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1. Introduction. Much work has been done on the problem of evaluating

or estimating the number of solutions of certain congruences in many vari-

ables. For example, it is of interest in Waring's Problem to find the number

of solutions of

k k k
(1) Xi + x2 + ■ ■ ■ + xn = a (mod p).

Equation (1) has been discussed by Hardy and Littlewood [lK1)» and by

Hull [2]. More recently, Weil [3] has treated the equation

(2) xi + x2 + • • ■ + x„  = a

in finite fields. Niven and the author [4] solved the problem for the equation

A„=a (mod m), where An is a determinant of order n in the independent vari-

ables xa (i, j = 1, ■ • ■ , n).

In the cases mentioned above, the number of variables is fixed, but it

makes sense to ask what happens for large n. For this purpose it is convenient

to speak of the probability that /„(#i, • • • , xn)=a (mod p), for example.

This is defined as the ratio of the number of successes to the total number of

possibilities, pn. If this ratio tends to a limit as n increases, for fixed p and a,

we may speak of the asymptotic distribution of the function under consider-

ation. Thus, for equation (2), which includes (1) as a special case, it is seen

that all the values a have the same weight asymptotically. For the deter-

minant An this is not true; the exact values can be determined from the ex-

plicit formulas given in [4]. For example, with a prime modulus p, the

asymptotic probability thatAn=0 (mod p) is given by

-p(o) = 1 - n (i - p-r),
r-l

while P(a) = (l-P(0))/(p-l)<P(0) for a^O (mod/?).

This paper deals with the asymptotic distribution of the elementary sym-

metric functions mod p. To state the problem precisely, let
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be the elementary symmetric function of order k in the n independent vari-

ables Xi, • • • , Xn, each ranging over a complete residue system modulo p,

a prime. Of the pn values of UJP thus obtained, let g be the number which

are congruent to a (mod p). We propose to study the ratio Pnip, k, a) =g/pn,

or rather the limit of this ratio as n increases. This limit is shown to exist in

§3, Theorem 1, and will be denoted by Pip, k, a), or more briefly by P*(o).

In addition, the proof of Theorem 1 yields an algorithm for determining the

value of Pip, k, a) in any specific case. As models for further study, the cases

p = 2 and p = 3 are treated in §§4 and 5. In §6 we prove a theorem concerning

the distribution of the nonzero residues which has as a corollary the result

that for k relatively prime to p — 1, these residues are equidistributed. In the

next section we introduce the useful notion of a correlated pair, leading to

Theorem 6, which exhibits a class of integers k for which complete equidistri-

bution holds. We conjecture that for all k not belonging to this class, the

residue 0 has the greatest weight. This would imply the weaker statement,

which we are also unable to prove, that P&(0)2:l//> for all k>0. However,

we can exhibit (Theorem 12) a large class of integers k for which P*(0) > l/p.

This, too, leaves open the question, is lim sup Pi(0) = l as k—»°°? The re-

mainder of the paper is concerned with establishing certain relationships

among the probabilities Pip, k, 0).

§2 contains five lemmas, one of which (Lemma 4) is actually not needed

in the body of the paper, but is included for its intrinsic interest. In addition,

it serves to explain why certain methods used in the paper cannot be extended.

2. Lemmas. In this section we shall give several important lemmas

which may be of some interest in themselves. The first was proved by

Lucas [5] and more recently by us [6]:

Lemma 1. Let p be a prime, and let

M = Mo + Mip + ■ ■ - + Mtpl (0 ^ M i < p),

N = No + Nip + ■ ■ ■ + Ntp* (0 = TV¿ < p).

Then

Lemma 2. Let a = («i, • • • , aq) be a fixed q-dimensional vector with integral

coordinates and let 9Jca be the set of vectors cr= (01, • • • , aq) satisfying

(i) o-r 2: 0 (r - 1, • • • , q),

(ii) o> =■ aT (mod m) (r «= 1, • • • , q),

(iii) <r\ + - - - + o« Û »1

where m and n are positive integers. Then, setting co = exp (2iri/m), we have
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n\
m" £

.SWa  o-i! • • • <rql(n - o-i - ••• - ca)\

^ m-l m—1

= ¿2 ■ • ■ X) (i + w'1 + • • • + «*«)»«-<*•«+• ••+*«««>.

This is easily proved by expanding (l+w"+ • • • +wf«)n by the multi-

nomial theorem to give

<ri\ ■ ■ ■ o-qlin — ci— • • • — a-,,)!

the sum running over all a satisfying conditions (i) and (iii) above. Now any

vector a which violates (ii) will contribute nothing to the sum on the right

side of (3); for then <rr^ar (mod m) for some r, and if we sum over that tr

first we get

m—1

^ W(»!-«r)<r  =   0.

tr-0

Hence the only contribution is made by those o-GWa, each a yielding the

corresponding multinomial coefficient taken m times for each summation,

m" times in all.

Lemma 3. Let m be a positive integer. Then we can find integers inot neces-

sarily positive) «i, ■ • • , am such that the formal expansion

m

(4) II (1 + rx)<" = 1 + Cix + C2x2 + - - - + Cmxm + ■-■
i—i

satisfies

(5) Ci = C2 = • • • = Cm-i = 0,       Cm 5¿ 0.

By logarithmic differentiation of (4) we find that the condition (5) implies

m

mCmxm-1 + • • • = X) raÁl + rx)~l
r=l

m co

= X rarJ2 (—rx)'
r=l i=0

co m

= £(-l)«*']£«fr«-1.

¡=0 r=l

Comparing coefficients, we must have

m

(6) £  arr< = 0 (t = 1, 2, • • • , m - I),
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m

(7) E«*»"" = i-l)m-1mCm.
r=l

It is easy to see that the existence of a set of integers Cm^0; ax, ■ ■ ■ , am

satisfying (6) and (7) implies (4) and (5). Now to solve (6) and (7) we ob-

serve that the determinant of the system is the familiar Vandermonde, and

its value is

A = mlJlii- j) ii,j = 1,2, • • . ,m).
i>i

Hence a A is equal to the determinant A r formed by striking out the rth col-

umn and last row from A, multiplied by i-l)m~1mCmi-l)n+r=i-l)r~imCm.

But Ar is again a Vandermonde,

Ar = — II (* - j) (*". 3 - 1. 2, • • • , r - 1, r + 1, • • • , m).

Therefore

— = [r(r - I) ■ ■ ■ (r - (r - l))((f + 1) - r) • • • (m - r)}~« =
A r¡im — r)\

Finally,

i-iy-imCm /m\      C„
(8) ar = -— =(-lr_1-
V ; rl(rn- r)\ \ r ) (m - 1)!

Consequently, if we choose Cm=(m—1)1 we are sure that all the ar will be

integers. We have proved, then, that

m , (m)

(9) IK1 + ™)<_1) = 1 + (« - l)!x™+ • • • .
r=l

We observe from (8) that Cm must be divisible by (m — 1)! if «„, is to be an

integer and if (4) and (5) are to be satisfied. But even more is true, as we

shall now prove.

Lemma 4. Let ai, ■ ■ ■ , aN be a set of integers (not necessarily positive) for

which the product

N

(10) II (1 + r*)" = 1 + Cix +-h Cmx™ + • • •
r=l

satisfies

(11) Ci = C2= ■ ■ ■ = Cm_i = 0 (mod ml).

Then Cm = 0 (mod (m-1)!).
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As in the proof of Lemma 3, (10) and (11) imply the system

N

¿j r'ar — 0 (mod ml) it = 1, ■ • • , m — 1),
r=l

E rmar m i—l)m^lmCm (mod ml).
T-l

Consider the functions

A'

Hix) = £ ar(xr - 1),

N

H tix) = X) r'«"-^ it = L 2, • • • , w).
r=l

From (12),

77(1) = Hi(l) ^ - - • = 77m_i(l) =0,
(mod w!).

Hm(l) = i-l)^mCm

But Hiix)=xH'ix), H2ix)=xH'ix)+x2H"ix), and in general

71

#„(*) = y£Ain,s)x>H^ix),
»-i

where the ^4(w, s) are certain integers (Stirling numbers) given by the re-

cursion

Ain + l, s) = sA{n, s) + A{n, s — 1).

For our present purpose it is sufficient to observe that Ain, n) = 1. This im-

plies that ií(l)=.íz"'(l)= • • • =Wm~»il)=0 (mod ml) and that ff<»>(l)

=Hmil) (mod ml). But for any polynomial 7/(x) with integral coeffi-

cients, H(m)ix)=0 (mod ml) identically. Hence

(-1)— 1mCm M 77m(l) " ff<»>(l) = 0 (mod ml),

Cm = 0(mod im- 1)!).

It is easy to see that the conclusion is still valid if we replace the product

(10) by Y[?=iil+Brx)"r, where the Br are arbitrary integers.

Lemma 5. For any prime p and any set of residues Ci, - • • , Cv (mod p) we

can find integers «i, • • • , av-i such that

v-l

u (1 + rx)<" =■ 1 + Cix + C2x2 + • • ■ + Cpx» + • • -   (mod p).
r-l

We can surely find a product
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p-i
P(x) = u (1 + rx)<>< m 1 + Ci* + • • • + C«-!*«-1 + Amxm + ■■■   (mod p),

r=l

for m = 2. Suppose that one has been found for m<p. By Lemma 3, equation

(9), there is a product

G„(«) - l + {»»- 1)1*» +

Determine s so that im — l)ls+Am = Cm (mod p). Then P(x)GTO(x) is the de-

sired product for m+l. Thus we can find

p-i
Q(x) = u (1 + rx)T m 1 + Cix +-h Cp-ix*-1 + Apx" -¡-(mod p).

r=l

Now determine t so that i+vlj, = Cp(mod p). Then

(1 + *)'»■ (1 + »»)«■ i +<*»+•• •   (mod />),

and (l+x)ip(7(x) is the desired product.

3. The limit theorem. In this section we prove that the elementary sym-

metric functions (mod p) have an asymptotic distribution.

Theorem 1. For all primes p, non-negative integers k, and residues

a (mod p),

Pip, k, a) = lim Pnip, k, a)
n—*oo

exists.

Proof. Every ordered set of n residues Xi, x2, • • • , xn (mod p) determines

a vector a= (oi, o"2, • ■ • , oP-i), in which <rr is the number of x, congruent to

r (mod p), r = l, 2, • • • , p — l. Clearly, <rr2:0 and 0^01+0-2+ • • • +ffHSg,

Every such vector a is derived from a number of sets (xi, • ■ • , x„), this num-

ber being

»!
M*) =-:-■-r— •

cri! • • • o-p-ilin — <ti — • • • — <rp_i)!

The elementary symmetric function  Uf\xi, • • ■ , x„) is congruent (mod p)

to the coefficient of xh in the expansion of

p-i
*(*, *) = II (1 + rx)" = Foi<r) + Fi(<r)x + • • • + Fk(<r)x" + ■■■ .

r-l

Thus Fo(a) = l, and Fm(<r)=0 for m<0. For all k>0,

Uk    (*i, • • • , xn) = Fki<r) (mod p).

Now suppose that í is any integer such that p*>k, and that oT = crr+rrps
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(f-1, 2, • • • , p-l). We assert that Fki<r') = Fki<r) (mod p). For

l+Fiia')x+ ■■■ +FkW)x"+ •••

=  $(<r', x)  =   $((7, X^/j'r, X)  =  $((7, x)$(t, Xp")

- {1 +Fiic)x+ ■ ■ ■ +Fkio-)x*+ ■ ■ ■ }{l+Fiir)x"!+ ■■■ } imodp).

Our assertion follows by equating coefficients of xk and using the fact that

k<p\ Thus Fkio-), mod p, is a periodic function of each component <rr, the

period being p". Accordingly, we shall define the vector space Vs consisting

of vectors a satisfying

0 ^ aT < p> (r=l,2,---,p-l),

the number of elements in V, being 7V(s) =p°(p-u. Each <r has a unique aGV,

such that <r=a (mod ps), and Fkio-) = Fkia) (mod £). Now let 9î«(p, £, a) be

the set of aG V„ for which Fkia) =a (mod p), and let TVs(/j, k, a) be the num-

ber of elements in this set. Then

(i3) Pnip, k, a) = rn £    E ¿«GO.
aG"   ff=«(modj)')

Applying Lemma 2 to the inner sum in (13), with q = p — l and m = p\ we

obtain

P»(#. *, a)

1     ^   ^      ^ /l + w'i H-+ w«»-i\»
-TT   E     E    • • X,     -) w-(ii«i+---+fp-i<»p-i).
P(s)   «G?î    ¡!=o        i„-i=o\ p /2V(j

Now observe that

II + «'»+••• + co'*"1
<1,

I p I

unless ¿i= • ■ • =¿p_i=0. Hence, removing this one set,

N,ip, k, a)
Pnip, k, a) =       "I + Rn,

Nis)

where

Rn | =S —-   E ¿'^»ô» = N.(p, k, a)b",
Nis)  «G9Î

which tends to zero as n—* «. Hence

N,iP, k, a)
lim Pnip, k, a) =       vf = Pip, k, a),
«-» Nis)

and the theorem is proved.
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It should be remarked that the proof of Theorem 1 yields a finite algorithm

for determining Pip, k, a). We need only count the number of aG Ve ip">k)

for which Fkia)=a (mod p), and divide this number by 7V(s), the number of

elements in Vs. We have therefore indentified the asymptotic distribution

with a finite distribution in a certain (j> — l)-dimensional cube. Furthermore,

by choosing 5 sufficiently large, we may discuss the joint distribution of any

finite number of random variables F^ia), ■ • ■ , FkNia). This will prove to be

useful later on.

4. The case p = 2. In this section we shall apply the results of §3 to obtain

a complete solution of our problem for the case p = 2. We shall put our

observations on this result in the form of corollaries, which we shall compare

with a similar set for p = 3, in the next section, in the hope that the evidence

of these two cases may lead to fruitful conjectures and lines of attack in the

general case.

Theorem 2. Let h be the number of nonzero digits in the dyadic expansion

of k. Then

P(2, k, 1) = 2-\        P(2, k, 0) = 1 - 2-".

Proof. Let & > 0 be written in the scale of 2 :

k = ¿<°> + 2£<1> + • ■ • + 2«-1¿(*-i> (/few = 0, 1).

The set 9i«(2, k, 1) consists of those vectors (in this case, ordinary integers)

a satisfying 0 ̂  a < 2s and

Fkia) = (")=! (mod 2).

Now if we write a as

a = a(0> + 2a<1> + ■ • • + 2«-1a(s-1> (a<*5 = 0, 1),

an application of Lemma 1 yields

/aw\ /af'-^X
F'w - U) ■ • ■ U»)(mod 2)-

For each of the h ¿(<) which is different from zero, it is necessary that the

corresponding a(i) be 1 also, in order that

/aCi>\ / a\
W'hencevJ'beodd-

But this condition is also sufficient, so the remaining a(i) may be chosen at

will. Hence

;VS(2, k, 1) = 2-\
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P(2, k, 1) = —- TVS(2, k, 1) = 2- -2-* = 2-*,
Nis)

P(2, *, 0) = 1 - 2-*.

Corollary 1. P(2, 2k, a)=P(2, /fe, a).

Corollary 2. P(2, &, 0) 2:1/2 /or &>0, aw<T the equality holds if and only

ifk = 2\

Corollary 3. Lim sup P(2, k, 0) = 1. iThis follows directly from the fact
thatP(2, 2s-l,0) = l-2-8.)

Corollary 4. The generating function for Qk = l—P(2, k, 0) is

co x   /        ' I        \

fc-0 n-0 \ Z /

5. The case p = 3. Here the solution is not explicit, but is given in the

form of a set of recurrence formulas. Throughout this section we shall write

P(3,k,a)=Pk(a).

Theorem 3.

(i) Pit(o). = Pkia) ia = 0,1,2).

¿Wi(0) = (2 + 6P,(0) + P*_i(0))/9,

Pzk+iia) = (3 - 3P»(0) + P*_i(a))/9 (a = 1, 2).

¿WO) = (1 + 2P*(0))/3,

P3i+2(a) = (1 - Pt(0))/3 (a = 1, 2).

Proof. Let &' = 3& + ?w (m = 0, 1, 2), and &<3\ If aGFs+i, we may write

a = 3/3+y with ßG Fs and y G Vi. Then

(1 + x)t"(l + 2*)°2

= {(1 + x3)^(l + 2x3)&} {(1 + x)ti(1 + 2x)T2J

= {1 + Fi(ß)x3 + F2(ß)x« + ■■ ■ }{l+ Fi(y)x + • • • + P4(7)^} (mod 3).

Comparing coefficients of xk', we get

(14) Fv(a) m Fm(y)Fk(ß) + Fm+i(y)Fk-i(ß) (mod 3).

Consider first the case m = 0. Then

(15) F3k(a) m Fk(ß) + F3(y)Fk-i(ß) (mod 3).

We shall exhibit the right side of (15) as Fk(ß+8), where ô is a vector de-

pending only on y. In fact, the coefficient of yk in the expansion of

(l+F,(7)y){(l + y)*(l + 2y)A)
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is exactly the right side of (15). Explicitly, then,

8 = (0, 0) if   Foiy) =- 0 (mod 3),

8 = (1, 0) if   F3iy) =- 1 (mod 3),

S = (0, 1) if   F3(y) =- 2 (mod 3).

Hence

Fokia) = F3k(3ß + y) m Fkiß + 8) (mod 3).

For each fixed y G Vi, the vector ß+8 (mod 3") runs over V. as ß does, the

correspondence being one-to-one. Thus each of the nine vectors y G Vi yields

a contribution TV,(3, k, a) to the total TVs+i(3, 3k, a). Altogether, then, we

have 7Vs+i(3, 3k, a)=9Ns(3, k, a). Dividing by TV(s + l), we obtain (i).

Now if m = l, we have, from (14),

(16) F3k+iia) m Fiiy)Fkiß) + P4(7)F*-i(0) (mod 3).

Here we have six vectors y G Vi for which Fiiy) ^==0 (mod 3), three of which

yield Fiiy) = l (mod 3), and three Pi(7) =2 (mod 3). For the first set, we get,

precisely as above,

F3k+iia) = Fkiß+ 8') (mod 3),

and for the second set,

FSk+iia) m 2Fkiß + 8") (mod 3),

where 5', 8" are vectors depending only on 7. Hence, as above, we get con-

tributions of 37^,(3, k, a) and 3TVS(3, k, 2a) to TVs+i(3, 3k + l, a) from the first

and second sets respectively. Of the remaining 7G Pi, for which Fi(y)=0

(mod 3), two also give P4(7)=0, thus contributing 2-32s to T\7í+i(3, 3k + l, 0)

and nothing to TV,+i(3, 3& + 1, a) for a=l, 2. The last vector (2, 2) yields

P4(2, 2)esl (mod 3), so that

Fn+iia) m Fk_iiß) (mod 3).

This contributes ^(3, & —1, a) to ^^1(3, 3^ + 1, a) for a = 0, 1, 2. Collecting

all these contributions,

TV8+i(3, 3* + 1, 0) = 6iVe(3, k, 0) + 2-32« + TVS(3, k - I, 0),

N.+ii3, 3k + 1, 1) = 3TV,(3, *, 1) + 3TV,(3, *, 2) + 7Y.(3, k - I, 1),

¿V\+i(3, 3k + 1, 2) = 3/V8(3, k, 2) + 3TVS(3, *, 1) + N.(3, k - 1, 2).

Dividing by TV(s+1) = 9iV(s), and using the fact that P*(l) +P*(2) = 1 -P*(0),
we obtain (ii).

If m = 2, (14) yields

(17) F3k+2ia) = F2(y)Fk(ß) (mod 3).
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A straightforward examination of cases then results in (iii).

Corollary 1. P3J;(a)=Pi(a).

Corollary 2. P*(0) 2:1/3 for all k>0, and equality holds if and only if
k = 3s or k = 2 • 3s.

Corollary 3. Lim sup Pfc(0) = l. iFor this we need only observe that

P,._1(0)-l-(2/3)'.)

Corollary 4. The generating function for Qk = 1 — P*(0) is

¿ç*2* = n(i+T23n + vz2'3n+—24'3"Y
fc=o 71=0 \        3 3 9        /

Corollary 5. P*(0) 2rPA(l) 2:P4(2) /or a// &>0. Equidistribution holds if

and only if k = 3" or k = 2 • 3s, and the second equality fails if and only if k is of

the form 4m, where the expansion of m in the scale of 3 contains no digit 2.

6. Distribution of nonzero residues. It should be clear by now that the

residue 0 plays a special role. In this section we shall prove a theorem con-

cerning the distribution of the nonzero residues(2).

Theorem 4. The number of distinct values assumed by Pip, k, a) for

l^a^p—l is at most ik, p — l).

Proof. If a and b are two nonzero residues (mod p) such that ab~* is a &th

power residue (mod p), then evidently P(p, k, a)=P(p, k, b). The result

follows by a known theorem on &th power residues.

Corollary. If (k, p — l) = I, then

P(p, k, 1) = • • • = Pip, k,p- 1).

7. Correlated pairs. We introduce the notion of a correlated pair, or simply

a pair, by the following illustration. Let k be a positive integer less than p',

and let a G Vs. Then

p-i
*(«, x) = II (1 + rx)"'

(18) r=l

= 1 + Fiia)x + • • • + Ffc-iG»)**-1 + Fkia)xh + ■ ■ ■  (mod p).

Now choose an integer n, 0^n<p, and denote by £„ the vector (0, • • • , 0, 1,

0, • • • , 0), with the 1 in the »th place, for 0<n<p, and set £o = 0. Multiply

(18) by l+nx and equate coefficients of **. We get

(19) Fk(a + in) - Ft(a) + *F*_i(a) (mod p).

For each fixed n, as a runs over V„ so does a+£n (mod ps). Thus we obtain

(2) We wish to thank the referee for suggesting the existence of a theorem of this type.
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p copies of Vs, each a generating the set {«+£„}. Consider the set of a, say

SSlsip, k—l, ^0), for which T/^-i (a) ^ 0 (mod p), the number in the set being

N.ip, k-l, ¿éO)=Nis)-N,ip, k-l, 0). For each aGftsiP, k-l, féO),
the set Fkia+Çn) is a complete residue system mod p, and for each

a-GW-siP, k — l, 0), the set Fkia+%n) consists of the residue Fkia) taken p

times. Hence, if we denote by $)?„(& — 1, a; k, b) the set of «G Ve such that

(20) F*-i(«) = a    and   Fkia) m b (mod p),

and by Jik—l, a; k, b) the number of elements in this set divided by Nis)

(J is clearly independent of s, for p">k), it is possible to count the number of

vectors a+£n for which the right side of (19) is congruent to a particular

residue c, mod p. This number is

(21) Ns(p, k-l, ^0) + pNis)Jik - 1, 0; *, c).

On the other hand, this number is pN8ip, k, c). Equating these expressions

and dividing by 7>7V(s), we get

1
(22) Pkic) = — (1 - P*_i(0)) + /(* - 1, 0; *, c).     .

P

The quantity Jik — l, a; k,b) introduced above has the obvious interpretation

as the joint frequency function for the elementary symmetric functions of

orders k — l and k.

It is clear that (22) yields a great deal of information about the distribu-

tions for k and k — l. For this reason we introduce the definition of a pair

ik, k') as an ordered couple of integers k>k'^0 for which

1
(23) Piic) = — (1 - P*-(0)) + Jik', 0; k,c) i0Sc< p).

P

The definition of J in (23) is the obvious analogue of Jik — l, 0; k, c).

It should also be clear that the analogue of (19),

(24) Fkia + ßn) =Fkia) + nFk'ia) (mod/>) (0 g n < p),

implies that ik, k') is a pair, that is, (23) holds. In fact, the argument given

above goes through almost word for word. It is not necessary that the ßn

have any special form; they are simply any p vectors for which (24) is

satisfied.

Before discussing the properties of correlated pairs and their consequences,

we shall exhibit a large class of such pairs. Let k = tp' + k', 0<t^p. By

Lemma 5, there exists a vector y such that(3)

(25) $(7, x) = 1 + x> + 0(xp+1) (mod p).

(3) By 0(xm) we mean a power series in which the terms of degree less than m have coeffi-

cients divisible by p.
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Replacing x by xp&, we have

(26) $(7, x"8) m $iyps, x) =- 1 + *"* + 0(x^+1)ps) (mod p).
t

Raising both sides to the reth power, 0^n<p, and defining z/ = min (2i, p+i),

we obtain

(27) $inyps, x) =- 1 + nx"" + 0(x"p") (mod p).

Let ßn = np'y; multiply (18) by (27) and equate coefficients of xk. Then

(28) Fkia + ßn) = Fkia) + nFvia) + CnFk-,A<*) + • ■ ■   (mod p).

Hence if tps^k<vps, (24) is satisfied and ik, k') is a pair. In particular, if

k = tp"+k' and 0^k'<pa, then k, k' are correlated.

In some cases, it may be possible to improve (25). For example,

p-i
(29) II (1 + rx) = I - x"-1 (mod p),

r=l

from which we deduce as above that if k = (p—l)ps + k', and O^k'<(p — l)p",

then (k, k') is a pair. The other cases in which 1 — x' factors as in (29) do not

appear to yield anything new, since then t\(p—l), so 2t^p— Kp+l, and

v = 2t.

We may also include the correlated pairs (k, k — p") for all k^p", s 2:0.

To see this, take ßo = 0, ßn = (0, • ■ • , 0, ps, 0, ■ ■ ■ , 0) with ps in the wth place.

Then

$08„, x) = (1 + nx)"' m 1 + nxp" (mod p),

from which we obtain, as in (19),

Fkia + ßn) m Fkia) + nFk-A<*) (mod p).

We summarize our findings on correlated pairs so far in the following

theorem.

Theorem 5. If (k, k') is a pair, then

(30) Pk(c) = — (1 - Pk(0)) + J(k', 0; k,c) (0 g c < p).
P

The following are always correlated pairs :

(i)     k 2: p>, k' = k - p'; s 2: 0,

(31) (ii)   tp3 ^ k < vp", k! = k - tp°; 0 < t g p, v = min (2t, p + 1),

(in) (p - l)p* g k < 2(p - l)p\ k' = k - ip - l)p>.

One immediate consequence of the preceding discussion is that Pkic) = l/p

for 0Sc<p if k is correlated with 0. For then, in (30),
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Pk'iO) = 0,       /(*', 0; k, c) = 0.

Taking into account (31), we have the following result:

Theorem 6. If k = tp", 0<t<p, s 2:0, then for all residues c (mod p),

Pkic) = l/p.

In particular, this is true for all k^p.

We have obtained a class of indices k = tp" for which equidistribution

holds, and we strongly suspect that this is true only if k belongs to this class.

It is interesting to observe that not only are the random variables

Pi (a), ■ • • , Fp(a) individually uniformly distributed, but that they are all

mutually independent. For let «G V2, so that a=a'+pa", with a', a" both

in Pi. For a given set of residues (ai, a2, • • • , aP), we are assured by Lemma 5

that there is at least one a'G Pi for which

(32) Pi(a') mat,--- , Fv-iW) = «p-i (mod p).

The number of sets (ai, • • • , ap_i) is £P_1 = 7V(1), so that each one deter-

mines a unique a'G Pi, and we have

Í33) FPia) = FPia' + pa") m Pp(«') + F^a") (mod p).

As a" ranges over Pi, Pp(or) takes on the value ap exactly pv~2 times. Hence

the total number of vectors «G P2 for which (32) and PP(a) = ap (mod p) are

true is exactly pp~2. We have therefore proved the following theorem.

Theorem 7. The random variables Pi(a), • • • , 77p(a) (mod p) are mutually

independent.

A simple application of Theorem 7 now yields results on the asymptotic

distribution of the residues of other symmetric functions modulo p.

Theorem 8. Let

in) k k k
Sk    = *i + x2 + • • ■ + x„, k > 0,

and let Gtn) (a) be the number of solutions of

(n)

Sk    = a (mod p)    (0 ^ x< < p; i = 1, • • • , n).

Then

1    (») 1
lim— Gk   («)=—> 0 ^ a < p.

n-.» pn p

Proof. For w2:&, we have

5r = (-irwr+/(c/in,,---,(7r-,i).
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The right side is a function of Pi(a), • • • , Fkia) and so has an asymptotic

distribution mod p. If 1 = & <p, these variables are independent, by Theorem

7, and since

S™ m (-I)*-1kFkia) +/(Pi(a), • ■ • ,Pw(a)) (mod p),

and kféO (mod p), the theorem is proved for l^k<p; it follows for all k>0,

since 5^=5^-1 (mod p).

Another consequence of (30) is obtained by observing that

(34) Jik', 0; k, c) 2: 0,

from which we see that

(35) pPkic) + P,A0) ^l (0 = c < p).

In particular, for c = 0,

(36) pPkiO) + PAO) 2: 1.

It follows that for at least one of a correlated pair, the frequency of 0 exceeds

!/(£+!)• For this is certainly true if k' = 0, and if k'>0, then there is at least

one vector a for which Fk(a) = Fk-(a) =0 (mod p), so that we have strict in-

equality in (34), (35), and (36).

An attractive conjecture is that Pfc(0)2:l//> for k>0. This is true for

p — 2, 3, and all the evidence seems to point in this direction, but we have

been able to prove only the following weaker approximations.

Theorem 9. For n 2:1,

1  A 1
— Z pao) >-
n k-i p + 1

Theorem 10. For k 2:1, Pk(0)>p~2^-l).

Proof of Theorem 9. Let S(n)= X)*-iP*(0). For k 2:2, we have

(37) pPk(0) + Pk-i(0) > 1.

Summing (37) for 2^k^n, we get

p(S(n) - l/p) + S(n - 1) > n - 1,

ip + l)Sin) > pSin) + Sin - 1) > n,

from which Theorem 9 follows.

Proof of Theorem 10. Suppose that p'^^kKp'. The set 9c„(£, k, 0) in-

cludes all those vectors a whose components satisfy 0^ar<k/ip — 1), since

the degree of the product i>(a, x) is then less than k, so that Fkia) =0. The

number of such vectors is at least
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040
P-i   j,(»-i)(p-D

> _- >   A»(P-D. J)-2(p-l)

"   (# -   l)^1

Hence

PkiO) = p-°(v-VN,ip, k, 0) > p~2^\

This result can of course be improved, since the number of vectors aG V,

such that «i+tt2+ • • ■ +a3,_i <k is given by

/k + p-2\

\    p-l    )'P

from which we obtain, for example, for ¿2:1,

(38) ' PkiO) >: p*-*/p\ ■

It does not seem likely that such methods will yield significantly better re-

sults, although the true lower bound of P*(0) is almost certainly of order l/p.

On the other hand, we observe that Pjc(O) cannot'increase too rapidly.

For

(39) /(*', 0; k, c) ^ Pk'iO) (0 ^ c < p),

so that (30) yields

(40) Pkic) £ — (1 - PAO)) + PAO),
P

or if we write Qk = l— PkiO) and take c = 0 in (40),

K>(4i) ö*^(i--)e*-

Now suppose that k exceeds p, so that

(42) k = hp" + • ■ ■ + thp'h (0 < ti < p; si > s2 > ■ ■ ■ > t% 2: 0),

with h>l. Then, applying (41) k— 1 times,

H-l

p) \ p.

by Theorem 6. Hence we have the following theorem.

Qk=0 - jTQt-=0 - j)h'

Theorem 11. If his the number of nonzero digits in the expansion of k in the

scale of p, then

(43) PkiO) ál-(l-y).
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Since k^pk~x, (43) implies

(44) PkiO) S 1 - (l-J/feloE Ci-i/D/log p,

so that Qk must be greater than k~m for a certain fixed m < 1, depending only

on £>2.

8. Further results on Pk(a). Suppose that

(45) k = tp' + R, s^0,0^t^p,0^R< p\

The representation (45) is not necessarily unique, but this is unimportant

here. A suitable vector space for Fkict) is then V,+2, since k<ps+l+p*<ps+2.

Now write/uniquely, for aG Vs+2,

(46) a = ßp*» + y, ß G Vi, y G P.+i.

Then

$(o:, x) = $ip'+1ß, x)$(y, x) m $(,8, x"*+1)>ï>(7, x)

(47)

» E^O^^'E^M*" (mod ¿),
m=0 n—0

and the degree of the second factor is

(48) D2úTyrúip-l)ÍP>+1-l).
r—1

If we equate coefficients of x* in (47),

(49) Fkia) m Ftiß)FBiy) + Ft-iiß)FB+p.Ay) + ■ ' ■ + FÄ+lp.+i(7) (mod #).

We remark that R+ip — l)ps+1^ ip — l)ps+1>D2, so we may write

V-2

(50) P4(a) = E í/-»(/S)Fb+«p.+i(7) (mod f).

Now for fixed 7, P*(a) is a linear combination of Ftiß), Ft-iiß), • • ■ , Foiß).

Once 7 is known, it is easy to determine the distribution of this linear combi-

nation. For this purpose we separate Vê+i into the following classes:

aßo(c, R,s+l):       Fniy) =c^0 (mod p),

Wliic, R, s + 1):      PB(7) ■ 0, Fn+My) = c^0 (mod p),

(51)
2Tîp_2(c, 7?, s + 1) :   PB(7) ■ • * ■ ■ Fx+ip-»My) » 0.

Pie+(p_2)„«+i(7) ■» c ^ 0 (mod />),

a».(2?, 5 + 1) : FB(y) «*•••« FÄ+(p_2)P.+i(7) - 0 (mod *)'.
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Let Mnic, R, s+l) = Mnic) be the number of elements in 3Jîn(c, R, 5+1),

O^w^p-2, and let

ZniR, S  +   1)   =  Zn   =   E Mnic) (0 £  » ^  ¿  - 2),
(52) c_i

ZM(7c, s + 1) = Z«, = number of elements in ^„(P, s + I).

It is clear that any vector 7 not appearing in SDîM(r, s+1) must belong to some

9JÎ„(c, P, 5 + 1), and all these classes are disjoint. Hence

(53) Nis+l) =Zo+Zi+ ■■ ■ + Zp_2 + Z„.

Now fix a^O (mod p), and suppose that 7 belongs to one 0/ the classes

3Dî„(c, P, 5+1), n<t. Then from (50) and Theorem 7, the number of vectors

ß for which Fkia)=a (mod p) is p^TV/l). If 7G9ft«(a, P, s + 1), this number

is TV(1). For all other 7G P",+i, the number is 0. It follows that

(54) Ni+2(p, k, a) = 7Y(1) f- E Zn + Mt(a)\    (a jé 0 (mod p)).
\P   n<( )

Hence

(55) Pk(a) = -—-—{- E^n + M,(a)l      (a fá 0 (mod />)).
N(s+ 1) (./>„<* J

Summing (55) over all aféO (mod p), and taking into account (52) and (53),

we get

(56) P*(°)   *   7Tl       !     A— E 2n +  E ^n  + Z\
N(S +   I)   ip   n<t n>t )

Equations (55) and (56) yield several interesting results. First is the ob-

servation that for t = p — 1 or p, (55) becomes

(57) Ptp,+R(a) = —-4— E Z„l-fl-7^—}
tf(ï + 1)  I 7>   n=0        / p\ TV(5+1)J

iß" P-U P).

Hence the nonzero residues all have the same frequency. Also

(58) P.p-+*(0) = - + (l - ^)—=-- it = P - 1, #),
#      \        />/7V(j+l)

and this is never less than I/p. Indeed, if R ¿¿0, ZX(R, 5 + l)/TV(i + l) exceeds

a certain constant, depending only on p. For if we split 7 G P«+i into

7 = ô + p>'ri, S G V.; r, G P,+i-.',
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where 5' is determined by p*'_1i£P</y', then ZX(R, s+l) is not less than

TV(s + l— s') multiplied by the number of 8 G V,> for which ôi+ • • • +ôp_x<P.

By exactly the same argument that gave (38), we see that this number, in

turn, is not less than (p2~"/pl)N(s'). Finally

ZK(R, s + 1)       p2'* N(s')N(s + 1 - /) _ p2-'

N(s+ 1) pi N(s+ 1) pi

1       / 1 \ p2-'(59) P,(o)a- + (l-7)?_

((P - i)P* < k < p*+l; ps+1 < k < ps+1 + p>).

We have therefore proved the following theorem.

Theorem 12. // (p-l)p*<k<pa+1, and k* = k+p", then

(i) Pk(a) = PAa) (0 ^ a < p),

(ii) PAD = • • • = Pk(p - 1),

1       / 1 \ p2~p

Part (iii) of Theorem 12 enables us to improve the average in Theorem 9

in an obvious way, but we shall not take the trouble to state the result, which

we feel is far from the optimum. Also, (iii) is uniform in the range of k indi-

cated, and can be improved for special values of k. For example, if 5 2:2,

£2:5, we can prove

1  ( 1

(7^~2)-{1 + (7-^)t}

9. Relations among Pk(0). In this section we shall deal exclusively with

Pk(0), for k = tp'+R, 0-¿t<p, 0^R<p\We shall write

Pn
N(s + 1)

z„
(60) pM =

N(s + 1)

<t>t =  P(jjs+b(0).

Equations (53) and (56) then become

(61) P0 + Pl +   • •  •   + Pp-2 + Pco  =   1,

(62) 4>t = — E Pn + E P« + P«    (t = 0, I, ■ • ■ , p - I).
P   n<( n><
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From (62),

1
0¿ — 0¿_i = — pi-i — pi (i = 1, • ■ ■ , p — 2),

P
(63) *

0P-1  —  0P-2   =  - Pp-2-
P

Multiply the ¿th equation in (63) by p\ then add, to get

Po = Pi<bi - <t>o) + p2(4>2 - <t>i)+ ■ ■ ■ + p'-^p-i - 4>P-*)

(64) = - p<bo- p(p - l)0i - p2ip - 1)02

- pr-\p - 1)0P_2 + pr*4>p-f

But by (62) and (61),

(65) 00  =   Pi + P2 +   •   •   ■   +  PP-2 +  Pco   =   1   —   PO-

Hence (64) becomes

(66) pp-1^p-i = I + (P - 1) {0o + p<bi + p2<t>2 + ■ ■ ■ + p"-24>P-2}.

If we now define the weights

(67) wx = p-t»-»;       wn = p-<-v~l)(p - l)pn (0 S n ^ p - 2),

and remark that w„ + w0+ ■ ■ ■ +wp_2=l, we have

(68) 0p_l   =   Woo  +   Wo0O +   W101 +   •   '   •   +   Wp-2<pp-2-

Theorem 13. For every p, there is a fixed set of weights

Woo = p-(p~1);       wn = p~'-p-1)(p - l)p" (0 á » á Í - 2),

such that for all 5 2:0 and 0^R<p",

V-2

(69) P(p_i)p.+A(0) = wx + E wreP„p.+B(0).
n=0

As a check, set p = 2. Then (69) yields

P2.+ie(0) =-+-PB(0),

which agrees with our previously established result.

10. Conclusion. It appears, from the results that we have obtained so far,

that the function Pip, k, a) is rather complicated. The rôle of the residue 0 is a

special one, and all the evidence so far seems to corroborate the conjecture

that Pip, k, 0) 2: l/p for all k > 0. There are several other interesting questions

which we should like to see answered. For example, is it true that the limit

superior of Pip, k, 0) (as k tends to infinity) is unity? Is it true that Pip, pk, a)
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= P(p, k, a)? Is it true that only in the case k = tp", 0<t<p, do we have equi-

distribution among all the residues, or, even more, that only in this case does

Pip, k, 0) take the value l/p?

It is possible to extend some of the results obtained here to the case of a

composite modulus. For example, Theorem 1 goes through without any diffi-

culty. Furthermore, it is sufficient to consider only prime-power moduli, in

view of a lemma of Hull(4), which in our notation would yield

Pnimm', k, a) = P„(m, k, a)Pnim', k, a)

if im, m') — 1.
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