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The first section of this paper deals mainly with hereditarily unicoherent

continua which are atriodic. The term "continuum" will imply compactness.

A continuum M is said to be unicoherent if the set of all points common to

any two continua whose sum is M is connected. It is said to be atriodic if it

does not contain three continua such that the common part of each pair is

the common part of all three and is a proper subcontinuum of each. A prop-

erty of a continuum which is possessed by all its subcontinua is said to be

hereditary. The second section is chiefly concerned with conditions implying

hereditary unicoherence. Among other things it is proved that in order that a

hereditarily decomposable continuum be hereditarily unicoherent it is neces-

sary and sufficient that it contain no continuum N which can be decomposed

into an upper semi-continuous collection of mutually exclusive continua with

respect to the elements of which N is a simple closed curve. In establishing

this theorem it is proved that a hereditarily decomposable irreducible con-

tinuum M can be decomposed into an upper semi-continuous collection with

respect to the elements of which M is an arc. The third section is devoted

to properties of a continuum every subcontinuum of which is unicoherent

and decomposable which are analogous to certain properties of an acyclic

continuous curve.

The basic space is a Moore space and, since all the theorems deal with

internal properties of continua, may therefore be described as metric. The

reader is referred to R. L. Moore's Foundations of point set theory(l) for

definitions of terms not defined here.

1. Atriodic hereditarily unicoherent continua.

Theorem 1.1. In order that the continuum M be hereditarily unicoherent,

it is necessary and sufficient that if A and B are two points of M, there is only

one irreducible subcontinuum(2) AB of M.

Presented to the society, February 25, 1939, under the title Some methods of characterizing

certain atriodic continua, January 1, 1941, under the title Concerning certain types of end points,

and April 12, 1941, under the title Concerning compact unicoherent continua; received by the

editors September 15, 1949.

(') Amer. Math. Soc. Colloquium Publications, vol. 13, 1932. This book will be referred

to as Foundations.

(2) A continuum which is irreducible between some two of its points will be said to be

irreducible. The expression "an irreducible continuum PQ," or when no confusion results

"a continuum PQ," will be used to mean a continuum which is irreducible between points

P and Q.
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Theorem 1.2. In order that the continuum M be atriodic and hereditarily

unicoherent, it is necessary and sufficient that (1) if A and B are two points of M

there is not more than one subcontinuum AB of M, and (2) every nondegenerate

subcontinuum of M is irreducible.

The condition is clearly sufficient. That it is necessary follows from a

theorem proved by R. H. Sorgenfrey(3).

The following example shows that the second part of the condition is not a

sufficient one that M be unicoherent.

Example. Knaster has shown that there exists a bounded plane con-

tinuum which is hereditarily indecomposable(4). Let H and K denote two

such continua which have in common only two points P and Q, H and K

each being irreducible from P to Q. The continuum M, which is the sum of

H and K, is not unicoherent, but every subcontinuum is irreducible.

Theorem 1.3. If a hereditarily irreducible continuum is the sum of two con-

tinua H and K whose common part is the sum of two mutually separated sets

U and V, then H and K contain indecomposable continua whose common part

is the sum of two mutually separated sets lying in U and V, respectively.

Proof. The continua H and K contain continua H' and K', respectively,

such that H' is irreducible from U to V and K' from H'U to H'- V. Then

H'K' is the sum of two mutually separated sets U' and V lying in U and V,

respectively, and H' and K' are each irreducible from U' to V. Suppose that

H' is the sum of two continua W and Z distinct from itself. One of them,

say W, contains no point of V and the other no point of U', and W- Z con-

tains no point of K'. Since W-K', ZK', and W-Z are mutually exclusive

closed sets, no one of the continua W, Z, K' is a subset of the sum of the

other two, and the continuum H'+K' is not irreducible, contrary to hy-

pothesis. Hence H' and K' are indecomposable.

Corollary. In order that a continuum every subcontinuum of which is de-

composable be atriodic and hereditarily unicoherent, it is necessary and sufficient

that it be hereditarily irreducible. ?

Theorem 1.4. In order that the continuum M be atriodic and hereditarily

unicoherent, it is necessary and sufficient that of any three points of M there is

one which weakly separates^) the other two from each other in M.

Theorem 1.5. If the atriodic unicoherent continuum M is the sum of two

(3) R. H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. vol. 66 (1944) pp. 439-

460. Cf. Theorem 3.2.
(4) B. Knaster, Un continu dont tout sous-continu est indecomposable, Fund. Math. vol. 3

(1922) pp. 245-286.
(6) If A, B, and C are three points of a continuum M such that every subcontinuum of M

which contains A and B contains C, then it is said that C weakly separates A from B in M.
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continua H and K distinct from M, then H and K are unicoherent, and if N is

a non-unicoherent subcontinuum of M intersecting H, it is a subset of Hi6)

Proof. Suppose that K is the sum of two continua U and V such that

U- V is the sum of two mutually exclusive closed sets X and Y. The con-

tinuum M is irreducible(7) between two points A and B. One of these points,

say A, belongs to H—HK and the other to K—HK. The point B belongs

to U or to V, say to U. If H and U had no common point, then V and H

would intersect and M would be the sum of the two continua H+ V and U,

whose common part is X+ Y, contrary to hypothesis. Hence H+ U is a con-

tinuum containing A and B, and M = H+U. Since V is not a subset of U,

it follows that V intersects H. Suppose B is not in V. Then H+ F is a proper

subcontinuum of M and hence ÍH+ V) ■ U is a continuum. There exist two

open sets Dx and Dy containing X and Y, respectively, such that Dx and

Dy are mutually exclusive. Let P and Q denote points of X and Y, respec-

tively, and let Cp and Cq denote the components of V- Dx and V- Dy con-

containing P and Q, respectively. By Theorem 39 of Chapter I of Founda-

tions, neither Cp nor Cq is a subset of U. Let W and Z denote the sets

Cp + iH+V)- U and Cq+ÍH+V)- U, respectively. Consider the continua

U, W, and Z. Since Cp and Cq are subsets of V it is clear that ÍH+ V) ■ U

— U- V= U-Z=W-Z. The point B is in U, but as B is not in V, neither

W nor Z contains B. Since Cp and Cq are mutually exclusive and neither is a

subset of U, U- W is a proper subcontinuum of U, W, and Z, which is im-

possible since M is atriodic. Then F contains B. By Theorem 115 of Chapter I

of Foundations, <&iM—H) is connected(8). Since M is irreducible from A to B

and B is in U- V, it follows that M—H= U— U-H= V— V- H. The continuum

(EiM — H), being a subset of U- V, is a subset of X or of F, and therefore

neither U nor F is a subset of &ÍM-H). Since M= U+H= V+H and

M is unicoherent, H- U and H- V are continua. Since H- U- V contains

&iM—H)-H, there is a point common to the three continua H- U, H- V,

and &ÍM-H). The point B is in S(Af-iî) but in neither H- U nor H- V.

Since U— UH= V— VH, neither of the continua H- U, if- Fis a subset of

the other. As neither U nor F is a subset of S(Af—H), 6(Af—H) contains

neither H- U nor H- V. Thus the three continua H- U, H- V, and S(Af-H)

have a common point and no one is a subset of the sum of the other two.

But, by a theorem proved by R. H. Sorgenfrey(9), this is contrary to the

hypothesis that M is atriodic. From this contradiction, it follows that K,

and similarly H, is unicoherent.

Suppose that N is not a subset of H. If H is not a subset of N, it follows

(6) The first part of the conclusion was suggested by R. L. Swain.

(?) Sorgenfrey, loe. cit.

(8) For typographical convenience, <S.(X) is sometimes used instead of X for the closure

of X.

(9) Ibid., cf. Theorem 1.8.
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from the first part of this theorem that H+N is not unicoherent. If H is a

subset of N, then H+N=N and H+N is not unicoherent. Since M is uni-

coherent, H+N is a proper subset of M. Then M =iH+N)+K, which is

contrary to the first part of the theorem.

Theorem 1.6. If M is an atriodic unicoherent continuum and N is a non-

unicoherent subcontinuum of M, then N is a continuum of condensation (10)

ofM.

Proof. Let A ,and B denote points such that M is irreducible from A to B.

If N contains A or B, then M is the sum of the continua N and OliN—H),

and it follows from Theorem 1.5 that M = &iN — H) and hence that N is a

continuum of condensation of M. Suppose N contains neither A nor B. If

M—N is connected, then (S(Af— N) is a continuum containing A and B and

hence every point of TV is a limit point of M—N. If M—N is not connected,

let U and V denote the two components of M—N which contain A and B,

respectively. Since M is irreducible from A to B, M is the sum of the two con-

tinua U and V+N. Then, by Theorem 1.5, U contains N, and N is there-

fore a continuum of condensation of M.

Theorem 1.7. If AB is an irreducible continuum, every non-unicoherent

subcontinuum of AB contains a non-unicoherent subcontinuum which is a con-

tinuum of condensation of AB.

Proof. Consider AB as space. If AB contains a non-unicoherent con-

tinuum L, there is a subcontinuum N of L which is the sum of two continua

H and K such that H- K is the sum of two mutually separated sets X and Y,

H and K each being irreducible from X to Y. If N contains A, say that A

belongs to H. The continuum OliAB — N) intersects H, for otherwise AB

would not be unicoherent. The boundary of AB — N contains K — H-K, and

therefore, since K is irreducible from X to Y, it contains K. As AB is uni-

coherent, H-^iAB — N) is a continuum lying in H, and since it contains

X and Y, it is H. Then the boundary of AB — N contains H. Hence if N

contains A or B it is a continuum of condensation. Suppose that N contains

neither A nor B. If AB — N is connected, every point of N is a limit point of

AB — N. If AB is not connected, let U and V denote the components of

AB — N containing A and B, respectively. Suppose that neither H nor K

intersects both U and V; say that H intersects U. Then AB is the sum of the

continua U+H and V+K, the common part of which is not connected, con-

trary to hypothesis. Hence one of the sets H, K, say H, intersects both U

and V. Then since AB = U+H+V, every point of K — H-K, and therefore

every point of K, is a limit point of U+ V. If U and V do not intersect, then

one of the sets U, V, say U, contains K and the other no point of K. But then

(10) A subcontinuum N of a continuum M is said to be a continuum of condensation of M

if every point of N is a limit point of M—N.
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M is the sum of two continua U and H+ V, the common part of which is not

connected. Hence U intersects V, AB = U+ V, and N is a continuum of con-

densation.

2. Properties implying hereditary unicoherence.

Theorem 2.1. If M is a continuum such that of any four points of M there

is one which weakly separates two of the others from each other in M, then M is

hereditarily unicoherent.

If AT is a continuum having the property that for some positive integer k

greater than four it is true that of every k points of M there is one which

weakly separates two of the others from each other in M, it does not follow

that M is unicoherent, as can be seen by considering the continuum M of the

example following Theorem 1.2.

It will be shown in Theorem 2.8, however, that if the stipulation that M

be hereditarily decomposable is added to the hypothesis of Theorem 2.1, then

"four" can be replaced by "k," where k is any positive integer greater than

two.

Lemma A. // the irreducible continuum M is hereditarily decomposable, it

contains two, and only two, mutually exclusive continua H and K such that

(1) ¿re order that M be irreducible between two of its points it is necessary and

sufficient that one of them belong to H and the other to K, (2) M—H and

M— iH+K) are strongly connected^1), (3) H is a subset of every subcontinuum

of M which intersects both H and M—H, and (4) if N is a proper subcon-

tinuum of M which intersects both H and M—H, then every subcontinuum of M

which intersects N and K contains (&(M—N), and Q(M—N) is irreducible from

NtoK.

Proof. Let A and B denote points between which M is irreducible. Let

H denote the set of all points x such that M is irreducible from B to x, and

K the set of all points x such that M is irreducible from A to x. The sets H

and K are mutually exclusive continua, and M is irreducible from H to K.

Let P and Q be two points of M—H. Since M is not irreducible from B either

to P or to Q, there exist continua lying in M—H and containing B+P and

B + Q, respectively. Hence M—H is strongly connected, and therefore if M

is irreducible between two points, one of them belongs to H and the other

toK.
Suppose there are two points P and Q of M— iH+K) such that no con-

tinuum containing P and Q lies in M—(H+K). There exist two continua

X and Y, each irreducible from P to Q, lying in M—K and M—H, respec-

tively. Since X and Y intersect H and K, respectively, M=X+Y. Then H

is a subset of X — X- Y, and K of Y—X- Y. Suppose there exists a proper

(u) A set M is said to be strongly connected if each two points of M are in some continuum

lying in M.
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subcontinuum W of X containing A and P and a proper subcontinuum Z of F

containing B and P. But neither W nor Z contains Q and W+Z is then a

continuum containing ^4 and B. From this contradiction it follows that either

X is irreducible from A to P or F is irreducible from 5 to P; say the former.

Let T denote the set of all points x such that X is irreducible from P to x.

The set F is a continuum, and since T contains A and Q, M= T+ Y. There-

fore X— T is a subset of Y, and, by Theorem 106 of Chapter I of Foundations,

X is a subset of Y. But A" contains H and F does not. From this contradiction

it follows that M—iH+K) is strongly connected.

Suppose that M contains a continuum W which intersects H and M—H

but does not contain H. There exists a continuum Z which lies in M—H and

intersects W and K. But W+Z would be a proper subcontinuum of M inter-

secting H and K.

Let Af be a proper subcontinuum of M intersecting H and M—H. Sup-

pose there exists a subcontinuum i of M which intersects N and K but does

not contain M—N. Then N+L is a proper subcontinuum of Af intersecting

iíand K. From this contradiction, (4) follows.

Definition. If M is an irreducible hereditarily decomposable continuum,

the subcontinua H and K oí M described in Lemma A will be called the

E-subcontinua of M.

Lemma B. If M is an irreducible continuum which is hereditarily decom-

posable, H and K are the E-subcontinua of M, and P is a point of M— iH+K),

then there exists a continuum T containing P and lying in M— iH+K) such

that M—T is the sum of two mutually separated connected sets U and V con-

taining H and K, respectively, such that (1) M=U+V, (2) U is irreducible

from H to V, and V is irreducible from K to U, (3) the E-subcontinua of U are

H and T- U and the E-subcontinua of V are K and T- V, and (4) every sub-

continuum of M which intersects H and T+ V contains U.

Proof. There exists a proper subcontinuum N of M which is irreducible

from H to P. Let Z denote M—N. By Lemma A, Z is a proper subcontinuum

of M irreducible from N to K. Let W denote M—Z. Then W is irreducible

from II to Z, Z is irreducible from W to K, and M= W+Z. It is clear that H

is one of the E-subcontinua of W; let K' denote the other. Similarly K is one

of the E-subcontinua of Z; let H' denote the other. Since W • Z is a subset of

H' and of K', H'+K' is a continuum. Let T = H'+K'. If P belongs to W,

then since IF is a subset of N and N is irreducible from H to P, P belongs

to K'. If P belongs to Z, then since Z is irreducible from K to N, P belongs

to H'. Hence F contains P. Let U=W-K' and V=Z-H'. ThenJ7 and V

are connected sets containing H and K, respectively, such that W=U and

Z=V. Let L be a subcontinuum of M which intersects both H and T+ V.

It follows from Lemma A that if L intersects F or F it intersects V and hence

contains U.
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Definition. If M is an irreducible hereditarily decomposable continuum

and F is a subcontinuum of M having the properties described in Lemma B,

T will be called a C-subcontinuum of M.

Lemma C. The C-subcontinua of an irreducible hereditarily decomposable

continuum M are mutually exclusive.

Proof. Suppose the C-subcontinua Fi and T2 of M have a point P in

common and that T2 contains a point Q not in 7\. Let H and K be the

E-subcontinua of M. The set M—Ti, ¿=1, 2, is the sum of two mutually

separated connected sets £/, and F¿ containing H and K, respectively. Either

Ui or Fi contains Q; say the former. By Lemma A, Ui contains a continuum

which contains Q and intersects H, and therefore, by Lemma B, Ui contains

U2. The continuum Ti+Vi contains P, and therefore, by Lemma B, it con-

tains V2. But Ui and Fi+Fi are mutually exclusive, while U2 and V2 inter-

sect. From this contradiction the lemma follows.

Theorem 2.2. If the hereditarily decomposable continuum M is irreducible

from point A to point B, and g a and gs are the E-subcontinua of M containing

A and B, respectively, and G is the collection consisting of g a, gB, and all the

C-subcontinua of M, then G is an upper semi-continuous collection of mutually

exclusive continua filling up M, and M is an arc from gA to gB with respect to

the elements of G.

Proof. It follows from Lemmas A, B, and C that G is a collection of mutu-

ally exclusive continua filling up M. Let g be any element of G distinct from

gA and gß. By Lemma B, M—g is the sum of two mutually separated con-

nected sets U and V containing gA and gB, respectively. Then g separates

gA from gB in M. Let P be a point of U—gA, and let gp denote the element of G

containing P. Since gp is a connected subset of M—g, it is a subset of U. By

Lemma B, M—gp is the sum of two mutually separated connected sets Up

and Vp containing gA and gB, respectively. The continuum g+ F is a con-

nected subset of M—gp and hence is a subset of VP. Then gp separates g from

gA in M. Similarly there is an element of G which separates g from gB in M.

Let gi and g2 be two elements of G distinct from gA and gB- For each ¿, i= 1, 2,

M—gi is the sum of two mutually separated connected sets Ui and F¿ con-

taining gA and gB, respectively. The continuum gi is a subset of U2 or of V2,

say of U2. Then g2+ V2 is a connected subset of M—gi and hence is a subset

of Vi. Since Fi contains a point not in g2+ V2, it intersects U2. Let Q be a

point of £/2- Fi, and let gQ be the element of G containing Q. The set gQ is a

subset of t/2- V\. The set M—gQ is the sum of two mutually separated con-

nected sets Uq and Vq containing gA and gB, respectively. Since gi+ Ui is a

connected subset of M—gQ, it is a subset of Uq; similarly, g2+ F2 is a subset

of Vq. Therefore any two elements of G are separated from each other in M

by some element of G. It follows from Theorem 40, §1, of Chapter V of
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Foundations that G is an upper semi-continuous collection, and that M is an

acyclic continuous curve with respect to the elements of G. By Theorem 6,

§1, of the same chapter, it follows that the "acyclic continuous curve" G is

compact, and since every element of G distinct from gA and gs separates M,

M is an arc from gA and gs with respect to the elements of G.

Theorem 2.3. The elements of the collection G described in Theorem 2.2 are

the dendratomic subsets of M.

Proof. By a theorem due to R. L. Moore(12), every compact irreducible

continuum has dendratomic subsets. Moore(13) has also shown that if P is a

point of M, the dendratomic subset of M containing P is the set of all points

x such that there do not exist uncountably many mutually exclusive sub-

continua of M each separating P from x in M. Suppose there exists a sub-

continuum N of M which separates two points P and Q of gA from each other

in M. The set N intersects gA. It does not intersect M—gA, for, by Lemma A,

it would then contain gA- Hence N is a subset of gA. But by Theorem 115 of

Chapter I of Foundations, M—N would then be connected. Hence no sub-

continuum of M separates two points of gA or two points of gB from each

other in M. Let g be any element of G distinct from gA and gB- Let TV be a

subcontinuum of M which separates two points P and Q of g from each other

in M. The set M—g is the sum of two mutually separated connected sets

U and V having the properties described in Lemma B. Suppose that P and Q

belong to U. Then N intersects the continuum U. Suppose that N intersects

U; let C be a component of N—N-g which intersects U. The continuum C

contains a point of g- U, and by Lemma B, N contains g- U. But N does not

contain P or Q. Hence N is a subset of g+ V and therefore every point of

N- U is a limit point of U. Hence U — N-U is connected and it contains both

P and Q. From this contradiction it follows that P and Q do not both belong

to U, and similarly they do not belong to V. Then one of them belongs to

g — gU and the other to g — g- V. It can be shown as before that N is a subset

of g. Suppose there is a point 0 of U ■ V which is not in N. The set U+ V+0

+P+Q is a connected subset of M—N and N does not separate P from Q

in M. Therefore N must contain U ■ V. Since every subcontinuum of M which

separates P from Q in M contains U ■ V, there do not exist two mutually

exclusive subcontinua of M which separate P from Q in M. If P and Q are

points belonging to different elements of G, then, since G is an arc with re-

spect to its elements, there exist uncountably many mutually exclusive sub-

continua of M which separate P from Q in M. Hence the elements of G are

the dendratomic subsets of M.

Theorem 2.4. If the elements of collection G described in Theorem 2.2 are

(u) Bull. Amer. Math. Soc. vol. 47 (1941). Cf. p. 866.
(ls) R. L. Moore, On the structure of continua, Rice Institute Pamphlet vol. 23 (1936)

pp. 58-74, cf. p. 73.
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unicoherent, so is M.

Proof. Let W be any subcontinuum of M which intersects gA but not gB.

Since W is closed and G is an "arc" from gA to gB, there is a last element of G,

in the order from gA to ga, which intersects W. Let w denote this element.

The set M—w is the sum of two mutually separated connected sets U and V

such that all the elements of G which precede w in the order from gA to gB

are subsets of U. By Lemma B, W contains U and U-w is a continuum.

Suppose that W- w is the sum of two mutually separated sets, X and Y. The

continuum U ■ w is a subset of X or of Y, say of X. Then since IF is a subset of

U+w, W is the sum of two mutually exclusive closed sets, U+X and Y.

From this contradiction it follows that W- w is a continuum. Let W and Z be

proper intersecting subcontinua of M intersecting gA and gB, respectively.

Let w be the last element of G, in the order from gA to gB, which intersects

W and let z be the first element which intersects Z. If w and z are distinct,

z precedes w on G in the order from gA to gs. Clearly every element of g which

lies between w and z is a subset of W- Z, and W- Z is the sum of these elements

and the continua W-w and Z-z and hence is connected. If w = z, IF-Z is a

subset of w. But W-w+Z-w = w, and since W-w and Z-w are continua and

w is unicoherent, so is M.

Theorem 2.5. If the collection G described in Theorem 2.2 is such that if g

is an element of G, and Uand Vare the two mutually separated sets whose sum is

M—g, then g is a subset of U and V; in particular if G is continuous, it follows

that M is unicoherent,

Proof. Suppose on the contrary that M is the sum of two continua L and

N the common part of which is not connected. Since M is irreducible from

gA to gB, one of the sets gA, gB is a subset of M—L and the other of M—N;

say that g a is a subset oí M—N. Let P be a point of L which does not belong

to gA. Let gp denote the element of G which contains P. Clearly L contains

every element of G which precedes gP in the order from gA to gB on the "arc"

G. The set M—gp is the sum of two mutually separated sets U and V, and L

contains U and hence gP. Thus L is the sum of all the continua of G which

intersect it, and so is N. But G is unicoherent with respect to its elements.

Hence M is unicoherent.

Theorem 2.6. If M is a hereditarily decomposable continuum which is not

unicoherent, then M contains a continuum N which is a simple closed curve with

respect to the elements of an upper semi-continuous collection G of mutually

exclusive continua filling up N; the collection G is such that if h and k are any

two of its elements, then N—ih + k) is the sum of two mutually separated con-

nected sets U and V such that (1) N= U+ V, (2) each of the continua 77, V is

irreducible from h to k, and (3) awy subcontinuum of h+U+k which intersects

h and k contains U.
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Proof. Since M is not unicoherent, there are subcontinua L and N of M

such that L- N is the sum of two mutually separated sets X and Y, L and N

each being irreducible from X to F. One of the E-subcontinua of L contains

X and the other contains Y, and the same is true for N. Let Hl and Hn de-

note the E-subcontinua of L and N, respectively, which contain X, and Ki

and KN those which contain Y. Let H = Hl+Hn and X = Xz,-)-i^Ar. Let G¿

denote the collection consisting of II, K, and all the C-subcontinua of L, and

let G'N be a similar collection for N. It is clear that (1) Gi is an upper semi-

continuous collection of mutually exclusive continua filling up H+L+K and

that, with respect to its elements, it is an arc from H to K, and (2) G'x is an

upper semi-continuous collection of mutually exclusive continua filling up

H+N+K and that, with respect to its elements, it is an arc from H to K.

Let G denote the collection G'L + G'N. Then G satisfies all the stipulated re-

quirements.

Theorem 2.7. In order that a hereditarily decomposable continuum be

hereditarily unicoherent, it is necessary and sufficient that it contain no con-

tinuum N such that N is a simple closed curve with respect to the elements of some

upper semi-continuous collection of mutually exclusive continua filling up N.

Theorem 2.7 is a consequence of the preceding theorem and Theorems 4

and 5, §1, of Chapter V of Foundations.

Theorem 2.8. If M is a hereditarily decomposable continuum which has the

property that for some positive integer k it is true that of every k points of M

there is one which weakly separates two of the others from each other in M, then

M is hereditarily unicoherent.

Proof. Suppose that M is not hereditarily unicoherent. By Theorem 2.6,

M contains a continuum N which is a simple closed curve with respect to the

elements of an upper semi-continuous collection G of mutually exclusive con-

tinua filling up N. Let gi, g2, gi, • • • , gk be distinct elements of G which lie

on this "simple closed curve" in the order gi, g2, go, • • • , gk, gi. For each posi-

tive integer « not exceeding k, let Pn denote a point of gn. Let go denote gk,

and let gk+i denote gi. For each positive integer re not exceeding k, the "simple

closed curve" G is the sum of two "arcs" g„_ig»+i having in common only

their end "points." In each case one of these "arcs" contains g< for every i^n

but does not contain gn. By Theorems 4 and 5, §1, of Chapter V of Founda-

tions, the sum of the elements of G which are "points" of this arc is a con-

tinuum. This continuum does not contain Pn but contains all the points P¿

i¿¿n. But this is contrary to the hypothesis.

Theorem 2.9. If M is a hereditarily decomposable continuum every sub-

continuum of which is irreducible about a closed proper subset having only

countably many components, then M is hereditarily unicoherent.
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Proof. Suppose that M is not hereditarily unicoherent. By Theorem 2.6,

M contains a continuum N which is a simple closed curve with respect to the

elements of an upper semi-continuous collection G of mutually exclusive con-

tinua filling up N, the collection G having the properties described in the

theorem. By hypothesis, N is irreducible about a closed proper subset H

which has only countably many components. Suppose some component K of

H intersects every element of G. Let P be a point of N — K. Let p be the

element of G which contains P, and let h and k be two other elements of G.

Then N—Qi + k) is'the sum of two mutually separated connected sets U and

V, U containing p. The set N— ih+p) is the sum of two mutually separated

sets Z7i and Vi, Vi containing k, and the set N—ip + k) is the sum of two

mutually separated sets U2 and F2, F2 containing h. It follows that U+h+k

is the sum of the elements of G which belong to the "arc" hpk of the "simple

closed curve" G and that iU+h+k) —p is the sum of the two mutually sepa-

rated connected sets h+ Ui and k+ U2, and also that U = Ui+U2. Let C be a

component of iU+h + k)-K which contains a point of p. The continuum C

contains a point of h+k, but does not intersect both h and k, since in that

case it would contain U and therefore P. Say that C does not intersect h.

It follows that C contains U2 and hence contains every element of G which

lies between p and k on the "arc" hpk of the "simple closed curve" G. It can

likewise be shown that if any component of iU+h+k)-K intersected both

Ui and k, it would contain P. Hence no component of iU+h + k)-K inter-

sects both Ui and k. Let a and b be two elements of G which are subsets of Ui,

a preceding b on the "arc" hpk of the "simple closed curve" G in the order

from h to fe. Let B be a point of b- K and IF be the component of iU+h+k)-K

which contains B. Then W contains a point of h, and it can be shown that W

contains a. Hence Ui is a subset of K. But U = Ui + U2, and hence U is a sub-

set of K and K contains P. From this contradiction it follows that no com-

ponent of H intersects every element of G.

If K is any subset of N, let Gk denote the collection of all elements of G

that intersect K. For each component K of H, Gk is a proper subcollection

of G and therefore GKili) is a proper subset of N. By Theorem 2, §1, of

Chapter V of Foundations, GK is closed. Since K is connected, so is GK.

Furthermore, if K is not a subset of an element of G, Gk is an "arc" with

respect to its elements. In this case, let h and k denote the elements of Gk

which are the end "points" of this "arc." Then N—Qi+k) is the sum of two

mutually separated connected sets U and V, and U+h + k = GK. Since K is

a subcontinuum of U+h+k intersecting h and k, it follows that U is a sub-

set of K. Then K contains every element of Gk except h and k.

Suppose that H has two components X and F such that neither X nor Y

is a subset of an element of G. Suppose that Gx and G% intersect. There exist

elements hx and kx of Gx such that Gx is an "arc" from hx to kx with respect

(") If G is a collection of point sets, G* denotes the sum of all the sets of G.
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to its elements, and likewise there exist elements hy and ky of Gy such that

Gy is an "arc" from hy to ky with respect to its elements. Moreover, every

element of Gx except hx and kx is a subset of X, and every element of Gy ex-

cept hy and ky is a subset of F. Hence G\— (fix+kx) and Gy—ihy + ky) are

mutually exclusive, and one of the elements hx, kx is identical with one of the

elements hy, ky; say that kx = hy. Then by Theorem 2.6, kx is a subset of

X+ Y, and therefore X and Y have a point in common. This involves a con-

tradiction. Hence if X and F are two components of II such that neither is a

subset of an element of G, and Z is a component of H which is a subset of an

element z of G, then z is not in both Gx and Gy. Let G, C2, C3, • • • denote

the components of H, and for each positive integer re, let G» denote the col-

lection of all elements of G which intersect C„. It is clear from the results just

stated that the set L = G* + G* + G*+ ■ - • is the sum of a countable number of

mutually exclusive subcontinua of N, although Gf, G*, • • • are not neces-

sarily disjoint. By Theorem 2, §1, of Chapter V of Foundations, L is closed.

Since N is connected, it follows from a theorem of Sierpinski's(16) that L is a

proper subset of N. Then there exists a proper subcollection of Q of G such

that Q is an "arc" with respect to its elements and Q* contains L. Hence Q*

is a proper subcontinuum of TV which contains H. But N is irreducible about

H. From this contradiction the theorem follows.

3. Properties of hereditarily unicoherent continua analogous to properties

of an acyclic curve.

Definition. The point P is said to be a terminal point of the continuum

M if every irreducible subcontinuum of M which contains P is irreducible

from P to some point.

If an irreducible subcontinuum, a terminal point, and a weak cut point(16)

of a hereditarily unicoherent continuum M are regarded as the analogues of

an arc, an end point, and a cut point, respectively, M has properties anal-

ogous to certain properties of an acyclic continuous curve, and if M is

hereditarily decomposable, it has more such properties.

Theorem 3.1. Every point of a hereditarily unicoherent continuum M is

either a terminal point or a weak cut point of M, and if P is a point of the sub-

continuum AB of M distinct from A and B, then P weakly separates A from B

in M.

The terminal points of a hereditarily unicoherent continuum do not play

exactly the same role as the end points of a compact acyclic continuous curve.

For instance the points A and B of Theorem 1.1 are not necessarily terminal

points of the subcontinuum AB. The set of weak cut points and the set of

terminal points are not necessarily mutually exclusive. A hereditarily uni-

06) Cf. Foundations, Theorem 44 of Chapter I.

(I0) The point P of the continuum M is said to be a weak cut point of M if M—P is not

strongly-connected.
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coherent continuum M does not necessarily have a terminal point, even if it

is atriodic. It will be shown in Theorem 3.5, however, that if M is hereditarily

decomposable it has two terminal points.

R. L. Moore has proved(17) the following theorem for the plane by an

argument which is valid in any metric space: If M is a hereditarily uni-

coherent continuum and II is an irreducible subcontinuum of M, then H is a

subset of an irreducible subcontinuum of M which is not a subset of any

other irreducible subcontinuum of M.

Definition. An irreducible subcontinuum of a continuum will be called a

maximal one if it is not a subset of another one.

Theorem 3.2. // M is a hereditarily unicoherent continuum, AB is a

maximal irreducible subcontinuum of M, and PQ is an irreducible subcon-

tinuum of M which contains A but is not irreducible from A to any point, then

PQ is a subset of AB.

Proof. If neither P nor Q belongs to AB, then neither PB nor QB con-

tains A. For if A were in PB, AB would be a subset of PB and would not be a

maximal irreducible subcontinuum of M. Hence PB, and similarly QB, fails

to contain A. But this involves a contradiction since PB + QB=PQ. Suppose

that AB contains Q but not P. As before, PB does not contain A. Then QB

contains A since QB+PB contains PQ, and therefore AB = QB and PB does

not contain Q since in that case it would contain A. Since PQ is not irre-

ducible from A to any point, AP does not contain Q. Hence AB contains

both P and Q and therefore contains PQ.

Corollary. In order that a point be a terminal point of a compact hered-

itarily unicoherent continuum M it is necessary and sufficient that it be a terminal

point of a maximal irreducible subcontinuum of M.

Theorem 3.3. If M is a hereditarily unicoherent continuum irreducible

from point A to point B and PQ is an irreducible subcontinuum of M which

contains A but is not irreducible from A to any point, then M is irreducible from

B to each point of PQ.

Proof. Either BP or BQ contains A, since BP+BQ contains PQ. Suppose

that BP contains A but BQ does not. Then BQ does not contain P, since M

is irreducible from B to P. Since PQ is not irreducible from A to any point,

AQ does not contain P. But BQ+AQ = M. Hence BQ=BP = M. Suppose

there is a point X of PQ such that BX is not M, in which case BX contains

neither P nor Q. Hence BX+AX does not contain both P and Q. But

BX+AX = M.

Corollary 1. If M is a hereditarily unicoherent continuum which is irre-

(") R. L. Moore, Concerning compact continua which contain no continuum which separates

the plane, Proc. Nat. Acad. Sei. U.S.A. vol. 29 (1934) pp. 41-45.
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ducible from point A to point B but not from A to any other point, then B is a

terminal point of M.

Corollary 2. If M is a compact hereditarily unicoherent continuum irre-

ducible from point A to point B and the set H of all points x such that M is

irreducible from A to x is a continuum and P is a terminal point of H, then P

is a terminal point of M.

Theorem 3.4. A nondegenerate continuum every subcontinuum of which is

unicoherent and decomposable has two terminal points.

Proof. Let M denote such a continuum. A maximal irreducible sub-

continuum of a subcontinuum Z of M will be called an /-subcontinuum of Z.

Let N denote an /-subcontinuum of M, and let H and K denote the E-sub-

continua of N. Let a denote a well-ordered sequence whose terms are the

subcontinua of H. There exists a well-ordered sequence ß such that (1) the

first term of ß is H if H is degenerate and otherwise the first term of a which

is an /-subcontinuum of H; (2) every term of ß after the first is a proper

subcontinuum of every one that precedes it; (3) if X is a term of ß which is

not a point, then it is an irreducible continuum, and, if Ex is the first term

of a which is an E-subcontinuum of X, the next term after X in ß is Ex if

Ex is degenerate and otherwise the first term of a which is an /-subcontinuum

of Ex; and (4) if y is a segment(18) of ß which has no last term and L is the

common part of all the continua of y, then the first term of ß following all

those of y is L if L is degenerate and otherwise the first term of a which is

an /-subcontinuum of L. The sequence ß has a last term and this last term

is a point A. Suppose A is not a terminal point of M. Then there exists an

irreducible subcontinuum Y oí M which contains A and is not irreducible

from A to any point. By Theorem 3.3, F is a subset of H, and it follows from

Theorems 3.2 and 3.3 that F is a subset of the first term of ß. Since A is the

only point which is common to all the continua which are terms of ß and ß

is well-ordered, there is a first term U of ß which does not contain F. Suppose

that U has an immediate predecessor F in ß. It follows from Theorem 3.3

that U is nondegenerate, and therefore U is an /-subcontinuum of an E-sub-

continuum of F. Then, by Theorems 3.2 and 3.3, U contains Y. From this

contradiction it follows that U has no predecessor in ß. Let L denote the

common part of all the terms of ß which precede U. Since L contains Y it is

nondegenerate. Then U is an /-subcontinuum of an £-subcontinuum of L

and, by Theorems 3.2 and 3.3,  U contains  F. From this contradiction it

C8) The well-ordered sequence A is said to be a segment of the well-ordered sequence B if

either A is B or there exists a term x of B such that (1) y is a term of A if and only if it is a

term of B which precedes x in B, and (2) the term y precedes the term s in A if and only if it

precedes z in B.
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follows that A is a terminal point of M. Similarly K, which does not inter-

sect H, contains a terminal point of M.

Corollary 1. If M is a nondegenerate continuum every subcontinuum of

which is unicoherent and decomposable and N is a maximal irreducible sub-

continuum of M, then N is irreducible between two points which are terminal

points of M.

Corollary 2. A nondegenerate continuum M every subcontinuum of which

is unicoherent and decomposable is irreducible between two terminal points A

and B such that of any two subcontinua of M both containing A ior B), one is a

subset of the other.

Theorem 3.5. A nondegenerate continuum every subcontinuum of which is

unicoherent and decomposable is irreducible about the set of all its terminal

points.

Proof. Let M denote such a continuum. Suppose there exists a proper sub-

continuum N of M which contains the set H of all terminal points of M. Let

P be a point of M—N, and let K denote a maximal irreducible subcontinuum

of M which contains P. By Corollary 1 of Theorem 3.4, M has two terminal

points A and B such that K = AB. Then A and B are in N and hence N con-

tains AB. This involves a contradiction.

Theorem 3.6. // M is a nondegenerate hereditarily decomposable con-

tinuum and K is a subset of the set of all terminal points of M, then M—K is

connected.

Proof. Since M is decomposable, it is clear that not every point of M is a

terminal point. Suppose that M—K is the sum of two mutually separated

sets U and V. Let A be a point of U, B a point of V, and H a subcontinuum

of M which is irreducible from A to B. The continuum H intersects K. Let

X and F be the E-subcontinua of H. The continuum H is irreducible from

each point of HK to some point, and hence H-K is a subset of X+Y.

Since H—iX+Y) is connected, it is a subset of U or of V. Since A and B

belong to X+ Y and every point of a nondegenerate continuum is a limit

point of each of its composants, A and B are limit points of H— ÍX+ Y),

which is therefore not a subset of U or of V. From this contradiction the

theorem follows.

Theorem 3.7. In order that a hereditarily decomposable continuum be an

acyclic continuous curve it is necessary and sufficient that every point of it be

either a cut point or a terminal point.

Proof. That the condition is necessary follows from well known properties

of an acyclic continuous curve.
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Let M denote a hereditarily decomposable continuum such that every

point of M is either a terminal point or a cut point. Let N be any nondegener-

ate subcontinuum of M, and let A and B be two points of N. There is a sub-

continuum L of N which is irreducible from A to B. Let H and K denote the

E-subcontinua of L. By Lemma A, L — iH+K) is strongly connected. Then

L — iH+K) is an uncountable set, and no point of it is a terminal point of M.

Hence N contains uncountably many cut points of M and, by Theorem 43 of

Chapter II of Foundations, M is an acyclic continuous curve.
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