
ON THE STRONG DIFFERENTIATION OF THE
INDEFINITE INTÉGRALO)

BY

ATHANASIOS PAPOULIS

1. Definitions [l, p. 106](2). A sequence of intervals(3) {/„} is said to be

regular if there exists a positive number a such that, with an the larger and

bn the smaller side of J«, we have bn/an>oi for every n.

We shall say that the sequence {/„} tends to the point ix, y) if(4) á(In)

—»0 as n—» oo, and the point (x, y) belongs to all the intervals of the sequence.

Given a set function F defined for all intervals, we define F*ix, y), the

ordinary upper derívate, as the upper bound of the numbers t such that

there exists a regular sequence of intervals {/„} tending to ix, y), for which

Filn)
lim T^f = ¿C).

T
»      | in |

If we remove the condition of regularity of the sequences of intervals

considered, we obtain the definition of strong upper derívate P,*(x, y). Similarly

we define the lower dérivâtes P*(x, y) and P*,(x, y).

If F*ix, y) = F*(x, y), we say that F(T) has an ordinary derivative F'(x, y)

= F*(x, y) = F*(x, y). If P*(x, y) = F*s(x, y), we say that F(I) has a strong

derivative P,'(x, y) = F*(x, y)=F*s(x, y). Obviously if P,' (x, y) exists, then

also F'(x, y) exists and equals F¡ (x, y).

2. Suppose/(x, y) defined and integrable on a set E of positive measure.

We extend the definition of f(x, y) on the whole plane P by putting/(x, y) = 0

for (x, y) GP — E. We can therefore, as we shall in the following, consider only

functions defined in the whole plane.

We form

(1) Wil) = jj fix, y)dxdy.

Then we have the following theorems.

Presented to the Society, December 29, 1949; received by the editors November 25, 1949-

(*) This problem was first proposed by Professor A. Zygmund and solved under the guid-

ance of Professor A. S. Besicovitch. The author is indebted to both for their many suggestions.

(*) Numbers in brackets refer to the references cited at the end of the paper.

(3) By intervals we shall mean in the following rectangles with sides parallel to coordinate

axes.

(') 5(E) will mean the diameter of the set E.

(') The symbol | E\ denotes throughout this paper the Lebesgue measure of the plane set E.
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Theorem 1 (Lebesgue). W*ix, y) = W*ix, y) =f(x, y) p.p.

Theorem 2. (See [2], [3]; also part 11 of Theorem 6 of this paper.) There

exist integrable functions for which W*(x, y) = + °° on a set E of positive

measure. And since W*(x, y) = lF*(x, y) = W*(x, y) =/(x, y)<+°° p.p., it

follows that W*ix, y) ¿¿W^six, y) on E.

Theorem 3. Iff(x, y) is bounded, then Wl (x, y) exists and equals f(x, y) p.p.

The above theorem is an easy generalization of the following:

Theorem 4(6) (density theorem, see [3] and [4]). Withf(x, y) the character-

istic function of a set E, Wi (x, y) —fix, y) p.p. where W(I) is as in (I).

3. Theorem 5. Withf(x, y) an integrable function, we form

(2) F(D = JJ | /(*, y) | dxdy,        Wil) = fff(x, y)dxdy.

If F(I) is strongly differentiable p.p., Wil) is also strongly differentiable p.p.

Proof (7). We write/(x, y) =/jv(x, y)+rNix, y) where

= i-rt*-^  for  \f(*>y)\ * N<

\ 0 otherwise.

Obviously |/(x, y) | = |/jv(x, y) | +1 rjv(x, y) | .fix, y) is integrable. Hence given

€>0, there exists an TVo and a plane set M of measure smaller than e, such

that rjv(x, y) =0 for (x, y)&M, and every TV StTVo.

From the boundedness of /jv(x, y) and Theorem 3, we conclude that with

pNÍI)=ÍJi\fNÍx, y)\dxdy, lim{/.)..(,,») P¡v(/B)/|/»| exists and equals fN(x, y)

p.p. But, lim|7n)^(X,„) Filn)/\ln\ also exists (by assumption), therefore, with

RAP)=IJi^nÍx, y)dxdy, lim{7n),(l,y) RNiIn)/\ln\ exists p.p. and equals

\r*(x,y)\.
Similarly with WN(T)=JJifN(x, y)dxdy, limr„ WN(In)/\ In\ =/.v(x, y) p.p.

But

I  I    rNix, y)dxdy I  I    | rAx, y) | dxdy

(3)        lim sup-!L-¡-¡- g lim sup-¡-¡-—
K \U\ h \ln\

RnÍIn)       i i
= lmi    i = | rAx, y) \ p.p.,

í»      'I if

(•) This theorem is not true if the intervals J„ (see definition) are replaced by any rectangles

(see (3) and (6)).

(7) The following simple proof is due to Professor B. Jessen and was kindly communicated

to the author by Professor A. Zygmund.
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and since rAx, y) =0 for (x, y)^M, it follows that

//,.
rAx, y)dxdy

lim-i-i-= 0    p.p.    for    ix, y) G M.
\  -t n \

Hence

W(In) ,. WAln)
hm —;-¡— = lim —¡-.— + hm

I   I    rAx, y)dxdy

In        I   I" I í, K»l rn I  In I

= ÍnÍx, y) + rAx, y) = fix, y)    for    (x, y) G M

and, since e is arbitrary, Theorem 5 is true.

4. Theorem 6. There exist integrable functions fix, y) for which Wil) is

strongly differentiable p.p. but F¡ (x, y) exists nowhere on a set E of positive

measure; in fact F*(x, y) = + «j for every point (x, y) of E.

Proof. Part I (from a construction by H. Bohr on the Vitali covering

theorem, see [5, pp. 689-692]). We subdivide the interval

a < x < a + h,

b < y <b + k

into the intervals

(i)                                ph                                     k
Ip  :    a<x<a-\-, b < y < b-\-, I ^ p ^ N;

N p

then for every p we have | Lf>\ =hk/N and with F<» = E£i lf\

,  . O) i hk  / 1 1 \        i     (i) i
(4) W  l = T(. + T + --- + -)-|/, Urn

where u(N) = 1 + 1/2+ • • • +1/TV.

Through the vertices of the intervals Ip we draw lines parallel to the y-

axis; thus the point-set I— Va) is subdivided into (TV—1) intervals. We per-

form the above construction on each of these intervals using the same TV as

before. We so obtain (TV—1) point-sets, V-2), • • ■ , Vlm, of a staircase

form, having no points in common. With

(5, l(1 + l + ... + l).1_W

we have from (4)
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| l/u) i = (1 - 0(AO) | 11, | / - F<» | = 6(N) I /1 ;

reasoning similarly on Vi2), • • ■ , V-N) we obtain

|  /  _   (T/(l)  +   T/(2)  _|-+   F(AT)) |   =   eiN) |  7  _   T/(l) ,   =   Ö2(A7) |  J | _

/."

/n  's

Fig. 1

5. We repeat this process (k — l) times. After the (k — l)th iteration we

have constructed (1 + (TV— 1)+ • ■ • +(TV—1)*) sets F(i) of a staircase form ;

the remaining set R = I— E^(i)> which we shall call the "rest" set, consists

of (TV—1): separate intervals of total area,

(6) \R\=d«iN)\l\.

The intervals Ip\ forming the set V(i\ have a nonempty common part:

the shaded interval a'-'K From our construction it follows that:

>•> ,<o
«) i

a       =(7)
TV NßiN)

hence with A = Ea(i)> the sum of all the shaded parts of i",

(8) A   <
NuiN)

6. The above construction performed on an interval I will be called in

the following the operation B*N, TV as in §4, k as in §5. We shall mean by {*}

the set of all the intervals if of our construction, and by {a} the set of the

shaded intervals of /. Then A = E<»efa) a- li aG{a} is included in an iG {i},

that is, if a = i-A (a point-set product), then \a\ — |*|/TV.

Part II. The following construction gives a proof of Theorem 2. It will
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be used in Part III, with minor modifications, for the proof of Theorem 6; in

addition it will familiarize the reader with the method to be followed.

We shall give the construction of an integrable function /(x, y), whose

indefinite integral has no finite strong derivative at any point of a set of posi-

tive measure.

First step: On the unit square Si we perform the operation B% by taking

TV = TVi = 222 and k such that P = Pi<e/2. We thus obtain the sets {¿1} and

{fli}. And with Ai= E<«e(«.-1 a< M1! <l/TV^iTVO, and if iG{ii}, a = Ai-i,
then

(9) I a I = i-i-, «(f) < 1.
Ni

We further define the function

|TVi(logiVi)i'2 = 222-2    for    xGAi,
(10) Ax, y) = * .

(.0 elsewhere in 5i.

(In the following, the logarithms will be taken with base 2.) With

Wiil) = Jj fiix, y)dxdy

we get from (8) and (10)

,      . TVi(log TV1)1'2        (logTVi)1'2
WiiSi) =   Ai MX, y) < S = —-—,1    lun 'yJ NiuiNi) ßiNi)

Wiii)      TViaogTVi)1/2!^!^!iw = s     »   J-L = (iog Nl)U2.

1*1 I i# I
Second step: We divide 5i into 4 congruent squares Si and perform in

each of them the operation B% by taking TV = TV2 = 22 ' and k such that, with

P2 the sum of all the "rests" (§5) in the 4 squares 52, we have |P2| <e/22.

By {i2\ we now mean the set of intervals i included in all 4 squares S2 and

by {02} the set of the shaded intervals whose sum we call A2. Again

(11)

We define:

(12)

1 .
< "TVW^) and if iG{k]' a=Ai'h thCn

l*| 1
a   = -i—!-, 8ii) < — •

TV2 2

x,y)=[
TV2(log N2yi2 = 222-22   for    x G A2,

0 elsewhere in S%,
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and with

W2il) = ffhix, y)dxdy

we get from (11) and (12)

(log TV2)1/2

W2iSi) = \A2  Mx, y) < '    ,
MÍN2)

y-y- =  (log TV2)"2.

I »I
Similarly we continue.

nth step: We divide Si into 4n_1 congruent squares S„ and perform in each

of them operation BhN by taking

(13) N = TVn = 22i"   and k such that    \ Rn\ < — •
2"

As before:

ii1 r    >
I An \ <->    and if    iG\in\,       a = An-i,    then

(13a) NMNn)

1       I 11 1I a I = -> 8ii) <    ,        >
Nn 2-

.,       , (TVn(logTVn)1'2= 222"-2"    for    x G 4»,
(14)        /„(x, y) =   ^ :   .

(.0 elsewhere in Si,

TFnCO = f f fn(x, y)dxdy,

(lOg TV«)1'2

(15) JF„(Si) =4,  /,(*) <
/x(tf„)

E^> = (log TV„)x/2 - 222"

and so forth.

7. Form/(x, y) = En-i/nO^. 30- We shall show that/(x, y) satisfies our

requirements. Indeed, from (15) we have

E Wn(Sl) < E
n-1 n=l    p(22  ')

but
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1
niN) = 1 + 1/2 +-1-— log TV

TV

hence

log TV
¿i(TV) > —-—    for    TV > TVo

2

or /i(222n)22n/2 for n>n0; hence

(16) E^(-Si)<2E—= —•
n=n0 n^=«3   ¿- ^

Therefore  Eñ=iU/„(Si) converges and

(17) Wil) = f f fix, y)dxdy < + ».

We shall now show that W*ix) — + °° f°r every xGP = Si— E"-i -^« where

|p| >l-e because of (13).

x is contained in one of the intervals of {in} for every n. Call in the

interval of {in} containing x; then ii, i2, ■ ■ ■ , in, ■ ■ ■ is a sequence of in-

tervals containing x and with diameter tending to zero (13a), and since

Wiin)/\in\>Wniin)/\in\=i\og Nn)112 (see (14)) and since (log TV„)"2^^

with n—»oo, we conclude that W*ix) = + °°.

Remarks. (1) The sequence {in} is not regular.

(2) fix, y)-log |/(x, y)\ is not finitely integrable, in agreement with the

theorem of Jessen, Marcinkiewicz, Zygmund.

Part III. We shall make the following modifications in the construction

of Part II. The operation B\ of the first step will remain the same. With mi

the smallest side of the shaded intervals {ai}, we divide Si in the second step,

not into 4 squares, but into such a number of congruent squares {S2} that

their side is smaller than mi/N\. With m2 the smallest side of the intervals

{a2}, we divide Si in the third step into such a number of congruent squares

{S3} that their side is smaller than OT2/TV2; and so we continue.

From the way the squares S„ have been constructed it follows that:

(18) Un I   > I Sn+1 I Ni

As before (13) and (13a) hold.

We now subdivide each rectangle of the set {an} into TV* congruent rec-

tangles, half of them we call black and the remaining white (as on a chess-

board). We thus obtain the point-set Bn of the black rectangles of A„, and

the point-set Wn of the white rectangles of 4„. With W one of the rectangles

of the set Wn, we obtain from (18)
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(19) \W\=^j->\an+i\

because a„+i is included in one of the squares of {Sn+i} whose side is smaller

than 1/TV£ times the smaller side of an-

We define

ronw'+V      \       (NnilogNn)1'2   for    x G Wn, M -    (+)
(20)/„   ix,y)=\ f    (x, y) = E/»   (x, y),

10 elsewhere, „=i

(21)/»   (x, y) = <L ,     , /    (*, y) = E/»   (x,y),
10 elsewhere, „_i

/»(*. y) = fn   (x, y) - /„   (x, y),       /(x, y) = /    (x, y) - /    (x, y).

With similar reasoning as in Part II, we conclude that/(+)(x, y),f^~)(x, y),

and f(x, y) are integrable, with FM(I), F^(I), and W(T) =P+'(P -F<->(/)

their respective integrals over /. We put

(22) Fil) = J J | fix, y) | d«Jy.

8. Consider the set A4„ consisting of all rectangles similar to a», with the

same center and with sides twice the sides of a„. Clearly from (13a) we have

4 4
(23) I AAn I = 4 I An I <-<-

1111 NnßiNn) 16»

hence

and with

E | A4„| < —
»-i 15

E = Si - E A^4» - E Ä.
n-l n-1

we obtain from (13) and (23)

(24) |£|>l_l_e.

Consider the rectangle aG{an}; it is subdivided into TV*/2 black and

TV*/2 white rectangles of area | a | /TV*. With L any rectangle, we can easily

see that the difference D of the areas of the black and white parts of a,

which are included in L, is not greater than the area of one of the TV* rec-

tangles into which a has been subidivded; that is
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(25) D <
Nl

(26)

If therefore L is such that \L\ > \a\, then

Ul
D <

Ni

at

~1
!"n

mu
ta

&

2ot\

Fig. 2

Suppose now that L is any rectangle with sides p and q, containing a

point x of E. Clearly (see Fig. 2)

ai ,     „      «i?
p > —    and    D < —f :

2 TV*

hence

(27) D <
2pq      2 | L |

tv; TV»

9. We shall first show(7) that WiT) has a strong derivative p.p. on E. We

write

Wil) = TF„,(7) + RAI)    where    PF„(J) = ¿ f f/«(*. y)¿*ty
n=l J J r

with xGP, consider an arbitrary interval Z, containing the point x; we have

„ ,r.        ^\ \  \ /"(*' y)dxdy
Rn(l) n-ml •/  •/7

(?) The proof of this paragraph is based on a suggestion by Professor A. Zygmund. Orig-

inally, it was proved by using Ward's theorem.
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but |//r/»(x, y)dxdy\ equals TV„(log TVn)1/2 times the difference Dn of the areas

of the black and white parts of 4„ which are included in L. Hence from (27)

we have

y« < ¿/^.(W! < 2¿ <^
[ L | n—m    j L | »=m iV»

which tends to zero with m—*<» (see 16)), and since Wmil) has a strong

derivative p.p. iWm)i (Theorem 3), we conclude that given e>0 we can find

mo such that

(Wm)'e(x, y) - e < IF*s(x, y) ^ »?(*, y) < (Wm0).' + e;

hence with e—>0 we must have W*s(x, y) = W*(x, y), that is, IF(T~) is strongly

differentiate p.p.

10. It remains to show that p*(x, y) = + oo for xG-E-

We first see by an easy induction that with p(n) = TV„(log TVn) 1l2 = 22   • 2",

(28) p(n - 1) + p(n - 2) + ■ ■ ■ + p(l) < p(n)/2 ■

Hence for every (x, y)GWn we have (see (20))

Vi, ,,    , i „/«+ (*. y)    /»(*. y)
EI /*(*, y) I < —;— = —-—
k-l ¿ L

(since fk(x, y)=0 or p(k) for k^n — l), therefore

(29) ± fk(x, y) > fn(x, y) - £ I /*<*, y) I > ^^ = ^~~ è °-
4=1 A-l 2 2

With (x, y)GE, we denote by i„ the interval of the set {in}, which con-

tains the point (x, y) ; then since /(+)(x, y) 2:0, we have

f f /(+)(*. y)¿*¿y è f f    /(+,(*> y)á«áy.
Denote by IF one of the white rectangles of the set Wn, and by Dn+i the

remaining part of W-Bn+i, after subtracting from it a set of area equal to

the area of W- Wn+i; thus

(30) |   W-Bn+l |   á  | P»+l |   + |   W-Wn+l I .

From (19) we conclude that | W\ is greater than the area of any one of

the rectangles of the set {a»+i}, hence (see (26)) we must have

(3D \Dn+i\<+-r1-
A„+i
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But /B+i(x, y) increases E*=i fh(x, y) (which is positive as we can see

from (29) in all points of (W-Dn+1)Wn+i) by TVn+i(log TV»^)1'2, and it de-

creases it by the same amount in all points of iW—Dn+i)Bn+i, and

|   iW  - Dn+l)Bn+l |   % | (ÏF - Dn+l)Wn+l \

(see (30). Therefore

but

hence

ff     E/*(*.y)   dxdy 2:   ff

£/*(*, y) d**y =
J J W-Dn+1 I ¡fc-1 •/  •/ W-D„

»+1

E/*(*.y)*=i
dxdy,

E /*(*, y)dxdy;

/» /■   i »+i /• /» i   »

E/*(*.y) ¿**y ^ E/*(*.y)
J  J W  I  k=l J   J W—D„+1 I  k=l

dxdy

(32) L   J   J W-D„+
f„(x, y) \ dxdy

W  -  Dn+l \   Nnilog Nn)1'2

2:  -| w\(l- -^Nnilog Nn)1'2
2 \ A»+i/

(because of (31)). Similarly we obtain

ff |Z/*(*.y) ¿*¿y>Tlwrlf1-d-)
J «/if I »=1 ¿ \ A'„+l/

• • • (l --y-Wlog TV»)"2;

but

hence with r—* <x> we obtain

ff \Íh(x,y)

E ^- < io-,
r-l   iVn+r

rfx<Ty > — I WI (1 - 10-4)TV„(log TV*)1'2

or
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(33) f f   | /(*, y) | dxdy > — | W | (1 - 10-<)JV,(log TV»)1'2.
J J w 2

We now sum over all the W's which are included in the set in- From (13a)

we have |inWn\ = |inAn\/2 = I in\ /2Nn. Therefore

J   J inWn

fix, y) | dxdy > l-~ (1 - 10-*)TV„(log TV»)1'2,
4TV„

hence

or

FUn) = ff      | fix, y) | dxdy > i^L (1 - 10-«) (log Nn)112

pU )       i 2"
~~ > — (1 - 10-4)(log TV»)1'2 = — (1 - 10-") -♦ »
| in I 4 4

with w; and since (see (13a)) 8in—>0, we conclude that Ff(x, y) = + co and

the theorem is proved.

Remark. Even if we assume that not only/(x, y), but also o-(|/| )|/| log|/|,

is integrable where o"(i) is an arbitrary function such that lim inf o,(/) = 0

with t—*°°, Theorem 6 is still true (see [2]).
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