does not imply (b) : it is sufficient to

consider the normed space of all real continuous functions over a compact

Hausdorff space vanishing at a nonisolated point. It is also easy to see that

property (a) does imply the completeness of a normed space: it is sufficient to
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consider the normed space of real functions that have a derivative on the

unity segment, the norm of each function being the least upper bound of its

absolute value.
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