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Introduction. One of the methods for the study of harmonic functions

hix, y) of two variables consists in associating with every h a function / of

one complex variable by the relation

hix, y) = 2rl\j(x + iy) + fix - iy)].

The function/ can be obtained by continuing hix, y) to the complex values

of the arguments and then considering it in the characteristic plane x= —iy

(or x = iy): substituting x = z/2, y= — ¿z/2 into 2h(x, y) yields /(s) -{-const.

In the present paper we give a generalization of this method to harmonic

functions of three variables. In particular, we study certain classes of har-

monic functions 77"(X), X= (x, y, z)(2). In addition we shall also consider

certain classes of functions $(X) which satisfy

T($) = A$ + C(x2 + y2 + z2)$ = 0.

Here C(x2+y2+z2) is an entire function of (x2+y2+z2). In Chapter I we

associate with each harmonic function H(X) an analytic function x(Z, Z*)

of two variables Z=(iy-\-z)'/2 and Z* = (iy — z)/2 which essentially coincides

with 77" in the characteristic space(3) C3 = E[x2+y2+z2 = 0](4).

The-transition from the space S of functions %(Z, Z*) to the space § of

harmonic functions H(X) can be realized by certain integral operators, and

it is useful for many purposes to insert an intermediary space ¡a of functions

f(u, t) of two complex variables u=(x+tZ+t~1Z*) and f, and to consider

the mappings of E onto Sß and SB onto § separately.

In §1.3 we determine the operator transforming the function x(Z, Z*)

into the function f(u, f) and the operator transforming f(u, if) back into

H(X).

Algebraic harmonic functions are studied in Chapter II, and in particular

those which arise from a rational/. The latter are single valued on R-manifolds
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(2) We shall often use the notation H{X) for H(x, y, z).

(3) The solutions H{x, y, z) are in the present paper considered in most cases for real

values of the arguments. We sometimes continue them, however, to complex values; in par-

ticular, (3 is a manifold in the space of three complex variables x = X\ +ix2, y = y\ +iy2, s = Z1+ÍZ2,

see § 1.2.

(4) E [ • • • ] denotes the set of points whose coordinates satisfy the relations indicated in

the bracket.
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(three-dimensional analogues of Riemann surfaces), and we determine in

§11.3 the maximum number of independent constants possessed by such a

function of a given order. This is analogous to one case of the Riemann-

Roch Theorem.

Chapter III continues these considerations to harmonic vectors H, that

is, vectors satisfying div H=0 and curl H=0. Considering the integrals

fH-dX, where H is a harmonic vector, we show that certain linear combina-

tions of these integrals equal linear combinations of integrals of algebraic

functions of one complex variable; here algebraic relations between the limits

of the integrals on both sides exist. (This result represents to a certain extent

an analogue of Abel's theorem.)

In Chapter IV we discuss operators transforming harmonic functions into

solutions of T(3?)=0. By means of these operators we study solutions of

T(3>)=0 which in the characteristic space E[x2+y2+z2 = 0] are algebraic

functions of the arguments y and z. We show that these functions are multi-

valued and are defined on certain R-manifolds S (closely related with the

R-manifolds for harmonic functions considered in II). These functions possess

the property that they can be represented in the form

CO

HX) = G(X) + £ BM(r*)Gn(X),
n=l

where 73(n)(/-2), «=1,2, • • -, are certain functions depending only upon the

function Cin T and G(X) and Gn(X), n = l, 2, • ■ ■ , are functions harmonic

and single-valued on S • We can associate with S certain S functions, general-

ization of classical ^-functions; and using these ^-functions, their derivatives,

finitely many transcendental functions connected with §, and finitely many

algebraic and logarithmic operations, each of the functions Gn(X), ra = l,

2, • • ■ , can be represented in a closed form.

As it has been shown in [4, 7](6) the theory of Riemann surfaces of

functions satisfying a partial differential equation L2(<p) =A<p+a<px+b((>y+c

= 0 is in a very simple manner connected with the theory of Riemann sur-

faces for harmonic functions. It seems that a similar situation takes place in

the three-dimensional case, and that many results obtained for multivalued

harmonic functions can be extended to the theory of functions satisfying

linear partial differential equations of the form A(p-\-K<p = 0, where K is an

entire function.

The author wishes to thank Mr. Henry Pollak and Mr. Arthur Zeichner

for their help in the preparation of the present paper.

I. Integral operators in the theory of harmonic functions

1. Preliminaries. The method of integral operators is one of the tools used

(5) See also Trans. Amer. Math. Soc. vol. 62 (1947) pp. 452 ff. Numbers in brackets refer

to the bibliography.
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to extend procedures of the theory of functions of a complex variable to other

fields, in particular to the theory of functions satisfying linear partial dif-

ferential equations. The totality {If} of solutions of a linear partial dif-

ferential equation represents a linear space. On the other hand, in contrast to

functions of a complex variable, the U's neither form an algebra nor possess

group properties. The fact that analytic functions of a complex variable

form an algebra gives the basis for the development of the theory of algebraic

functions of a complex variable which can be formulated as a theory of alge-

braic harmonic functions in two variables. One of the aims of the operator

theory is to provide some substitutes for operations which permit us to de-

velop the above theory. By associating, in a one-to-one way, a function fk of

one or more complex variables with every solution Uk='P(fk) of a differential

equation, we define a certain composition rule "®" for the Uk by writing(6)

(1.1) U3= Ui® u2,

(1.2) U3 = P(fif2).

(The function fk corresponding to Uk will be denoted as the "P-associate(7)

of Uk") On the other hand, the relations like (1.1) are at first purely formal,

since the functions Î73 in (1.1) depend upon the correspondence principle

applied, that is, upon the choice of P, and P can be defined in infinitely many

different ways. One of the main problems of the theory of integral operators

is to study operators which transform functions / into solutions U and to

select among them those which preserve some basic properties of the func-

tions to which the operator is applied. In this way we obtain operators which

can be considered as more or less a natural extension of the operation "taking

the real part."

Most of the properties of analytic functions can be interpreted as theorems

on harmonic functions of two variables. As it has been shown in a number of

previous papers, the theory of integral operators (of the first kind) permits

us to extend many of these theorems to the case of general linear partial dif-

ferential equations in two variables of the form L2 (see p. 462).

In attempting to generalize methods of integral operators to differential

equations in three variables we find it useful to distinguish between two dif-

ferent problems.

I. Applying operators to analytic functions of one (or more) complex

(6) We omit here a more detailed discussion of the operations which can be carried out in the

theory of functions of one or more complex variables and by employing conveniently chosen

operators used in other function-spaces. We restrict ourselves merely to mentioning that {/j

is an algebra, since this property of {/} is used decisively in the study of algebraic harmonic

functions in Chapter II. Concerning other types of operators, compare [6, 8, 10, 17, 18].

(7) In order to avoid confusion, it should be stressed that here and in the following operators

P are applied to the associate functions (which in general form an algebra) and transform them

into solutions of differential equations in whose properties we are interested.
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variables, we study harmonic functions and harmonic vectors, that is, vectors

H(X), X= (x, y, z), for which

(1.3) curl if =0,

(1.4) div7J=0

holds.

II. In a manner analogous to the procedure in two variables, we consider

operators transforming harmonic functions in three variables into solutions

of more general linear partial differential equations.

In the present paper we study mostly the questions connected with I,

and limit ourselves in considering problem II to differential equations of the

form

ô20      d20      d*<p
«■5> ™-- + ^ + j¿ + cm = o,

where C is an entire function of r2 = x2+y2-f-z2.

2. Characteristic space Q%. In considering harmonic functions of three

variables it is often convenient to continue the arguments x, y, z to complex

values and to study their behavior in the characteristic space,

e3 = E[*2+y2 + z2=0]

1-222222 -,
(1.6) = E[xi + yi + zi = X2 + y2 + z2, xix2 + yry2 + ziZ2 = 0],

x = xi + ix%,       y = yi + iy2,       z = zi + iz2.

Here it is convenient to use coordinates

(1.7) Z = iiy + z)/2,        Z* = iiy - z)/2.

We have then

(1.8) x = 2(ZZ*)1'2,       y = - i(Z + Z*),       z = (Z - Z*).

Lemma 1.1. To every harmonic function^)

H = HiX) = £   I 2-»(2»)![(w + k)\in - k)'.]'1 ankRnPnicos d)eih*,
(1.9) n=0   k=-n

Otn,-k   =  OLn.k

iwhich is regular at the origin) there correspond two analytic functions x*iZ, Z*),

(8) Here R, 6, <j> are polar coordinates, and Pn are Legendre functions. We note that in

the present paper we use for the Legendre functions P* the definition adopted in [11, p. 73].

This definition differs from the definitions used elsewhere by various multiplicative constants.

For instance, the Pn used here differ from the Pn used in Madelung, Die mathematischen Hilfs-

mittel des Physikers by the factor ( — 1)*, see p. 66, and from those in Heine Kugelfunktionen, see

p. 211, by the factor 2-»(2ra)l[»!(»-è)!]-1.
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k = l, 2, of two complex variables which are regular at the origin and such that

Hi2iZZ*Y'\ -i(Z + Z*), (Z - Z*)) = x(Z, z*)

=-xi(z,z*) + (zz*yi*x*(z,z*),

where

oo n

(1.11a) xi=E   S ßnhz(n-k),2z*in+k)i2 = X^ Z yp'Z'Z*',    n- k even,
71=0     k=—rt

and

(1.11b)   X2 = ¿   Z ßnkZ^-k+vi2Z*(n+k-i),2 = Z E ylvZ»Z*',      n- k odd.
n=0   k=—n

Here

ßnk = a„k(2n)\[(n + k)l(n — £)!]_1; y», = ß,+ß,,~ß, y», = ß,+ß+i,,-.p.

Conversely, to every pair of functions (xi, X2) there corresponds a harmonic

function HiX) related to (xi, X2) by the relation (1.10).

We shall denote the harmonic function HiX) corresponding to a given

function xiZ, Z*) by d3(x)-

Proof. Every real harmonic function 77" which is regular in the neighbor-

hood HiO) of the origin can be represented in >{(0) in the form (1.9).

Using the Laplace representation we obtain (see [11, p. 211 ])

(1.12) fl = -LX   t a^Wt^dt,
2lTt J ¿C, n=0   k—n

where

(1.13) u = x + zt + z*r\      <C-E(|Ï! -1).

Replacing x by 2(ZZ*)1'2 yields w = ((Zr)1/2 + (Z*f-1)1/2)2. so that the re-

lation (1.10) holds.

The inequalities \ß„k\ <cr~n, n = l, 2, • • • , imply |y*„| <cr_CH""), and

\y%,\ <cr~c"+',+1), i>+/x=l, 2, ■ ■ ■ , and vice versa. Further

1 ^ i2n)\[in + k)\in - k)'.]-1 ¿ 4"

and therefore

I ank\  é\ ßnk\   ^ 4»I ank\ .

Thus the regularity of H in the neighborhood of the origin implies the regu-

larity of xi and X2 in the neighborhood of the origin and vice versa. This

completes the proof of the lemma.
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Definition 1.1. The function xiZ, Z*) will be defined as the C3-associate

of 77.

(1-14) ^={xiZ,Z*)}

forms an algebra. On the other hand, there are certain differences between the

situation in the case of hix, y) and that of HiX) which make it impossible to

make an immediate generalization to the three-dimensional case of the pro-

cedures used in the theory of harmonic functions hix, y) of two variables.

1. While the transition from/(z), z=x+iy, to A(x, y) is realized by the

operator "taking the real part" which will be denoted by b2, the operators

transforming {x} into {h} known at present are of more complicated nature.

The "simplest" operator (which is also considered in the present paper) in-

volves a double integration (9).

2. While in the case of operators b2 and p2(10), the associates are again

functions of two real variables x and y, in the three-dimensional case the

associate xiZ, Z*) is a function of four real variables, while HiX) depends

only on three variables.

3. xiZ, Z*) is not analytic at the origin; this deficiency can be easily re-

moved, say by introducing new variables, but then some new complications

will arise. Further, xiZ, Z*) are functions of two complex variables whose

properties are not so well known as those of functions of one complex variable.

These and other differences between the situation in the two- and in the

three-dimensional case suggest that in the latter case we introduce in our in-

vestigations an additional step. It consists of the use of an intermediary

functions space which is an algebra, namely the space 93 of functions /(w, t)

oí two complex variables w = x+fZ-(-f_1Z* and f(n). By an integral operator

which involves one integration (see (1.15), (1.16), and (3.2)) one obtains

then harmonic functions 77(X) and the harmonic vector HiX).

3. The operator B3 and its inverse. The generalized Whittaker formula:

(9) It should be noted that there exist other operators, see e.g. [8], transforming the func-

tions x into harmonic functions H(X). Those known at present involve at least a double inte-

gration. It is of interest to determine and to study various operators transforming {xl (or re-

lated linear spaces) into {H} since for particular purposes one or another operator may be

more appropriate.

(10) To every equation L2(<í>) =¡A<t>-\-a<t>x-\-b<t>y-\-c<p=¡0 it is possible to associate a set of func-

tions Ql») = QW{z, z*), z = x+iy, z* = x-iy so that the operation p2(?) =Q(0)g(z)+ ZLiö'"'

•f0(z — f)"_1g(f)ííf transforms analytic functions of a complex variable into complex solutions

of L2(^) =0. See for details [4].

(") It should be emphasized that this is only one of the possibilities, and the choice of the

most useful intermediary function space depends upon the purposes at hand. This whole

topic of properties which can be "translated" from one function's space to another, and the

mechanics involved in the mapping of function spaces has not been studied sufficiently until

the present.
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HiX) = B3if, C Xo),      B3(/, C Xo) = — fjiu, t)dt/t,
(1.15) 2m J J^

ix, y, z) G V(X9),

(1.16) u = x + Zt + Z*r\ Z = iiy + z)/2,

Z* = iiy - z)/2,

represents an operation transforming analytic functions of / of u and f into

harmonic functions of three variables. Here ^ is a simple closed oriented

curve in the f-plane, and ViX0) = E[(x — x0)2 + iy—yo)2 + (z — z0)2<e]1; e>0,

sufficiently small. We assume for the time being that £ is the unit circle,

£=E[t = eia, 0^s — 2ir], and Xo is the origin. For convenience we shall

write in this chapter B3(f) instead of B3(/, [ f | = 1, 0).

Remark 1.1. We should like to stress that the operator B3 defines a map-

ping "in the small" of {/} into {77} : (x, y, z) varies in a sufficiently small

neighborhood of eU(Xo), and the functions/(m, t) which are defined in a suffi-

ciently small neighborhood of « = 0 and for |f| =1 are transformed into

functions H(X) defined in V(Xo).

The functions / corresponding to a given H will be defined as the "B3-

associates of 77."

There is a further basic difference between the operator B3 and the oper-

ators D2 and p2 considered in the two-dimensional case. While p2 as well as b2

defines a one-to-one mapping of functions/ into h's this is not the case for B3.

Indeed, one easily sees that

(1.17) f   Wt^dt = 0, | k\ > n,

so that to a given HiX) the associate /(m, t) is determined only within a

null-associate

(1.18) niu,t) = S   Z anku"th-\
n—0    |i|>n

where ank are constants.

Thus, using the operator B3 in studying harmonic functions of three vari-

ables, one can associate with a given HiX) a whole class of functions,

(1.19) fu, t) + niu, t),

where n is an arbitrary null-associate. Evidently, in different investigations,

among associates of a given function HiX) (which differ from each other by

null-associates) some will be more appropriate than others for the purpose

under consideration. This suggests that in using the operator method we

employ an indirect approach, and at first determine and study those harmonic
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functions which are generated by associates /(w, t) whose properties are well

known, for example, by rational, algebraic, and so on, B3-associates.

In characterizing the classes of harmonic functions corresponding to the

above categories of associates it will be useful to take into consideration the

behavior of their C3-associates.

As we mentioned there exist for given 77 infinitely many B3-associates, but

there exists one and only one B3-associate whose function element has the

form

(1.20) fu,t) = ¿   è«»*«-f*
n=0   k=—n

which is defined as the B3-associate "normalized with respect to the origin"

or shortly, the "normalized B3-associate."

Lemma 1.2. The normalized B3-associatefiu, f) of a harmonic function which

is regular in a sufficiently small neighborhood A((0) of the origin is given by

r » dW'^xiut-1^, util - T)2)]
(1.21) fu, t) = 2        u^    L -f^-— dT

Jo du

where x is the C3-associate of H. (See (1.13).)

Proof. Let the function element of H be given by (1.10). According to

(1.12), (1.10), (1.11a), and (1.11b) the function element of x is then

A   A (2«)!
(1.22) x=E   E    ,    ,   ',;-—a^ze-^Z*^*)/2.

„_0 k—n    (» + £)!(« — *)!

Substituting into the right-hand side of (1.22) Z = ut~lT2, Z* = wf(l-r)2

yields for the integrand I of (1.21)

I = ¿   ¿ (n + —)ankC2n,n+kU"tk[Til - T)]»[Til - T)-1]*.
n=-0   i=-n \ 2 /

Here the C„,m are the binomial coefficients. Since

[i2n + l)C2n,n+k]-1 =  f   [Til - T)]"[Til - T)~^dT,
Jo

the relation (1.21) follows.

Remark 1.2. From the formulas (1.9), (1.12), (1.15), (1.21) we obtain

the identity:

(1.23)   »«-if    if'   ""■4»-xCrT.,,w-r).]   i.
tri J if |_i L J T=o du J

I*
iri=i L «7 r=o du At

where xiZ, Z*)=Hi2iZZ*y\ -i(Z+Z*), (Z-Z*)) and
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u = x + ((iy + z)t/2) + iiy - z)trx/2.

Since in many considerations in applying the operator methods the in-

verse operator does not appear at all, it seems advantageous to consider the

space S3 as originally given. On the other hand in certain questions of basic

importance, for example in investigations of the connection between the

regularity domains of H{X) and its B3-associate /(«, t), the inverse of B3 is

needed; in these investigations we have to return again to the function

space (S3.

In particular the question arises of determining the domain (12) Ç in which

P(/) is regular if/ is regular in a domain 43, and, conversely, where/ must be

regular if P(/) is regular in a given domain(13) <B.

In the case of the integral operator b2 ("taking the real part") and

P2 (see p. 466) the corresponding domains of regularity are essentially the

same, that is, b2(/(z)) and p2(/(z)) are regular in every simply-connected

domain of the real x, y-plane in which fix+iy) is regular, and vice versa.

In the three-dimensional case, the analogous problems are much more

involved. In order to illustrate a method of handling this problem, we wish

to determine the domain in Q3 in which the functions XiC^, Z*), xÁZ, Z*)

must be regular if 77(X) is regular in a domain say fö3, of the real x, y, z

space. We shall denote this domain by X"(íí3).

The totality of (four-dimensional) manifolds

/,  o^      S4 = Et(*1 - Ö* + iyi - v)* + (zi - ?)* = x\ + yl + zl,
(1.24)

xtixi — £) + yiiyi — v) + z2(zi — t ) = 0],

where (£, 77, f) ranges over the boundary <B'2oi <B3, divides the six-dimensional

space of three complex variables, x = xi+ix2, y = yi+í'y2, z = Zi+íZ2, into parts.

That connected part which includes 333 will form a domain which will be

denoted by 3e6(<B3)(14). The intersections of S4 and 3C6(©3) with the character-

istic space (34=E[x2-r-y2+z2 = 0] will be the manifold

7tf2(E) = E[16£2ZZ* = p4 - 4t,2(Z + Z*)2 4- 4f2(Z - Z*)1

(1.25) + 4i^p2(Z + Z*) - 4rp2(Z - Z*) - 8ivtiZ1 - Z*2),

p2 = e + v2 + t2

and a domain 3C4(<B3), respectively.

(12) It should be noted that if the regularity of / in iB implies the regularity of P(f) in Ç,

the regularity of g in C^ does not necessarily imply the regularity of P_1(g) ¡n 'B.

(18) In the remaining part of the present section the superscript over a manifold will

indicate its dimension.

(14) We wish to mention that N. Aronszajn (Acta Math. vol. 65 (1935)) has already im-

plicitly considered such extensions for harmonic functions of several real variables to the

complex domain.
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Lemma 1.3. Let a harmonic function HiX) be regular in the domain IB3 of

the three-dimensional x, y, z-space, and let

XÍZ, Z*) =xi(Z, Z*)+i(ZZ*)*f* xÁZ, Z*)

be the C3-associate of H. Then xÁZ, Z*), k = l, 2, are regular in the domain

3C4(<B3) described above.

Proof. The representation

(1.26)

i r r  r       ^~i    i bhce) i
HiX) =- I 77(H)-—   do,,

4irJj<B'2L dn r      dn    J

r2= [ix-ï)2+iy-v)2+iz-ïY},

of a function HiX) which is regular in the domain "B3-)-©'2, implies that

HiX) will be regular when continued to the complex values of the arguments

in the domain 3C6 of the six-dimensional space. 77"(xi+¿x:2, yi-\-iy2, Zi-\-iz2) is

regular in Œ58 and therefore xiZ, Z*) considered as a function of Z1/2 and

Z*1'2 is also regular in 3C4(433), which implies that xi and X2 are regular func-

tions of Z and Z* in 3C4(«3).

II. Harmonic functions with algebraic B3-associates

1. General remarks. As we indicated in Chapter I, the method of integral

operators enables us to generalize various procedures in the theory of func-

tions of a complex variable to the theory of harmonic functions HiX).

One of the problems of this type is that of developing an analogue of the

theory of algebraic functions and their integrals.

Using the theory of analytic functions, we can easily show that algebraic

harmonic functions of two variables defined on the Riemann surface

(2.1) A<$) m f* + 2 a,iz)t*-" = fw + £ A,ix, y)tN~> = 0
,=i »=i

can be represented in the form

N-Ï   TW(X   v\

(2.2) E ^4 &**(* *>>.
„_o Pwix, y)

tMix, y), v=l, 2, ■ ■ ■ , N, being solutions of (2.1). Here A„ Z>>, P(") are

certain polynomials in x and y, which can be easily described. For a given

A it) the number of arbitrary constants which appear in Lw and PM (if their

degrees are prescribed) can be determined.

In order to generate algebraic harmonic functions we use in the three-

dimensional case the operator B3.

In §1.2 we introduced this operator in a general form. We assumed that

the integration curve is an arbitrary sufficiently smooth closed curve £ and

the integration is carried out for XEViXo) =E[(.t —.r0)2 + (y —yo)2 + (z —Zo)2
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<e], Xo being not necessarily the origin, and «>0 being sufficiently small.

In the subsequent considerations of I we specialized X0 to be the origin

and ^ to be a circle with center at f = 0.

In the development of the approach given in the present paper, it is of

importance that we are allowed freedom in the matter of varying the integra-

tion curve „£. If for the fixed value of X for which the integration is carried

out, varying the curve J^, we do not intersect any singularities of its B3-

associate, then the value of the integral remains unchanged. If, in varying „£,

we meet a pole, the value of the integral increases by its residue.

In the following we shall apply the operator B3(/, „£, X0) in the general

form. Varying £ or X0 one obtains different harmonic functions, but it is of

importance that there exist comparatively simple relations between the har-

monic functions obtained from the same associate /. In particular, as it has

been indicated in [2] in the case of a rational associate/ the following results

hold.

Let/ = [miu, t)Mu, t)] = [Mit; X)/Qit; X)] where Q is a polynomial
in t and Mit; X) is regular in a sufficiently small domain of the t, x, y, z

space. We denote by t(">iX), v = 1, 2, • • • , n, the zeros of Qit; X0) =0. Let

us assume further that the t^iXo), v= 1, 2, • • • , n, differ from each other.

If we choose for „£ a sufficiently small circle JÇj, with the center at f(,,)(Xo),

then(15)

r   Mit, X)   1

If ^ is a closed curve which does not include either the origin f = 0, nor any of

the tMiX0), then B3(/, £, X0) = 0. If finally „£ is a sufficiently small circle with

center at the origin, and if all twiX0) 9*0, v = 1, 2, • • • , n, then we obtain a

function which is regular in x, y, z in a sufficiently small neighborhood of

X=0, see [2, p. 646 ff.].

In the next section we shall indicate the R-manifolds(18) (three-dimen-

sional analogues of Riemann's surfaces) on which these functions are defined.

(See (2.14).) Further, in (2.13a), (2.13b) (seealso (2.9), (2.5), and (2.25)), we

give a representation for them which is analogous to (2.2).

Our procedure can be almost immediately generalized to the case of an

algebraic B3-associate. In this case, in addition to algebraic harmonic func-

tions we obtain certain transcendental functions. These functions can be

characterized by the property that considered as functions of x, y, and z,

(15) The idea of generating algebraic harmonic functions by the use of the residue formula

from functions f(u, f) was indicated in [l] and [2]. The connection with the space Qz and the

• extension to more general differential equations were not discussed there. The extension of the

Riemann-Roch and the Abel theorems, the problems discussed in §§11.3 and II.4, were also not

considered there.

(10) In order to avoid confusion with Riemann's manifold we use the term R-manifold. The

other term has already been used in differential geometry.
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respectively, they satisfy ordinary differential equations with algebraic co-

efficients. (See [2 pp. 51 ff.]) Although the formulas arising in the case of

algebraic associates are more involved, in principle no additional difficulties

are encountered in this generalization.

The next class of associates which is of interest in connection with our

approach is that of harmonic functions possessing associates which are in-

tegrals of the form

(2.3) f(u, t) =   f   R(u, t, T, v)dT,        a(u, t, T, t,) = 0
J o

where 7? and a are a rational function and a polynomial, respectively(17),

in u, t, T, r¡. Since u and f can be considered as parameters, the integrals can

be expressed in terms of functions connected with functions mapping certain

Riemann surfaces on the unit circle or the punctured plane.

The associate f((x+2~Hy(t+t~l) +2_1z(t — f-1)), f) considered as a func-

tion of t will then again be determined on a Riemann surface (which depends

upon the parameters x, y, z) and the study of the corresponding harmonic

functions Jj*f(u, t)dt/Ç can be reduced to certain problems in the theory of

functions of a complex variable defined on Riemann surfaces of the above

type. The functions obtained will be, in general, transcendental functions

which in some special cases become algebraic. It should be stressed that,

according to Lemma 1.2, this class of harmonic functions includes all possible

algebraic harmonic functions, for if H(X) is an algebraic function, then ac-

cording to (1.27) its associate can be represented in the form (2.3). On the

other hand, it has not been clarified as to whether all algebraic harmonic

functions can be obtained by merely considering algebraic B3-associates. If

this were possible it would permit us to dispense with further study of asso-

ciate functions of type (2.3) whose theory is comparatively much more in-

volved.

As we indicated in §1.3, in contrast to the two-dimensional case where the

p2-associate is uniquely determined and is essentially equal to the value of

the function h(z, z) in the characteristic plane, the B3-associate of H(X) is

determined only within a null B3-associate. Therefore, if we make a con-

venient choice of the null associate we can then possibly obtain a B3-associate

(17) Indeed suppose that H(X) is an algebraic harmonic function which is regular at the

origin. Then in a sufficiently small neighborhood of the origin it can be developed into a power

series (1.9). By (1.23) it can be written in the form H(X) = (l/2iri)f r\-.if(u, f)¿f/f where

f(u, f) is given by (1.21). We assume that H(X) is algebraic, that is, we have H(x, y, z)

= R(r¡, x, y, z) where a{i¡, x, y, z) =0. R denotes a rational function and o a polynomial in ij,

x, y, z. If now we make the substitution (1.8) to obtain the corresponding x(Z, Z*) we see that

x(Z, Z*) =R(V, 2{ZZ*yi\ -i(Z+Z*), (Z~Z*)) where n satisfies the equation: a(v, 2(2Z*)1«,

—i(Z+Z*), (Z—Z*))=0, that is, x(Z, Z*) is again an algebraic function. Hence/(w, f) can

be represented in the form (2.3), and we could restrict ourselves to the choice of |f| =1 for

/^. It is, however, in the following, advantageous to use more general curves for -^.
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which is of a particularly simple structure. These facts suggest that in the

development of this theory an indirect approach be used, consisting of the

study of harmonic functions generated by rational, algebraic, • • • , B3-asso-

ciates. The characterization of the harmonic functions (by properties of their

C3-associates) presents certain difficulties which are caused on the one hand

by the existence of null associates and on the other by the fact that in the case

of harmonic functions in three dimensions we have to make an integration

passing from the C3-associate to the corresponding B3-associate of a given

harmonic function 77 (while the p2-associate is essentially equal in value to

the function in the characteristic plane).

In the considerations of §2—§4, we shall assume that .£ is the circle J^r

and that the pole under consideration is of the first order, so that the value

of the residue of f=P(t; X)/Q(t; X) has the simple form 2iriP(t; X)

■ [dQ(t; X)/dt]-\
2. An explicit representation of algebraic harmonic functions with a

rational associate. In this section, we shall describe harmonic functions whose

associates, /, are rational functions, that is, for whose associates we have

P(u, t)
(2.4) /<«, f) - £Lli¿

qiu, t)

where p and q are polynomials in u and t and f-1. As is shown in Theorem

2.1, we obtain, in general, algebraic harmonic functions, HiX), which in

some special instances reduce to rational functions.

The 77"(X)'s are rational functions 7?(fw, X) of four variables t(v), x, y, z

where fw and x, y, z are connected by the equation (2.14). This latter equa-

tion (like (2.1) in the two-dimensional case) defines the R-manifold îx., on

which the RitM, X) are defined and single-valued(18). Since the right-hand

side of (2.14) is qiu, t) written in somewhat different form, T\. depends only

on fW.
As we shall show, the HiX) =7?(fw, X) obtained by integration from

(2.4) can be represented (in analogy to (2.2)) in the form (2.13a) or (2.13b)

where tMiX) is a root of (2.14). A0, Aw, and Q are polynomials which depend

only upon the R-manifold 3\_, while the polynomials Ga and Lw as well as the

integers M and m can vary if piu, t) varies, that is, if 7?(fw, X) ranges over

(18) It should be noted that the H{X) =R(Çm, X) can be considered either for complex, or

for real values only, of the arguments x, y, z. In the first case, the R-manifolds are defined in

six-dimensional space, and the considerations lead to a simpler and more unified theory. In the

second case we consider the intersection of the above mentioned (six-dimensional) R-manifolds

with the real space. This leads to the fact that certain degenerate cases appear, for example,

(xi+y'+z2)~112, which is a two-valued function in the complex space, becomes single-valued in

the real space.

Since in the applications we are primarily interested in the behavior of functions for real

values of the arguments, we consider H(X) in the present paper in the space of three real vari-

ables.
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the totality of functions defined on 3\. which are generated by our procedure.

In order to obtain the desired representations (2.13a), (2.13b) we have to

replace u in p and q by #+(*y/2)($"+f-1)+2(f~~T_1)/2 and write p and q as

polynomials in t with coefficients G, = G,iX) and A,=A,iX), respectively.

These coefficients are certain combinations of the polynomials r,,x introduced

in (2.6).

The connection between analytic functions of a complex variable and

harmonic functions of two variables provides in many instances a very

elegant representation for the latter functions belonging to some particular

class.

There does not exist in the theory of harmonic functions of three variables

a direct substitute for the above representations, and we must introduce

symbols and develop a certain apparatus to represent conveniently algebraic

functions RitM, X).

Notation. 2.1. A number in brackets, say [s], means the smallest integer

which is larger than or equal to 5.

2.2. r„,x, \ = 2v, denotes a homogeneous polynomial

min CX,!*)

(2.5) IYx = T,,xiX) =   £    2-"C„.A,x-í(¿y - zy-'i2x)2>-\iy + z)^,
/-[X/2]

X g 2k.

Here Cm,n denotes the binomial coefficient.

Examples. r00=l, T,,o = 2-'iiy-z)', r„,i = 2-"+1(fy-z)''-1x, V,¡2 = v2-'

■(iy-zy-2(2(v-l)x2-y2-z2), ■ ■ • , T,,2, = 2-'(iy+z)\

Remark 2.1. r„,x is a homogeneous polynomial of degree v in x, y, z.

Remark 2.2. We note that in the characteristic subspace Q3 (see p. 464),

the r„,x becomes

(2.6) I\,x(i(y2 + z2)1'2, y,z} = C2,^2Z*>-^2.

Lemma 2.1. A polynomial^) in u, t, ?_1

m /        M—v \

(2.7) #(«. f) = 2>'(      Z     *«r*), mgif,

can be written in the form

1M

(2.8) p(u, t) = rMPtt-, x),    p(t; x) - Xcr

where(20)

(19) We note that we have to consider only the case m¿M, since otherwise the summation

S^(if_^,forv = AÍ+l, M+2, • • • , m, becomes meaningless, and we replace these terms by 0.

(so) if i = o, we use only the first term in the right-hand side expressions of (2.9).
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min([(»—l)/2],m)     min(m,M+\- |»/2])

Gs = ¿__, ¿_j è,-,_Af+j+,_2Xrj,2X

(2.9)
min([»/2],m)     min(m,M+\- [(«+D/2])

+ ¿^ 2^ bj,-M+i+s-2\+lT ;,2X-1-
X=l J-X

Proof. A formal computation yields u* = t~" X)x=o r„,xf\ so that the right-

hand side of (2.7) can be written as

m     1, N—,

XX    £   r\,x¿,.r^-'.
»=0 X=0    s=-(M-,)

Collecting coefficients of various powers of f, say of t~M+2", 0^<r~M,

and of t~M+2'+1, O^a^M—l, we consider separately coefficients involving

r„,x, with odd and those with even X, and then we obtain the two terms in

the right-hand side of (2.9).

Corollary 2.1. Analogously to the representation (2.9) of p we can repre-

sent the polynomial in u, t, f_1

(2.10) qiu, r) = ¿«"(     Z    *»A

in the form

iff

(2.11) qiu, t) = rNQir, x),    Qif, x) = XM>r
,=0

where the A, are built from the T,t\ in exactly the same manner as the G„ m, M,

and b.,, being replaced by n, N, and aK,„ respectively.

Lemma 2.2. A rational function in u and t, (2.4), where p and q are given

by (2.7) and (2.10) respectively, can be written in the case wherei21) m<n, in

the form

1M

(2.12) /-
(2N    A       \

r2" + Z -r-r)
,-i  Aw    /

QiX, X)

where A, and G, are polynomials, described in Lemma 2.1 and Corollary 2.1.

In analogy to the representation (2.2), we obtain

Theorem 2.1. The harmonic functions H=B3(f, J¿, X0) (see p. 467) with

(21) If m^n, then we can reduce the degree (in u) of the numerator, by subtracting a poly-

nomial in u.
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associates f of the form (2.4) are rational functions R(tM, X) of four variables

£«, x, y, z,

(2.13a) R(t^,X)=     £      G^r+M+il-—-)        . if M < N,
p.^n-m-1 \oQ/dt/r=i^>

and

tjf-i           ¿to)          /   ?"   \
(2.13b) 7c(f(",X)=Z   -— (-)        , if M > N,

where tM denotes a root of the equation^2)

Q(t, X) «£*
(2.14) A(t) m ̂ 1~L =:t™+  E  lAJAw)p = 0.

A 2JV (i=0

The 7>> are given by (2.25).

Remark 2.3. The dependence of the LM upon b„ will be described in

Theorem 2.2.

Remark 2.4. £ does -not include the origin, or a double point, as has been

discussed previously.

Proof. We introduce at first some new symbols.

Notation. 2.3. Let S%\ p = l, • • • , p, denote a set of positive integers

whose sum equals v. Let mf1, • • • , m¡, • • • , m„ be the distinct integers

appearing in S¿ , m¡ appearing o¡ times. (For instance, a possible S¿10)

is (1, 1, 1, 2, 2, 3); in this case mf = 1, m2J,) = 2, mf =3, a'?) = 3, 4^=2,
•P-10

Using the polynomials A„ introduced in Corollary 2.1, we denote by

ß,=ß,(X),v=l,

(2.15) ß, = ß,(X) = T.(-D    '    Vf,   oo * A°      '     IIC^)'
M-l II   ("■,-      ■)

where X> 2>v and  ]>IIfci-
Notation. 2.4. a, = a,(X), v ̂  1, will denote a polynomial built in the same

way as the right-hand side of (2.15) where Amj is replaced by A2N_mj, and Ae

by A2N. N is the highest power of f in qix+iiy/2)it+t~l) + (z/2)(f-ri), D-
Remark 2.5. The a, and ß, depend only upon the R-manifold <rv Their

degree in x, y, z is vn. Here, n is the degree of qiu, t) in m (see Corollary 2.1).

Further, a0=/3o —1-

Examples.   ßi=-Ai,   ß2 = A\—AtAo,   ß3=—A\+AiA2A0-A3Al, ■ • • ,

«1=— -42¿V_1,  a2=^2jí-l—^2Ar-2^2AT,   •   •   •  .

(M) As indicated in Corollary 2.1, the A,{X) are polynomials (2.10) with m, M, bKi replaced

by », N, and aKS, respectively.
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Lemma 2.3. Let t be a solution of the equation

2N

(2.16) Qir,X) = ^A^ = 0.
»=o

Then

2JV-1    min(!,M) A

(2.17) t2N+l=-Z      Z   ai-i-n^rf, l = 0'
,,-0       y—o Aw

and

2N-1    min(2JV-l-#i,0

(2.18)       r'-^-Z      Z    &_k¿*w¿o    )r, /âo
ju-=0 i—0

where a¡ and ßj are described in Notations 3 and 4 respectively.

Remark 2.6. For every A, appearing in the right-hand side of (2.17) and

(2.18) for which v<0, or v>2N, we have to substitute 0. The above formulas

(2.9), (2.17), and (2.18) are obtained by formal computation.

In order to derive the formulas (2.13a) and (2.13b) we first apply Lemma

2.2. For any fixed value of X=Xm for which no two roots tMiX), v= 1, • • • ,

2N coincide, we can evaluate

l-KlJ J

Pit, X)tN~M dt

2*iJ£,     Qit,X)       t

by the residue theorem: We choose the path of integration <£, so that inside

J^, lies one and only one root tMiX), X belonging to a sufficiently small

neighborhood of X(0).

Now

Pit, X)[tQit, X)]-*

(2 19) r 2M     ~~\  /    /        2JV_1  -i     \

=    t»'31-1 Z G,tg\/A2Nh2N +  Z A2NA,t'\ m S

by (2.9).
1. If  N>M we can evaluate   i2iri)~lJ/>Sdt directly by  the   residue

theorem, to obtain

(2.20, [£ «.«-»-/!-]t_[M.

Suitably changing the index of summation:

(2.21) p = s + N-M-l,

we obtain (2.13a).
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2. If N^M we have three groups of terms in the numerator, depending

on whether the exponent of t is negative, positive and less than 27V, or

greater than 27V —1. If the first and the third alternatives occur, we employ

(2.17) and (2.18) in order to change the exponents of t, to lie between 0 and

27V—1. We then obtain

2N-1 M-N-l -l-v

(2.22) +  Z GM-N+i+,r+   Z   GM+N+i+.t2N+' \\     .,
•=o ¡-o -1/ ;=r}

-{(I )"'[£(-
(2.23)

-•W+l+ji

M-N    min(2Af-l-(i,»)

Z Z ß,-jA-'+i-1Arti+lGM-N-.
s=0 ¿-0

M—N—l     min(a,;0 \        "1\

—     Z 2-1      0!s-jAw A^-jGm+N+i+1 J f  \(
s=o        j=o /   J/ s=r

by (2.17) and (2.18).
Collecting coefficients of f and writing the factor

—1 —M+N —1

(2.24) Ao iAoAw)        idQ/dt)

before the bracket, we obtain in this case

00 M-N+Ï    M-N
L      = Ad Aw   Gjif-AT+i+,1

M—N   min(2JV— 1—/i,s) „   ,,      ,  .    ,,   ..
V^ TT a A M-N-8+1  .M-N

— 2-1 2-1 Ps-jAp+j+lAo Aw    (jM-N-t
(2.25) s=o /—o

M—N—l min(s,ji) .
V> V* Af—W+l    Af—ÍT—«+j—1 _,

— 2-1 2-1      A o ^2JV ^„-jaj-jOAf+JV+i+l.

s=0               j=0

Remark 2.7. We note that (in general) in this case 7>' has neither A0 nor

Aw as a factor, so that the degree of LM cannot be decreased.

REMARK2.8.ByintroducingR-1HiR-3x ,R~3y',R-3z'),R=ix'2+y'2+z'2yi2,

we can study the behavior of 77 at infinity.

3. The number of constants b¡,K which appear in Z>>.

Notation. 2.5. In the following, the sum

(2.26) [1/2] + [2/2] + • • • + [x/2] = (x2 + x + 2[*/2])/4

will be denoted by S(x).

Notation. 2.6. We shall further write
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(2.27) aiv) = min im, [iM - v - T)/2]).

aiv) depends upon m and M, but since these quantities are supposed to be

fixed in our discussion we do not indicate this dependence.

Lemma 2.4. Let piu, t) be a polynomial of the form (2.7).

1. Then the expression G¡ given in (2.9) involves the bj,,+¡ where v and j

range over

i-M + max (0, í - 2m)) ¿ v g - M + s,
(2.28) _ .,

[is- M- v)/2] újú a{v).

2. The number of constants b¡,,+j which appear in Gs is

(2.29) mis + 1) + AiM - m) + S(i - A) - S(s) - S(£).

Here:
A = min (0, s - 2M + 2m + 1),        B = min (2w, s).

Proof. We note at first that in Gs, see (2.9), there appear two double sums

of terms to which we shall refer as the first and second group of terms. Let us

denote the number v in &/,»+/ as the index of b¡,,+j.

Remark 2.8. We note that according to (2.7), the constants b¡,,+¡ which

exist for a given v have j ranging over 0¿j = aiv).

We assume for the time being that 5 andj are fixed and consider the range

of variation of the index v. It assumes all integer values between two limits,

which we now proceed to determine.

By inspecting (2.9) we see that the maximum index will always come when

X = 0 in the first summation, and hence is equal to — M-\-s.

If s is even, the minimum index will appear in the first group in (2.9) and

will be equal to — M-\-s — 2 min is/2, m) = —7l7"+max (0, 5 — 2m). If 5 is odd

and if s — 2m + l, then again the minimum index appears in the first group

and is equal to —M-\-s — 2m. If s<2m-\-l, then the minimum index appears

in the second group and is equal to — M. Hence in all cases the minimum index

is —M+max (0, s — 2m).

It remains now to determine the range of variation of j for a given s and v.

1. If v= — M-Vs — 2X, then X = ( — M+s — v)/2 and hence j varies from

i-M+s-v)/2 to aiv).

2. If v= — M+s — 2X + 1 we obtain /min= [i — M+s — v)/2] and jmai as

above. This completes the proof of the first part of the lemma.

Using the above result we then determine the number of constants (see

(2.29)) appearing in each Gs.

Lemma 2.5. Each Gs is iin general) of degree m in x, y, z.

Proof. For a given s, set X, = max (0, [s/2] — iM—m)) and js = m. Then

set ¿3i,_il/+y,+s_2x,= 1, and all other bj,K = 0. Then G. = Tia,2\1 = Tm,2x1; hence by
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Remark 2.2, G, is, in general, of degree m.

In the same manner we obtain the following corollary.

Corollary 2.2. The coefficients A, in (2.11) are of the degree n.

Theorem 2.2. If M<N the degree of G^-m+n+i (see (2.13a)) in x, y, and z

is m; if M^N the degree of Lw is isee (2.13b))

(2.30) w(2M - 27V + 1) + m.

Proof. (1) The above statement in the first case follows immediately from

Remark 2.2 and Lemma 2.5.

(2) In the second case, LM is given by (2.25). We have three groups of

terms and we have to inspect their degrees.

By Remark 2.5 and Corollary 2.2, it follows that the degree of the first

and second groups are

n(2M-2N+l)+m,

nis-j)+n+niM-N-s+j) + niM-N)+m=ni2M-2N+l)+m,

respectively, and the third group also has the same degree.

Theorem 2.3. 1. If M^N, then all Lw have in common the constants

bj,,+j where v and j range over:

(2.31) -M = v= - N,       OSjS aiv)

and

(2.32) max i~ N + I, N + I - 2m) ■= v =   M,

max (0, [(TV + 1 - v)/2]) á j ¿ ««•

In addition each L^ involves bj,-N+i+j+<, where

(2.33) Ogffáfi,    [Íp - <r)/2] ^j= [(27V - <x)/2] - 1,        if N £ »,

and

(2.34) max (0, p - 2m) = a ^ p,

[ip - <r)/2] ¿j= min im, [(27V - <r)/2] - 1)    if   N > m.

2. Let T = max (w, TV). Then all Lw involve

(2.35) (2M-27V+l)(m+1) - (r-TV)2

common constants b¡,t and each individual L^ involves, in addition,

(,+ D(2iV-rt
2

constants if N^m and
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(2.37) iB + l)(m + 1) + S(A) - S(-B) +

if N>m. Here A =min (0, 2N-2m-p-2); 73 = min (ju, 2m).

Proof. 1. By inspecting (2.25) we see that for M^N the subscripts 5 of

Gs appearing in an LM range over the intervals:

(2.38) (1)  {0, M-N},  (2)   {M - N+l + p},  (3)   {M+ N+l,2M}.

(The interval (2) consists of one term only.) The sets (1) and (3) are common

to all L^, and we determine at first the bj,,+¡ which appear in both intervals.

Let us determine at first the values of the indices v of those bj,,+¡ which

appear in G8 but not in G„_i. By Lemma 2.4, we see that only one value of v,

namely v= —M+s, belongs to this category. According to (2.28) the range of

j for this value of v is

(2.39) OáiáaW.

Further, from (2.28) we see that for the smallest 5, 5 = 0, there appears

only one value of v, v= — M. Hence in the first group will appear the b¡,,+¡,

with iv,j) indicated in (2.31).

In considering the group (3) we have to take into account that the

bj,,+j which appear in the first term Gm+n+i are, according to (2.28),

(2.40) -M + max (0, M + TV + 1 - 2m) g v g TV + 1,

[(TV+l-v)/2] Si *•(»).

We determine as before the 6/,,+y appearing in the remaining Ga belonging to

the third group to obtain instead of (2.39)

(2.41) -M -fmax (-Af, TV + 1 - 2m) ^ v = M;

max (0, [(TV + 1 - v)/2]) S i S aW-

Eliminating from (2.41) what appeared already in (2.31), we obtain iv,j)

indicated in (2.32).

We have finally to determine the (i*, j) of those £>;,»+/ which appear in LM

but not in (2.31) nor in (2.32). These bj,,+¡ are the constants appearing in

Gm-n+h+u see (2.38), but not included in (2.31) and (2.32).

By Lemma 2.4, Gm-n+i¡+i involves the constants bj,,+}- for

(2.42) max (-Af, -TV + 1 + p - 2m) g v ^ - TV + 1 + p,

[i~N+l+p-v)/2] SiS-«W

and  it  remains only to eliminate those &/,»+/ which have  been already

counted. We have to distinguish two cases.

1. N^m. In this case in (2.32) max ( — 7V+1, 7V+1— 2m) = -7V+1. Ac-

cording to Remark 2.8, (2.31) includes all bj,,+¡, with index v. Hence we can

m
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replace for v^—N, the inequality for v in (2.42) by

(2.43) ~i2V+ 1 S*S -7V + M+ 1.

Let us write for the moment a = v-\-N—l. Then (2.43) becomes

(2.44) 0 S « S M-

According to the second inequality in (2.42) the lower bound forj becomes

(2.45) [ip-o-)/2]

while according to (2.32) in all Z>> the lower bound for j is [(2TV — cr)/2].

Hence, the (j, a) oí additional constants bj-N+i+c+j in !>' lie in the range

(2.33). A similar discussion yields (2.34).

2. We proceed now to the determination of the number of constants

bj.r+j in (2.31) and (2.32) as well as in (2.33) and (2.34).

Obviously, for every v the number of constants is one more than the dif-

ference between upper (/„ ) and lower Q7) limits of j in the second inequalities

of (2.31), (2.32), (2.33), (2.34), respectively. In order to obtain (2.35) we

subtract from the sum Z» it of all upper limits the sum Z» f °f an lower

limits and add the number of v involved.

We have to consider two cases.

1. m = N. For — M^v%.M— 2m, it = m, and for the remaining v, it

= [iM-v-l)/2]. Hence Z» it = mi2M-2m + l)+Si2m-2). Z« C is de-
termined as follows:

For —M^v^—N, we have 17 = 0; for — TV+1 =v = N+l, we have

l~ = [(iV-f-1 —^)/2] and for the remaining v, 1/7 = 0.

Hence Z» ¿r = S(27V). Finally we note that the number of v is 2M-\-l.

Thus in this case we have H2M-2m + l)m+Si2m-2)-S(2TV)+2Af+l)

constants. This can be written in the form (2.35) with r = m.

2. m<N. Then max (-TV+1, TV+l-2m) = TV+l-2m. For -M£p
^—N,lt = m,l7 = 0, and hence the number of constants is ( M—TV+1) (w +1).

For N+l-2m^p = M-2m, lj = m, and for 7V-2m + l =v = M, it

= [iM-v-l)/2].  For TV+1-2mgrSTV+1, /„"= [iN+l-v)/2], and for
the remaining terms, 17 = 0. The number of terms is M — N+2m. Hence the

total number of constants is

(M - TV + 1)(« + 1) + (Af - N)m + S(2ot - 2) - S(2«) + (AT - TV + 2m)

= (2Af - 2TV+ l)(w+ 1).

We now consider the number of additional constants in each L(li). For

0=o-^p, it =\i2N-a)/2]-l and 17 =[ip-o-)/2]. Hence Z* tí" = S(27V)
— S(2TV—p — 1) — (ju+1), Z» ¿7 = S(m), and therefore the number of con-

stants is S(2TV) — S(2TV—p— 1)— Sip). Now, by an easy calculation

(2.46) S(A) + S(5) = S(A + B) - [AB/2].
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Applying this and (2.26) we see that the number of constants is (2.35). In

a similar manner the formula (2.37) is derived.

Theorem 2.4(23). Let M^N, and k>2N+4n+4. If the 7>> are of the
degree not higher than k in x, y, z, then the maximum number of constants bjtt

which can appear simultaneously in every L^ is

(2.47) «r(* - no-+l) - ik- no- - TV)2.

In addition, in this case, each individual L^ involves

(2.36) (m + D(2TV - p)/2

constants b¡¡K which vary from term to termi24). Here <r has to be determined as

follows.
Let aK, and tk, k= 1, 2, be given by the relations

(Ti(w + 1) + ti = k — TV, where 0 S tï S »i

2<t2(«2 + n) + T2 = k, where 0 5j t2 = 2»(w + 1) — 1,

ow¿^=(2ti«+t2+1)/(4m(« + 1)), j = 2[(2<r1 + 2(r2 + 2^+l)/4]-((r1+(r2 + l).

Then?6)

(2.48) c = o-i + <r2 + j.

Proof. We assume at first that k is sufficiently large, so that the maxi-

mum value of (2.35) is assumed for a value m^N, so that we can write

T = m. (The lower bound for k will be determined later.)

We write x in (2.35) instead of m, y instead of M, and consider

(2.49) (2y - 2TV + l)(x + 1) - (x - TV)2

and we assume for the time being that x and y vary continuously over all

real positive values. According to (2.30) x and y are connected by the relation

(2.50) k = x + 2ny + n - 2Nn.

Using (2.50) we can write (2.49) either as a function, say/(x), of x alone,

or as a function, say g(y), of y alone. / and gare both quadratic in x and y,

respectively.

The solution oí fix) =0 is

TV« + k/2 - 1/2
(Z.olj Xmax =

n + 1

(ra) This theorem can be considered as an analogue of the Riemann-Roch theorem applied

to functions possessing poles only at infinity.

(M) The constants mentioned in the second group can appear in several £*> but not in all.

(25) \x/e note that if o-i+a-2 is even, then j = l; if oi+<n is odd, then./ = 0 for <¿¿l/2 and

7 = 2 for <t>>\/2.
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According to (2.50), the corresponding y is

/ 1        *\/»+l/2\
ymax = ( TV-+ — ) (- ) -

V 2       2n) \ n + 1 / 4»(« + 1)

(2.52) <ri + <r2-l
= N -\-h <t>, 0 < <j> < 1.

Since the function g(y) is quadratic and therefore is symmetric about the

line y = ymax, the integer nearest to ymax is

dl + <n + i — 1
(2.53) Afmtt*=TV + --—-,

where j is defined as above. The corresponding Xo is

(2.54) xo = k — niai + <r2 + j),

and the number of constants is

(2.47) aik - na+1) - ik-na- TV)2.

We proceed now to the determination of the lower bound for k.

The number of constants which appear in L("> is given by

1
Pi = — ik — m)im + 1) for m S TV,

n

1
Pi = — ik — m)im + 1) — im — TV)2 for m=N.

n

Let
for m ^ TV

lP2P2 for m ^ TV.

This formula is obtained by substituting (2.50) with x replaced by m and

y replaced by Af into (2.35).
Assuming for the moment that m=x varies continuously so that piix),

Piix)> PÍX) are defined in the whole interval 0=x<» and not only for

integer values, both curves

(2.55) y = piix),        y = p2(x)

are concave parabolas; and if at the point of their intersection^8) m = N,

(2.56) (a)    Pi'ix)x,N> 0,        (b)    P2'ix)I=N > 0,

then the maximum of p(x) will take place in the interval m = N.

If now we return to the variable m which assumes only discrete values

(M) This requirement leads us to a condition on k.
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and, in addition, take into account that M must be an integer, If S:7V, then

we see that the condition (b) has to be replaced by a condition which takes

into account these additional requirements. Indeed since m and M assume

only integer values it could occur that despite the fulfillment of conditions

(a) and (b), mm¡a<xmxs. and will lie in the part m<N.

From (2.50) we see that if M is an integer, m is also an integer while the

reverse is not always true. It is therefore convenient to operate with M

rather than with m.

y(xmax) is given in (2.52) and we shall at first require that the integer

Mmax nearest to yixmsx) is not smaller than N. Then, since from the definition

of <7i and <72 we have

* - TV                                  k
oi >-1; o2 >-1,

n + 1 2(»2 + n)

it follows that

k - TV k
(2.57) -1->3

n + 1       2(w2 + «)

which is certainly satisfied if k>N-\-3n-\-3.

Finally, we wish that the mmxz. corresponding to Mmax is also =N. By

(2.54), mm*x. = k — w(<ri+cT2+j)- Now by the definition of <ri, <r2, and j, we have

k - TV k
oi ^-j cT2 S-1    and    j < 2.

" n + 1 2«(» +1)

Therefore

TV              k \       Nn + k/2 - 2n - 2
«max à k — n (- + —-— + 2

/

n + 1       2«(w +1)        / » + 1

which is certainly not greater than TV if &>2TV+4«+4. We see that the last is

the most restrictive condition, and hence &>2TV+4w+4 is our final bound,

which is a sufficient condition in order that (2.47) be the number of con-

stants which appear simultaneously in all L^K According to Theorem 2.3,

in each individual Lw appear the number of constants given by (2.36),

which is independent of k.

4. A class of harmonic functions with algebraic associates and their

properties. One of the aims of our investigation is to study harmonic functions

with algebraic C3-associates. As we stressed in §11.1, such harmonic func-

tions are not necessarily algebraic, and one of the problems which arises is

to determine those associates which generate algebraic harmonic functions. A

problem which is closely related to the above-mentioned question is that of

finding sets of C3-associates possessing the property that certain linear com-

binations of the corresponding harmonic functions are algebraic.
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The C3-associates of functions considered in §11. 2 are of the form

2N-1 S^iZ,Z*)t"(2 58) y^   _v  '     '"_

Mtí    ditNq[iZV2t"2 + Z*ii2r112)2, f])/df

where f is a solution of the equation

(2.59) qliZ1^1'2 +Z*x/2r1/2)2, f] = 0.

On the other hand S^iZ, Z*) have a special form. It is of interest, in connec-

tion with the second problem mentioned above, to consider a somewhat

larger class of algebraic associates, namely functions

(2.60) Hn¡k,aiX), Hn¡k¡atíiX), 77„,fc,a,s(X),

whose C3-associates are

(1) £(»+£)/2£*(n-*)/2£a

••*•■ = a[f*s[(zw*fi/* + z*1'2r1'2)2, t]]/dt '

£(n+fc)/2£*(n-fc)/2>-<i

(2.61) D„;k,a,8ÍZ,Z*) =
Ald[tNq[iz^2t1'2 + z*!'2r1/2)2, r]]/3f

...                                                              ¿(n+k)l1^*{n-k)l2ya
r\^ ' (y    7*\   __

"      '     ~ Awd[tNq[iz^2t"2 + z*"2riny, f]]M"

respectively; where t satisfies equation (2.59) and where n, k, a, s, n = 0,

0 = a = 2N-l, s>0, are integers. B^,(X), H^,(X), and 77$,M(X) are in

general not algebraic functions. On the other hand, we shall show that certain

linear combinations of the above functions are algebraic.

In order to formulate our results it is useful to introduce at first some

notations:

In (2.11), (2.15), and in the line following (2.15), the quantities A„ a„ ß,

(depending only on the R-manifold <r\) have been introduced. They are com-

binations of r,,x introduced in (2.5). In the characteristic space Q, we have

T,t\=C2,,\Zxl2Z*"~X12, see (2.6). Therefore the expressions

min(f ,/i) . min(2AT— 1—p,l)

(2.62) —    Z    ai-jAp-jAw    and    —      Z        ßi-jA^+j+iAo
)'=0 j—0

can be written as functions of Z and Z*, namely as

(2.63) Zt<i.Î,ZZ      and    Z ^.i Z Z
a.b a,b

respectively, yffi and offi are numerical constants. Further we denote as

before by 27V the degree of Qit, X), see (2.10), considered as a function of t-

Obviously all those quantities depend only on iR..
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Theorem 2.5. Let s and v, v~0, be two integers. Then the expressions

2" (i)

(2.64) ZC2,.x d,(D,lX..-^4*-i), for -N + v = s=N -v,
X-0

2JV-1 (1)

2-1     C2,,p-B+,-N+ià3iD,,p.-8-N+i,7)
(2.65) lí-"'+N-1

'+"-N+l    2N~l (,-,M) (2)

+      2—1 2-1     2-1 C2,,N+p-8+j+lJa,b   d3iD,+a+b,N-8+l+j+a-b,p,i)
j=0 ji=0      a,b

for TV - v < s = TV + v,

8+r-N-l       2N-1 .    . (

y . 2—1     ¿-iC2,,i+N+v+l-sya,b   d3iD,+a+b,j+N+l-a+a-b,v,j)
j=i—p—N—l      m=0      a,b

(2.66) fors>N + v,

"+»                        (1)

(2.67) *=° »-«-I    2N-1 ... (3)

+    /_,        2-1     ¿-I G2,,,-8-j-lOa,b   d3iD,+a+b,-8-j-l+a-b,p,i)
j—0        |i=0      a,b

for -N+1-v^sè-N + v.

,-8-N 2JV-1 . (3)

(2.68) ¿-i Z     y - Cïv'-t-i-Nàq.b   d3iD,+a+b,-8-i-N+a-b,p,¡)
j=—,—8—N       ß=0      a,b

for s ¿ — TV — v

are algebraic harmonic functions of x, y, z which are single-valued on the R-mani-

fold <R, given by (2.14)(27).

Proof. If we choose in (2.7)

(2.69) p(u, t) = «T

then according to Theorem 2.1, B3ip/q) (see 1.15) is an algebraic function. If

further v and s assume all integer values such that v = 0, then B3{u"ts/q) will

yield the totality of linearly independent algebraic functions which are single-

valued on 'R, and can be obtained by our procedure. According to (1.12),

(1.13), we have

-f (z^t112 +z*"2r1,2)2T  dt

2xiJ„c(iç[(zi/2fi/2 + z*'/2r1/2)2,f] t

" ¿J   dlt^qiiZ"2^1'2 + Z*U2t<>r1'2)2, tw]/dtM

(") The operator d¡ was introduced on p. 465. This operator is given by the right-hand

side of (1.23), where, however, x is not to be considered as derived from H, but as an inde-

pendent function.
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where f(M) is a solution of equation (2.59). If — N-\-v<s = N — v, then the

powers K (of tM) He in the range [0^/c^27V— l]. Since B3(uvf/q) is an alge-

braic harmonic function, it follows directly that (2.64) is an algebraic expres-

sion in x, y, z. If on the other hand, s>N—v or s=—N-\-v, then in the

right-hand side of (2.70) there appear powers of fw lying outside [0, 2TV— l]

which must be reduced to the powers lying in the above range. This is done

by applying (2.17) and (2.18). If we then use (2.62) and (2.63) and separate

the cases as to whether all or not all terms have to be reduced, we get (2.65)-

(2.68).
III. Harmonic vectors

1. Preliminaries. In addition to the harmonic functions it is of interest

to consider harmonic vectors H. These vectors possess many features similar

to those of analytic functions and have been considered previously in dif-

ferent connections. In particular, we wish to mention that von Mises [12]

and others have indicated that a generalized Cauchy formula holds for them.

The importance of introducing an associate f(u, f) to a harmonic func-

tion is in part based on the fact that/(w, t) can be considered as associate of

the vector H=iHi, H2, H3), where/ is the associate in the previous sense

of the component 77i considered as a harmonic function. However, 7Î2 and H3

are not uniquely determined. In fact, we have the following lemma.

Lemma 3.1. Let Hf, Hi0) be functions such that H=iHh H$\ H^) forms

a harmonic vector in 7V/0). Then

(3.1) {77„ H™ + Re [giy + iz) ], 77,°' + Im [g(y + is) ]}

where g is an arbitrary analytic function of (y+iz) which is regular in the pro-

jection of the domain 33 on the y, z-plane forms the most general harmonic vector

whose first component is Hi.

Thus

H=R3if,£,Xo, g),

R3if,C Xo, g) m |b3(/,£, Xo), B3Ty it + r')/(«, t),C *o]

- Re [g(y + iz)],

B3fy (t - r')f(u, t),C Xo + Im [g(y + ¿z)]]|

(3.2)
+ Re [g(y+iz)]

generates harmonic vectors. (In this section, we omit the superscripts indi-

cating the dimension, and write, for example, 33 and & instead of "B3 and &2

respectively.)

Obviously there is a parallelism between the operations performed on
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harmonic vectors and those performed on the corresponding associates. In

particular if we form fHidx-\-H2dy-\-H3dz this corresponds to forming the

integrals ff(u)du, Jg(r/)dr). This fact forms one basis of the subsequent

considerations.

2. Harmonic vectors in the large. In the formula (3.2), f(u, t) and g(r¡)

are arbitrary analytic functions with the following domains of regularity:

f(u, t) is regular for t on and interior to .£, and uEJtt(X0, jQ defined as the

domain in which u = x+iy(t+t~1)/2+z(t — f_1)/2 varies as t varies on and

interior to ^ and X in a sufficiently small neighborhood V(X0) of X0. g(rj) is

regular in the projection of V(Xa) onto the y+iz plane.

As indicated above, harmonic vectors behave in many respects in ways

similar to analytic functions of a complex variable. There are, however, some

important differences. If a harmonic function, say Hi, is given, then the re-

maining two components are determined within certain additive functions.

Further, if 77i is regular in a certain domain, say 33, then H2 and 773 are not

necessarily regular there. In Lemma 3.2, we give sufficient conditions that

H2 and H3 exist.

Lemma 3.2. Let 33 be a domain whose boundary is sufficiently smooth and

which has the property that the intersection of every line parallel to the x-axis

with 33 is (if not empty) a single (connected) segment (that is, its boundary con-

sists of two points). Then to every harmonic function Hi which is regular in the

(closed) domain 33 there exists a pair of functions H2 and H3 which are regular in

33 so that H= (Hi, H2, H3) forms a harmonic vector.

Proof. According to the classical results, every harmonic function 77i can

be represented in the form

C C     FiT)dw
HiiX) =-,        T = (ii, t2, t3),

(3.3) J Jq}'        r

r =  [(* - h)2 + (y - /2)2 + iz - i3)2]1/2>

where F is suitably chosen continuous function defined on the boundary 33' of

33.

From the hypotheses made on 33, it follows that its boundary 33' can be

subdivided into two parts, 33' = 33/ +332' such that if (ii, t2, t3) is a point of 33£,

k = l, 2, then the segment ( — l)*(x — t/) <0, y = t2, z = t3 lies outside of 33 and

that the boundary manifold separating 33i' and 332' has a (two-dimensional)

vanishing area.

Í3.3) may be written

(3.4) HiiX)=  ff    -^-do>+ ff
J J<f J Jcp,'„

Now, [r~\ kg3, tig*] where

f(t) ,  . rr   Fir)
aco.

33Í
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, (*)     . m, _, _,     ,   ,. ft iy — t2)
k2    = h2   iX, T) = (-1)

r[r+ i-l)*ix-ti)](3.5) l        y      ' y J

, (*)      ,    ..» (z — ¿3)
A3      =   (—1)    —-r

r[r+(-l)*(*-/i)]

is a harmonic vector. The functions tig*, h^ for ih, t2, t3) £23* are regular in 33.

If, therefore, we determine

(3.6) 77,<0>(X) = Z f f  FiT)h["\x, T)du>, s =2, 3,
k=iJ J<Bk'

then Hf\X) will be regular harmonic functions in 33 and H= (7?,, TT^, Tïf5)
will form a harmonic vector in 33.

On the other hand, if 33 is not a domain of the type described in Lemma

3.2, then to a given harmonic function there does not necessarily exist a pair

of harmonic functions H2, H3 which are regular in 33 so that (77i, 772, 773)

forms a harmonic vector. Consider for instance a domain 33 which intersects

the plane x = 0 in a domain which does not include the origin y = 0, z = 0.

Suppose further that (£1, 0, 0) and (£2, 0, 0), £i<0, £¡>0 are interior points of

the domain 33. Let us now consider the function 7?_1, R2= (x2+y2+z2), which

is regular in the domain 33 since its only singularity is at (0, 0, 0), a point out-

side of 33. We can choose as the remaining components 772, 77^, of the vector

(7?-\ 772, Ht) either

(3.7)

or

iS. 8)

H?\X) = -       J + Re [giy + iz)],
7t(7c — x)

H*){-x) = -TTT—; +Im My + i2)l
7c(7c — x)

B™W = iT/irr^ + Re k(y + *»)1.
7c(7c + x)

(2) Z _ .

Hi (x) " P/P, x + M ^y + iz)ï
RiR + x)

where g is an arbitrary analytic function of iy+iz) which is regular in the pro-

jection of 33 on the y, z-plane. All these functions will be singular either at

the point (£1, 0, 0) or at (¿2, 0, 0). This situation suggests that we consider

domains 33 which have the following property: Let S* denote [ZsCy> z)>

iy, z)GC?ft] where Qk is a curve in the y, z plane and sit2, t3) the segment

[t? <x<ti\ y = t2, z = t3]. We assume that the domain 33 can be divided

by surfaces S* into a finite number of subdomains 33w, v=l, 2, • • • , n,
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each of which satisfies the conditions of Lemma 3.1. Thus in every domain

33<") we may determine to a given function 77i two harmonic functions

H¡v) and 77^ which are regular in 23<"> so that 23™ = (77!, fi|*, Hg>) forms a

harmonic vector. The boundary of each 23("} consists of parts of the boundary

23' of 23 and possibly of segments of one or several S *• One can determine the

Hi"*, H3y so that they are still regular on such segments of S * belonging to

the boundary of 33« and 33("). Then:

(3.9) (B? - H?) + i(H? - Hf) = g,iy + iz)

where g,iv) is a function of a complex variable which is regular in the neigh-

borhood of Qk-

Definition 1.2. A harmonic vector is said to be 73-regular in domain

33 = Z"=i ®w if it is a vector whose first component is a regular harmonic

function in 23 and the components H(2 and H/t are regular in 23(l,),

v= 1, 2, • • • , n.

The analogy to the case of the theory of functions of a complex variable

suggests that we introduce in the case of simply and multiply connected

schlicht domains, normal vectors of the first, second, and third kind. Let 23

be a domain whose boundary consists of finitely many sufficiently smooth

surfaces 23,', v = l, 2, • • • , n. Suppose further that 23 satisfies the condition

indicated above (see p. 490) so that to every harmonic function H\ it is pos-

sible to determine a 73-regular harmonic vector H.

A vector H^ whose first component Hi assumes the value one on the

boundary component 23/ and vanishes on the remaining part of the bound-

ary, is defined as a normal 73-regular vector of the first kind.

In the two-dimensional case, using orthogonal functions, one obtains a

representation of functions of the first kind. Using orthogonal functions we

can obtain a representation of the harmonic vector Hw. Indeed, let {<p,iX)}

be a system of orthonormal functions, that is, of functions for which

and which is complete for the class L2(23) of functions 77 which are harmonic

in 23 and for which {77, 77}<b< ». Let£(X; S) = Z^W^S) be the kernel
of this system. Then

(3.10)

r c     k(X~ 2)
HiiX) = Z «•*.(*) =   I        , <fa

s=i J J23/      dns

°" = J J23„ W¡7  '°S

where ns denotes the interior normal and ¿wE is the surface element of 23/.
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Let now 23w be the components of 33 described above. Suppose further

that there exists an x0 such that Pi(33(,,)), the projection of 33w on the y, z-

plane, lies in 33P\E(.t = x0). (This last hypothesis is not essential, but sim-

plifies the representation.) We introduce now the new coordinate system

x' = x — Xo, y' = yo, z' = z — Zo, where (y0, z0) is a point of Px(33w). Further let

X'= ix', y', z'). As we shall show, the components H^, H^ can be repre-

sented in every 33(,,) in the form

(3.11)       772       = 2-,a* I      —-,dx',
8=i     J o     &ydy'

• x'

(3.12)
s=i     ^ (o.o.o)   \Ldz dx       J

+ (fX'-d-^dx')dy'-(fX'^dx')dz'\
\Jo   dy'dz'       I   '       \J0     dy'2       )      )

Proof. According to theorems on harmonic functions which are ortho-

normal in 23, the series Z^=ias«£s(-^0 converges uniformly and absolutely.

From the representation

°° c r   da(X T)  °°
(3.13) 2>.*.CX) =  I  I '       2ZaMT)duT,

8=i J J<B'-     dnT      ,=i

where g is the Green's function of a domain 73* which is completely contained

in 33, follows that all derivatives of Z"=i as<p,iX) converge uniformly and

absolutely in 73*. (33'* is the boundary of 73*.)

Since the intersection of 33w with the plane x' = 0 is the projection of

23w on the yz-plane, and the series on the right side in (3.11) converges uni-

formly, H^'} is defined at every point of 23«, and we have idHi"-">/dx')

= idH^/dy'). For the derivatives of H^ we obtain

(^1*0 (p*v)

327,     _ agi '   _. A    £*.

dx' dz' s=i       dz'

(Mi>0 ißt*1)
dH3 dH2 «       r '•   d2<p,
-=- =  ¿a, -dx ,

dy' dz' ,tí     Jo    dy'dz'

- /   a*.        r" d24>8    \

- = -Sr^' + asJo -&*')•
dH7"rí

dz' s=i\    dx' Jo      dy

an*, r* j-*Wf"
dy' J (o,o,o)   I dz' \J o    dy'

L,   f " ̂  dx',     f X'     i^-dx' + (  f ^ dx) dy'
{      J o     dy' J (o.o.o)   I dz' Wo     dy'dz'      /

(3.14)

dy
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is a harmonic vector;

(3.15)

{ rx' d<p*    ) ( rx'   #,       ( cx' d2<s>8     \
<badx+<   I-dx'}dy+  <   I -dx' + (   I-— ¿a;'W

IJo     dy'       )y        \J (0.0.0)32' VJo     a/dz'       /

- (-+ -dx')dz'}dz
\dx'      Jo      dy'2       )     )

is therefore a complete differential. Since the series (3.12) converges uniformly

the integrand in the right-hand side of (3.12) is a complete differential, the

series converges uniformly and absolutely, and 77i, H/¿, H^ is a harmonic

vector. A harmonic vector whose x-component becomes infinite as [ix — £)2

+ (y — »?)2+(z — f)2]1/2 at a point (£, 77, f)£33w will be defined as a normal

73-regular vector of the third kind. Using orthogonal functions one can derive

a representation similar to (3.6), (3.7), (3.8), for these vectors. In an analogous

manner we can define normal 73-regular vectors of the second kind and derive

a representation by the use of orthonormal functions.

3. Integrals of algebraic functions. The analogy to the case of one complex

variable suggests that we form integrals of harmonic vectors whose com-

ponents are algebraic functions.

In the following,

H = iHi, H2, H3) = R3(/,C Xo, 0),       / = piu, ()/q(u, t),

dl
F£"—' r 2j£-

(3.16)

Hi = j  fiu, t)—>        772 = -^ f   it + r*)fiu, t)dt/t,

- — r.(f - r')fiu, t)dt/t, X £ ViX0),'<

will denote a harmonic vector with a rational 733-associate/. Here £ is a con-

veniently chosen closed curve in the f-plane, and ViX0) some neighborhood

of X0. Forming "integrals" we can then consider two classes of functions.

I. Let 3 = E[x = x(o-), y = yiff), z = zia)] be a segment of a curve which

begins at Xi = Xis/) and ends at X=Xis), Si<s. It is assumed that 3 lies

in the regularity domain of H. Then

(3.17)

A(X, Xi) = f  H(X)-dX

/•s  r     dx

v=si L       da

dx ay 3zl
+ 772 — + 773 — \da

do doj

is a harmonic function of X as well as of Xi. The integrand is complete dif-

ferential and therefore A(X, XT) does not change its value, if Xi and X are

fixed and 3 varies continuously in the regularity domain of H.

II. Let 33' be a sufficiently small "cylindrical surface"
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(3.18) 23' = E[* = x(j, v), y = y(î, v), z = zis, v), 0 g v ¿ 1, s0 = s ^ si]

where xis, 0)=x(s, 1), yis, 0)=y(s, 1), zis, 0)=z(î, 1) are bounded by the

curves o-jc = E[x = x(sä, v), y = yisn, v), z = získ, v), Ogî/^l], 7£ = 1, 2.

Then

(3.19) F(ai, <r2) =   I   I        77! —- + 772 —- + 773 —-   dsdv
J J& L      dis, v) dis, v) dis, v) J

are functions of curves ai, a2. We note that functions of curves, V, generated

in the manner indicated above by harmonic vectors have been introduced for

the first time by Volterra, see [13],  [14].

Remark 3.1. The case where one of the curves, say <T2, degenerates to a

point and 23' becomes a domain bounded by one curve, ai, can be considered

as a special case of functions V.

In the present paper we shall study only the functions A(X, Xi) indicated

in 7. Certain of our considerations can be generalized to functions V.

Since it has been shown in §§ 1.2, 1.3 that the 77* are defined in the large,

the AiX, -X"i)'s are also defined in the large. Let i\.(0) denote the 7?-manifold

of the 77*. The R-manifold 2\of A(X, XT) can be obtained by cutting in a con-

venient manner <R}0) and by attaching new space sheets(28) CR}1\ CR}2), • ■ • .

In general, <R.= Z^=-» CR.M consists of infinitely many sheets. The study of

its structure is connected with the study of "periods" of (3.17); these ques-

tions will be discussed in the next section.

It should perhaps be added that

/-x I   r     Cu dt
H dX = — fiu,t)du —

x1 2irJj(¿Jui f

has a B3-associate which is an algebro-logarithmic function. As it can be

shown, it has the property that considered as a function of x, y, and z, respec-

tively, it satisfies an ordinary differential equation. See [2].

Remark 3.2. In this chapter we established that there exist certain R-

manifolds on which single-valued harmonic functions have been defined. The

further question which arises is to establish the existence of further functions

which are defined and single-valued either on the closed R-manifold, or in a

subdomain 23 (including some branch-lines) of the R-manifold, as well as to

study the properties of these functions. These problems can be attacked by

generalizing the classical procedures (see Weyl [16]), in particular consider-

ing functions sufficiently often differentiable, for which

(2S) Each i^W is an identical copy of iR.<0). We identify it by a different v, since it becomes

(after being conveniently cut) a space sheet of new covering R-manifold.
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becomes minimum, and which assumes prescribed values on the boundary of

23 or has necessary discontinuities.

4. Relations between the function A(X, XT) and integrals of algebraic

functions of a complex variable. Abel's theorem in the theory of integrals of

algebraic functions of one complex variable establishes a relation between

two different classes of functions: it shows that a sum of integrals of alge-

braic functions with conveniently chosen arguments is equal to an algebraic

function. Here, the values of the arguments are connected by an algebraic

relation. In the preceeding section, we introduced a class of harmonic func-

tions AMiX, XT) which one obtains by forming fx1HM -dX, where HM is an

algebraic harmonic vector. In this section we shall show that for these func-

tions a theorem (which to a certain extent can be considered as an analogue to

Abel's theorem) will hold. Namely we shall show that a sum Zx<"> HM -dX

is equal to a certain sum of integrals of algebraic functions of one complex

variable; here the limits of integration appearing in both sums are connected

by an algebraic relation.

The main idea underlying the derivation of the above relation is to evalu-

ate an iterated integral of a conveniently chosen integrand and to carry out

the integration in two different orders. In one case it then yields a sum

ZAW(X<8\ X») (see 3.17), in the other ^¡¡{Ta^it^t, where o<*> are

algebraic functions of a complex variable.

In order to formulate our results in a more precise manner we introduce

certain notions.

Let ,£ be as in §11.2, a closed simple oriented curve in the f-plane which in-

cludes neither the origin nor double points in its interior and let 3 = E [x = x (s),

y = y(s), z = z(s), O^sgl], x(0)=x(l), y(0)=y(l), z(0)=z(l), be a closed

simple sufficiently smooth oriented curve in the schlicht x, y, z-space.

Let

Piu, t)    tN~MPiÇ;X)(3.21) /^_w=>-u^

?(«, 0       Q(f ; X)

be a rational function of u and f as introduced in § II.2 (see (2.4), (2.12)).

For every fixed value of t the relation

(3.22) q[(x + 2-Hyit + T1) + 2^*<f - r1)), S] - 0

which can be written also in the form

(3.23) x + 2-Hyit + f"1) + 2~hit - T1) = *w(f),        v = I, 2, ■ ■ ■ , n,

defines n straight lines NMit), in the x, y, z-space. If f ranges over the

curve =£,

(3.24) Z   Z.JV<»<?)



496 STEFAN BERGMAN [May

forms a ruled surface in the x, y, z-space.

Let us assume that 3 lies completely in the regularity domain of 27*(X)

= RkitM; X), k = l, 2, 3 (see (2.13a) and (2.13b)), in particular that 3 has

no points in common with the branch line S of 77*(X).

We denote by Xw, k=1, 2, • • • , s, the intersection points of 3 with the

surfaces (3.24) and assume that s<°°. The points XM decompose 3 into s

segments, 3«, whose end points are X« and X(*+1>, X(,+1) = Xa>.

Lemma 3.3. To every segment 3« there corresponds a sequence, say T,i¿Q,

of the roots tMiX) of Qit; X)=0 isee (2.14)) such that the roots

(3.25) t^iX),        v>ETKi£)

lie inside of .£ and the remaining roots lie outside of j(\

Proof. It is at first clear that if Xis an interior point of 3« no roots tMiX)

can lie on „£. If a point, say tMiX), should lie on ■£, then the relation

(3 22a)   9[{X + 2~Hy^M{~X) + (f^W)"1)
+ 2-hit^ix) - 0-w.CX))-1)), tMiX)] = 0

would hold and therefore 3 would intersect the surface (3.24) at this point X,

which is impossible: the intersection points of 3 and (3.24) are by definition

end points of the intervals 3».

Further, since f(,°(X) vary continuously as X moves along 3, a root

tW(X) can move in or out of .£ only for a value of X for which tMiX) lies on

£. By definition, these points are end points Xw of the intervals 3« and there-

fore we can associate the T«G£) described in the lemma with every interval 3«.

For every value of f (29),

(3 26)     3'(f) = E[M = X(S) + 2"lî>(s)(f + rl)

+ 2-his)it - r1). 0 = s = 1J

represents a closed oriented curve in the w-plane. Let us denote by tl"\

p = 1, 2, • • • , s' points of .£ which correspond to X00 (in 3.22)). Since .£ is

an oriented curve the fw can be numerated in the order which we meet

them moving continuously along £. «£ will then be decomposed into s' parts

•G, & having the end points f<"> and £■<"+», fd) = f«'+D.
Remark 3.3. If we denote by D(jQ the set of those points X for which the

equation (3.22) possesses two roots f which lie on the curve „£, then

(3.27) s' = s

if the curve 3 does not include any points of 7?(„£). Otherwise s'<s.

If we now denote by uMit), Pmlf 2, • • • , n, the roots of the equation

(29) We note that for some values of f this curve may degenerate into an open segment

which is described twice when s varies from s=0 to s = l.
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(3.28) qiu,t) = 0,

then again we can associate with every segment ^H a set, say r^(3), so that

the uMit), kEt»Í3), lie inside the domain bounded by 3'(f), f£-Gi while

the remaining ww(f) lie outside 3'(f).

Theorem 3.1. Let H=R3ip/q,J^,Xo, 0),X0^0 isee (3.2)) be a harmonic

vector with a rational B3-associate p/q which vector is defined on the R-manifold

T^with 2n sheets. See (2.58). Its components are 2N-valuedfunctions^) whose

branches we shall denote by H^iX), k = 1, 2, 3, v= 1, 2, • • -, 27V isee (2.13a),

(2.13b)).
If 3 is a closed simple oriented curve in the schlicht x, y, z-space as described

above, then

(3.29) 'Jr<>
Z     Z _ A"»(Z('+1», X«)

= z z ffu+1> r p(u'û i     if
.-l^Gr^O) Jr'"      Ltdqiu,t)/du)J u=um({)

where A^iX, X7)=fxiH^-dX, see (2.59), u^it) are the roots of (3.28) and

7\(«0 and t<(3) are the sequences described above. X(,) and tM are connected

by the equation (3.22).    •

Proof. As we indicated before, (3.29) is obtained by evaluating the sum

of three integrals,

S=f(f     P-^dl)dx+if({    ̂ ^*U
J3 \JjC liu,t)   TZ J3\J^?(«,f)        2 /7

j3\J^ç(M, f)        2        •/

(3.30)

+

and interchanging the order of integration. Since 3= Z«=i 3« we can re-

place in (3.30) /s by Z*=i fsK- According to the results of §11. 2, since „£does

not include the origin and has no double points, we have for every X£ 3,

pju, t) dt_

'■C Q(u> f)  f     -ew3)

as given by (2.13a) and {2.13b). Analogously by (3.2)

(3.31) L ^ f =   E, HÏ\X), HÏ\X) = RiitMiX), X),
JJC.  a(u, t)   t      rer«(3)

(3-32) i ——--dt =    X    B2  (X),
JjC  q(u, t)        2 ,£^(3)

P(u, t)  1   f r2 ,_        ^    „«,

qiu, t)

pju, t)

'■C q(u, t)

'■C ?(M> f)
piu, t) i-r2 ,.     ^  „m,

rJT±^—r~d^   £, H(3\X).
JC   qiu, t) 2      ■ ,Grl(3)

(30) In the schlicht x, y, z-space.
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Thus we obtain

S = Z f XL    [H?dx + H?dy + H3Wdz]
(3.34) l=lJ3"   '^'^

S

= Z       Z      A''»(X("+1»,ZW); X"+'> = X»>.
«=i   »6r<(^)

As we shall show subsequently, the double integral taken over the absolute

value of the integrand exists; therefore we can interchange the order of inte-

gration to obtain

5-Sf    \f      ̂ duY±
»=JjlXJZ\nqiu,t)      At

(3.35)     =zf  z r piu,t\ 1   *
ß=iJ/lß   ,Gm&) Ltdqiu,t)/duJu=u(.')({)

= z z fr(M+T ̂'° i     ¿r
M-i r&¡r<3)Jf(M)    Lfaç(«, f)/a«J „=u(")(f)

which yields the right-hand side of (3.29).

It still remains to show that the integrands in (3.30) are absolutely

integrable. Let us consider one of these integrals, say the first one. Accord-

ing to our hypotheses (see p. 495) the curve J^ does not include the origin ;

Piu,t) is everywhere bounded for X£3; it is therefore sufficient to show that

J3   Jj

dxdt

-C I 9iu, t)

exists, qiu, t) vanishes only at the intersection points X(lc) of 3 with the sur-

face (3.24). There are only finitely many points Xw (see p. 496). We shall

consider the behavior of the integrand in the neighborhood of one of the

X(*\ say at X=X(1) = (x(I), y(1), z(1)) which lies on one of the WKÇ), say on

WM: See (3.23).
Let the curve J^ in the neighborhood of ti be given by

f = t(r),        -t2 = t = t2,       ti = f(0)

and the curve 3 in the neighborhood of X(1) by X=X(s), that is,

x = xis),        y = yis),        z = zis),        -s2 = s = s2,        X«1' = X(0).

We can choose the parametrizations so that | f'(t) |, | x'is) \, | y'is) \, \ z'is) |

are uniformly bounded in the above neighborhoods.

Since X(1) lies outside the branchlines of the R-manifold (2.14), according

to p. 654 of [2], all roots fw(X(1)) are different, and since thus in
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?[* + y or + r1) + yz(r - r1). r] = ft Cr - rw(*)j

only one factor vanishes for X=X(1), it suffices to consider the integral

¿5¿rw/■ "2  r T2 rf5ßf (i

s=0Jr=olf(T)   -   f^ (X(5))

Let f = £+¿77, fW(X(5))=p'(^W)+^(,,)(^W)- We assume that the para-

metrization is done in such a way that C\ di~ir) | ^ | dt(t) |, C being a suitable

constant.

P g 4C "J J«/ s-0 J t-s=oJ£=oU-?(^(X(5))|

If we assume further that s2 is so small that for —s2 = s — s2

|&| >2|fO(x(i))|l

then

P á 4C f * ¿5 | lg e(r)(X«) I + 0(1).
«/ o

Now let us consider

lg^iXis))\ds.
/< «20

£W(X) is an analytic function of x, y, z, while according to our hypotheses

x(s) can be represented in the neighborhood of s = 0 as x(s) =ais+a2is)s2,

and y(s) and z(s) similarly. Therefore ^iXis))=Asn+Bis)sn+1, A^O,

where Bis) is uniformly bounded in the neighborhood of 5 = 0, from which it

follows that the integral J exists.

IV. Some relations between functions 77(X) and i>(x)

BELONGING TO DIFFERENT CLASSES

1. The operator P3 transforming harmonic functions into solutions of

more general linear differential equations. The next step in the development

of our method consists in the study of operators P3 which transform har-

monic functions in three variables into solutions of equations

(4.1) Au + Fix, y, z)u = 0

(see problem II, §1.1). As indicated on p. 464, we shall study this prob-

lem for equations of the form (1.3), that is, where F=Cir2) is an entire

function of r2 = x2+y2+z2.
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In a previous paper [9] it has been shown that for every equation (1.3)

there exists a generating function

(4.2) air, t) = 1 + Z T2"è<"V)

such that, in analogy to (1.3), the operator

(4.3) Ps[77(X)] = j  Ü(r, r)77[X(l - r2)]dr

generates solutions of equation (1.5) from harmonic functions 77(X) of three

variables. For our purposes it is useful to modify this operator slightly.

Lemma 4.1. The operator

(4.4) p3[G(X)] = G(X) + Z B^ir2) f   (1 - o2y^o2Gio2X)do,
n=l J 0

Tin + 1/2)
(4.4a) B^Hr2) = —-— ¥n\r2)

r(n)r(i/2)

generates solutions i>(X) =p3[G(X)] of (1.6) from harmonic functions G(X).

iHere G and H are connected by (4.8).)

Proof. Let

(4.5) 77(X) = Z       Z      aMNpxuyNzp.
j)=0   M+N+P=p

Then (4.3) can be written in the form

(4.6) P3[77(X)] = Z       Z      aMNPxMyNzp   f       fl(r, r)(l - t2)Ht.
j>=0   M+N+P=p J t=-1

On the other hand, by (4.2)

f        ß(r, r)(l - T2Ydr =   ¿ &<">(r2)   f        t2"(1 - r2ydr
(4.7) Jt^ n~° Jr=~1

fTin+l/2)Tjp+l)

fo     Tin + p + 3/2)    ■

_ Tjp + l)r(l/2) (

Tip + 3/2)     I

+  2JbMir2) ■ sn      dsn--- dsi\.
n=l l(l//j       J s1=o ^ «n-l=0    •/ s„=0    . /
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Thus by writing(31)

A Tip + i)r(i/2)
G(X) =- G{x, y,z)=  Z *mnp -Z--    )'     x"y"zp ip = M + TV + P)

M,N,p Tip + 3/2)

(4.8)

we obtain

/.

i
T-l'2H[Xil - T)]dT,

T=0

(4.9)

( A T(w+ 1/2) c1

/' Sn-2 /» «n-1     1/2 1
5„ GisnX)dsndSn-i ■ ' • dsi>

«»-1=0    •'«„-O '

By noting that

r1 r*»-*    p-> 1/2
I • • •   I I        sn GisnX)dsndSn-i • ■ • dsi

J «1=0 J s„_!=0   «7s„=0

1 f1
(4.10) =- j     (1 - s)n-1s1'2GisX)ds

Tin) J,_o

■f'o
r(n)J._,

(1 - <72)"-1<r2g(<r2X)¿<r

we obtain (4.4) with the 73(n> defined by (4.4a).

Since in a sufficiently small neighborhood of the origin the series (4.2) and

(4.5) converge uniformly and absolutely, the interchanging of the orders of

summations, as well as that of summation and integrations are admissible.

It should be noted that in the case of differential equations (4.1) where

Fix, y, z) is an entire function of three complex variables, we obtain from

harmonic function 77(x, y, z), solutions of (4.1) by forming the expression

(4.11)     77(x, y, s) —  I  I  I-:-h • • •
J J JB   [(* - e)2 + (y - v)2 + (z - f)2]1'2

where the integration has to be taken by a conveniently chosen domain 5B.

We wish to show that every solution of T($) = 0,see (1.5), can be represent-

ed in a sufficiently small neighborhood of the origin in the form $ = $3iH).

For every equation T(i>)=0, one can determine a sufficiently small r0

such that for every sphere S =E[x2+y2+z2<p2], 0<p^r0, there exists a

function Air, d, <p) possessing the following property: for every solution

(a) G(X) is a harmonic function.
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<¡?(X) which is regular in S'+S, S' = E[x2+y2+z2=p2], | *(r, d, <p)\

^Air, 8, <^)maxog^g2ir,oá«s,r | $(p, 6, <p)\ , r<p. Therefore, according to

Theorem 4.1, p. 429 of [9] every real solution <t> of T(4>)=0 can be repre-

sented in a sufficiently small sphere in the form

M f%  1      •

(4.12) $(X) = p3(77) = 77(X) + Z 73(">(r2)  |      (1 - <r2)"-V277(cr2X)¿cT.
n-l Jo--0

Definition 4.1. The function 77(X) which when substituted in (4.12)

generates a given solution d> 0f T(i>)=0 is defined as the p3-associate of <£.

According to our previous discussion and the considerations of §4, p. 428

of [9], for every solution i> which is regular at the origin there exists one and

only one p3-associate which is regular at the origin.

From the representation (4.12) follows:

Lemma 4.2. If His the ^-associate of $iX), that is, if «I3 = p3(77), then in the

characteristic space Q¡ the relation

(4.13) $[i(y2 + z2y2, y, z] = H[i(y2 + z2)1'2, y, z]

holds.

Proof. (4.13) follows immediately from the fact thatP(n)(0) =0 (see (4.20)

p. 425 of [9]).
Definition 4.2. As before we define

(4.14) x(Z,Z*) = <¡>[2(ZZ*yi2, -i(Z+Z*), (Z - Z*)]

as the C3-associate of <£.

Remark 4.1. Using the symbols C3 and p3, Lemma 4.2 can be written in

the form

(4.15) C3-1($) = Cftb^i.)].

This, as well as the fact that the operator p3 preserves many properties of

functions to which it is applied, justifies the classification of functions $

according to the behavior of their p3-associates.

2. Solutions <!> of T(&)=0 generated by rational and algebraic p3-asso-

ciates.

Lemma 4.3. The solution <i> whose p3-associate is a spherical harmonic

1 r      ,   , r(w +1)     „ ¿'        ikt
Hpk = —        u"tkdt/t =   w     ,   ,   , — r Pn(cos 0)e

2irJr T(n + k + 1)

where r, 6, <p are polar coordinates, >£=E[|f| =l], is
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«MX) = p3(77p,(X))

r 1   A   T(n)T(p + 3/2) "1
(4.!6) -w['nSr„tL;iaw"4

r2 = x2 + y2 + z2.

Proof. Relation (4.16) follows by a straightforward computation, if we

substitute Hpk(X) into (4.4) and use the fact that Hpk(X) is homogeneous.

Every harmonic function in two variables satisfies the Laplace equation

in three variables. Thus, considering h and z'h where h = h(Y) are rational

functions of one complex variable Y = x'+iy', and x', y', z' are new cartesian

coordinates obtained by the rotation of the coordinate system, we obtain a

class of rational harmonic functions. In considering <É> with a rational p3-

associate, we shall restrict ourselves to the case where the p3-associate is of

the form H(X)=h(Y).

Lemma 4.4. The solution $(X) with the p3-associate (Y—a)~l is

00

(4.17)     p3[(F - a)"1] = (Y - a)"1 + Z B^(r2)Kn(Y),
U=l

1 al/2   _    7I/2

Kn(Y) =—(a/Yyi2[aY-1 - lh-ug-
v   '        2 a112 + F1/2

(4.13) +ZcV(l+j) if or Y ̂ 0)
i-o

n-l

= - a-l2ZCn-i.,i-iy/i2v + 3) ifor Y = 0).
,=0

Here

(4.19) Ui = Si + "Z' (- l)x (i/X)CJ+x_i,x-i(«/F)5,+x
x=i

and

(4.20) Si = Cn-i.iiaY-i - l)»-w.

Proof. Substituting (F—a)-1 into (4.12) one obtains (4.17) by a formal

computation.

It follows from the representation (4.17) that the function obtained is

infinite of the first order along the line Y = a, where it has a branch point of

infinite order.

In Chapter II we showed that to every R-manifold R.given by (2.14) there

belongs a family F of algebraic harmonic functions G(X) =7?(fw; X) defined

on R.. They are given by (2.13a) and (2.13b). Each of these functions GEF
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is a rational function of x, y, z, f(,). We proceed now to the study of solutions

i> which are generated by the above functions G.

In order to describe some properties of functions which we obtain in this

manner it is useful to consider a new R-manifold which we shall denote by S

and which is closely connected with the equation Qit; X)=0 (see (2.14)).

For a fixed value of X, the equation

*!£}   Aixo2, yo2,zo2)

(4.21) Bio, f, X) =■ t2N + Z    A   ,    /   ,     '    ¡? = 0
ß=o   A2„ixo2, yo2, zo2)

determines a Riemann surface, say 15(X), with 27V sheets t = ÇMi°", X),

v=l, 2, • • ■ , 2TV, which in general has 2s distinct branch points o-(f0(X),

p=l, 2, • • • , 2s; 2s being the degree in a of the discriminant Dia; X) of

(4.21). (One obtains Dia; X) by eliminating f from 73(cr, J"; X)=0 and

Pf(tr, f; X)=0.) The equation

(4.22) D(a;X) = 0

defines in the x, y, z-space the R-manifold S, mentioned above, which has 25

space sheets, aMiX), p = l, 2, ■ • • , s. We denote by

(4.23) S' = E[D(ff-, X) = 0, D,io; X) = 0]

the branchline of S •

We wish to indicate some properties of the Riemann surfaces 15(X) which

we obtain when X ranges over S •

Lemma 4.5. Let <P' be a path on S —S '• The genus p(X) of 15(X) remains

constant when X varies along CP'.

Proof. Suppose that .£,' (X), jQ'iX), v-í, 2, • • • , p(X), form a system

of loops and cross sections on 15(X) which makes 15(X) simply-connected.

Since the branchpoints aMiX) vary continuously when X varies along i"

we can deform jÇJ (X) and J///J,' (X) continuously. Since on the other hand

p(X) is an integer, it must remain constant, which proves the statement of

our lemma.

Remark 4.2. We note that with every closed oriented curve ?iES S ',

which cannot be reduced on S to a point, we can associate the matrix

p(ATJ which gives the permutations of the set {crw(X)} while X describes a

curve which is homologous to 7\{. These matrices form a group which we

shall define as the permutation group of S.

For every X£S —S ', ||x|| < °°, we form the integrands

(4.24) Hia,f,X)a,    77'(«r, f ; X)„,    77(«r, t; *u tu X),       a = I, 2, ■ ■ ■ , p,

of the first, second, and third kinds, which are defined on 15(X) (see [15, pp.

79 and 73]) and the corresponding integrals
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(4.25) Jia,t;X)a,      J'io,f.X)a,      Jio, t;oi, tù oo, to;X).

(See [15, pp. 373 and 397].)
Let

(4.26) oiaßiX), co'aßiX);   yaßiX), VaßiX),     a » 1, 2, • • • , p; ß = 1, 2, • ; • , p,

denote the periods of the above integrals of the first and second kinds, re-

spectively. (See [15, pp. 324].)

Using w„^(X) and co^(X) we form the functions 0(«i, u2, • ■ ■ , up, X:

p, p') (see [15, chap. 30]).

Since waßiX), w^(X) depend on x, y, z, these functions depend on p + 3

variables, »1, • • • , up, x, y, z. In order to stress the difference from the classi-

ical 0 functions for which the o)aß, w^ are constants, we shall denote the new

functions by S(wi, u2, • • • , up; X; p, p').

Notation. 4.1. The 6~iui, • ■ ■ ,up; X;p,p') obtained in the above manner

will be defined as 0 functions belonging to the R-manifold S • The functions

§ obviously satisfy the relations

9(«i + 2wißiX), ■ ■ ■ , up + 2copßiX);X; p, p')

= exp [p'ßiri]5iui, ■ ■ ■ , up; X; p, p') exp    Z 2vaßiX)iua + coa3(X))   ,

(4.27) diui + 2«tf(X), ■ • • , up + 2«rf(X); X; p, p')

= exp [ — pßri]6iui, ■ ■ ■ , up; X; p, p')

■ exp T Z 2i?Ux)(« + col^X)! .

See [15, p. 576].
The ë are not single-valued functions of X on S ■ Indeed, suppose that J^

is a curve which cannot be reduced to a point, and suppose that when we

start from a point X, move along 7\[ and return to X, the permutation which

the crosscuts and loops undergo is

\ßi ■ ■ ■ ßP)

The o>aß(X) and co^X) undergo the corresponding permutation and there-

fore when we describe a circuit along >{ we return to a § function different

from the one from which we started.

Notation. 4.2. Suppose a function TV(X) can be represented by using

(1) 5(«i, • • • , up; X; p, p') belonging to the R-manifold S ; (2) their partial

derivatives of the first order with respect to w<; (3) transcendental functions

Jia, t', X)a belonging to S, and (4) finitely many algebraic and logarithmic

operations. Here, algebraic functions of x, y, z can to be substituted for
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«i, • • • , up, a and t- Such a function will be said to belong to the family G(S ).

Theorem 4.1. Let F be the family of algebraic harmonic functions defined

on the R-manifold R given by Ait; X)=0 (see (2.14)). Then the solutions

i> = p3(G) o/T(d>)=0 generated from G; GEF, can be represented in the form

(4.28) $(X) = G(X) + Z 7?<« V)G„(X)
71=1

where 73Cn)(r2) are the coefficients of the operator (and therefore depend only upon

T), and G„£G(S), S being the R-manifold which we associate with R.

Proof. By (4.1)

(4.29) G„(X) -  j      (1 - ai)n~1a2G(a2x, o2y, o2z)do.

According to (2.13a), (2.13b), (2.14): G(a2X)=R(a, f, X) is an algebraic

function of a which is defined on the Riemann surface 15(X) given by (4.21).

Therefore, according to [15, p. 264] G(a2X) can be written in the form

G(<r2X) = Z c,(X)H(o, f, o„ t,; X)

(4.30)

- Z [gliX)Hio, f, X)a + gaiX)H'io, f, X)a] + dFio, f, X)/do,
<r=l

where c,(X), ga(X), g*(X), and Fia, f, X) are functions which are obtained

by algebraic operations from coefficients of Gia2X) and are therefore alge-

braic functions of X. Substituting for t algebraic functions of a, and choosing

for a suitably chosen fixed values, we obtain the periods (which are functions

of X) of integrals of the first kind.

According to [15, pp. 597 and 598], the integrals of the second and third

kind can be expressed in S functions, their first partial derivatives, their

logarithms, and the periods of the first kind. This completes the proof of

Theorem 3.1.
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