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Let E and F be two uniform spaces^) and denote by JiE, F) the set of all

mappings of E into F. We introduce, in JiE, F), the structure of uniform

convergence so that families of mappings can also be considered as sets of

points of the functional space JuiE, F) (cf. [2, chap. 10, p. 5]).

We shall mainly study the special case E — F and this will lead us to certain

modifications and extensions of the notion of equicontinuity (Theorems 1,2,3

and their corollaries). However, we find it convenient to state our definitions

in the general case, E?*F, and also to investigate their more immediate

implications (Properties I to V, Lemma 1, Theorem of Ascoli-Gottschalk).

1. Definitions. Let { Jj\ and { V] be the filters of vicinities(2) which define,

respectively, the structures of E and F.

We say:

(i) that two mappings hi and h2 differ by less than V if

hiix) C V(h,(x))    and    *,(*) C V{h(g)),

for all *{€£];
(ii) that h is V-continuous if there exists U such that

h(U(x)) C Vihix))

for all c[G£]
(iii)  that a finite set of mappings

(1) H, k2, ■ ■ ■ , kg,

is a V-neti3) for the family H, if every function of H differs, by less than V,

from some member of (1) ;

(iv) that a family H is almost smooth if, to every V, there corresponds a

non-negative integer w(F), such that all but m(F) members of H are F-con-

tinuous (if «(F)=0, every member of H is uniformly continuous);
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f1) Throughout this paper, we use the basic concepts of the theory of uniform spaces as

expounded in Bourbaki [2]. However, we need very few of Bourbaki's results. The mere defini-

tion of a uniform space and the notion of "structure of uniform convergence" should prove

sufficient for the understanding of most results of this paper. Numbers in brackets refer to the

references cited at the end of the paper.

(2) We translate "entourage" by "vicinity" and use "neighbourhood" (voisinage) in its usual

sense.

(3) Obviously, both the definition (i) and the notion of F-net can be stated for uniform

spaces which are not necessarily functional spaces.
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(v) that a family H is equally almost smooth if, to every V, there corre-

sponds U and a non-negative integer w( F), such that all but »(F) members of

H satisfy

(2) hiUix)) C Vihix))

(if »(F) =0, the family H is uniformly equicontinuous) ;

(vi) that a family H has scattered smoothness if, to every V, there cor-

responds Í7, and an infinity of distinct members of H, for which (2) is true.

2. Immediate consequences of the definitions. Classical arguments of

analysis yield, at once, a number of elementary propositions which we now

state (without proofs).

I. ¿e¿ hi and h2 be two mappings which differ by less than V and let hi be

V-continuous. Then h2 is 3 V-continuous.

II. Let (1) be a V-net for the family H and let the elements of (1) be V-con-

tinuous. Then, there exists U such that

HUix)) C 'Vihix)),

for all h[ÇiH] and all x[£¿].

Propositions III, IV, and V require that the structure of F be separated.

III. Let H be almost smooth. Then every point of accumulation of H is uni-

formly continuous.

IV. Let H be equally almost smooth. Then its derived set H' is uniformly

equicontinuous.

V. Let H be an infinite family of mappings ; if H' contains some uniformly

continuous mapping, then H has scattered smoothness.

By analogy with metric spaces we say that a uniform space F is totally

boundedi4) if, for every F, there exists, in F, F-nets(5) of F. The following

lemma is implicitly contained in Gottschalk's proof of Ascoli's Theorem.

Lemma 1. Let E and F be two totally bounded uniform spaces and let V be a

symmetrical vicinity of F. Let there exist U such that (2) is true for every mapping

of a family H. Then, H contains a 3 V-net of itself.

From Lemma 1 and II, we deduce a new version of

Theorem of Ascoli-Gottschalk. Let E and F be totally bounded uniform

spaces. If the family H is equally almost smooth, then the subspace HiofJuiE, F))

is totally bounded. Conversely, if H is almost smooth and totally bounded, then the

family H is equally almost smooth.

3. Results of this paper for mappings of E onto itself(6). We now take

E — F to be totally bounded. Let H be a family of mappings of E onto the

(4) Cf.Alexandroff-Hopf [1, p. 104], Gottschalk [4,p.635],and Bourbaki [2,chap. 2,p. 111].
(') Cf. Footnote 3.

(e) This paper continues a previous investigation of the author [3].
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whole of E. We consider H as a point set of the functional space JuiE, E)

and form its derived set H' (that is, the set of points of accumulation of H).

We also define:

Hi, the set of all uniformly continuous mappings of H' ;

Hc*, the set of all one-to-one mappings of Hi.

If E is separated, and H is almost smooth, it follows, from III, that

m =h'.
If all elements of H are one-to-one, we denote by H~~l the set of all the

inverse mappings of H; we also form (U-1)', (if_1)c', (ii-1)*. the respective

analogues of H', H'c , Hc*.

The product of two mappings, fg = h, is the mapping /(g(x)) =Ä(x);

e(x)[ = x] is the identical mapping.

We sometimes take Ji to be a semi-group, that is, closed under the above

multiplication (we do not assume e£r7).

Definitions. We say that a family H is:

Iterative^) if, in each infinite subset {g\, of H, there exist two distinct

mappings gi and g^ such that the equation

Ugl = g2

admits of a solution u, in H.

Strongly iterative if, to every a[£Jï], there corresponds, in every infinite

subset \g], of H, a mapping g such that

uh = g

admits of a solution u, in H.

Obviously, a strongly iterative family is also iterative; on the other hand,

it is not difficult to construct iterative families which are not strongly itera-

tive^).

Our definitions yield the following theorem.

Theorem 1. Let E be a totally bounded uniform space and H an iterative

family of mappings of E onto itself. If H has scattered smoothness, then e£i¿'.

Moreover, if H is also a semi-group, then ieVJH) C.H'.

Corollary Í. If E is separated and H is iterative, then eÇ,H' if, and only

if, H' has scattered smoothness.

Corollary 2. If E is separated and H is an iterative semi-group of scattered

smoothness, then Hi is a semi-group with a unit element.

If H is almost smooth, every element of H is uniformly continuous.

If H is commutative, so is Hi.

C) This terminology hints at the fact that the successive iterates of a mapping form a

strongly interative semi-group.

(8) Let/and g be two mappings which commute and such that fmg" =fpgq implies m = p and

n = q. The set of all mappings of the form/mg" (Oámg») is iterative but not strongly iterative.
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For strongly iterative families, Theorem 1 and Corollary 2 can be sub-

stantially sharpened. We obtain:

Theorem 2. Let E be a totally bounded, separated, uniform space. If H is

strongly iterative and has scattered smoothness, then every member of H is one-

to-one and H~x QH'.

Corollary 3. //, in addition to the assumptions of Theorem 2, His commu-

tative, then

iH-1 U e U H) C H'   and   H' = (ff"1)'.

Corollary 4. //, in addition to the assumptions of Theorem 2, E is com-

pact and H is almost smooth, then

(ff-1 UeUS)CB"   and   H' = (ff-1)'.

Corollary 5. // E is compact and H is a strongly iterative semi-group of

scattered smoothness, then He* = (H~1)* is a group.

If H is commutative and almost smooth, the "schlicht" character of the

mappings of H is not lost by a passage to the limit. Corollary 5 then takes

the following more satisfactory(9) form.

Corollary 6. Let E be compact and let H be a commutative, strongly itera-

tive, semi-group. If H is almost smooth and has scattered smoothness, then

H' = iH~1)' is a group.

Theorem 3. // E is compact and H is an infinite strongly iterative semi-

group, equally almost smooth, then H' = iH~1)' is a group and its elements are

uniformly equicontinuous.

4. Proof of Theorem 1 and its corollaries. Given F, take a symmetrical

vicinity(10) W, such that 6PFC V. By the definition of scattered smoothness,

there exist U, and an infinite sequence

(3) hu h2, ■ • • , hn, • • '

of elements of H, such that

KiUix))  C Wihnix)),

for every ».

(') In the noncommutative case, the difficulty in improving on Corollary 5 arises from the

fact that H'c^H*. Examples of this behaviour are easy to obtain. Let H= \h) be the set of

all real, strictly increasing, continuous functions defined for O^sál, and such that A(0)=0,

A(l) = l. Considered as a set of mappings of the interval [0, l] onto itself, H is a group and,

a fortiori, a strongly iterative semi-group. Also, H has scattered smoothness ; however, H'e 9*H*.

(10) From now on, the symbol W denotes a symmetrical vicinity such that some con-

veniently chosen iterate of W is contained in a given V. Moreover, our notation is such that

every relation of the form a(Z V(b) also implies bd V(a).
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Applying Lemma 1 to (3), we see that there exist, in (3), a finite number

of elements which form a 3IF-net of (3). Hence, there exists an infinite set

{g}, of elements of (3), which differ, by less than ZW, from some particular

element of the 3îF-net. Obviously, any two mappings of {g} differ by less

than 6W and, therefore, by less than V. Now H being iterative, there exist

gi and g2, in \g], such that

ugi = g2 [«G H, gi 9* gi].

Given x, let y be some solution of the equation gi(y) =x. Then

fi(y) C Vig2iy)) = Viuigiiy)))

can be written as

(4) x = e(x) C F(m(x)).

Replacing x by ä(x), in (4), we obtain

(5) hix) C Viuihix))).

As F is arbitrary and U9*e, (4) proves the first part of Theorem 1, and (5)

the second.

Corollary 1 is an immediate consequence of V. In order to prove Corollary

2, it is sufficient to observe that it is a combination of Theorem 1 and the

following lemma, which we state without proof.

Lemma 2. Let E be a separated uniform space and H a semi-group of map-

pings of E onto itself. If H'c is not empty, it is a semi-group. If H is commutative,

so is Hi.

The proof of this lemma requires only simple continuity arguments; it

makes no use of the assumptions of Theorem 1 and does not require that E

be totally bounded.

5. Proof of Theorem 2 and Corollaries 3, 4 and 5. Take V arbitrary and

W symmetrical, such that 2WÇ~V. As E is separated, Theorem 1 implies

the existence of an infinite set {g], of distinct mappings of H, which differ

from e by less than W. Let h be any element of H; as H is strongly iterative,

we can find a g such that

uh = g [u G H],

Let yi and y2 be solutions of the equation ft(y) =x. Then

(6) y, = eiyi) C WigiyJ) = W(u(h(yi))) = W(u(x)) (* = 1, 2),

from which we deduce

yi C 2Wiy2) C Viy2).

As the structure of E is separated and F is arbitrary, this implies yi=y2.
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Hence ä_1(x) is single-valued and (6) can be written as

(7) lr\x) C Wiuix)).

Obviously, we can choose U9*h~1, therefore H~lQH'. Corollary 3 is ob-

tained by replacing, in (7), x by Ä(w_1(x)); using the commutativity, we

obtain

(8) u-\x) C W(k(x)).

As u^EH', (8) implies hCH'.

To prove H = iH"1)', we note that (8) also implies H EiH~1)' and there-

fore,

H' C (tf"1)" C (ff"1)'.

On the other hand, by Theorem 2, H~lEH' and, therefore,

iH-1)' C H" C H'.

The proof of Corollary 3 is now complete.

For both Corollaries 4 and 5 we need the following lemma.

Lemma 3. If, in addition to the assumptions of Theorem 2, E is compact,

fEH* implies f~x EHc*.

Proof. Take Farbitrary and asymmetrical, such thatWC V. Compact-

ness of E implies uniform continuity of/-1 so that we can choose U such that

(9) tKUixYCWif-Kx));

we then take h[EH] such that

(10) f(x) C UiHx)).

Then, from (10) and (9),

* = f-V(x)) Cf-KUiHx))) c wif-\hix))).

Replacing x by â-1(x), we obtain

(11) h~\x) c w(tK*)).

By Theorem 2 there exists a mapping w(x), of H, such that

(12) «(*) C Wih~\x)) iu9*f-1).

From (12) and (11) we deduce

uix) c frif-Kx)) c vif-^x)).

Hence f'1 EH' and, therefore, /-1 EH*.

Proof of Corollary 4. By Theorem 2, any h[EH] is one-to-one and

hr^EH'. As H is almost smooth, III shows that h~l is uniformly continuous.
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Hence, h~l(~_H* and, by Lemma 3, hCH*CH'. We still have to show

(13) H' = iH-1)'.

Commutativity, which, in the proof of Corollary 3, enabled us to pass

from (7) to (8), is now replaced by a continuity argument. The mapping h

being uniformly continuous, we can, given F, choose a symmetrical W[(Z V],

and U, such that

HUix)) C W(h(x)).

As h~lEH', there exist, in H, two distinct mappings »i and u2 such that

hr\x) C U(»i(x)) (* = 1, 2).

Then

x = hihr\x)) C *(#(«<(*))) C WiHuiix))) (i = 1, 2),

ut\x) C JF(Â(x)) (t = 1, 2).

One at least of the two functions U71, mJ1 is not identical with h. This im-

plies HCZiH^1)' and, therefore, (13) (cf. the analogous proof of Corollary 3).

Under the assumptions of Corollary 5, both Corollary 2 and Lemma 3 are

valid, so that Hc* is a group. Obviously, (13) implies HT = iH~x)T

6. Proof of Corollary 6. Consider any /G H'. Given V, let V¡ be the set

of all mappings of H which differ from / by less than F; this set is not empty.

Now consider the set { V¡} where V runs through all vicinities of E. Obvi-

ously, { Vf} is the base of a filter and, as any two elements of V¡ differ by less

than 2 V, the filter with base { V¡ \ is a Cauchy filter. We define V¡ as the set

of all the inverse mappings of V¡ and verify that any two elements of Vf

differ by less than 2 V. Let u and v be any two mappings of V¡; then

(14) «(*) C 2F(d(x)),

and, by Theorem 2, u~x and zr-1 exist.

Replacing, in (14), x by ur1(i/~1(x)), and using the commutativity, we

obtain

»-»(*) C 2F(M-1(x)).

Hence { Vf} is the base of a Cauchy filter and, as E is compact, this filter is

convergent. Let ¿(x) be its limit. As H is almost smooth and E is compact,

both / and / are uniformly continuous (as points of accumulation of continu-

ous functions). We now show that

Kfix)) = fiKx)) = e(x).

Given V, take IF symmetrical and such that 4WQV. The uniform con-
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tinuity of/and I enables us to find a symmetric U [C_W], such that the rela-

tions

(15) JiUix)) C Wifix)),       liUix)) C WUix)),

are simultaneously true.

We then choose zt>[G-ff] such that

(16) w(x) C Uifix)),        ler-if» C Uilix)),

are both true.

Then, from (15), (16), and Proposition I, we deduce

(17) wiUix)) C Wiwix)),        w-'iUix)) C W(wr-i(x)).

From (16) and (17),

e(x) = w~\wix)) C w-^iUifix))) C W(wr-i(/(x))),
(18)

e(x) = wiw-^ix)) C wiUQix))) C W(w(/(x))).

The relations (16) also imply

(19) wilix)) C Wifilix))),        w-^ifix)) C Wilifix))).

Substituting (19) into (18), we obtain

eix) C 'WHifix))),       eix) C W(/(Z(x))) ;

this proves l=f~l. Now, by construction, IQiH'1)' and, by Corollary 4,

H' = iH-1)'; hence f~1CH'[ = Hi]. This, together with Corollary 2, shows
that H' is a group.

7. Proof of Theorem 3. In all but one step, the proof of Theorem 3 coin-

cides with the proof of Corollary 6. Again we define the Cauchy filter with base

{ Vf} and have to show that { F/} is the base of a Cauchy filter. Our former

argument, based on commutativity, should be replaced by an argument in-

volving equicontinuity.

Given V, choose U such that

(20) fiUix)) C Vifix))

for every /EH'. Let T be a symmetrical vicinity such that 2¿C U and let u

and v be any two elements of Tf. Then

(21) uix) C 2¿(*>(x)) C Uivix)).

Now, m-1 being an element of H', (21) and (20) imply

eix) = u~liuix)) C u-\Uivix))) C Viu~\vix))),

ir\x) C Viu~\x)).

Hence any two elements of T¡ differ by less than 2 V, and { V¡} is the base of
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a Cauchy filter. From this point on, the proof of Theorem 3 coincides with

that of Corollary 4.
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