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Introduction. The aim of this paper is to establish a Galois theory for

simple (finite-dimensional) algebras. Since the meaning of the designation

"Galois theory" has begun to change quite considerably, it may be appro-

priate to point out that we study the relationships between certain subalge-

bras of an algebra A on the one hand, and certain groups of automorphisms

of A on the other.

The ordinary theory of central simple algebras covers the case of sub-

algebras containing the center of A. Another special case, in which the sub-

algebras are subfields of the center, has been discussed from a somewhat dif-

ferent point of view by Teichmueller [7] and by Eilenberg and MacLane

[4](1). Some of the recent generalizations of Galois theory to far more gen-

eral rings—in particular J. Dieudonné's [3]—are concerned chiefly with

Galois correspondences between certain subrings of a given ring A on the one

hand, and certain rings of endomorphisms on the other. These rings of endo-

morphisms are intimately related to groups of automorphisms of A in the

case of division rings, but in the general case this theory is quite far re-

moved from a theory of automorphisms of A.

The theory given here resembles the Galois theory for division rings as

given by H. Cartan [2] and N. Jacobson [6], and covers the special case of

division algebras in the same way. Some of our results are related also to

those of Dieudonné [3]. However, our method is independent of the new

techniques and consists simply in combining the well known results of the

theory of simple algebras with those of the ordinary Galois theory for fields,

a knowledge of which we shall assume(2).

1. Auxiliary results.

Lemma 1.1. Let A be a simple algebra with center C, and let B be a simple

subalgebra of A containing C. Let ß be an automorphism of B which maps C

onto C and denote by ß the automorphism of C which is induced by ß. Then ß

can be extended to an automorphism of A provided only that ß can be so extended.

Proof. Let o be an automorphism of A which extends ß, that is, which

agrees with ß on C. Then <s maps £ isomorphically onto a simple algebra
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(') Numbers in brackets refer to the bibliography at the end of the paper.

(2) All the results that we require can be found, for instance, in Jacobson [5] and in Artin

[1].
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Bi~DC. The mapping ßo"1 (defined on £1) maps £1 isomorphically onto B

and leaves the elements of C fixed. By a standard theorem in the theory of

central simple algebras (see, for instance, Theorem 15, p. 101 of [5]) there

exists an (inner) automorpism a oí A which coincides with ßo-1 on B\.

The mapping ao is an automorphism of A which coincides with ß on B.

Lemma 1.2. Let K be a simple algebra with center Z, and let G be a finite

group of automorphisms of K such that only the identity element of G is an

inner automorphism. Let P denote the subfield of Z which consists of the elements

fixed under G, and let T be the subring of K which consists of all elements fixed

under G. Then T is a simple algebra with center P, and K = TZ ~ £ X pZ, the

Kronecker product of T by Z relative to the common subfield £(3).

Proof. We shall imbed K in a simple algebra A with center P in such a

way that the result can be deduced from the theory of commutators in a cen-

tral simple algebra. The algebra A will be obtained by a construction anal-

ogous to that of a crossed product:

As an additive group, A will be the additive group of all mappings of G

into K. We make A into a ring by defining, for p, a, rGG and/, gGA,

(fg)(r)=   E f(p)p{g(*)}.
pff=T

Now we imbed E isomorphically in A by the mapping k—*k" where A°(r) is

defined to be equal to k if r is the identity element of G, and 0 otherwise. If

we make the identification k = k", it is clear that P comes to lie in the center

of A, so that we may regard A as an algebra over P. As a (left) space over K,

A has a basis of elements ua, oGG, where u,(r) is defined to be equal to 1 if

r—o, and 0 otherwise. For kGK we have then u,k=cr{k}u„.

Next we shall prove that A is simple. Let / be any nonzero two-sided

ideal in A. We have to show that I = A. Let Ei-i kiU„{, A,GE, be a nonzero

element belonging to / in which the number r of terms is minimal. Then the

Oi are all distinct. Suppose first that r = 1, that is, ku.GI, with k^O. Multi-

plying with ki on the left and with cr-1^} on the right we find that kikk2uc

GI, for all ki, k2GK. Since E is simple, we have KkK = K, and we may

conclude that u,GL Hence 1 =u<,-w<,GI, so that I = A. Hence we may sup-

pose that r>l. Furthermore, the argument we have just made shows that

we may assume that kr=l. Then if we multiply our minimal element by k

on the left and subtract from the product the result of multiplying the ele-

ment by o-r_1{A} on the right we find that Eï-i (kki — kioio~1{k})u,iGI.

By the minimality of r and the E-independence of the u, this implies that

kki = kio-iCTj1{k}, forall AGEandi'= 1, • • • , r— 1. This shows that Kk, = kiK,

(3) If U and V are subrings of a ring A, we shall always denote by UV the subring of A

which is generated by U and V. Kronecker products, or direct products, consist of formal sums

of formal products, with the requisite identifications.
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and hence that EA, is a two-sided ideal in E, so that Kki = K. Hence there

is an element A4_1GE such that kî1ki = l, and the last equation gives k^kki

= <t;ov~1{A}, which means that aiO^1 is an inner automorphism. By assump-

tion on G this gives the contradiction o i = av. Hence the case r > 1 cannot arise,

and we have shown that A is simple.

We claim that the commutator algebra of Z in A coincides with E. In

fact, if /= E»G6,/(£r)M'r commutes with every element zGZ, we obtain,

by the independence of the w„, (z — a {z} )f(o) = 0. Since Z is a field, we can con-

clude that if/(<r) 9^0 we must have z = cr{z}, for every zGZ, so that a is inner

and therefore the identity automorphism. But this means that/GE, which

proves our assertion.

Now let U denote the subring of A which is generated by the u„ and the

field Z. The argument above can be applied to U and shows that U is simple

and that the commutator algebra of Z in U coincides with Z. It follows from

the second conclusion that the center of U is the fixed subfield (under G) P

of Z. Similarly, the center of A must be contained in the commutator alge-

bra E of Z in A and hence must be contained in Z whence we see that it also

coincides with £. Further, we have [U:P] = [U:Z] [Z:P] = [Z:P]2, because

[£/:Z] = order of G=[Z:£].

The commutator algebra of U in A must be contained in the commutator

algebra E of Z whence we see at once that it coincides with the fixed subring

£ of E. Hence the commutator algebra of T in A coincides with U(A), and

therefore the commutator algebra of T in K is UC\K = Z. Hence the center

of T is TC\Z = P. The remaining assertion of Lemma 1.2 now follows directly

from a theorem due to Wedderburn and Albert (Theorem 6, p. 51, of Albert's

Colloquium Lectures). However, we can obtain our result in a more familiar

way: Since £ has center £, TXpZ is simple(5), and hence the natural homo-

morphism of TXpZ onto TZ is an isomorphism. Hence [£Z:Z] =[£:£]

= [A:P]/[U:P], since U is the commutator algebra of £ in ^4(6). But

[A:P] = [Z:P][K:P] and [U:P] = [Z:P]*. Hence [TZ:Z]=[K:P]/[Z:P]
= [E:Z], and therefore E= TZ. This completes the proof.

2. Galois theory. Let A be any ring, 5 an arbitrary subset of A. The

group Hs of all automorphisms of A which leaves the elements of S fixed has

a certain completeness property: Let us denote by R(Hs) the subring of A

which is generated by the set of all those regular elements aGA which effect

inner automorphisms x^axa-1 that belong to Hs- Then Hs must contain

every inner automorphism effected by an element of R(Hs). It is evident that

only groups with this completeness property can figure in a Galois theory.

(4) See Theorem 19, p. 104, in [5]. We shall use this theorem without further explicit refer-

ence from now on.

(6) See Corollary 1, p. 99, in [5].

(6) For this and the next dimensionality relation for commutator algebras, see reference in

footnote 4.
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This motivates the following definition :

Definition 2.1. A group H of automorphisms of a ring A is called com-

plete if it contains every inner automorphism effected by an element of the

subring £(££) of A.

Simple examples show that we must restrict the groups further. Thus, let

F2 denote the algebra of all 2 by 2 matrices with coefficients in an arbitrary

field £. Let H be the group of all those inner automorphisms of F2 which are

effected by elements of the form

G !> *•**
Then RiH) consists of all matrices of the form

/u   0\

\v   w)

It is easily seen that the subring of £2 which consists of the elements left

fixed by H coincides with £, the center of F2. But this is left fixed by the

larger group of all inner automorphisms of £2, in violation of a fundamental

theorem in the ordinary Galois theory.

The difficulty exhibited here will not arise if we demand that RiH) be a

simple ring. Furthermore, we secure a suitable finiteness condition as follows:

If H is a group of automorphisms of the simple algebra A with center C, then

RiH) is evidently a subalgebra of A containing C. Let H° denote the subgroup

of H which consists of all the inner automorphisms that belong to H. H° is

invariant in H. We define the reduced order of H as the product of the order

of H/H° by the dimension [RiH) : C] of RiH) over C. We shall confine our

attention to groups of finite reduced order, that is, we shall demand that

H/H" be a finite group.

Definition 2.2. Let A be a simple algebra with center C. A group H

of automorphisms of A is called regular if it is complete, of finite reduced

order, and such that RiH) is simple.

The next theorem will show that the relationship between a regular group

H of automorphisms of a simple algebra A and the subring E(E") consisting

of all the elements of A which are fixed under H is that of the ordinary Galois

theory. Furthermore, it will turn out that £(ET) is a "regular" subring of A

in the sense of the following definition:

Definition 2.3. Let A be a simple algebra with center C. A subring B

of A is called almost regular if

(1) £ is simple and contains the identity element of A.

(2) C is finite over the subfield B(~\C.

(3) BC is simple.

B is called regular if it satisfies (1), (2), and
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(4) BXbhcC is simple.

Since there is a natural homomorphism of EXsncC onto BC, it is clear

that (4) implies (3), so that every regular subring is almost regular. Note

further that if £ is a subalgebra of A, finite over some subfield of C which is

contained in B, then (3) implies that B is simple. In fact, if £ is the radical

of £, then TC is a nilpotent ideal in BC and hence must be (0), whence

£=(0), so that B is semi-simple. Hence, if B were not simple, there would

be two nonzero two-sided ideals U and V in B such that UV= (0). But then

UC and VC would be two-sided nonzero ideals in BC, and thus UC = BC

= VC, whence (BC)2 = UCVC= (0), contradicting the assumption that BC is

simple.

We shall use the following notation: If B is any subalgebra of A over a

subfield £ of Csuch that [C:£] is finite, we shall write [.4 :£] for the positive

rational number [A :£]/[£:£]. This notation cannot lead to confusion, be-

cause the number [A :£]/[£:£] is independent of the particular choice of the

field L. We are now in a position to state our theorem.

Theorem 2.1. Let A be a simple algebra and let H be a regular group of

automorphisms of A. Then the fixed ring F(H) of H in A is regular, and H is

the group of all automorphisms of A which leave the elements of F(H) fixed.

Furthermore, the reduced order of H is equal to [A : FiH) J.

Proof. Since RiH) is a simple subalgebra of A containing the center C, its

commutator algebra, E say, is also a simple algebra containing C, and we

have [E: C] [RiH) :C]=[A: C}. Evidently, F(H)QK. Since an automorphism

aGH maps R(H) onto R(H), it must map E onto K. If o induces an inner

automorphism in K, then it leaves the elements of the center Z oí K fixed.

Since Z~Q_C, a then leaves the elements of C fixed and hence is an inner auto-

morphism of A, that is, oGH0. But then a is effected by an element of R(H)

and hence induces the identity automorphism in E. It follows that the restric-

tion of H to E is isomorphic with H/H", and hence is finite. We can there-

fore apply Lemma 1.2 to conclude that F(H) is a simple algebra whose center

coincides with the subfield £ of Z which consists of the elements fixed under

H, and that K = F(H)Z~F(H)XpZ. Clearly, £ = F(H)r\Z^_FiH)r\C= F,
say. Also ECÇJZ, and H maps PC onto PC. F is the subfield of C which

consists of the elements fixed under H, and £ = ££ is the subfield of PC which

consists of the elements fixed under H. Since the restriction of H to PC is

also isomorphic with H/H", we obtain [PC:P] =order of H/H°= [Z:P], so

that PC = Z. Similarly we have [C: £] = [Z:P], whence [Z: F] = [Z:P] [£:£]

= [iPXpC) '■ £]. Hence the natural homomorphism of PXfC onto PC = Z is

an isomorphism. In particular, this shows that PXfC is simple, and since

F(H) has center £, it follows that F(H)XfC is simple, that is, that F(H)

is a regular subring of A.

The reduced order of H is equal to (order of H/H") [R(H):C]= [C:F]
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■[A:C]/[K:C]=[A:F]/[K:C]. Since K~F(H)XpZ, we have [K:Z]
= [F(H):P], and hence [K:C]=[K:Z][Z:C]=[F(H):P][P:F]= [F(H)
:£]. Substituting this in the above, we obtain the result that the reduced

order of H is equal to [A :F(H)].

Finally, let i£ denote the group of all automorphisms of A which leave

the elements of F(H) fixed. Then H^H and F(Hi) = F(H). Hence R(H)

is contained in the commutator algebra £ of F(H) in A. But evidently L

is also the commutator algebra of F(H)C, and since F(H)C is simple, it

follows that £ is also simple. Hence £ is generated by its regular elements

(to prove this, it suffices to consider the case of a full matrix algebra over a

field, which is easily settled). This implies that LÇLR(Hi), and hence that

L = RiH). Now Hi/Hi is still isomorphic with the Galois group of C over F,

and in particular is of the same order as H/H". Thus Hi is a regular group,

and if we apply the above to Hi we conclude that the reduced order of i£ is

equal to the reduced order of H, which gives [RiH) : C] = [RiH) : C]. Since

RiHi)^RiH), it now follows that RiHi)=R(H), and hence that H°i=H".

Since Hi/H" is of the same order as its subgroup H/H", we must have Hi = H,

which completes the proof.

Theorem 2.2. Let A be a simple algebra with center C, and let B be an almost

regular subring of A. Then the group IIb of all automorphisms of A which leave

the elements of B fixed is regular. If F is the subfield of C which consists of the

elements fixed under Hb, then the fixed subring F(HB) of HB in A coincides with

BF.

Proof. The argument we made in the last proof, when we showed that

RiH) was simple, proves here that RiHB) is simple. Evidently, HB is com-

plete and Hs/Hß is isomorphic with the Galois group of C over £. Since

F^BC\C, [C: F] is finite, and hence HB/H% is finite, and HB is regular. Since

R(Hb) is the commutator algebra of the simple BC (cf. above), BC is the

commutator algebra of E(iEg). Hence we have BFÇ.F(HB)QBC. Let £ de-

note the center of B. Since BC is simple, its center is a field which evidently

contains PC. Hence PC is a field, and we have BC^BXpPC. From this it is

easily seen that the fixed ring of HB in BC is BS~BXpS, where 5 is the

fixed field of HB in PC. But, clearly, S = PF, so that BS = BF. On the other
hand, since F(HB)Ç.BC, the fixed ring of HB in BC coincides with £(ErB).

Hence FLHb) =BF, and our proof is complete.

As in the ordinary Galois theory we shall say that A is normal over £ if

FiHB)=B.

Theorem 2.3. Let A be a simple algebra, and suppose that A is normal over

a regular subring L. Let B be an almost regular subring of A such that LÇ2B.

Then A is normal over B, and B is regular.

Proof. We have Lr\CÇBf~\CQC, where C is the center of A. Since A is
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normal over £, Lí\ C is the fixed field of Hl in C. Hence C is normal over Lí~\ C

and therefore also normal over B(~\C. Let £ denote the center of B. We know

from the proof of the last theorem that PC is a field and that BC~BXpPC.

Since C is normal over Pr\C = BC\C, PC is normal over £ and the auto-

morphisms of PC relative to £ induce all the automorphisms of C relative to

PC\C. In other words, every automorphism of C which leaves the elements of

P(~\C fixed can be extended to an automorphism of PC which leaves the ele-

ments of P fixed. Since BC^BXpPC, it follows that every such auto-

morphism can be extended to an automorphism of BC which leaves the ele-

ments of B fixed. Since every such automorphism of C is induced by an ele-

ment of Hl, it follows from Lemma 1.1 that the corresponding automorphism

of BC can be extended to an automorphism of A which—of course—is an

element of HB. Hence PC\C is precisely the fixed field of HB in C. By Theorem

2.2, we have therefore

FiHB) = £(£ H C) = £,

that is, A is normal over B, and HB is regular. By Theorem 2.1, £ = FiHB) is

regular.

In order to show that Theorem 2.3 does not hold when the condition that

BC be simple is omitted, we cite an example given by Teichmueller in [7]:

Let £ be a field, and let C be a normal extension field of £ with a cyclic

Galois group of order greater than 2. Let A be the algebra C2 of all 2 by 2

matrices with coefficients in C. Let 7 be a generator for the Galois group of C

over £, and take £ to be the ring of all matrices of the form

G»w> e€C-
We can extend the autmorphisms 7* to automorphisms of A by defining

yk{ (cn)} =(yk{c¡j})- It follows easily that A is normal over £, and evidently

£ is a regular subring of A. The subring £ is simple, but BC is the ring of all

matrices of the form

Vo   J'
and thus is not simple. The automorphisms of A which carry BC into BC

are easily seen to be products of yk and inner automorphisms effected by

elements  of  the  form

g :) » c :>
Since the order of 7 is greater than 2, it follows by an easy computation that
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an automorphism which leaves the elements of £ fixed must be an inner

automorphism effected by an element of the form

\0    b)

From this it follows at once that F(HB)=BC, which shows that A is not

normal over B.

Theorem 2.4. Let A be normal over the regular subring L. Let B be a ring

such that LQBQA, and suppose that <p is an isomorphism of B into A which

leaves the elements of L fixed. Then, if BC and <p {B} C are both simple, <p is in-

duced by an element of Hl.

Proof. Let £ denote the center of B. Our conditions imply that £ and

4>{b} are almost regular, so that PC and <p{P}C are fields. Consider the

tower of fields Li~\CQ\PC\CÇJCÇ<£{P}C. Since C is normal over L(~\C, and

since 4> maps EPiC into <p{P} C, it follows that cp{Pr\C}ÇZC. The iso-

morphism $ oí PC\C into C which is induced by <p can be extended to an

automorphism <f>* of C which leaves the elements of L(~\C fixed. From

Theorem 2.3 we know that B and </>{£} are regular, so that BC^BXpncC

and(j!.{£}C«<p{£}x*(P)ncC. But <p{P}r\C=4>{Pr\C}m, so that 0{e}C
«</>{£} X<¡,lpnc)C. Now it is clear that there exists an isomorphism <pi of

EXpncC onto <I>{b} X*ipnc)C such that <pi{bXc} =<t>{b} X<b*{c}. To this
there corresponds an isomorphism (p2 of BC onto 4>{b}C which coincides

with <j> on £ and with <j>* on C. Since 4>* is induced by an element of Hl, it

follows from Lemma 1.1 that <p2 is also induced by an element of Hl- This com-

pletes the proof.

The example we have cited above shows also that the condition that BC

and 4>{B}C be simple cannot be omitted in Theorem 2.4. In fact, the ring

B of Teichmueller's example is evidently isomorphic with the center C of A,

by an isomorphism which leaves the elements of £ fixed. But since every

automorphism of A must map C onto C, no isomorphism between £ and C is

extensible to an automorphism of A.

If H is a group of automorphisms of A, and if £ is a subring of A, we shall

denote by H(B) the subgroup of H consisting of the elements which map £

into B.

Now let A be a simple algebra, and suppose that A is normal over a regular

subring £. Let £ be a regular subring of A which contains £. If F(Hl(B))

= £, it follows almost immediately that B is normal over £, and that the

group of all automorphisms of £ which leave the elements of £ fixed is iso-

morphic with Hl(B)/Hb. However, one can give examples to show that £

(') The inclusion (t>(P)i~>\CÇl<t>(Pr\C) is proved by proceeding with #_1 as we did with 4> in

the beginning of this proof.
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need not be regular in £, and that the group of automorphisms of £ relative

to £ need not be regular.

Conversely, if £ is normal over £, then it follows from Theorem 2.4

that FiHL(£))=£•

Under suitable regularity conditions, we can obtain a stronger result.

This will follow from the next lemma.

Lemma 2.1. Let A be a simple algebra with center C, and let B be an almost

regular subring of A. Let L be a subring of B containing the identity of A, and

such that LPC is simple where P is the center of B. Then R(Hl(B)) is simple.

Proof. Let K be the commutator algebra of ££C in BC. Since LPC is a

simple algebra containing the center PC oí the simple algebra BC, K is a

simple algebra over PC. Also the ring R(HB) is the commutator algebra of BC

in A, and hence is simple and has center PC. We may form the Kronecker

product R(Hb)XpcK which is a simple algebra over PC. It follows that

R(Hb)K^R(Hb)XpcK, and hence is simple. Write M = R(HB)K.

Clearly, R(HL(B))^)M. Since R(Hl(B)) has a finite basis over C which

consists of regular elements, we can find a finite set of regular elements

uu ■ ■ ■ , um such that R(Hl(B)) = Mui + ■ • • +Mu„„ and if we take such a

set for which m is minimal, we shall have «¿re/'GM when Í9¿j. Clearly,

UíR(Hb)u^1QR(Hb) and m.Ew/'CIE, whence m,Mm4_1ÇM. These facts en-

able us to proceed as in the proof of Lemma 1.2 in order to show that

R(Hl(B)) is simple: In fact, if / is any two-sided ideal not equal to (0), we

take an element in / in which the coefficients of the w¿ are not all equal to

zero and in which the number of nonzero coefficients is minimal. We may

suppose that E<-i 2¿M»> O^ZiGM, is such an element. Then we see as in the

proof of Lemma 1.2 that we may arrange to have zr=l. If we had r>l, we

would find as before that the Z¡ have inverses z^1, and that z = ZiUiU^1zuru¡~1z¡~1,

for all zGM. This means that the elements ZiUiU/1 commute with every ele-

ment of M. It follows from this that ZïUïu/1 must belong to the commutator

algebra BC of R(HB), and hence also to the commutator algebra LPC of

K in BC. On the other hand, ZiW.-re/1 evidently commutes with every element

of £. It follows that ZiUiU,1GK, and hence re.-w"1 G M, contrary to assumption.

Hence we must have r = l, which gives I = A, and we have proved that

R(HL(B)) is simple.

Theorem 2.5. Let A be a simple algebra with center C, normal over a regu-

lar subring L. Let B be a regular subring of A containing L and with center P.

Suppose that LPC is simple. Then B is normal over L if and only if the smallest

complete group containing Hl(B) coincides with Hl-

Proof. If the condition is satisfied, then we obtain easily that F(HL(B))

= F(Hl) =L, which implies that £ is normal over £.

If G is the smallest complete group containing HL(B), then we have
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R(G) =R(Hl(B)), and it follows at once from Lemma 2.1 that G is regular.

Now if £ is normal over £, we have F(Hl(B))=L, and hence F(G)=L.

Since G is regular, Theorem 2.1 now gives G — Hl-
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