
A CLASS OF DOMAIN FUNCTIONS AND
SOME ALLIED EXTREMAL PROBLEMS

BY

ZEEV NEHARI

In this paper, we shall solve a number of extremal problems of which the

following two are typical.

(a) Let D denote a domain in the complex z-plane which is bounded by

n closed analytic curves Yv iv — l, • ■ ■ , n, r=ri+r2-|- • • • +Tn), and let

X(zo) (zoGT) be a positive function which is continuous on each Ty. Let

further B\ denote the class of analytic functions /(z) which are regular and

single-valued in D, vanish at a given point z = f of D and, for radial approach

from within D, satisfy

lim sup | /(z) | ^ X(zo), so G r.
S-.Z0

Which is the precise upper bound for |/'(f) |  and for which function of B\

is it attained?

(b) Let g(z) be regular and single-valued in D and let g(D = l; if X(z0)

is defined as before, what is the precise lower bound for

I   X(zo) | giza) \2ds, ds = \ dz0\,

and for which function g(z) is it attained?

If X(z0) =1, problem (a) leads to a generalization of the classical Schwarz

lemma to multiply-connected domains [l, 2, 3](x) and its solution is found to

be closely related to that of problem (b) [2, 4, 5]. The main result in this

direction, due to P. R. Garabedian, from which all information relevant to the

solution of problems (a) and (b) in this particular case can be deduced with

little effort, is the following: there exist two functions K(z, f) and L(z, f)

with the following properties. K(z, f) and L(z, f)+ [2ir(z — f)]-1 are regular

in D+T, and K(z, f) and L(z, f) are connected by the identity(2)

1 I !
(1) [K(z, ï)]*ds = —Liz, {■)&, z G r,  | dz | = ds.

i

In our more general problem, involving an arbitrary positive and con-

tinuous boundary function X, a similar central role is played by a pair of
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(') Numbers in brackets refer to the bibliography at the end of the paper.

(2) Complex conjugates are denoted by asterisks.
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domain functions K\(z, f) and L\(z, f). We shall first prove the existence of

these functions and derive some of their main properties; once this is done,

the solution of a number of extremal problems—including (a) and (b)—will

be easily accomplished.

Theorem I. Let D be a finite domain in the complex z-plane bounded by n

closed analytic curves Yv (p = 1, • ■ • , n; ri+r2-r- • • • +r» = r), and let X(z)

(zGr) denote a positive function which is continous on each r„. Then there exist

two analytic functions K\iz, f) and L\(z, f) with the following properties:

K\iz, f) and L\iz, f)— [27t(z —f)]_1 are regular in D; |i£x(z, f)| is continuous

in D+Y and |Lx(z, f)| is continuous in D+T — Ce, where C, denotes a small

open circle about f (fG-D); K\(z, f) and L\(z, f) are connected by the identity

(2) X(z) [Ki(z, f ) ]*ds = — ix(s, fids, zGT, \ is j - is.
t

These properties determine both functions uniquely.

As a first step in the proof we consider the harmonic function

1    C dg(z, t) ,      ,
w(z) =-I   log X(i)-dst, dst = I dt |,

47rJr dnt

where giz, t) is the Green's function of D, and the differentiation is performed

with respect to the outwards pointing normal. Since X(/) is positive and con-

tinuous on each T„ log X(/) is also continuous there and the harmonic func-

tion m(z) takes the boundary values 2_1 log X(¿) on T. The harmonic conju-

gate viz) of w(z) will generally not be single-valued in D; it will have periods

about the boundary components Tv, which will be denoted by 2irpr, v = l, • • ■,

n. The function

n-l

(3) Uiz) = w(z) + X) ee£(2> z/0» zß G D, p = I, ■ ■ ■ , n - I,
ii-i

where e,, is either +1 or — 1, has the same boundary values as u(z) since the

Green's functions g(z, z„) vanish on T. Since the period of g(z, zß) about Tr

is — (27r)_1w»(zA, where wv(z) denotes the harmonic measure of T, with re-

spect to D—that is, the harmonic function in D which takes the boundary

values 8r¡1¡ on Tr—the period 27rP, of the harmonic conjugate V(z) of U(z)

about r,, will be given by

»-i

(4) Py = py — X V'fe). v = I, • • ■ ,n.
M=l

Our aim is to make the analytic function exp { U(z) +iV(z)} single-valued in

D. This will obviously be achieved if we can determine the values z„ and e„

in such a way as to make the numbers Py in (4) equal to integers. It is clearly
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enough to do this for n — 1 of the n periods P„, since the sum of all n periods

must be equal to the sum of the periods due to the logarithmic poles, whence

Pi+ • ■ ■ +Pn = n-l.

We therefore have to find n — 1 points %,•••, zn-i in D for which the

equations
»-i

(5) Yj «„"„(zj = py + mv, v = 1, • • • , n — 1,
M=l

are satisfied for appropriately chosen integers my and for a suitable choice of

the e„. The proof of the existence of n — 1 points zß with these properties is

equivalent to the solution of the "real part" of the classical Jacobi inversion

problem on a closed Riemann surface of genus n — 1 which, as shown by

Schottky [6], can be obtained by suitably fitting together two replicas of D.

However, we shall avoid reference to the rather complicated classical solu-

tion of the Jacobi inversion problem and shall instead give a simple direct

proof for the existence of a solution of the system (5). That this is possible is

due to the fact that the associated Riemann surface is symmetrical and that,

therefore, our problem corresponds to a comparatively simple special case

of the Jacobi problem.

We first remark that a schlicht conformai mapping of D transforms the

harmonic measures of D into the harmonic measures of its conformai image;

in order to solve the problem (5) for a whole conformai equivalence class, it

is therefore sufficient to solve it for one particular domain of this class. As

such a representative domain we shall choose the conformai image of D by

means of a mapping which transforms that part of the z-plane which is

bounded by T» and contains D into the upper half-plane. In order to avoid

additional nomenclature, we shall retain the previous notations, thus denot-

ing this new domain again by D, the corresponding complex variable by z,

and so on. T„ coincides with the real axis. Since the harmonic functions

o)»(z) (»»=»1, • • • ,n — l) vanish on the real axis, they can be analytically con-

tinued beyond the real axis by the identity co„(z*) = — co„(z). The functions

o)»(2) are thus harmonic in the entire domain D' which is obtained from D by

connecting with it, along the real axis, its mirror image with respect to that

axis.

Since co„(z*) = — w„(z,T), (5) is equivalent to the system of equations

»-1

(6) Z oiyiz») = py + mv, v = 1, • • • , n — 1,
M=l

if the z„ are not restricted to points of D but may coincide with any set of

« — 1 points of D'.

Consider now the expression

n-l r n—1 -|2

(7) R = Rizi, ■■ ■ , z„_i) = Z)    Z) «>(*/.) - p,-m,\.
v=i L >i=i J
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ic(zi, • • • , z„_i) is a continuous function of its variables in D'+V, where I"

denotes the boundary of D'. Hence for a definite choice of integers m„ R

has a non-negative minimum, which is attained for a set of n — 1 points zM in

D'+V. We now choose the integers m, in such a way as to give to this

minimum its smallest possible value; this is obviously possible since, in view

of the fact that —la w„(z) ;= 1, our choice is limited to a finite number of sets

{m,}. If TWi, • • • , mn-i are the integers which give rise to the smallest

minimum of R, we write py+mr = yr, and we consider the solution of the

problem

n—1 l- »—1 "|2

(8) R = Jc(zi, • • ■ , z»_i) = 2    X) uÁZn) — 7v \  = min,

where the zM may vary within D' + V. As already mentioned, there exist

minimizing sets {z,,}. It is easy to see that there must be at least one mini-

mizing set which is entirely in D'. Indeed, suppose ZiGI/t ik^n). Since

Wfc(zi) = l, w„(zi)=0 ivj^k), and w„(z) (»' = 1, • • • , n — l) vanishes on the real

axis, (7) will not be changed if Zi is transferred to the real axis and, at the

same time, mk is replaced by w*_i. Similarly, a point z„ may be transferred

from the mirror image of Tk to the real axis without altering the value of (7)

if, at the same time, mk is replaced by mk+i. Hence, there exists at least one

minimizing set, say S, which is entirely in D'. Moreover, this minimizing set

can also be assumed not to contain both a point zM and its conjugate z*; a

glance at (8) shows that both z„ and z* could be replaced by points on the

real axis without altering the value of the minimum.

Since all points of S are interior points of D', it follows from (8) that

3        1 / d d\
= 0,    m- 1, •••,»- 1,        — = —(— = *—j,    z^x + iy,

oz        2 \dx dy/

dR

dzM dz       2 \dx ay)

at the points of S. We thus have the necessary conditions

(9) £ ayw'y (z,) =0, ft - 1, •••,**• 1,
»_i

where

»-i

(10) a, = Z uÁz») — J*,
=i

and Wy(z) is the analytic function whose real part is co„(z). Now there are two

possibilities; either all the a, vanish, or else it follows from (9) that the

derivative of the analytic function

»-i

(11) W(Z)     =     X   dyWyiz)
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vanishes at the n— 1 points zu ■ ■ ■ , zn-i- In the first case, we have solved our

problem, as a comparison of (10) and (6) shows. We thus have only to dis-

cuss the case in which at least one of the constants a, is different from 0.

In this case, the points of 5 are critical points of the function (11); if 2

or more of these points coincide, the critical points of (11) will be of cor-

responding multiplicity. Since the a, are real and, by the Schwarz symmetry

principle, w! (z*) = — [wl (z)]*, the set S* of the points conjugate to those of

S is also a set of critical points of the function w(z). Again, we have to dis-

tinguish between two cases, according as 5 has points in common with the

real axis, or not. If no point of S is on the real axis, the sets S and S* are

disjoint, and we have thus located 2(tî —1) critical points of w(z). Obviously,

n — 1 of these points are interior to D. But this leads to a contradiction,

since a function of the type (11) cannot have more than n — 2 critical points

in D, where each critical point is counted with its multiplicity; this is a

well known property which can be easily proved by means of the argument

principle and the fact that iw\z)dz is real on V.

The only case yet to be discussed is therefore that in which one or more

points of S lie on the real axis while not all constants a, in (11) vanish. Again,

this leads to a contradiction. Indeed, R is constant on the real axis. If zM

= Re{z„} is a point of S, it may therefore be replaced by any other real

point without altering the value of the minimum. Hence, all points of the

real axis will be critical points of w(z). In view of (11) this means that

Z*-i a'w' (z) —0 on the real axis and, by analytic continuation, throughout

D'. But this is possible only if all the a, vanish, since the functions w'v (z)

iy — l, • • • , n — 1) are linearly independent. The assumption that not all

the a, vanish thus leads to a contradiction. This completes the proof of the

possibility of solving the system (5).

As shown before, the function (3) which is constructed on the points

zM solving (5) has a harmonic conjugate all of whose periods about the V,

are integral multiples of 2ir; the boundary values of i/(z) are 2~l log X(i).

If Viz) denotes the harmonic conjugate of £/(z), we consider the analytic

function

(12) qiz) = exp{Uiz) + iViz)}.

Since the periods of L\z)+iViz) are integral multiples of 2wi, g(z) is free of

periods about the r„. The singularities of i/(z) in D—that is, as shown by (3),

the points z„—become simple zeros or simple poles of g(z), depending on

whether «,, is equal to +1 or — 1. The analytic function g(z) defined by (12)

is therefore found to have the following properties: g(z) is single-valued in D

and may have there zeros and poles whose combined number does not exceed

n— 1 (multiple zeros or poles are to be counted with their multiplicities); on

the boundary, we have

(13) | qiz) |2 = X(z), z G r.
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As a next step in the construction of the functions i£\(z, £") and L\iz, f)

of Theorem I, we consider the functions

(14) £<»>(*, r) = K(z, i) + ¿ ayK(z, Zy) +   £   aMz, Zy), tr é » - 1,

(14') £«>(*, f) = L(z, f) + ¿ a*L(z, $,) +  '£   «*£(z, *,),

where Zi, • • • , z„ (o^n — 1) are the zeros of g(z) and z„+i, • • • , z„_i its poles,

and K(z, t) and L(z, t) are the pair of functions connected by the identity

(1) which were mentioned further above. The n — l constants a, shall be

determined by the requirement that

(15)   £«>(z„ t) = 0, p = I, ■ ■ ■ , a;   !«>&, f) = 0,  ß = o-+ I, ■ ■ ■ , n - I.

This will be possible if the system of tí—1 linear equations

(16)

£    CtyKiZy.,    Zy)    +       £       «-^(Zf>    Zy)    =     ~    Ä"(z„,    f) , M    =     1 ,

¿ «,[£(*„ z,)]* +   £   a,[Kiz„, Zy)]* = -  [£(zM, f)]*,

o-.

/x = o- + 1, ■ ■ ■ , n — 1,

for the n — l unknowns ctt, - • • , an-i has a solution. In order to show that

this is the case, we first remark that we may assume that not all the numbers

Kizß, f) (ju=l, ■ ■ ■ ,o), Liz», f) (p = <r+l, ■ ■ ■ , n-l) are zero. If qiz) has

poles, this is certainly true, since Liz, f) has no zeros in D [2] ; if g(z) has no

poles and all 2?(zM, f) are zero, we may obviously identify Kmiz, f) and

£(1,(s> f) with X(z, f) and Z(z, ¡f), respectively. We have thus only to consider

the case in which the system of linear equations is inhomogeneous. This

system will have a solution if the associated homogeneous system can be

shown not to possess a nontrivial solution; we proceed to show that such is

indeed the case.

If the homogeneous system had a nontrivial solution, there would exist

constants ßv iy = \, ■ ■ ■ , n—l), not all of which are zero, such that

(17) K^ih) = 0, u = 1, • • • , a; I^W =0, p - <r + 1, • • • . » - 1,

where

K^iz)     =     ¿   ßyKiz,   Zy)    +        £  ßyLiZ,    Zy) , <T    ̂     «    -     1 ,
(18) "l ~"

a n—l

Lmiz) = E ft*£(z, *.) +   E  ß*Kiz, Zy).
y=l r-.a+l
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If two of the points z, coincide, at the point zT, say (t^c), then (14) and (14')

will each have an extra term involving dK~iz, zT)/dz* and 3Z(z, z,)/dzr, respec-

tively. The condition (15) which is lost by the two points coinciding is re-

placed by the condition di£(1)(zT, f)/dzT = 0. If r>cr, the roles of the functions

K and L in these definitions are interchanged. Coincidence of more than two

points will result in the appearance of higher derivatives in the appropriate

places. These changes do not affect the validity of the considerations which

follow. The only property of the functions Kiz, f) and L(z, f) which we use

is the identity (1), and the same identity holds for the functions dKiz, f)/df *

and dL(z, f)/d£". Indeed, differentiating (1) with respect to Rejf} and ob-

serving that Liz, f) is analytic in f while Kiz, f) is analytic in f*, we obtain

r a "1* 1   d

and similarly for higher derivatives.

In view of (1), we have

1
[K^iz)]*ds = — L<»iz)dz, zGT,

i

whence

1
— X<«(z)£<»(z)dz ^ 0, zGT
i

(19) — f K^2\z)L^iz)dz > 0.
i   J T

Equality in (19) is excluded; this would mean that either Kmiz) of Lmiz)

is identically zero, which is impossible since not all ß, are zero. In view of

Cauchy's theorem, (19) shows that the function AT(2)(z)L(2)(z) cannot be

regular in D. This, however, leads to a contradiction, since the only singu-

larities of üC(2)(z) and ¿(2)(z) in D are simple poles at the points z„+i, • • ■ , z»_i

and zi, • • • , z„ respectively, and these are cancelled by the zeros of K<2)iz)

and Z(2,(z) listed in (17). The assumption that the homogeneous system

associated with (16) has a nontrivial solution thus leads to an absurdity;

hence, the inhomogeneous system has a solution, which shows that the con-

stants «i, • ■ ■ , an-i in (14) and (14') can indeed be so chosen as to make the

functions Kwiz, f) and Lœiz, f) satisfy the conditions (15). We note that, in

view of (1), (14), and (14'), K^(z, {) and L^(z, f) are connected by the

identity

(20) [KW(z, f)]*á» -—£«>(«, f)dz, zGT.
t
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We now define the functions K\(z, f) and L\(z, f) as follows:

K^iz, f)
(21) ^(z, f) =

(22) Lx(z, f) =

?(*)[?G0]*  '
¿(1)(*. r)g(z)

g(f)

i?x(z, f) is regular in D, since the zeros of q(z) and the poles of AT(1,(z, f) are

cancelled by the zeros of K^^z, f) and the poles of g(z), respectively; L\(z, f)

is regular in D except for its simple pole at z = f, since all other poles of g(z)

and -L(1,(z, f) are cancelled by zeros of Lm(z, f) and q(z), respectively. The

residue of the simple pole of L\(z, f) at z = f is obviously equal to that of the

pole of L(z, f) at this point, that is, to (27r)_1. [If g(z) happens to have a zero

or a pole at z = £", the above definitions of K\(z, f) and L\(z, f) have obviously

to be slightly modified. If r¡ is a point close to f, we then define

Kx(z, f) = lim Kxiz, v),       Lx(z, f) = lim L\(z, y)].

For zGr, we have, by (20), (21), and (22),

i q(z)

whence

| qis) 12 [Kxiz, t) ]*ds = — Lx(z, f)iz, z G V
i

Comparison with (13) shows that ifx(z, f) and Lx(z, f) are indeed connected

by the identity (2).

The continuity of | K\iz, f) | and | Lx(z, f) | on T can be shown as follows.

By (2), we have

(23) — isTx(z, f)£x(«, r)<fa à 0, z G T.
i

Hence the analytic function A(z) =JlaK-¡,(t, Ç)L\(t, Ç)dt, ZoGT,, has a constant

real part on each boundary component F,; by the Schwarz inversion prin-

ciple it is thus regular there (the V, are analytic curves). Thus the function

K\(z, Ç)L\(z, f) is regular on V. On the other hand, again by (2),

U(z, f)

Kx(z, f )
= X(z), z G r.

Since both the product and the ratio of \K~\\ and |Lx| are continuous on V,

this is also true for both functions separately.
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The only part of Theorem I yet to be proved is the unicity of the functions

K\ and L\. Suppose there exists another pair of functions, say K\ (z, f) and

L{(z, f), with the same properties. By (2), we would have

(24) [Kxiz, f) - K{(z, t)\*is = — [Lx(z, f) - L\(z, f)]<fe, z G V,
t

where the function L\ — L{ is regular in D, since the poles of L\ and Z-x',

cancel each other. Multiplying both sides of (24) by K\(z, f) —K\(z, f) and

integrating over T, we obtain, by Cauchy's theorem,

f \Kx(z, r) - K{(z, t)\2ds = 0,

whence K\(z, f) =K{ (z, f). The identity of L\(z, f) and L{ (z, f) follows then

from (24).

This completes the proof of Theorem I.

As a first application of Theorem I, we show that K(z, £") has the repro-

ducing property

(25) JHz)f(z)[K(z, i;)}*ds = f(t)

with respect to any function /(z) which is regular and single-valued in D and

for which the integral /X(z) |/(z) 12ds exists in the Lebesgue sense. Indeed, by

(2),

f Mz)f(z)[Kiz, ï)]*ds = -ffiz)Lxiz, Ç)dz,

and this, by the residue theorem, is equal to /(£"). We add that the functions

/(z) and L\iz, f) have radial limits almost everywhere on V, and that the

residue theorem is valid with these radial limits defining these functions on T,

since we may use a sequence of contours in D approximating V and apply

the Lebesgue theorem to the resulting sequence of integrals.

Another property of K\iz, f) which follows immediately from (2) is its

"hermitian" behavior if z and if are interchanged, that is, the identity

(26) tfx(f,z) =  [Ki(z, f)]*.

From (2), we obtain

|— Kiiz, f)i,x(z, n)dz I    = — Kx(z, 7?)Lx(z, fliz, z G T,

where f and r¡ are two different points of D. By integration over Y and by

the residue theorem, (26) follows.



170 ZEEV NEHARI [July

Liz, f) shows a different behavior if z and f are interchanged. If the posi-

tive continuous function piz) is defined by

(27) X(zMz) = 1, z G r,

it follows from (2) that

Ï— Kiiy, z)K„(r,, flau]    = — Liiy, z)L„(v, t)dy,  yGVzGD.

Integration over T and the residue theorem yield L\(Ç, Z)+Lß(z, f) =0, that

is,

(28) ¿x(f, z) = - L^z, f),

where X and p are connected by (27). (28) shows, incidentally, that L\(z, f)

is analytic in both variables.

We now show that the function K\(z, £") solves the extremal problem (b)

stated at the beginning of this paper.

Theorem II. Let g(z) be regular and single-valued in D, let /rX(z) | g(z) 12ds

< «s, and let g(f) = 1 ; then

(29) Jhz) I giz) \2ds ̂ J" X(z) | Miz) \2ds,

where

Equality in (29) is possible only for g(z) = M(z).

Proof. By (25),

(31) Jhz) I Kiiz, f) \2ds = KiÜ, f)

and

JHz)giz)[Kiiz, t)]*ds = g«).

Hence, by the Schwarz inequality,

1 = I *(D I2 = JHz) | g(z) \*dsf\iz) I rk(i, r) |2^

= [JCxö-.ßK^xwliCi)'!«»,
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that is,

j\(z) | g(z) \2ds ^ [itxG-.r)]-1.

By (30) and (31),

JKz) I M(z) \2ds =  [JTxtf.Oh1,

whence the theorem. In order to have equality in (29), it is plainly necessary

that g(z) [iÇx(z, f)]*^0 and |g(z)| = | Af(z)| for zGr; together with the fact

that g(f) = Af(f), this means that g(z) and M(z) must be identical.

We next prove that K\(z, f) is a kernel function and can therefore be

computed by means of a simple algorithm in terms of a complete set of

functions.

Theorem III. Let „£2 denote the class of analytic functions f(z) which are

regular and single-valued in D and for which /pX(z) |/(z)| 2ds< °°, where the

integral is taken in the Lebesgue sense; let ui (z), u2(z), • ■ • be a set of functions

in jQ, which is orthonormalized by the conditions

(32) f \(z)[un(z)]*um(z)ds = dnm

and is complete in the sense that any function f(z) in ^ can be approximated by

linear combinations ^„a,,w„(z) so that

L dsX(z) /(z) — E o„w,(z)

can be made arbitrarily small. Then

Í33) ^(U) = Z«-(i)k)]*,
v=l

and this series converges absolutely and uniformly in every domain interior to D.

Remark. Since the function X(z) is continuous, the class jQ, is, in fact,

identical with the class of functions /(z) for which /r|/(z) 12ds< °o. In the

more general form used in the statement of the theorem, all considerations

remain true for the case in which X(z) is an arbitrary positive function which

is bounded away from 0 and «> and for functions /(z) of the corresponding

class ^. Indeed, all results of this paper can be extended to these more gen-

eral functions X(z). We shall, however, not do so, since this would require

an excessive amount of real variable theory which would obscure the func-

tion-theoretic issues.
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Proof of Theorem III. Let K„iz, f ) be defined by

KnizA)   -   £ «,(«)[«,(*■)]*,
v=l

where the functions uv(z) are in jQ^ and are orthonormalized by (32). For any

linear combination

»

i>niz) = Z avUy(z),
r—1

we obviously have

(34) B„(f) = JHz) [Kn(z, r) ]**.(*)<&;

in particular,

(35) #»(f, f) = JHz) I £.(*, r) \2ds.

The series

00

(36) Z|<f)|2 = limíT»(f, f)
„=i »-><»

converges;indeed,

0 ig   f X(z) | Kxiz, Í) - Kn(z, r) |2&
(37) Jr

= Kx(t, f) - ir„(f, r) + £„(r, r) - x„(f, r) = £x(f, r) - jr.(r, r),

where (2) and (35) were used in the evaluation of the integral. Hence,

(38) Kna, f) ^ JCxCf, f),

and the ascending sequence   {-K"„(f, f)}   converges. An immediate conse-

quence of (38) is the absolute and uniform convergence of the series

OO

D«,(z)Mr)]*
»-i

in every domain interior to D. Indeed,

E I «,(«) 11 <ï) I ) =" ZI «rW I2ZI «»(f) I2

and this is arbitrarily small for sufficiently large m, since—in view of (38)—

the series (36) converges for every ÇGD.
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K\(z, f) is in jQ,; for a given e>0, there exist therefore an integer no and

linear combinations »„(z) = Z"-i avUy(z), such that, for n > no,

(39) f X(z) | Zx(z, f) - cW |2áí ^ €.

Consider now the expression

A = J*X(z) [£»(*, f)]*[2Tx(*, f) - o»(z)K

By (2) and (34), A = i£„(f, f ) — »»(f). By the Schwarz inequality,

| 4 |2 á J" X(z) | £»(*, r) |'<k JHz) | iTx(z, f) - „»(*) |2¿5.

Hence, in view of (35), (38), and (39),

| Knii-, f) - «»(f) |  ^ eiTx(f, f),

whence

(40) lim Knit, r) = lim «„(f).
n-*» n—*»

On the other hand, again by (2), (39), and the Schwarz inequality,

I JTx(r, f) - »»(f) |2 = [ f X(z) [#x(z, f)]*[*x(z, f) - »„(»)]&
I J r

á   f X(z) | iSTx(z, f) \2dsf X(z) | £*(*, f) - vniz) \2ds

á «*x(f, f).

Hence lim»-,«, «»(f) =ifx(f, f) and, in view of (40),

lim Knit, t) = iTx(f, f).
n—»oo

It therefore follows from (37) that

(41) f X(z) | Kiiz, t) - Kniz, f) \2ds < e

for sufficiently large n. Consider now the expression

B = J" X(z)[tfxG, „) - Kniz, v)]*[Kxiz, f) - tfn(z, f)K

where f and ij are points of D. By (2) and (35), we have
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B = £x6?, f) - Kniv, f) + Knin, f) - [Knit, „)]* = Kiin, f) - Kniv, f).

On the other hand,

| B \2 ̂  JHz) | Kx(z, „) - Kn(z, v) \2ds Jhz) I isTx(z, f) - Kniz, f) \2ds,

whence, by (41),

|*x(l,r) - Kniv,t)\2^e2

for sufficiently large n. Therefore

lim Knin, t) = Kxin, f).
n-*oo

This completes the proof of Theorem III.

Our next theorem solves problem (a) stated at the beginning of this

paper.

Theorem IV. Let B\ denote the class of analytic functions which are single-

valued and regular in D, vanish at z = f (fG-D) and, for radial approach from

within D, satisfy

(42) lim sup | /(z) | ^ X(zo), z0 G T.
(-Mg

Then

(43) |/'(f)| áF'(f) = 2x^(f,f),

where

(44) m(zo)X(z0) = 1, zo G r,

ore¿

^(», f)
(45) F(z) =

¿,(2, f)

If Lßiz, f) ¿¿Ofor zGD, F(z) ¿s ¿re Bx «red 2&e inequality (43) ¿5 sharp; if Lßiz, f)

iwhose number of zeros in D cannot exceed re — 1) vanishes at the points z\, • ■ ■ ,

zk ik¿n—l), then (43) holds for the wider class of functions /(z) which may have

a simple or double pole at zu ■ ■ ■ , zk- For this wider class, (43) is sharp and

equality holds again for the function (45).

Proof. In view of (42), /(z) is bounded in D and lim«->zo/(z) exists there-

fore almost everywhere on T. With these boundary values, Cauchy's theorem

yields

(46) /'(f) =~ f Miliz, t)dz,
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whence, by (42),

|/'(f) | ¿2tJHz)\lIíz, t)dz\

and, by (2) and (44),

|/'(f) | ^ 2t fj K,iz, ï)L,iz, ï)dz

By (23),

hence

1
— K,(z, t)L,(z, t)dztO;
t

|/'(f) | á -? f K,iz, t)L,(z, t)iz = 2*K¿t, f),
i J r

the last step following from Cauchy's theorem. Since the function F(z) in

(45) satisfies 2irK(Ç, f) =F'(f), we have thus proved (43). In view of (2) and

(44),

F(z)| =
K„(z, t)

L„(z, f)

1
= X(z), z G T;

p(z)

if Ln(z, f) is free of zeros in D, F(z) is therefore in B\ and (43) is sharp. If

L»(z, f) has zeros, say at Zi, - • • , zk, then (45) and the ensuing argument

evidently remain correct if f(z) is allowed to have simple or double poles at

Zi, • ■ ■ , zk. Equality in (43) will then again hold for the function F(z) which

now, in view of (45), will have simple poles at these points. Incidentally, the

combined number of zeros of K„(z, f) and Lß(z, f) in D cannot exceed re —1;

this is an immediate consequence of (23), the argument principle, and the

fact that the total variation of arg {dz} along F is —27r(re —2).

If X(z) =1 (zGY), it can easily be shown that L\(z, f) =L(z, f) does not

vanish in D[2, 4]. If this were true in the case of a general X(z), the state-

ment of Theorem IV would gain considerably in elegance. Unfortunately,

however, this is not always the case, as can be shown by a simple counter-

example. The function K(z, f) has re — 1 zeros in D [2, 4]. Let a be one of these

zeros and consider the functions

K(z, f)
Ko(z, f) =

(z - a) it* - a*)

(z — a\
Lo(z, f) = Í—— \L(z, t).
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By (1), we have

[(z - a)Koiz, i;)]*ds =     °[Z'      dz,
z — a

whence

(47) | z - a |2 [Koiz, f) }*ds = — Xo(z, f)dz.
i

Koiz, f) is regular in D and Lo(z, f) has a simple pole of residue (27r)_1 at

z = f. From (2), (47), and the unicity property it follows therefore that

Ko(z, f) and Lo(z, f) are identical with K\(z, f) and L\(z, f), respectively, for

X(z)s|z—a\2, zGV. But by its definition, the function Lo(z, f) has a zero

at z = a, which shows that functions L\(z, f) may indeed vanish in D. It would

be interesting to find out what conditions have to be imposed on X(z) in order

to exclude the existence of zeros of L\(z, f) in D.

We let follow an extremal problem which is solved by the function L\(z, f).

Theorem V. Let the function h(z) be regular in D except for a simple pole

of residue (27r)_1 at z = f ; then

(48) f p(z) I h(z) \2ds ̂    f ß(z) | ¿x(z, f) \2ds,

where

(49) M(z)X(z) = 1, z G T.

Equality in (48) holds only for h(z)=L\(z, f).

Proof. By Cauchy's theorem

¿?x(f, f) = — f hiz)K*iz, t)dz.
i J r

Hence, by the Schwarz inequality and (49),

Klit, t) ^ j piz) | hiz) \2dsJMz) | Kiiz, t) \2ds

= Kxit,t) f n(z)\ hiz)\2ds,

whence

£x(f, f) a f niz) | h(z) \2ds.
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Since, by (2) and (23),

f piz) | £x(z, f) \2ds = — f Kiiz, f)Lx(z, t)iz = iTx(f, f),

this proves (48). Retracing our steps, we find the equality can hold only if

— ih(z)K\(z, f)¿sí;0 and \h(z)\ =|Zx(z, f)| on T. In view of (23), this is

possible only if h(z) and L\(z, f ) agree in both argument and absolute value for

zGT, which shows that they must be identical. This completes the proof.

By suitable specialization of the positive boundary function X, a variety of

other extremal problems can be solved. As an example, we consider the case

in which

m

(50) X(z) = III « - «» I I f - «» h*i zGT,tGD,

m

(51) ßiz) = U\t - ay\\z - ay\-\ zGT,tGD,
x=l

where the a, are arbitrary points of D. The following theorems hold:

Theorem VI. Let /(z) be regular and |/(z)| ^1 ¿re D, and let /(f) =/(«])

=  • • • =/(am)=0 (f, «i, a2, ■ ■ ■ , amGD). Then

(52) |/'(f) | ^F'(f) = 2^x(f,f),

where X is defined in (50) and

L\(Z,    f)     „„1        (f    —    Ciy)

If L\(z, f)5^0 ¿re D, then F(z) is bounded, and (52). is sharp. If L\(zk, f) =0

(zkGD, k = l, ■ • • , a, oSn — l), then (52) holds, and is sharp, for the wider

class of functions f(z) which may have simple or double poles of z = zk, and the

extremal is again given by (53).

Theorem VII. Let g(z) be regular in D apart from m simple poles located

at the points «i, • • • , am, let g(f)=0 (fG-D), and let lim sup^r \g(z)\ <¡1.

Then

(54) | g'it) | ^ G'(f) = 2rrK.it, f),

where p is defined in (51) and

KJz, f) ™ /f - «A
(55) Giz)=-^-U(--)•

Liz, f)  ,_i \z — a,/

If L.(z, D^O ¿re D, then G(z) satisfies the hypotheses of the theorem and (54)

is sharp. If L\(z, f) has the zeros zk in D, then (54) ¿5 sharp for the wider class
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of functions g(z) which may have simple or double poles at the points zk. The

extremal is also in this case given by (55).

Proof of Theorem VI. Since /(f) =/(ai) = • • • =f(am)=0, we have, by

the residue theorem,

/'(f) = ~ f/(*) A [(f - «,)(* - ayf'jLliz, t)dz,
l   J T ,=l

whence, in view of (51) and the boundedness of f(z),

|/'(f) | £2* f ix(z)\Lliz,t)iz\,

and, by virtue of (2), (23), and (50),

|/'(f) | 2S -? T #x(z, f)£x(z, [)iz = 2rfx(f, f).
i J v

This proves (52). If Lx(z, t)9^0, the function F(z) in (53) satisfies the hy-

potheses of the theorem. Indeed, F(z) is regular in D and vanishes at the

required points. On T, we have, by (2), (50), and (53),

1       I «»,01

which shows that F(z) is bounded in D. If L\(z, f) vanishes at some points

of D (as shown above, the number of these points cannot exceed re —1), the

extremal property of F(z) within the class of functions having simple or

double poles at these points is shown by modifying the argument in exactly

the same way as in a similar case in the proof of Theorem IV.

The proof of Theorem VII is almost word for word the same as that of

Theorem VI, the only difference being that the roles of X(z) and p(z) are inter-

changed.
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