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BY
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1. Introduction. The properties of the characteristic function of Hubert

associated with a doubly homogeneous ideal a in a ring R = k[X, Y] of poly-

nomials in two sets of indeterminates iX) and ( Y) were studied by van der

Waerden in [l](2). Since such an ideal can be regarded as defining an

algebraic correspondence between the varieties U = Vi<xr\k[X]) and

V=V(ar\k[Y]), van der Waerden's results can be looked upon as belonging

to the general theory of algebraic correspondences. In case U and V are

birationally equivalent normal varieties(3), further results can be given. It

is the object of this note to study the properties of the Hubert character-

istic function which is associated with such a pair of normal varieties. A new

proof of the invariance of the arithmetic genus of two- and three-dimensional

varieties as well as a proof of the Riemann-Roch theorem for a large class of

linear systems on an algebraic surface are among the results obtained.

2. Enumerative functions. Let U and V be models of a field 2 of degree

of transcendency r over a ground field k. The field k is assumed to be alge-

braically closed but otherwise arbitrary. Let (xi, x2, • • ■ , xa) and

(yi. y2, • • • , y«) be nonhomogeneous coordinates of the generic points of U

and V respectively, and let x0 and y0 be quantities which are algebraically

independent over 2. Let x¿ = xox¿, i = l, 2, • • • , g; y,=yoy/, j=l, 2, ■ ■ ■ , h,

and form the ring o = &[xo, Xi, • • • , x„; yo, yi, • • • , y„]. This ring is an

integral domain with quotient field S(xo, yo). If R = k[X0, Xi, ■ ■ • , X„;

Yo, Yi, ■ ■ ■ , Yh] (where (X) and (F) are indeterminates) and if r is the

homomorphic mapping of R onto o which sends AT,- into Xi, Y¡ into y¡, then

the kernel a of r is a doubly homogeneous prime ideal in R. The characteristic

function x(m, n', a) defined in [l] as the number of doubly homogeneous

forms of degree m in (X) and of degree » in ( Y) which are linearly independ-

ent (over k) modulo a is an enumerative function determined uniquely by

the pair of models (U, V) of the field 2. Van der Waerden's main result as-
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serts that there exist integers a,-,-, M, TV such that

(2.1) x(m, n; a) — 22 anCm.iCn.j, when m ^ AT, n 2: TV,
r

where 22r denotes the sum over all integers i, j such that i+j^r. We shall

denote the polynomial E>-a»'yCm,¿C„,y associated with the pair (U, V) by

p(w, n).

Let {^4m} (4) ({.B„}) denote the system of (r — l)-dimensional subvarieties

cut out on U ( V) by the hypersurfaces of order m (n) in its ambient space

Sg (Sh). We regard each of these systems as lying on the join W oí U and V,

and there we consider the minimal sum {Am+Bn} of {Am} and \Bn} to-

gether with the complete sum | ̂ 4TO+5n|. Two enumerative functions r(m, n)

and s(m, n) associated with the pair (U, V) are defined as follows:

r(m, n) = 1 + dim | Am + Bn \,

s(m, n) = 1 + dim {Am + Bn}.

Since it is clear from the above definition of the ideal u that x(m> »! «)

= s(m, n), equation (2.1) can be written in the form

(2.2) s(m, n) = p(m, n), when m ^ M, n ^ TV.

Our main interest is in the function r(m, n). We shall show that under suitable

restrictions on the models U and V and on the birational correspondence

between them, the minimal sum {Am+Bn} is complete for all m when n is

large or for all n when m is large. Moreover, for such values of m and n, the

equations r(m, n) =s(m, n) =p(m, n) hold.

3. Varieties of dimension one. As a starting point for induction proofs

to be undertaken later we consider the special case in which 2 is of degree of

transcendency one over k. We recall a well known lemma of Castelnuovo

which gives a sufficient condition for the minimal sum of two linear series on

an algebraic curve to be complete.

Castelnuovo's Lemma. 7/ g„ is a linear series without fixed points on a

curve F, and if g, is a complete non-special series on T which partially contains

g» and is such that the residual series gy — gß is non-special, then the minimal sum

of gv and gy, is complete.

This lemma leads immediately to the following one.

Lemma 1. If the variety V (of the pair ( U, V)) is a normal curve, there exists

an integer no such that the minimal sum {Am+Bn} is complete if n^no and m

is arbitrary.

Proof. Let rr be the genus of 2 and let ß and v be the orders of U and V

respectively. The system {.4,»} is then a gmp. while {Bn} is a g„„. Since V is

(4) The notation {C\ is used to denote a specified linear system of generic member C, and

the notation | C\ is reserved for the complete system determined by C.
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normal, {Bn} is complete if n is sufficiently large. We fix »o so that (a)

nv—ß>2ir — 2, (b) g„, partially contains g„, (c) gn, is complete, when n^no.

We proceed by induction on m since for m = 0 the lemma is trivially true in

view of (c). We therefore assume that the minimal sum of g„, and gm„ is a

complete series gjv (N = m¡x+nv). We observe that gN is non-special and that

it partially contains g„. By condition (a), N—(i>2ir — 2 so that gN — g» is

also non-special. By Castelnuovo's lemma the minimal sum of gN and g„ is

complete, and since this minimal sum coincides with the minimal sum of

g(m+i)p and gnr, the lemma is proved.

Lemma 2. Under the hypotheses of Lemma 1, the p-function associated with

the pair (U, V) is given by the formula

(3.1) p(m, n) = m¡x + nv — ir + 1.

Moreover, r(m, n)=p(m, n) whenever mß+nv>2ir — 2.

Proof. If w^wo, then {Am+Bn} is complete so that r(m, n)=sim, n)

and rim, n) =p(wz, n) for large values of m and n. Since the complete system

|^4m+5„| is non-special when m and n are large, the Riemann-Roch theorem

for curves yields pirn, «)=r(wz, n)=mß+nv — ir+l. The expression mu+nv

—7T+1 must then give the value of p{m, n) for all m and n since p is a poly-

nomial. It gives the value of r{m, n) whenever mß+nv>2ir — 2, q.e.d.

4. The virtual arithmetic genus. A class of varieties which we shall call

sectionally normal is defined inductively as follows.

Definition I. An irreducible l-dimensional variety is said to be sectionally

normal if it is nonsingular. An irreducible r-dimensional variety is sectionally

normal if almost alii5) °f its sections by the hyper surf aces of its ambient space are

sectionally normal varieties of dimension r—l.

We next define a class of birational transformations.

Definition 2. A birational transformation T defined on an irreducible

variety WGSn will be called a proper transformation if TiWC\St) is normal for

almost all linear subspaces St of Sn (/ = » —r+1), ■ ■ ■ , n). In particular,

T(W) is required to be normal.

We point out that any normal curve or surface is sectionally normal as

is any nonsingular variety of arbitrary dimension(6) ; moreover, if F is a

regular birational transformation defined on a sectionally normal variety W,

then T is proper. We shall have occasion to point out in the next section that

there are proper transformations which are not regular.

(6) The term "almost all" here means all with the possible exception of a proper algebraic

subsystem.

(6) It has recently been proved by A. Seidenberg (but not yet published) that almost all

hyperplane sections of a normal variety Fare normal varieties. This implies that every normal

variety is sectionally normal.
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Theorem 1. If the transformation T: U—*V is proper then there exists an

integer no such that the minimal sum of {Am} and {Bn} is complete when

n^no, m2:0.

Proof. The proof is by induction with respect to the dimension r of the

field 2 of rational functions on U and V. By Lemma 1 the theorem is true

if 2 is of dimension one over k and we assume that it is true if 2 is of dimen-

sion r—l over k. The passage from r — l to r is effected by induction with

respect to m. Since T is proper, the variety V is normal so that the minimal

sum {^4m+£„} is complete if m = 0 and n is sufficiently large. We assume

that the minimal sum {Am-i+Bn} is complete if n is large.

Let A be an irreducible hyperplane section of U such that A' = TiA) is

normal, and the transformation T': A—*A' induced by T is proper. (Such

hyperplane sections exist in view of the theorem of Bertini [4] and the fact

that T is proper(7).) If {Am} and {Bn} are the linear systems cut out on A

and A' by the hypersurfaces of their respective ambient spaces, then these

systems are cut out on A and A' by the systems {Am} and ¡5„¡. By the

induction assumption the minimal sum {Am + Bn} is complete if «2tñ0. We

denote its dimension (increased by one) by f(m, n), and we fix no (2^ñ0) so

that {Bn} is complete when n^no. If G is the minimal sum of {^4».} and

{Bn}, then G cuts out the complete system | ^4m+£„| on A, the dimension

of which is rim, ») —1. The residual system of G with respect to A is the

minimal sum {Am-i+B„}, which by the induction assumption is com-

plete. Since the dimension of ¡^4m_i+73„| is given by rim — 1, w) — 1 we con-

clude that

1 + dim G = rim — 1, n) + rim, n).

C) The theorem of Bertini is proved in [4] under the hypothesis that k is of characteristic

zero. In the special case of the hyperplane sections of an irreducible variety the following con-

siderations remove this restriction on the characteristic. Let V/k be an irreducible

variety in 5„ (k is algebraically closed) and let p be the prime homogeneous ideal of V in

k[Y] ( = k[Yo, Yi, • • • , Yn]). Let («) = («0, «1, • • • , «n) be a set of n + 1 indeterminates (alge-

braically independent quantities over k) and let K denote the field generated over k by the

quotients of the u's. If L denotes the linear form X«,- Yi, then it is easily seen that the ideal

(p, L) in k(u) [ F] is prime. This implies that the intersection W of V with the hyperplane L =0

is irreducible over K. The variety W is of dimension r — 1. If m is the order of V, any linear

S„_r which is general over k meets V in m distinct points. Hence any linear Sn-r+i which is

general over K meets Win m distinct points. It follows that also W is of order m.

Let P be a general point of W/K. Then it is clear that P is also a general point of V/k

and that K is a pure transcendental extension of k(P) (of transcendence degree re —1). Hence K

is maximally algebraic in K(P) and therefore W is an absolutely irreducible variety. Also the

associated form F of W (in the sense of Chow-van der Waerden) is therefore absolutely ir-

reducible (the coefficients of F may be assumed to be forms in è[«]). Hence F remains ir-

reducible for almost all specializations (u)—>(ä), üiGk. Since in any such specialization, F is

specialized to the associated form F of the corresponding hyperplane section W oí V (here ~W

is to be thought of as a cycle, not a variety), it follows at once that almost all hyperplane sections

of V are irreducible varieties of order m.
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However, if II is the complete system |^4m+5„| determined by G, the same

reasoning applied to // would lead to the conclusion that

1 + dim H = r(m — 1, n) + f(m, n).

It follows that G=H, q.e.d.

Corollary 1. Under the hypothesis of Theorem 1, the function r(m, n)

satisfies the addition formula

(4.1) rim, n) = rim — 1, n) + rim, n)

when »^»o.

Corollary 2. The r- and p-functions associated with the pair (77, V) are

equal when n^no and m is arbitrary.

Proof. Let pirn, n) be the p-function associated with the pair (A, A')

introduced above. Since the statement is true for varieties of dimension

one by Lemma 2, we assume for purposes of induction that rim, n) —pirn, n)

if m Sino and m^O. Since the minimal sum {.4m+-B„} is complete, rim, n)

= sim, n), so that if both m and n are large, rim, n) —pirn, n). It follows

from (4.1) that

(4.2) p(m, n) = p(m — I, n) + p~(m, n)

if both m and n are large, and since the p-f unctions are polynomials, (4.2) is

valid for all values ofwandw. Equations (4.1) and (4.2) together imply that if

r(m, n) =p(m, n) then also r(m — 1, n) =p(m — l, n). This completes the proof.

Let W be a normal variety defined by a homogeneous prime ideal p in

the ring S = k [Xo, Xi, • • • , Xn], and let {Cn} be the linear system cut out

on W by the hypersurfaces of order n in the ambient space S„ of W. If r(n) — 1

is the dimension of the complete system | Cn\ and if xin', p) 's the number of

forms of degree n in 5 which are linearly independent modulo p, then rin)

= xin', P) if n is sufficiently large, since W is normal. The function x(n'< P)

is a polynomial in n if n is large;

r

xin; p) = pin) = 22 ß«Cn,,->
¿=0

where the coefficients, ffo, Oi, • • • , aT are integers uniquely determined by

W, and r is the dimension of W. We call pin) — 1 the virtual dimension of

[Cn|, and note that for large values of n the effective dimension r(n) — l

equals the virtual dimension p(n) — 1.

Definition 3. The virtual arithmetic genus pa(W) of the normal r-dimen-

sional variety W is the integer ( — l)r(a0 — 1).

Theorem 2. If U and  V are normal models of 2 and if T: U—*V and
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T'1: V—>U are both proper transformations, then pa(U) =pa(V).

Proof. Letri(m), pi(m) ; r2(n), p2(n) be the effective and virtual dimensions

(increased by one) of \Am\ and \Bn\ respectively, and let r(m, n), p(m, n)

be the r- and p-f unctions associated with the pair (U, V). Let pi(m)

=22ci¿C'».<. Pz(n)= J2c2j Cnj- By definition, ri(m)=r(m, 0), r2(n)=r(0, n).
Since both T and T~l are proper, it follows by Corollary 2 of Theorem 1 that

there exist integers mo and wo such that

rim, 0) = pirn, 0), if m S; mo,

riO, n) = piO, n), if  n = »0.

It follows that

piim) = pirn, 0),        p2(n) = p(0, n),

for all values of m and w. If <ioo is the constant term in p(w, »), then Cio = <Zoo

= c20. It follows that paiU)=paiV), q.e.d.

Corollary 1. If U and V are sectionally normal models in regular birational

correspondence, then paiU) =paiV). In other words, the virtual arithmetic genus

of a sectionally normal model is a relative birational invariant.

Proof. We have pointed out above that a regular birational transforma-

tion defined on a sectionally normal model is proper. Since the inverse of a

regular transformation is also regular, the corollary follows.

5. Varieties of dimension two and three. In this article we confine our

attention to the cases in which 2 is of dimension two or three over k and we

restrict our remarks to nonsingular models of such fields. We assume through-

out the remainder of the text that k is of characteristic zero.

If U and V are nonsingular models of 2 and if V dominates U, U< V~is),

then it is immediately clear that T: 77—» F is proper. In fact, the system

7\{j4i}) on V has no base points (since U< V) and since V has no singu-

larities, the general member of T({Ai}) has no singularities in view of

Bertini's theorem [ó]. If 2 is of dimension two this remark suffices to prove

that T is proper. If 2 is of dimension three we observe in addition that a

generic Ai and its transform T(Ai) are nonsingular and that Ai<T(Ai).

Hence T induces a proper transformation on a generic Ax so that it is itself

proper.

We consider quadratic and monoidal transformations in the next two

lemmas. These terms are used in the sense of [5, article 11 ].

Lemma 3. If U and V are nonsingular, and if V is obtained from U by a

(8) The statement " V dominates Z7" implies that the birational transformation T'1: V—*U

has no fundamental points on V; or equivalently, the local ring Q(P') contains the local ring

Q(P), when P(GU) and P'(GV) are a pair of corresponding points in the birational cor-

respondence T. This relationship is denoted by the symbols U< V.
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quadratic transformation with center at a point P of U, then both T: £/—>F

and T~1 : F—> U are proper transformations.

Proof. In this case U < V so that T is proper. Let (??o, r]i, • • • , rj„) be

homogeneous coordinates of the general point of U and let p be the prime

ideal of P in the ring o = &fo]. If fa, fa, • • • , fa\ form a linear basis for the
forms of degree v in p, and if v is sufficiently large, then the ideal a = 220(/>»

differs from p by at most an irrelevant component and (4>o, fa, • • • , fa\) can

be regarded as the general point of V. Hence the linear system defined by

fa[\)=0, where <¡>(\) =\o<po+~kifa+ • • ■ +An</>A, A¿E&, is the inverse trans-

form of the system {Bi} of hyperplane sections of V. The point P is the only

base point of this system, and since U is nonsingular, the generic member of

this system has no singular points except possibly at P itself. If we assume

that P is not on the hyperplane section 770 = 0, and if we put fa = fa/vó, then

the quantities \po, fa, • • • ,fa\ will form a basis for the prime ideal of P in the

quotient ring Q(P/U). It follows that among the fa- there is at least one

whose leading form at P is linear so that almost all members of {<j>(\)} have

a simple point at P (see [6, p. 137]). The generic member of {</>(X)} is there-

fore nonsingular and hence normal. This proves that T~1 is proper if U and V

are surfaces.

If 2 is of dimension three, it is necessary to prove in addition that the

general characteristic curve of the system {(b(\)} is nonsingular, since such

a curve is the transform by T~l of a section VT\Sh-2, where 5„ is the ambient

space of V. However, it is proved in [5] that a quadratic transformation

with center at a point P oî U induces a quadratic transformation on any sub-

variety of U through P. If we apply this remark to a generic member <£ of the

system {<£(X)} we conclude as above that the generic characteristic curve

$r\4>Q\) has no singularities, q.e.d.

If U and V are three-dimensional varieties, and if T is a monoidal trans-

formation with center along an irreducible curve AGU, then since U is non-

singular, every point of A is a simple point of 77. If in addition every point of

A is a simple point of A, then we shall call T a nonsingular monoidal trans-

formation.

Lemma 4. If U and V are nonsingular and if T: U—» V is a nonsingular

monoidal transformation, then T and T~l are proper.

Proof. Since U < V, T is proper. The proof that T-1 is proper is similar to

the proof given in Lemma 3 for quadratic transformations. We use the same

notations as in Lemma 3, except that now p is the prime ideal of A in 0. The

general member of the system {</>(X)} has no singularities except possibly

at points of A. If P is a point of A not on the surface r/o = 0, then fa^, fa, ■ • • ,

fa\ will form a basis for the prime ideal of A in X = Q(P/U). Then, since P is

simple both for A and for U, it follows that among the fa- there will be at least
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one whose leading form at P is linear (see [5, footnote 34]). Hence P cannot

be a singular base point of {$(A)|. It follows that the generic member of

{<£(A)} is nonsingular.

To complete the proof we must show that the generic characteristic curve

of {<£(A)} is nonsingular, and for this it suffices to show, in view of Bertini's

theorem, that the system cut by {(/3(A)} on a generic member <p (outside the

fixed curve A) has no base points on A. The total transform T(A) of A is

an irreducible surface F on V which is "ruled" by a pencil {/} of rational

curves. The curves / are in 1:1 correspondence with the points of A and each

/ is the total transform of the point of A to which it corresponds [7, article 5].

We choose a hyperplane section Bi of V such that the section Ff~\Bi is an

irreducible curve T which is not a component of any member of the pencil

{/}. We further assume that T~l(Bi) is a nonsingular irreducible member

¿ of {</>(A)}. If </>(A)G{(KX)}, we write <pÇk)r~\$=A+R(\). Let us assume
that PGA is a base point of the residual system {i?(\)}. It then follows that

every hyperplane section B[ of V meets the section Bi in a point of the

variety T(P)i~\T. Since V is not a component of any member of {/}, it follows

that T(P)r\T consists of a finite set of points, so that the conclusion that

every hyperplane B[ meets T in a point of 77(P)fM1 is absurd, q.e.d.

These lemmas yield the following further corollary to Theorem 2.

Corollary 2. The virtual arithmetic genus of a nonsingular model of a field

2 of dimension two or three over k is invariant under quadratic and nonsingular

monoidal transformations.

The considerations of part IV of [7] show in particular that if U and V

are nonsingular models of a three-dimensional field 2, then there exist models

£/i and V~i in regular birational correspondence such that Ui ( V~i) is obtained

from U iV) by a sequence of quadratic and nonsingular monoidal trans-

formations. It follows that paiU) =paiUi) =paiVi) —paiV). Since a similar

statement is true for nonsingular surfaces (see [3]) we can assert the following

theorem.

Theorem 3. If 2 is a field of dimension two or three over k, then any two

nonsingular models of 2 have the same virtual arithmetic genus.

The virtual arithmetic genus of a nonsingular model can therefore be re-

garded as a character of the field rather than of a particular model. This

character is called the arithmetic genus of 2 and is denoted by £„(2).

6. Normal surfaces. Our objective in this section is to show that if U is

any normal model of a field 2 of dimension two over k, then the virtual

arithmetic genus of U is not less than the arithmetic genus of 2, pa(U)

èîpaÇZ). Since it is known that there exists a nonsingular model F of 2 such

that V>U [2], the following theorem will yield the desired result.
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Theorem 4. 7/ U and V are normal models of 2 (2 of dimension two), and

if U<V, then pa(U)^pa(V).

The major portion of the proof of this theorem is contained in the follow-

ing two lemmas.

Lemma 5. Let T be an irreducible algebraic curve of order v in Sn, and let

gmr be the series cut out on T by the hyper surfaces of order m in Sn. If g„ is a linear

series on Y without fixed points, then there exists an integer M such that if

m^M, the deficiency of the minimal sum of gmy and gM is not greater than

the deficiency of gm„ in symbols, S(gm,+gM)gS(gmv).

Proof. Let G„ be a set of the series g„ and choose nonhomogeneous co-

ordinates on r so that no point of G> is at infinity. If a is the ideal in the

ring o = è[x!, x2, • • • , x„] of nonhomogeneous coordinates on T which is

determined by G„, then the length of u is p, and there exist p elements

0i, 02, • • • , 4>p. in o which form an independent ¿-basis for o modulo a. If m

exceeds the degree of each of the polynomials 0,-, then the set G„ will impose

p independent conditions on the series gmv. That is, if gm„ is the subsystem of

gmv consisting of those sets of gmv which contain G„, then dim |m, = dim gmv— p.

Fix M so large that the above condition holds when m 2: M. Increase M

if necessary so that gm,Dg», and the residual series gm, — gß is non-special

when m 2: M. Let G¿ be another fixed set of gß which has no point in common

with G„. Consider the two series gm»+G„ and gmy+G'^ obtained by adding the

fixed sets Gy, and G¿ to the series gmv. The union of these two series is con-

tained in the minimal sum of gmy and gy. The common part of these series is

the series £m„. Hence

mv + p — 7T — 8(gm, + gy) 2; 2(mv — x — 5(gmr)) — (mv — ir — 5(gm„) — p),

and 5(gm,+gy)^o(gmy), q.e.d.

Lemma 6. If U and V are normal models of 2 such that U< V, then there

exist integers mo, d such that

(6.1) p(m, n) + d 2; r(m, n) 2t p(m, n)

when m 2; mo and n 2:0.

Proof. Since U<V, and since Uand Fare normal, it follows that T: U—>V

is proper, so that by Corollary 2 of Theorem 1 there exists an integer no

such that r(m, n) =p(m, n) when «2rw0, m^O. Let Bi be an irreducible non-

singular hyperplane section of F, and let B~i = T~1(Bi). If r*(m, n) and

p*(m, n) are the r- and p-functions associated with the pair (Bi, B-Î), then, by

Lemma 2, r*im, n) =p*(w, n) for all m if n is large or for all n if m is large.

The image of 2?i on the join of U and F is a normal curve, so that it follows

as in the proof of Theorem 1 that |^4m+73„ will cut a complete series on

Bi if n is large. Since the residual system of   ^4m+5„| with respect to Bi is
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the complete system |^4m+5n_i|, we conclude that r(m, n)=r(m, n — l)

+ r*(m, n) for large values of n. It follows that p(m, n)—p(m, n — l)

= p*(m, n) for all values of m, n since the p-functions are polynomials.

Let gmv be the series cut out on Bi by the system {^4m}. If we apply

Lemma 5 to the case in which the gy of that lemma is the series g„ we find

o(g(m+i)r) ^ à(gmv) for large values of m. It follows that è(gmv) remains constant

when m is large, say b(gmv) =5 if m2:Afo. Let gsß be the series cut on Bi by

{Bs} , s= 1, 2, • ■ -, «o, consider it as a series on Bi, and apply Lemma 5 to

each of the series g,„ in turn. This yields a set of integers Mi, M2, ■ ■ ■ , ATno.

Let ?wo = max (Mo, Mi, ■ ■ ■ , Mnil). We can then assert that if m^m0, then

0(gm, + g.y.)u^,   5=1,   2,    •   •   -,   Wo.

The system cut by |^4m+5,| on Bi (?w=»zo, s—l, 2, • ■ ■ , no) contains

the minimal sum gmy+g3y and is totally contained in the complete series

determined by gm,+gsy Since the residual system of |^4m+T3s| with respect

to J5i is the complete system [ Am+Bs^i\, the following inequalities are valid :

rim, s — 1) + r*im, s) 2t rim, s) 2t r(w, s — 1) + r*im, s) — 5,

j = 1, 2, • • • , no.

On combining these inequalities with the equalities rim, n) =pim, n), n^n0,

w^O; r*im, n)=p*im, n), m^mj, »^0, and using the addition formula

pirn, n)—pim, n — l)=p*(m, n), we find

p(m, s) + (wo — s)o 2: rim, s) = pirn, s), s "■ 0, 1, • • • , n0; m = ma.

If we put ¿ = 5wo, the lemma follows, q.e.d.

Theorem 4 now follows quite readily. As in the proof of Theorem 2, let

riim), piim); r2in), p2in) be the effective and virtual dimensions (increased

by one) of \Am\ and \Bn\, and let

2 2

Piim) = 22 eiiCm,i, p2in) = 22 <*&».!> pO», ») = 22 &i&m.£n,i-
»=0 J-0 2

Since r2(w)=r(0, w) =p(0, w) if «2:m0, it follows that c2o=aoo. On the other

hand, piini) =ri(m) =r(m, 0) for large values of m so that, by Lemma 6,

p(?w, 0)+íT2;p1(w) 2tp(w, 0). It follows that the polynomials p(w, 0) and

pi(m) differ only by a constant and that Ci02;aoo. Hence pJJJ) 2;pa(F), q.e.d.

If W is an arbitrary normal model of a two-dimensional field 2, if the

system {C} of hyperplane sections of W is of degree v and genus it, and if

pa(W) =paÇ2)+s, where $2:0, then by a straightforward computation it is

found that the function p(n) associated with W is given by the expression

Pin) = vCn.2 + (* - ir + 1)» + i„(2) + j + 1.

It follows that

dim | nC | = ¡>Cn,2 + (f — r + 1)» + 7>0(S) + 5
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if n is sufficiently large. This is the Riemann-Roch theorem for the complete

system \nC\.
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