
ON THE MEASURE OF CARTESIAN PRODUCT SETS

BY

GERALD FREILICH

1. Introduction. There are various measure functions defined on the set

of all subsets of Euclidean re-space, E", which generalize the elementary con-

cepts of length or area, or in general, A-dimensional volume. These measures

are called respectively 1-dimensional, 2-dimensional, and A-dimensional

measures over £". The following question then naturally arises:

For A and B orthogonal subspaces of £n with dimensions a and ß = n — a,

and f or 0 ¿ m ¿ a and 0^k^ß,istheim + k) -dimensional measure of the cartesian

product of the finitely measurable sets SGA and TGB equal to the m-dimensional

measure of S times the k-dimensional measure of T?

In the case « = 3, a = 2, ß = m = k=l, and T an interval, J. F. Randolph

obtained a partial answer for Carathéodory and Gross measures (see [R])(1),

A. P. Morse and Randolph obtained the affirmative answer for Gillespie

measure (see [MR]), while A. S. Besicovitch and P. A. P. Moran presented a

rough outline of a counter example for Hausdorff measure (see [BM]). By

using new methods the current paper obtains results for integral-geometric

(Favard) measure, Hausdorff measure, and sphere measure.

The cylinder case (/3 = 1) for Favard measure is answered in the affirma-

tive (Theorem 4.5) and further generalized (Theorem 5.5) to k — ß, thus com-

pletely answering the question if «5Í3. Partial results for the remaining cases

are contained in Theorems 5.7 and 5.8.

In 6.10 an example is constructed, using and extending the ideas of

Besicovitch and Moran, which answers the question in the negative for both

Hausdorff measure (Theorem 6.18) and for sphere measure (Theorem 6.19).

Moreover we obtain in this way a set for which the Hausdorff measure differs

from the Carathéodory measure.

Finally we obtain for XGEn, k^mSn, a new formula which expresses

JniX), in terms of the multiplicity integrals, with respect to Jm, of the per-

pendicular projections of X into m planes, as an integral over the set of all

these m planes ij„ is Favard A measure over £").

2. Preliminaries.

2.1 Definition. We agree that « -0 = 0- » =0.

For 5 a set, y(5) is the number (possibly °°) of elements of S. For F a

family of sets, <r(£) = Uigpx.

For x a point,
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For/a function,/-1 is its inverse, and for X a set, if\X) is the function

with domain (ATPidomain /) defined by

if\X)(x) = fix)    for    xG(Xr\ domain/);

furthermore

N[f,X,x] = y(Xr\E\j(y) = x]),

f*(X) - E [y - fix) for some x G X],

and for g also a function, (/:g) is the superposition function defined by

if'g)(x) =figix)) for all x.
2.2 Definition. En is Euclidean re-dimensional vector space with the

usual inner product and metric. We denote the origin of E" by 0". If A CE"

and £ CE", then

A + B = £" H £ [z = x + y for some ïGi.yGi],

Lebesgue re-dimensional measure over E" is denoted by .£„.

2.3 Definition. If m and re are positive integers, and £ is a function on

Em to E", then L is linear if and only if

Lix + y) = £(x) + £(y) for  x G £m, y G £"\

£(X- x) = X-Z(x) for  x G £m, X a real number.

If £ is a linear function on Em to £", 1 ̂ i^m, and /* is the ¿th unit vector

of Em, then we shall write

/(/*') = L* = CXÍ, ¿2, • • • , Ln).

By the matrix of £ we mean the matrix with re rows and m columns whose

entry in the ¿th row and /th column (1 ^¿^re, ISjikm) is L[. We make no

distinction between £ and its matrix. If m^n, we define

A(£) is the square root of the sum of the squares of the determinants of

all m by m minors of £.

If/is a function on Em to E", 1 f^m^n, and xG£m, then we shall say that

L is the differential of / at x if and only if £ is a linear function on £m to E"

such that

,.    | M - fix) - Liz - x) i
hm-i-j-= 0.
z->x \ Z —   X |

If L is the (unique) differential of/at x, then we let

Jfix) = AiL).
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2.4 Definition. If l^m^n, then p„ is the function on En to Emsuch

that

pn (x) = (xi, x2, • • • , xm) for x G E",

and 17™ is the function on Em to E" such that

C(y) = (yi. ya, • • • , ym, 0, 0, • • • , 0) for y G E™.

2.5 Definition. Let Gn be the set of all linear functions R on £n to En

such that | £(x) | = | x| for xGEn. The function p defined by the formula

p(£, 5) = sup I £(x) - 5(x) I for R G Gn, S G Gn,
l*l=i

metrizes Gn in such a way that C7„ is a compact topological group with re-

spect to the operation, :, of superposition. G„ is called the orthogonal group

of £". We shall denote the identity of Gn by "/.

We let <f>n denote the unique Haar measure over Gn for which 0„(G„) = 1,

nonempty open sets are 4>n measurable and have positive 4>n measure, and the

<f>„ measure of a subset of G„ is the infimum of the <£„ measures of open sets

containing it.

We shall use the following properties of 4>n (see [W, 8]):

If / is a 4>n measurable function on Gn, then

f fiR-^dtnR =  f fiR)d<t>nR,
J On J On

and for SGGn,

f fiS:R)dcbnR =  f fiR:S)d<l>nR =  f fiR)d<bnR-
J On J On J On

2.6 Definition. If l^A^re, then

^(re, A) =   f  AiR\l)d<t,nR,
J On

where (i?| *) is defined for RGGn, as the linear function on Ek to E* such that

(ic|Í)5 = -RJfor¿,i=l,2, • • -,A.
2.7 Definition. Let

Z'n = En r\ E [xi = 0 for ¿ = 1, 2, • • • , re - s],

and define the function X5, on the cartesian product (C7nXE"_s) to the set

AJj of all 5-dimensional flat subspaces of E" by the formula

\'niR, w) = R*iZn + U7\w)})  for RGGn, w G E""'
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The motivation for this definition rests on the following fact:

Let ^sniF) be defined for each suitably restricted real-valued function F

on A'n by the formula

*'.(?)   =    Í        f Ffr'niR,   w))d£n-.Wd<bnR.
d On   J En~"

Then^ñ is an invariant integral. (See [F3, 4].)

2.8 Definition. We say that g is a gauge over 5 if and only if 5 is a

metric space,

dmn gGE[xGS],    and   rng g G £ [0 g t g °° ].
X t

If g is a gauge over S, r >0, define the function gr for xGS by the formula

grix) = inf    X) giy),
oeB  vEo

where GGB if and only if 67 is such a countable family that xGoG and

diam y^r whenever yGG.

We shall say that 4> is generated by g if and only if g is a gauge (over 5)

and 4> is the function on

£ [xGS]
x

defined by

<t>(x) =  lim gr(x) for x G S-

It is easy to check that <fi is such a measure that closed sets are 4> measurable.

2.9 Definition. Suppose 1 ̂  A i£«. Let gi, g2, g3, gi be the gauges over E"

such that

dmn gi is the set of all open spheres of £",

dmn g? is the set of all subsets of £",

gi(x) = (A!)"1-r(l/2)*-1-r((A + l)/2)-(diam *)*        for x G dmn gt, i = 1, 2,

dmn go is the set of all analytic subsets of £n,

*,(*) = ß(n, A)"1 f £k[(pkn:R)*(x)]d<l>nR for x G dmn gz,

dmn gi is the set of all convex open subsets of £n,

giix) =  sup £k[ipn'-R)*ix)] forxGdmng4.

Then we define

*  •
S n  is the measure generated by gi,
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k ,
¡fC„ is the measure generated by g2,

k
Jn   is the measure generated by g3,

k
Cn   is the measure generated by gi.

S» is sphere A measure over re space, 3C£ is Hausdorff measure, 7* is integral-

geometric (Favard) measure, and C„ is Carathéodory measure. We also define

J% by the formula

jl(A) = y(A) for A G £*.

2.10 Remark. It is quite easy to see that SÍ, 3C*, Jn, and Cl are invariant

under rigid motions of £", and that they satisfy the condition that any subset

of E" is contained in an analytic set of the same measure.

We shall use the fact that if A is an analytic subset of E", 1 ̂ A <re, then

jl(A) = ß(n, kf1 f     f   N[(pkn:R), A, y]d^kyd<t>nR

= ß(n, A)"1 f     f   y[A r~\ \T\r, y)]d£kyd<t>nR.
J Gn   d Ek

(See   F2, 5.1l] and [F3, 5].) Also it is obvious from 2.9 that

Jn  = ^ii.

2.11 Definition. If / is a function on a subset of Ek to £", then/ is said

to be Lipschitzian if and only if there is a number M such that

I /(*) — f(y) I = M- | x — y | for all x, y G dmn /.

We shall make use of the fact that if/ is Lipschitzian, dmn /CE*, rng/CE",

then there exists a Lipschitzian function g on Ek to E" such that (g| dmn/) =/.

Suppose 1 gA^w, .4C£n. Then we shall say that A is A rectifiable if and

only if there is a Lipschitzian function whose domain is a bounded subset of

Ek and whose range is A.

3. A new formula involving Favard measure. Though Theorem 3.1 is not

used in the remainder of this paper, I feel that it will be useful in future in-

vestigations concerning Favard measure.

3.1 Theorem. // A is an analytic subset of En, m and A are such non-

negative integers that k^m^n, then

Jn(A) = ißim, k)/ßin, k))-   f     f   N[ipZ:R),A,y}dJhmyd^nR.
•JGn   -I Em

Proof. With each SGGm, we associate the orthogonal transformation

SGGn by the formulas
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5

s

S]

«s,
= o

i
= Si

for i — I t i m; j

for i = 1, • • • , m; j = m + 1,

for ¿ = m + 1, • • • , re; / = 1,

m,

, n,

, M,

where ô] is the ordinary Kronecker 5-function.

The proof is divided into 3 parts.

Part 1. ipm:S:pZ:R) = (¿>*:S:£) for EGG„, SGG„

Proof. For xGEn,

iphm:S:pn'-R)ix) = (#»:5:#!T)i ¿*<-ÄJ

k     /     m       n •      \

-El ££«*&)

k      /     n       n •      -\

= El El^'iSÍ/¡=i \ )=i <=i /

k  *

A-   A

/

= ipn:S:R)ix).

This proves Part 1.

Part 2. For EGG„,

f   tf [(¿T:ä), ¿, y]d7™y = ßim, k) ' f     f   iV[(J>*:S:£), ¿, xj^O^^S
J R" d Gmd Bk

Proof. Let

Then ^4M and 4,, for ¿ = 1, 2

and

Therefore

Ai = £m H £ [iV[(/>» :*), ¿, y] = ¿]     for ¿ = 1, 2, • • • ,

4M = EmCMi[N[ipZ:R),A,y] = »].

• , are analytic and hence 7£ measurable sets,

AiC\ Aj = 0 for ¿ 5^ /; 1 g ¿, / :S «j.

Ei-7-(^) + «»-7»(^-)j=i
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= ¿ i-ßim, k)~l f     f  N[ipm:S), Ai, x}d£kxd<j>mS
i-l <J Gm d Ek

+ oo -ßim, kf1 f     f   N[ipm:S), Ax, x]dJ^xd<PmS
•J GmJ Ek

= ßim, kf1 f     f  ( ¿ i-NiiPm-.S), Ai, x]
d amJ Ek\ «=1

+   vNiiPm-.S)^«,,   x]jdJlkxd<f>mS

= ßim, A)-1 f    f    Ar[(¿t:S:/C:£),¿, af]iC**d*«S'
J em J e"

= /3(w, A)-1 f    f  iV[(^:5:£), ¿, xJdGxÄ^.
J G~d Ek

This completes the proof of Part 2.

Part 3.

jliA) = (|8(w, k)/ßin, A))  f     f   i\r[(/C:£), A, y]dJmyd<t>nR.
J On   d Em

Proof. Applying Part 2 and 2.5,

ßim, A)- f    f  iV[(ir:£),^,y]a7t.y^n£

= f* r* r* ̂ [(#*:5:*>» a> x]<Lolsfomsié»R
J On   d GmJ Ek

=  f    f    f  iV[(/.*:5:i(),^, x]dJ(lkxd<¡>nRd<t>mS
" Gm-J Gn  J Ek

=  f    f    f  N[ipkn:R), A, x]d/Zkxd<t>nRd<bmS
J G„ J Gn   J Ek

=  f    f  N[ipkn-.R), A, x]dJLlkxd<t>nR
•I Gn   J Ek

= ßin,k)-JniA).

This completes the proof.

4. The integralgeometric (Favard) measure of cylinder sets.  In this

section we consider the case in which ß = A = 1.

4.1 Lemma. //

(1) 1 ú i ú re,
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(2) 5= (E*nE[\x\ = 1]),

(3) ii is the function on £ [x C S] defined by

iK«) = <¡>niGn r\ E [Rt G X]) for XGS,
R

then

(4) fiX) = (jeTV))-1- a£~\x)   whenever X G S is a Borel set,

(5) f  giR')d<j>nR = iW-T'iS))'1-  f gix)dXn~1x,
J Gn J 3

whenever g is a continuous function on S.

Proof. By straightforward methods it is checked that

yj/ measures S,

Open sets in the relative topology on 5 are <A measurable,

*iS) -1,
^(X)>0 whenever X is an open non-empty set in the relative topology

on S,

t[Q*iX)]=iiX) whenever QGGn, XGS.
Hence iA is a Haar measure over 5 with respect to the transitive group Gn

of isometries of S. Since

(seT'lf [xcs])

is also a Haar measure over S with respect to G„, we conclude by the unique-

ness of Haar measures (on Borel sets) that (4) holds. (5) is now easily checked.

4.2 Lemma. // 1 ̂ ¿, j^n and —l^t^l, then

$niGn C\ £ [r] = /]) = 0.

Proof. By 4.1,

<t>niGnr\ £ [r\ = *]) = (aCVs))-1-sC\sr\E [*, = <]).
R x

Since

aC\s n e [xj = t]) = o,

the proof is complete.

4.3 Lemma. If n is a positive integer, and L is the set of those elements R of

Gnfor which nIn is a linear combination of R2, • ■ ■ , R", then <pniL) =0.

<



240 GERALD FREILICH [September

Proof. If £G£, then R}-nIn = 0, and therefore Rn = 0. Apply 4.2.

4.4 Lemma. //O^w<re —1, then

4n(Gnr\EÏ     È     l^n|2=   ll)   =   0.

Proof. If RGGn is such that E?-m+2|-R|»|2 = l. then in particular, £¿ = 0.

Apply 4.2.

4.5 Theorem. //

(1) 0 iï m ¿ re — 1,    m and re are integers,

(2) A - ET\E [xn = 0],

(3) £ = £" H £ [xi = x2 = • • • = x„_i = 0],
x

(4) S G A,    S is analytic,    Jn (5) < »,

(5) T G B,    T is analytic,    jliT) < »,

¿Aere

jT\s+T) = fniT)-y:is).

Proof. If m = 0, let q = JliS) < °°. Then 5 consists of q distinct points of A.

Therefore (5+ T) consists of q distinct translates of T. Hence

jliS +T)   =   qfniT)   =   jliS)-fniT).

If m = n — 1, let S' = ip1,~1)*iS). Since t;»-1 is an isometric mapping of S'

onto 5, we use [Fl, 4.5] to conclude that JT^S) =.£„_i(S'). Similarly, if

r = Eir\E [(o,o, • • • ,0, x) g r],

then yi(T)-/jiiTr). Thus by Fubini's theorem,

ylis + T)~ JZnis + T) = ^,(5')^(f) = 7:_1(5)- yliT).

Assume now that 0 <m < re — 1. Without loss of generality we may assume

that yliT) >0. Let K be the set of those elements R of Gn for which

Ê    |*-T'<i.
i=m+2

and for which £2, £',•••, £", "/" are linearly independent. Then by 4.3

and 4.4,

*»(G„ - K) = 0.

Also it is easily seen that for RGK,
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n-1,    n— 1 , „2^ Ti—1,    n—1,„3^

1»   (#»   (£ )), In   (in   (£ )),
n—1,    n—1, _nv.

,1?»     (ín     (£)),

are linearly independent. Hence, for each RGK, we may consider orthogonal

transformations which leave "/" fixed and which rotate "/m+1, • • • , nTi~1 in

such a way that they span the linear subspace generated by r¡a~1iPn~1iRm+s)),

• ' ' . rln~1iPn~liRn))- For this purpose, we shall say that P satisfies condition

I with respect to R if and only if RGK, PGG„, and

P(V) = "/",

per1) = CW))/1 c^rW) I,

(*) p

n—¿—2

E -
a-0

-£„•£„

(1 -   #; »)1'«(1 - |£n|2)1/2

n7n-l +

■RÏ1+a-Rn-nii+a

(1 -l^lV/2(i £i+l+a+i

J=l

.   „\l/2   / n-t-l-a .   , .   „\l/2

7 v" S ' -    ';

+ Y"1

/ *-< ..  .   A !'2

(i-i«iiv"(i-Ei^'r)"'
\ 7=1 / J

n—1,    n—l,„i.

In     (A,     (£))

„r ipr1 (£0)

for ¿ = ?re +2, • ■ ■ , re —1.

Further, we shall say that Q satisfies condition II with respect to £if

and only if RGK, QGG„-i, and there is a PGG„ which satisfies condition I

with respect to £ and for which

oí = P) for ¿, / = 1, • • • , re - 1.

In particular, we define the function/ on K to G„_i such that if RGK, then

(/(£))•= P) for¿,/= 1, ••• ,re- 1,

where P satisfies condition I with respect to £ and also P satisfies equation

(*) for¿ = 2, • • y, re —1. It is obvious that/is a continuous mapping associ-

ating with each RGK a transformation /(£) which satisfies condition II

with respect to £.

Suppose RGK and P satisfies condition I with respect to R. We shall re-

duce £ to a canonical form. Define Up,r = (£_1:£). Then for ¿= 1, 2, • • • , m,

we have
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V G uÍ.ríe" r\ E [xm+2 = • • • = Xn = 0]),
X

because (Up,r)[ — 0 for j = m+2, ■ ■ ■ , re, ¿= 1, • ■ • , m, and hence

(cW-Y = o.

We may therefore choose Üp,RGGm+i such that

ÜP,RÍiUpUnñ)i, ■■■ , ÍU^rC/)) m+i) = m+1/ for i = 1, • ■ • , m.

Define Vp,RGGn by the formulas

Vp,rCi') = ÜÜp,r)\, ■■■ , iÜP,R)m+i, 0, • • • , 0)     for i = 1, • • • , m +1,

Vp,rÍ I ) =   / for ¿ = m + 2, ■ ■ • , re.

Finally, let Wp,R = ÍUp.r'. Fp,ß)GG„. Then it is easily checked that

n   ». n   »

WpA I) =   I for ¿ = 1, • • • , m,

Wp.rÇi') = Up,RÍnf) = (P'^ÄXY) for ¿ = m + 2, • • • , re,

(WZ,«)! = £n íor i = m + 2, ■ ■ ■ , n.

The remainder of the proof is divided into 8 parts.

Part 1. If P satisfies condition I with respect to £, then

f      y [iS + T) C\ \Tm~\R, y) ]¿G,+iy
J Em+1

=  f     f  t[(£_1*(5) + T) r\ \Tm'\Wp,R, (xi, •.•,*„, y))]dJiliydJlmX.
J Em d El

Proof. Since -£m+i is invariant under transformations by elements of Gm+i,

and applying Fubini's Theorem, we have

f      y [(S + T) n xrm_1(£, y) ]<m+iy

= f    y[P~1*as + T)n>^m~\R,y))]iC^iy
J Bm+l

=  f      7[£_1*(5) + r)nxrm-1(£~1:£y)]<m+iy

= f    7[(£-1*(S) + r)nxrn~1(£/p.B, i/;,ky))]<-,+iy

=   f      y[(£_1*(5) + £) H xr^^i/p.siy;,«), y)]¿Cro+iy
J Em+1
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=  (     f  t[(P-1*0S) + T) C\ XTm~\Wp,R, (xi, ■■■ ,xm, y))]dJZiydJZmx.
J Em d El

This completes Part 1.

Part 2. If P satisfies condition I with respect to £, then

1/2/ m+1      .■  A1'2

íWp,r)Tx| = ( E | Ri I2)  >o

Proof. Since P and £ are fixed, we omit the subscripts on Wp,r. Notice

that

o = wm+1-wn = wTiii - I £"|V/2 + wTrI,

a     I ??n_1 I2     I 7?" lV/2 7?n_1 /?"
m+1 n-1 m+1   (.1 ~  |  A„       \     —  \  Kn\  ) m+1 An      " A„

0 = W     -W     = W„-2-¡—..   .,.-W„_i
(i-Ie:!2)1'2 (i-|£:i2)!'2

+ wT1r7\

(i-±  l¿l")
o = w^-w**' = wZl-——-

(i-t nirt"
\ j-m+3 /

n-2
m+1    TTTm+2 „Tm+1     \ j=m+2 / ^—*     TTrm+l

.1/2
a=m+2

«+1        m+2

An       " A„ rTTm+1

—   Wn-1
/ ¡n-a-1) A1'2/ (n-«-l) ....   „\l/2

(i- E l*:+1+T)  (i- E IäT1**!)

7?m+2    P"
A„       -it„ m+1     m+2

+   Wn      An       ,

(l-l^l2)1'2

i-.Tr"+l.Tr"+1- ¿ \wT\\
or™ m+1

Hence solving for | IFr+1|, we have

7?"

^"-(i-iish^-^ '

£m+2

^= " ~t—-—^7—»—r¡v^ w:+1'
(i- E HH) (i- e \r:\)
\ ¡=.m+3 /        \ j'=m+2 /
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W,
m+1 ,2

1 +
£„

.+
-R.

i-|£;i2   (i-|£;|2)(i-|£: i|2-|£;|2)

m+2 i 2

[September

+

+
£n

(i-1 i^i2)(i-i \Riñ
\ j'=m+3 / \ )'=m+2 /

=       W:
m+1 i 2

i - E \RÍ\
j=m+2

=   1,

w:+1\

(m+1 .     \l/2

g|¿|')     >0

The proof of Part 2 is complete.

Part 3. If P satisfies condition I with respect to £, then

JZiiE [H{dn} + T) H \7m~\wP.R, (0, • • • , 0, y))) * 0])

/Ä1!        i,2\1/2       1

=   (EKl)       ■7niT)>0.

Proof. Let

r = Eir^E [(o, • • •, o, x) g £].

Recalling that

(JFp.b)"^1 •(!!/>,,,)' = 0

ÍWp.r)TX = 0

for i j± m + I,

for/ = 1, • ■ • , w,

we have

\H{en} + T)r\ \T^\wp.r, (o, • • •, o, y))) * 0}

There are numbers am+2, • • ■ , a, such that

n

y W».*)/* +  E  «í-(Wp,jí)í =0 for/ = m + 1, •••,«- 1,

y(w/>,B)r+ + E «.•(Mien

which implies that
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y E \iWp,B)T1\2+ E <*• E iWp,R)T -iwpj, = y g iWp,R)T -r,
j=*m+l »=m+2 j=m+l

where (WP.R)n+1-T' shall mean

(E1 H £ [x = (TFp.ü)^1- y for some y G T'].
X

Conversely, if yG(WP,R)TK T', let
m+1

y-iWp,R)m+i

iWp,Rjm+l

y-iWp,R)m+2 + Otm+i-iWp,R)m+2

am+i =-Tar—V^+3-'
iWp,R)m+2

yiWp,R)'ñ-l   +  am+2-iWp,R)7-l   +   ■  ■  •   + an-liWp,n)î-.i

a» (Wp.b)^!

Then it easily follows that

yiWp,R)TX + Ê «,-(iFp,B):Gr.

Hence, by Part 2 and the fact that J^iiT') =7„(£) >0,

„G(£ [(({*"} + D H \7m~\Wp.R, (0, • ■ • , 0, y))) H 0])

= £i((Wp,B)T-t') = \ (wp.r)T I -^i(r) = ( El Rn f)in-7ln(T) > o.

This completes Part 3.

Part 4. If P satisfies condition I with respect to £, and ÇGG„_i is such

that Q) = P) for ¿,/=1, • ■ • , re — 1, then

Çy[(P~l*(S) + T)C\ \rm~\Wp,R, (xi, ■■■ ,xm, y))}ddliy
J E

= yi(Q-l:p:-l)*(s) n xrrv""1'/, •>]• ( El ** I2)1'2 Y.<r).

Proof. Assume that

? = Yke^rVcso n crY"-"/, *>] < •..
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((Q-^rVísjncrY"-1'!, »)) = û {A,
<=i

where z^z' for »Vj and ziGEn~1 for ¿= 1, • • • , g. Furthermore

f, 7[(P_1*(5) + D H C"~Vj».b, (xi, • • • , xm, y))]i&y
J E

= f, ¿T[(NrV)l + T) r\ \7m-\wp,R, (xi, • • • , xm, y))]¿Gy
Je   i-i

= ?•  f,7[({(*i. ••••*», O,.-- ,0)} +£)

H xrm" Vp.fi, (*i, • • • , *m, y))]¿Gy

= ?• J,T[({en} + T) r\ \7"~\Wp.r, (0, ■ • • , 0, y))]¿(>

Now if (0, • • • ,0,a)and(0, • ■ • , 0, b) are both in Xm-B-1( Wp.fi. (0, • • -,

0, y)), then there exist numbers am+2, • • ■ , an, and ßm+2, • • • , ßn such that

y(Wp.fi)n        +  Olm+2-iWp,R)n        +   •   •  ■   + an-iWp,R)n  =   O,

[ y iWplR)n+1 + ßm+2-iWp,R)T2 + ■■• + ßn-iWp.R)l - b,

yiWp,R)m+l + am+2-(Wp,.R)m+l  =   0,

yiWp,R)m+l +  ßm+2-iWp.R)m+l  =   0,

*.)

y iWP,a)n-l   + Clm+i-iWp,R)n-l   + ' ' ■  + <*„ • (IFp,B)n-l =  0,

1 y (ITp.ied1 + /3m+2-(W/>.fid2 + • • • + (3n-(IFp,B)"_i = 0.

From the definition of Wp,R we see that

(Wp.fi)m+i+i 5*0     ior j = 0, • ■ • , n — m — 2,

hence

«m+2   =   ßm+2>   -  -  *   , OC„  =  ßn,

and therefore (0, • • • , 0, a) = (0, • • • , 0, A). From this it follows that

f  7 [({«"} + T) r\ \7^\Wp.r, (0, ■ • • , 0, y))]¿Gy
Je1
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= &ÍE [(({fl"} +T)H \n~m~\Wp,R, (0, • • • , 0, y))) * 0])

(m+1 .     \l/2

T,\RÍ\)   -7niT)>o.

Hence

f t[(p **is) + T) r\ xl" m Vp.fi, (*i, ••-,**, y))]¿Gy

/Ä1,       i,2\1/2       1

= i-(EI*:r)    JriiT).

The same method handles the case q = oo, since

/ m+1      • A1'2

(El*nf)   -7„(r)>o.

This completes the proof of Part 4.

Part 5. If Q satisfies condition II with respect to £, then

f      y [iS + T) r\ \~m~\R, y) ]dJZm+iy
J Em+1

(m+1 .     \l/2 ¡.

El*n|2)   Jim- j TÜT^wnCr (@,*)]AG.*-
j-i       / «/a"1

Proof. Applying Parts 1 and 4, we have

f      y [(5 + T) r\ >Z~m~\R, y) JdCm+iy
J Em+l

J.      / m+1 .   „\l/2
(  E I R'n \)       ■7niT)-y[iQ-1:Pn-1)*iS) n CrY"-1'/,   X)]¿G.X

Em \ j-i /

(m+1 •   A1/2       , C

h\ri\ ) -jniT)- f y[p:-1*is)nx:zrliQ,x)]djZmx.
j—1 / J E™

The proof of Part 5 is complete.

For the remainder of this proof, we associate with eachPGGn-i the transfor-

mation PGGnby the formulas

n-l, _•

P   = i»,   (P) for¿= 1, ••• ,re- 1,
Pn = T.

Part 6. If Q satisfies condition II with respect to £, and EGG„_i, then

iP'.Q) satisfies condition II with respect to (£:£).

Proof. We have for l^i^n — l, l^A^re,
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(£:£)* =¿£-P-=E£--£-
j-1 j-1

and

Hence

(£:£)* =£P/-Pn = £n.
;'-i

(P:0)((B"1)/n-1) = £(/»r1(£")/|ir1(P")|)

= d-i£:iV1/2-p(£;---,i?:-i)

^n |2 -1/2     î^î   „n        j

= h-\r:\T'-ZRrR
i-i

= (1 - | (P:£)n„|V1/2 ((£:£)", • • • , (P:£)1-i)

= /„-1((P:£)n)/Ur1((P:P)")|,

(p.n\(_—(£:£)n-(P:£)n_    (n-l)   n-l

'W \(l - | (P:R)i |«)W»(1 - | (£:£): I2)1'2'

-   '(lH(P:^|2)1/2(l-"E"l^:^1+"+ii2)1/2

1

i-E I(p:p):+1+a+T)

(i-EKP^'l2)1

(i-KP^^ir^i-EKP:^'!2)1

,1/2

_    (n-l)    ¿-1

,1/2 '

J-1

= p(p7\Ri)/1 ¿rw i )

= d-|pil2r1/2-Ep>í
y-i

= (1 - | (P:£)n|2r1/2((£:£)í, ■ • • , (£:£)Li)

= ̂ r1((P:£)VUr1((P:£)<)|,

for ¿ = ra-|-2, • ■ • , re— 1.
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It easily follows now that (P'.Q) satisfies condition II with respect to

(P:£).
Part 7.

yT(S + T) - y:(S)-yl(T)-(ß(n - l, m)/ß(n, m + 1))

/.       /m+l .      \

0„ \  j=l /

1/2

d<t>nR.

Proof. Recalling the definition of/, and using Parts 5 and 6, we have for

PGG„_i,

y:+\s + T)

= /3(n,«+l)_1.  f     f      y[(S+T)n\Tm'\R, y)]djC¿m+iyd4>nR
J G„  J Em+l

= ß(n, m + l)-1    f     f      y[(S+T)í\ \n~m~\R, y)]<¿Cm+iy¿0„£
J K    J Em+1

= ß(n,m+iyX-  f     f      y[(S + T)i\}Cm~\(P:R),y)}<LCm+iyd<j>nR
d K    d Em+1K    J Em+1

-i     c   / m+1      ' A1'2     i

ß(n,m+l)      J    ÍEI^ñlJ    -7»(D

f  y[pl ^nxir \(P:f(R)), x)]dJZmxd<t,nR.

Hence

yT\s + t)
. .        ft f     /   m+l .    „\l/2

=   7n(r)-(/3(«,m+l))       • (   El^ñl    )
J Gn-I-I K    \   J-1 /

•     f    jípT^iS)     n\nZr\iP:fiR)),x)]d£mXd<t>nRd<t>n-lP

i _i    r /m+l     • A1'2

= 7,(2>G8(»,«+iy)   -J  (El^l)

■     f f     ybT^iS)    ̂ \nnZr\(P:f(R)),x)}d£mXd<t>n-lPd<i>nR
J G„-i J Em

= ß(n - 1, m)(ß(n, m + l)f 'l-fn(T)

f.     / m+l .     \ 1/2

■y:-i(pV\s))$j^:\Rnr) ^r
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= yn(S)-yi(T)-ß(n - l, m)-(ß(n, m + 1))_1

/'   / m+1      ,• A1'2(El^nl)       dtnR.
ff» \ J-l /

The interchange of the order of integration in the above is justified by the

following argument:

The function g defined on G„^i by

g(P) =   f   yLC^GS) n \nZr\P, x)]dJZmX       for £ G Gn-l,
J E™

is such that counter-images of open sets are analytic sets. Using the fact

that counter-images of analytic sets by continuous functions are again

analytic sets, we conclude that the function A on (G„_iX£) is measurable,

where

A(£,£)=  f  y[pV*(S) n\Zr\(P :/(£), *)]*<>,
J Em

for (£, £)G(G„_iX£). The Fubini Theorem then applies immediately.

The proof of Part 7 is complete.

Part 8. y:+1(s+T)=yz(S)-yn(T).
Proof. To evaluate the factor

-i C   / m+1

ß(n- l,m)(ß(n,m+ 1)) ( £ | £„
J ff» \ j-i

we take in particular

To = £" r\ E [xi = x2 = ■ ■ ■ = x„_i « 0, 1 à X» à 0],

So = £n r\ £ [0 ^ Xi á 1 for ¿ = 1, ■ • ■ , m, and xm+i = • • • = x„ = 0].
X

Then

yT\s0 + To) = i = y„(£o) = yn(s0),

therefore

-i        r   / ra+1      ; 2V2

j8(n, m + l)(ß(n -l, m))     =        ( E I *i I  )    <**»*.
J On V   J=l /

and we conclude that

y:+\s+T) = y:(s)-yl(T),

for all S, T satisfying the hypotheses of this theorem.

)l/2

d<t>nR,
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4.6 Corollary. // m+1 are, then

-i     r /m+1      2V2
ßin, m + l)(/3(re - l, m))     =  j    ( E I *" I  )    d<t>»R-

-I Gn\ j-1 /

Proof. Recall that for RGGn,

(£ V, = £,' for 1 ^ ¿, / ^ re.

Hence by 4.5 and 2.5,

-1       C   / "1+1      • 2V2
|S(n, m + l)ißin - 1, m))     =        ( E I P« | )    ¿<*>»£

•/ o» \ í-i /

«      / m+l \ 1/2

=     f     (E|(P     )"|    )      dtnR
J <?„ \ J=l /

/»    / "+1 A1'2

=  f ( E|P"I )   d<PnR.
J G„ \   j-1 /

The proof is complete.

4.7 Remark. The preceding corollary affords a new method for the evalu-

ation of ßin, m) which differs from the method in [Fl, 5]. Roughly speaking,

by means of a "distribution measure," we can express

m+l        _    „\l/2

d<pnRSSPrf
as the integral of a continuous function over the (re —1)-dimensional surface

of the unit sphere in £". Thus ß(re, 7re + l)(/3(re — 1, reí))-1 can be effectively

evaluated. Furthermore, it is quite easy to evaluate ßin, 1) for all re. From

this information, ßin, m) can be immediately calculated. The details follow.

Let

S = EnC\E [\ x\ = 1].

Statement 1. For re ̂  m > 1,

ßin, m)

ßin — l, m — 1) ■m*©
Proof. We let \p be the measure over S defined by

HX) = tniGn C\ £ [£" G X]) for X C S.
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Then by 4.6 and 4.1,

j8(w, m) r /  ™ i    n,2\1/2
:-:r-      ( E  Py   )   d<bnR
l,m -  1)      JGn\ ,_i /

„_, i     /•  /   ™ A1'        „_i
= (3Cn   (S))      J    Í  El *i| J    á3C„   x.

ßin

,1/2

Using generalized spherical coordinates (p, 0i, • • • , 6n-i) of a point xGEn,

given by the relations

X„ = p COS 0„_i,

x„_i = p sin 0n_i cos 0„_2,

x„_2 = p sin 0„_i sin 0„_2 cos 0„_s,

Xt = p- IX sin 0J-COS01,
J-2

Xi = p- PJ sin0y,
J-l

we have

.1/2n-1        N-l      r  (    "   , ,2\1/2J     „-1

(3C„     (S))      ■     I     Í    El   */|    )       dWn     X

• • • ( IIsin20,- + E( Il sin2 8i) cos2 0,_i )
0     Jo -I 0     •/ 0        \ j-l j-2\t-j / /

■( nsin'0)+ij ¿0id02 • • • d8n-id8n-i

/iff      /•■* pit     p 2ir   / n—2 \

I     ••■   I       I      ( II sin''0f+i ) d6id82 ■ ■ ■ d8n-2ddn-i
o   J o •/ o   «/ o    \ /=i /

( Il  I    sin' 0,(20,) ■ ( LT I    sin'-1 8¡dBA -2r
\ j=m Jo I      \   j-2 J 0 /

( II f   sin'-1 djddA -2ir

I    sin"-1 xix
Jo

/sin"1-1 xáx
o
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- <|)r(i)r(=L±i)-

This completes the proof of Statement 1.

Statement 2. /3(«, 1) =r(w/2)-r((re+l)/2)-1-r(l/2)-1.
Proof. By definition 2.6,

ßin, 1) =  f  A(£|í)<A¿n£ =  f   I R\\d4nR.
J Gn J Gn

By 4.1,

I     | r\ I ¿tf>„£ = (3C"_1(S))_1-  f | xi | dxl^x
J Gn J S

/I X /iff /* ' /* ^'

I     • • •   j       j      sin""1 0n_i sin""2 0n_2 • • • sin2 8,
o   •/ o J o   J a

■ I sin 0i I ¿0i¿0¡¡ • • • d6n-id0,

I     • • •   I sin"-2 0n_i sin"-3 0„_2 • • • sin 02
0     J 0 J 0     J 0

2- n(  f   sin' *¿*)

•¿0ld02 •  • •  d8n-2ddn-l

hence

2x- n( sin' xix\

= x-1-   I    sin"-1 xdx
J o

= T-1-r(«/2)-r(i/2)T((« + 0/2)-1

= r(re/2)-r((« + i)/2)-1-r(i/2)-s

/3(«, 1) = r(n/2)-r((n+ l)/2)-*-r(l/2)-i.
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Statement 3.

im + l\     (n — m + 1\

ol       . \     2     /'rV 2        /
ßin, m) = -■

Proof.

ßin, m) |3(« — 1, m — 1)
ßin, m) =

ßin — 1, m — 1)   j3(re — 2, m — 2)

ßin - m + 2, 2)
-ßin - m + 1, 1)
ßin- m+ l, 1)

/«î + 1\    / » \ /»t \    / re — 1 \

r(—At)   KtK—)
/ re + 1 \     /?w \ / re \     /m — 1\

r(-T-)r(T)    rU)r(-^)

/3\     /n-m+2\ in - m + 1\

/re - »t + 3\ / 1 \    /re - m + 2\

r(—Hr(1)    '(tX-ti—)
/»Î +  1\     /« — w + 1\
(—)r(-^)

'(^Xl)
This completes the proof.

5. The integralgeometric (Favard) measure of product sets.  In  this

section we consider the case in which ß — k.

5.1 Lemma. If

(1) I ^ k ^ n, 0 ^ m ^ n — k; m, n, and k are integers,

(2) A = £" Pi E [x„_*+i = • • • = xn = 0],
X

(3) B = £» H £ [xi = • • • = Xn-k = 0],

(4) S G A, S is analytic, }C(S) < °o,

(5) T= BC\E [xn-k+i GJifor i= 1, • • • , A],
a:

where J¿ ¿5 a« analytic subset of E1 of finite ^i measure, for ¿ = 1, • • ■ , A, /Aere
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y:+kis + T) = y:is).ykniT).

Proof. Note first that (5) implies that TGB is analytic.

The lemma will be proved by induction on A.

For A = l and for arbitrary re, m with 0^m^n — l, then 4.5 implies that

yZ+1(S+T)=X(S)-yn(T) < », since %{T) =£i(/i) < «.
Suppose now that the lemma holds for all A such that 1 ̂  A ̂ q and for all

re, m, such that OíSíkíS« — A. Let k = q+l and let m, re be such integers that

0^m^n — k. By the inductive hypothesis, we have

jetara + ¿TV» = y^r^.^r^D) < -.
since y:-iiPn-1*iS))=y:iS)<*. Let

x = iC'-.pr'ns + T),
Y = £" H £ [xi = • • • = x„_i = 0, xn G Jh\.

x

Now

?:+\x) = £?(#r*cs) + #r*<m
and since we are essentially dealing with Lebesgue measures,

3Í(P)-3Í-i(#r,*(D) = 7n(D-
Also 4.5 implies that

y:+\x + Y) = yr\x)-?niY)<<»,

therefore

y:+\x + Y) = 3C(S).^L4(iT*(iO)-5t(P)
= 7r(S)-7„*(£).

ButZ+F = S-f-r. Hence

7:+fc(s+£) = 7:(s)-7nV)< -,

which completes the proof.

5.2 Lemma. If conditions (1), (2), (3), (4) o/5.1 are satisfied and

(5')       TGB,yliT)<«>, (£ n £ [(0, • • • , 0, xi, • • • , xk) G T])
X

is an open subset of Ek, then

yTis + T) = ymniS)-ykniT).
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Proof. Let

T = Ek H £ [(0, • • • , 0, xi, • • • , xk) G T\.
x

Then by standard methods, we can obtain a decomposition of T' into a count-

able number of parallelotopes (not necessarily open or closed) with "sides"

parallel to the coordinate axes. More precisely, we may express

T' = U /,',
»=i

such that

T'i r\T'i = 0 for ¿ * j,

Ti = Ek r\E [xi G A for / = 1, • • ■ , A],
X

where J) is a bounded interval of E1 for i— 1, 2, 3, ••■;/ = 1,   • • • , A. Let

Ti = £n r\ £ [*i = • • • = xn_fc = 0 and (x„_fc+i, • • • , x„) G Ti],
X

for ¿=1, 2, 3, • • • . Then by 5.1, JZ*\S + Ti) - 7« (S)-7*(r<), for ¿=1,
2, 3, ■ • • . Moreover,

00

T = U Ti,
i=l

£< H Tj = 0 for ¿ ^ j,

oo

S + T = U (S + Ti),
i-l

and therefore

(S + Ti) H (S + T,) = 0 for i ?¿ /,

y:+\s +T) = ± yTk(s + r,)
<=i

= ¿7:w'7n(p.)
i-l

= 7»m(5)-E7n(r.)
>=i

=   7nm(5)-7n(P)-

The proof is complete.
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5.3 Theorem. // conditions (1), (2), (3), (4) of 5.1 are satisfied and

(5") T GB, T is analytic, yl(T) < °o,

then y:+\s+T) =y:(S) -yl(T).

Proof. Let

T = EkC\E [(0, •■■ ,0,xi,--- ,xk)G T}.
X

Then J" is analytic, hence Jj, measurable, and

■G(r)-3to< ».
Let e>0 and choose a set Wi, open in Ek, such that

T' G Wi   and   £k(Wi) <W) + e.

Now (Wi — T') is J^k measurable and

ZkiWi - T) = JlkiWi) - JllkiT) < e.

Hence we may choose W2, open in Ek, such that

iWi - V) GW2G Wi,

£kiW2) < J&iWx -T') + e< 2e.

For ¿=1, 2, define

W'i = En r\ E [xi = ■ ■ ■ = Xn-k = 0 and (x„_i+i, • • • , x„) G Wi],
X

Then by 5.2 we have, for ¿=1, 2,

y:+\s+Wi) = 7nm(s)-7n(^) = y:is)jzkiWi).

Since S+iW{ -W{)GiS+T)GiS+Wi'), it follows that

7nm+fc(s + iw'i - wi)) á yT\s + T) ¡s 7:+i(s + PTi).

Hence

3C(S)-GGdFi) - 2t) ̂  3C(5)-GGOFO --GW)
= 7:+t(s + wi) - y:+\s + w'2)

= 7nm+*(s + iw'i - W2))

g yT\s + D
^y:+kis + w'i)

=  7niS)-&iWi).
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By the arbitrary nature of e and because

Jtj,(WÙ - 2e^J¿k(Wi - W2) èJ^kiT') = 7nCT) =W) ^J&iWi),

we conclude that

7:+\s+r) = 7:(s)-7n(r).

5.4 Remark. Though the methods used in the proof of 4.5 can be general-

ized to prove 5.3, the above proof is simpler and more elegant.

5.5 Theorem. //

(1) A is a subspace of En of dimension (re —A), 1 gA<«,

(2) B is the subspace of En of dimension A, orthogonal to A,

(3) O^re^re-A,

(4) SC-4, S is countably TÎT measurable,

(5) TGB, T is countably 7* measurable,

then

y:+kis + T) = y:is)-fniT).

Proof. By 2.10, we may just as well assume that

A = £" H £ [x„_,+i = • • • = xn = 0],
X

B = £" r\ E [xi = ■ • • = Xn-k = 0],
x

Assume further that 7T(S) < °°, 7í(P) < °° • Then since S and T are respec-

tively Tn" and 7* measurable sets, we can find analytic sets U\ and V\ such

that

SCGiC^, TGViGB,

7»m(s) = Jim,        yliT) = yliVi).

Hence

yZiUi - S) = 0, 7»Vi - T) = 0.

Choose analytic sets U2 and V2 such that

iUi -S)GU2GA,     (Fi - D C V2 G B,

y:iu2) = o, y"niv2) = o.

Then

Ui-UtC S, Fi - V2 G T,

yZiUl-   U»)   =   7nVl)   -  7r(S),

7n(Fl   -    V2)    =   7nVl)    =    7n(P).
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By 5.3, we have

7r+Vl+  Fl)   -  7n>i)-7n(Fl)   =   7^) • 7n(£),
yTkHUi - u2) + (Fi - v2)) = y7iui - u2)-ykiVi - v2)

= 7nm(S)-7n(r).

Finally,

therefore

7nm(S)-7n(P)   =   jTiiUl  -   U2)  +   (Fl  -   V,))

g y:+\s + T)

g 7:+Vi + vi)
= j:is)-ykniT),

y:+kis+T) = y:is)-ykniT).

If now S is countabfy J% measurable, then we may express

S = U Si,       SiC\ Sj = 0 for i ¿¿ j,
>-i

Si is 7JT measurable and j^iSi) < a> for i= I, 2, • ■ • . Similarly if £ is count-

ably 7» measurable, then we may write

ta

T = U Ti,        Ti r\T¡ = 0 for i ¿¿ j,
»-i

Ti is 7* measurable and 7n(P¿) < °° lor i—l, 2, ■ • ■ . Then

y:+\s + T) = yTk(i)Si+ u t.)
\ <-i       i=i  /

-jTVD   U(S..+ £,))
\ >-l J-l /

= it y:+k(Si + n
i-l   J-l

=    T. t,7n (Si)-fniTj)
i-l  j=l

= (E7:(^))-7nV)

- 7n(S)-yl(T).
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The proof is complete.

5.6 Remark. If in the hypothesis of 5.5 we do not require S and T to be

7¡T and 7* measurable respectively, then it is obvious that

y:+k(s+T)^y:(s)-fn(T).

5.7 Theorem. //
(1) A is a subspace of En of dimension a,

(2) B is the subspace of E" of dimension ß = n — a, orthogonal to A,

(3) O^m^a, O^k^ß,
(4) / is a Lipschitzian function, dmn f=X, where X is an J^m measurable

subset of £•", f*(X) =-SGA,
(5) g is a Lipschitzian function, dmn g=Y, where Y is an JLj¡ measurable

subset of Ek, g*( Y) = TGB,

then

y:+k(s + T) = y:(s)-ykn(T).

Proof. Without loss of generality, we may assume that

A = £" n £ [xa+i = ■•■ = *„ = 0],
X

B = £" C\ £ [xi = • • • = x« = 0].
X

By [MF], we may further assume that both/and g are univalent.

Now for all functions u, v, such that dmn uGEm, dmn v CE*, rng re CE",

rng z>C£B, we define the function (u®v) on (dmn wXdmn v) GEm+k (we shall

make no distinction between £mXE* and Em+k) to En by the formula

(U ®  V)(x)   =   «(Xi,   •  •   •   ,   Xm)  + viXm+l,   •  •  •   ,   Xm+k)

for x = (xi, • • • , xOT+A-)Gdmn (u®v). Then

(f®g) is univalent and Lipschitzian,

(/ ® g)*iX X Y) = (S 4- /).

Letting £A(x) denote the (total) differential of A at x, then by straight-

forward methods it is seen that for £m+k almost all zGiXX Y),

Dif ®  g)i%)   =  DfiZl,   •  •  •   ,Zm)   ® DgiZm+l,  •  •  •   , Zm+k),

and   therefore   Jif®g)iz)=Jfizi, • • • , zm)-Jgizm+u ■ • ■ , zm+k).   Hence   by

[F2, 5.13],

7r*(s + T) = f N[(J® g), ix X F), z]dyTkz
J En

=  f     Jif ® g)iz)K«*kZ
J XXY
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= f //(*)<*<>• f Jgiy)dJZky
J x Jr

=  f   N[f, X, x]dyZx-  f   N[g, Y, y]dfny
J Jï» J En

= 7r(S)-7n(£).

The proof is complete.

5.8 Theorem. //

(1) A is a subspace of E" of dimension a,

(2) B is the subspace of En of dimension ß = n—a, orthogonal to A,

(3) O^m^a, OgAg/3,
(4) SC-4 is a countable union of m rectifiable, 7™ measurable sets of finite

fu measure,
(5) £C£ is a countable union of A rectifiable, 7* measurable sets of finite

7« measure,

then

yTkis+T) = ymnis)-fniT).

Proof. We may just as well assume that S is m rectifiable, fnniS)< °°,

T is A rectifiable, y„iT) < °o.

Since the closure of a rectifiable set is rectifiable, we may choose analytic

m rectifiable sets S' and S" for which

s" g s g s' g a,     y7is") = 7:(S) = 7nV).

By 2.11, choose a Lipschitzian function / such  that dmn f = Em, /*(Em)

Z)S'Z)S". By the analyticity of S' and S" and the continuity of/,

X' = (£"• r\ £ [fix) G S'])  is an analytic set,

X" = (£T\ £ [fix) G S"]) is an analytic set.
X

Letfi = if\X'),f2 = if\X"),^
Similarly choose Lipschitzian functions fi, g2, with JÇ^ measurable do-

mains and sets T', T", such that

rng {l-rcrcr- rng gi G B,       yliT") = /„(£) = 7*n(P').

Then by 5.7,

7:(S)-7n(£) = 7nV') -7n(£") = y^is" + T")

ú yTkis + t) g yTkis' + n = 7nm(s')7n(P')

=   7nm(S)-7nV).
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The proof is complete.

6. Hausdorff measure of product sets. In this section we construct a

subset A of E2 such that the unit cylinder £ with base A has larger 2-dimen-

sional Hausdorff measure than the 1-dimensional Hausdorff measure of A.

In doing this we use and extend some of the ideas of Besicovitch and Moran,

who gave a rough outline of such a construction (see [BM]).

6.1 Definition. If C is a subset of E3, we shall say that

D is complete with respect to C,

if and only if D is such a bounded subset of C that

ipGC - D)-* (diam (£ VJ {p}) > diam D).

Unless otherwise stated, we shall mean in this paper by a complete set,

a set which is complete with respect to E3.

We shall make use of the fact that a set is complete (in E8) if and only if

it has constant width.

6.2 Remark. For the properties of convex sets and, in particular, com-

plete sets, which we shall use, see [BF].

6.3 Theorem. Let a>0,

C = £3 C £ [zl + zl á a2/4],
z

x> >d>0. Then of all subsets of C with diameter less than or equal to d, the set

(Cr\E[\g\ ¿ d/2])

has the largest volume.

Proof. Let DGC be such that diam D=b?¿d. Choose a convex set DiGC

such that DGDi and diam Di = 8.
Let now Hi be the supporting function of £i (see [BF, p. 23]). Then by

the "central-symmetrization" of [BF, p. 73], we define the function H2 on

E3 by Hiiu) = il/2)iHiiu)+Hii-u)) for uGE3.H2 is the supporting function

of a convex set, call it D2, with 63 as center and with the properties that

diam £>2 = diam Di=5, J^(D2)^jC¿3ÍDi). Moreover if uGE\ \u\=l, w3 = 0,

then ¡Hiiu)\ 5=<z/2, since I>iCG. Hence JZ/2(m)| ¿a/2, which implies that

D2GC.
Finally we shall show that

£2C (CHE [la I ¿ d/2]).     •
Z

Let zGD2. Since D2 has 83 as center, —zGD2. Hence

2- | z | = | z - i-z) | ^ diam D2 = 5 g d,        \ z \ g d/2,
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zGCC\E [\z\ S d/2].
2

Thus

„G(C r\ E [ | * | á d/2]) Èî .0(£2) ^ -Gtf?),

and the proof is complete.

6.4 Remark. The isodiametric inequality proved in 6.3 can obviously be

generalized to any cylinder symmetric with respect to its axis. However we

shall use only the result stated in 6.3.

6.5 Definition. If c is a bounded subset of E3, let gc be the function on

E2 to E1 such that for xGE2,

gdx) = wlicr\E [z = (xi, x2, t),0 ^ t ¿ 1]).

6.6 Theorem. // c is a complete set of diameter d, and ô > 0, then}

ix G E2, y G E*  and \ x - y | ^ 5) -> ( | gc(x) - gc(y) \ ^ 23'2- (5a)1'2).

Proof. Let Ci = p\*(c) and let/3 be the boundary of Ci. The following fact is

well known:

If A is a convex function on the interval

(E1 r\ E [a g x g b])
X

to Ei and X>0, then either

sup     | A(x) — h(a) |  =    sup     | A(x) — A(y) |,
|i-a|Ê>> li-JlSX

or

sup    I A(x) — A(A) |  =    sup    | A(x) — A(y) |.
\x-D\e\ |l-l/|gX

Suppose now that xGci, yGci, and 0 < | x—y| ^ô. Choose aGci, bGci so

that

{a} \J {b} = ß C\ E [z = y + t(x - y),  - <x> < t < »].

Since

(gc\ E [z = a + t(b - a), 0 ^ t ^ l])

is a convex function, we conclude that either

I gc(x) - gc(y) | á    sup    | gc(z) - ge(a) \,
|i-a|S5

or



264 GERALD FREILICH [September

I gcix) - gdy) | á    sup    I geiz) - geib) |.
|«-»|Ä«

Hence it follows that

sup | gcix) - gdy) |   = sup | gdx) - gdy) \.
ItEci, »Ge, \x-v\£S iG/3, 3>Gci, \x-y\£S

Now let xGß, yGci, 0<|x—y| ^8. By [BF, p. 127] there is a unique

number t for which (xi, x2, t)Gc. Since x is a boundary point of ci, there is a

supporting line £ of ci through x. Let £' be the line determined by (x;, x2, 0)

and (xi, x2, 1). Then obviously £ and £' determine a vertical supporting

plane to c through (xi, x2, t). Since c is a set of constant width, we may choose

x'Gci such that | x' — x\ =d, and such that (x{,, x{, t)Gc. Therefore c is con-

tained in the sphere of radius d and center (x/ , x2 , t). The intersection of this

sphere with the plane determined by (xi, x2, 0), (yi, y2, 0), and (yi, y2, 1) is

then a disc of radius rSd, whose circumference passes through (xi, x2, t).

Hence since the length of the vertical chord (of this disc) passing through

(yi, y2, t) is 2- (r2 — (r— \x—y\ )2)1'2 = 2- (2r- |x—y\ — \x — y|2)1/2, we conclude

that

I gdx) - gdy) | = gdy) Ú 2-i2r- | x - y| - | x - y I2)1/2 g 2-(2áS)1'2.

Hence supi*-,,^« |gc(x)— gdy)\ ;S23/2- (5¿)1/2. This completes the proof.

6.7 Remark. If for each bounded subset c of £3 we let g' be the function

on E2 to E1 such that

gcix) =   Xs(cn £ [z = (Xi, Xi, t),   -   CO   < f <  oo]),

for xGE2, then 6.6 remains true with gc' substituted for gc.

6.8 Definition. Suppose « is a positive integer, £ is a closed disc in E2

of radius a>0 and with center zGE2. Let

£0= (£2n£ [| x| g a]),

C   = (E2 C\ E [xi = ij/n)a, x2 = (A/re)a, where / and A are integers]),

N =7(Cn£o),

/ be the function on E2 such that/(x) = (1 — l/N)x, for x G £2.

We shall say that

A is the re-uniform spread of B,

if and only if

A  =        U        {£2Pi£ [| x- y-z\ S a/N]}.
hEAcObo) '

Since N = yiA) is obviously independent of the radius and center of B

and depends only on re, we shall call it Nin).
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6.9 Remark. Let £ be a closed disc in £2 of radius a > 0, let An denote the

re-uniform spread of £ for re = l, 2, 3, • • • , and let

Dn = inf (      inf      | x — y|),

for re=l, 2, 3, • • • . Then the following statements are easily checked:

(1) a-An C B,

(2) (ai G An, a2 G An, ai ¿¿ a2) —► (ai C\ a2 = 0) for re = 1, 2, 3, • • • ,

(3) lim Nin)/irn2) = 1,

(4) Dn = a/n-a/in-Nin))-2a/Nin),

(5) limDn/ia/n) = 1,

(6) lim/>2n-iV(re)/(7rfl) = 1.
n—»w

6.10 Fundamental construction. Let «i = 100 and define the increasing

sequence «i, re2, • • •   inductively so that

iV(re,+i) ̂  M\, for ¿ = 1, 2, 3, • • • ,

where for brevity we shall let

Mi=Y[ Nin,), for i = 1, 2, 3, • • • .
/-i

Let

Ao = {E2f\E [\ x\ g 1/2]},

and define Ai inductively as follows:

Denoting the re.-uniform spread of aGi¡_i by re(a), we define

Ai =     U    uia) for ¿ = 1, 2, 3, • • • .
iiSi¡-i

It is obvious that if aGAi, then a is a closed disc in E2 of diameter M^1

and that yiAi) = Mi for ¿=1, 2, 3, • • • .
For the remainder of this paper we shall let

di = inf dist («i, a2) for ¿ = 1, 2, 3, • • • .
«lGA¡, ^GAí. ai^<¡2

Note that if in 6.9 we let £ be some element of -4,-i, then

Dni = ¿,-.

We now define



266 GERALD FREILICH [September

A   =  n aAi.
i-0

Since E«»G4i diam a — l for ¿=1, 2, 3, • • • , it follows from the definition of

5C| that3C2(i)gl.

We define £,• for ¿= 1, 2, 3, • • -, as follows:

£,• =    U    {aXE[0^ y^l]}.
«ex,- y

Further let

Then

£ = H aBi.

B = A X £ [0 ^ í ^ 1].

.4 and £ will be fixed for the remainder of this section. Theorem 6.18

will show that KÜB) > 1 ̂ 3^(4). But first we need some preliminary defini-

tions and theorems.

6.11 Theorem. // c is a complete set, then

0 :g limpie r\o-Bi)/£3i<xBi) g 1.
í—»00

Proof. For ¿=1, 2, 3, • • • , define

US) = JZÁS r\ oAi)/JLl2io-Ai) for S C £2.

Then iAt- is a measure over £2, ^,(E2) = 1, and hence

f/^ S U/H   =  sup   |/(x)|,
J xSe2

for any Baire function / on E2 to E1.

Let d, for ¿=1, 2, 3, •• -, be the set of all functions/ on E2 to E1 such

that (/| a) is constant for all aGAi. The proof is divided into 4 parts.

Part 1. if G Ci)—»(lim*-.«, j/¿^* exists).

Proof. Just notice that if fGCi, then ffdil/s — ffd\{/i for/^¿.
£ar¿ 2. If g is such a continuous function on E2 that for some ¿^ 1 and for

all aGAi,

(x G a, y G a) -» ( | f(«) - g(y) | ^ «).

then for/^¿, A^¿,

JW/ g#*   á e.
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Proof. Define/i,/2GG¿ as follows:

/i(x) = inf giy) if x GaGAi,
»6«

Mx) = gi%) if x G £2 — <rAi,

/2(x) = sup giy) if x GaGAi,
»6«

/2(x) = gix) if x G £2 - <rAi.

Then/i(x) tkg(x) èf2(x) for xGE2, H/2—/t|| ^«. Hence for k}zi,

ffidxPi =   f/r#* ̂    f g#* á  fhdik =   f/«#<•

Since

J/2#i - J/l#.  á   ||/,  - /l||   ̂    «,

we conclude that if ja», A^¿, then

I g#j -  I g#* I ̂  «•

This completes the proof of Part 2.

Part 3. If g is a continuous function on E2, then

lim    I  gdi/k
i->oo    J

— t» < lim   f  gdipk < <*.

Proof. Note that g is uniformly continuous on the closed unit disc centered

at the origin. Hence for any e>0, we can choose ¿^1 so that for all aG-4»,

(x G a, y G a) -► ( \ g(x) - g(y) \ ^ e).

Apply Part 2 to complete the proof.

Part 4. O^lim^oo ^3(cí\(tBí)/^((tBí)^1.

Proof. Applying 6.6 and Part 3, we have

- =0 < lim   I  gcdipi < «>.
1—,00       J

Since 0^fgc.diii = J^j(cr\oBi)lJ^ji(aBi) ^1 for ¿=1, 2, • ■ • , the proof is com-

plete.

6.12 Corollary. // c is such a complete set that for some *Ü£l,

(a G Ai, x G a, y G a) -* ( | gc(x) - gc(y) | ^ e),

¿Aere
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J^(cr\aBi) JZticno-Bi)
lim

Jlzio-Bi) /-.     £3(«r£,)

6.13 Definition. In view of 6.11, we define for c a complete set,

/(c) = lim„0(Cfï<r£<)/„G(<r£i).
I—»00

6.14 Convention. We shall let C be the set of all complete sets c such that

1
/(c) ^ —■• sup/(x),   where    X = £ [x is complete and diam x ^ diam cj.

2    iG*

6.15 Lemma. Let X>0. Then there exists an integer K such that if k^K,

cGC, and

lOOM'k1 è diam c ^ dl+v ¿f*+i/(100x),

¿Aere

(1 - X)-/(c) |^(CA,5l+1)/^Mí+!) Sil + X)-/(c).

Proof. By 6.9(6) choose K so large that for all A^£,

(399/400) -dl+i ^ T-i2Mkf\Nink+i)f1 á (401/400)-din,

and

Mk è 1013/X.

Assume A^E  Then

(401M*)-1 g (1007r)_1-¿+i-ikf*+i g i399Mkf\

Choose bGBk with base aGAk and let E be a right circular cylinder whose

axis coincides with the axis of b, whose height is (2007r)-1-df+1- Mk+i, the

radius of whose base is (4007r)_1df+1 ■ Mk+i, and which is completely contained

in b. Then
—1   2

diam £ ^ (lOOx)   dk+i-Mk+i,

and since there are more than vHSOOir^-dk+i- Mk+i)2 elements of ^4i+i con-

tained in the closed disc of radius iii00rf)~ldk+i-Mk+i)dk+i and center co-

inciding with the center of a,

> i-n-iiZOO^dk+iMk+S)• ÍTÍ2Mk+i)~2) ■ WOOTvf'dl+iMk+i)

~ iMk+i)iwi2Mk+i)-2)

= (^S-lOo'-TrV^át+i-Aft+i.
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Let now cGCbe such that

100MÏ1 ^ diam c è (100T)-1-<£+1-Affc+i.

Then

/(c) ^ (256-lOoV) 'dl+i-Ml+i.

Also, if aG-4*+i> xGa, yGa, then by 6.6,

I gcix) - gdy) | á 23/2-(diam c)V\Mk+iTV* ¿ 2V*-10-M?-Nin^f1".

Hence by 6.12,

| i&icnc-Bk+d/JZsio-Bk+i)) - fie) | è 2m ■ 10-M~k-Nink+i)~m

23'2 • 10 -M'k-Nink+i)'112     /N
< - - -fie)

(256-1003-x2)-1-4+i-M 2
k+1

= 23'2-256-107-T -fic)-idl+i-M\-Nink+if) "S

■jw-((—V-^*^T
\\100t/    Mt-Nink+i)*/

^ 10   -fic)-Mk-Nink+i)

^ 10U-fie)-M?

á X-/(c).

The proof is complete.

6.16 Lemma. Let X>0. There exists an integer K such that if k^K, then

(1) 100 • Ml 1^ih,

(2) (401 • Mk)-1 ^ (IOOtt)"1^!-Mk+iú (399• Mh)~\

(3) // c ¿s a complete set which is also complete with respect to some bGBk,

diam c = diam ici\b), and

100 Ml1 è diam c ^ (100r)-»-<5+i-Af»+i.

then

Proof. Let g be the infimum of the volumes of all complete sets of diame-

ter 1. Then q>0. By 6.9(6), (5), (3), choose K so large that for all k^K,

(1) and (2) of this lemma hold, and Mk^l0u-q-1-\-1.

Let k¿:K, and suppose c satisfies the hypotheses of (3). Then since

diam c^dk, we see that c intersects exactly one element of £*, namely b.
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Because c is complete with respect to b, diam (c/^A) =diam cè(1007r)-1

■dl+i ■ Mk+i, we have

jLltic C\ o-Bk) ̂ qiilOOirf'-dl+i-Mk+i)3.

Let aGAk be the base of b, and suppose ai, ■ • • , aN(nk+1) are the N(m+i)

elements of Ak+i contained in a. Now associate to each a¡ for ¿=1, ■ • • ,

Nink+i), a Borel set a' Ga such that

ai r\ a'j =0    for    i 5¿ j,       at G oc¡,       diam a¡ ^ 2dk+i,

N(nk+{)

U      «/-O,        ^2(a0 = 7T-(2M*)-2-iV(«i+i)-1.
¿-1

If xGotí , yGaí for some 1 á*á-A7(»*+i), then by 6.6,

I *.(*) - g.(y) I ^ 23/2 -(2-dt+i'diam c)1/2 á 40- (i^-MiY*,

and hence

/'                                                                      /*                                                         1/2            -1/2_ gcix)djQfix — Nink+i) •   I    gdx)dj^2x   ^ iO-dk+i-Mk     -^2(a,'),
ai                                                                       *' a;

. . i/2 _i/2 _2

| £3(c H <r£t) - iV(re*+i).&(c H «rSt+0 I = 40 • dk+i ■ Mk     - rr ■ (2Mk)    .

Therefore,

/■C3(cn<r£t+i)\    AQ(c Pi <r£t)\-'

V    ^3(<r£4+i)     /'\   .£(*£*)     )

_ I ^(cno-Bk+i)-N(nk+i)

~ I ^3(c H cBk)

1/2 —1/2 —2

40-¿¿n-M*     -T-(2Mk)

?-[(100T)-1-dl+i--M't+i]»

(1007r)3   in     z,11     »r"   at,        A"1'2•10x-(d*+i-ilft -N(nk+i) )

11/2
10   //éOlV1'1   Jft -iV(rew)    A1/2

g   VVIOOtt/ Mn-N(nk+i)6 )

10"      _i
^-Af*   ^ X.

The proof is complete.

6.17 Lemma. Let X> 1. There exists an integer K such that if A SïE, /Aere
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(1) dt^lOOili*-1,

(2) (401 • Mk)'1 á(IOOtt)"1 • d\+i■ Mk+i<(399• Mk)-\

(3) If cGC is complete with respect to some bGBk, diam (AP\c) =diam c,

and

100M? 1 diam c è ÍIOOt)'1 dk+i-M k+i,

then

X-Vto £&icf\*Bk)/Jh{aBk) è \-f(c).

Proof. Apply 6.15, 6.16.

6.18 Theorem. 3C^(£)>1^3C^(^1).

Proof. Note that in the definition of 3C|, we may restrict our coverings to

consist of complete sets. We can do this because every set in £3 is contained

in a complete set of the same diameter.

Let X> 1. Choose K as in 6.17. Then the theorem follows from Part 4 and

the arbitrary nature of X.

Part 1. If A è-E, c is such a complete set that

lOOMl1 ̂  diam c ^ dk,       f(c) > 0,

then

(diam c)2/f(c) £ 100.

Proof. Since diam cá¿t and/(c) >0, c intersects exactly one element of

Bk, say b. Let

T = inf £ [(xi, x2, t) G Q> C\ c) for some Xi, x2].

Then

ib C\ c) G ib C\ E [r g x3 á r + diam c]),
X

and hence

fie) á diam c • M k ,

(diam c)2/fic) è Ai"*-diam c ä 100.

This completes the proof of Part 1.

Part 2. If k^K, c is such a complete set that

— 1       2

dk+i á diam c ^ (lOOir)    -dwMk+i,       fie) > 0,

then

(diam c)2/fic) ^ 25.
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Proof. The set c cannot intersect more than ir(2 • diam c/dk+i)2 elements of

£*+i, since pl*(c) is contained in a disc of radius equal to diam c. Hence, by a

similar argument as was used in the proof of Part 1, namely that the inter-

section of c with an element of £4+1 is contained in a cylinder of height equal

to diam c and base radius equal to (2Mk+i)~1, we conclude that

2 _i
/(c) ^ x(2-diam c/dk+i) -àiaxn c-Mk+i,

and therefore

(diam c)2/f(c) à ¿2+i-3í"i+i/(4x-diam c) ^ 25.

This proves Part 2.
Part 3. If A = £, c is such a complete set that

(lOOic^-dl+i-Mk+i á diam c á 100Afl\       /(c) > 0,

then

(diam c)2//(c) à 2-(1081'4 - Í2«4)-*.X-«.

Proof. If cGG, then we can choose a set c'GC such that diam c = diam c',

and f(c')>f(c). Hence

(diam c)2//(c) > (diam c')2//(c'),

so that we may just as well assume that cGC.

Since diam c^dk, c intersects exactly one element of Bk, say b. Now there

exists a complete set c' such that

(c (~\ b) G W C\ b),       diam (c' H &) = diam c = diam c',

c' is complete with respect to A.

Hence/(c')^/(c), (diam c)2//(c) à (diam c')2//(c')> and so we may assume

that cGC is complete with respect to b and that diam ib(~\c) =diam c.

Applying 6.17, we have

X-!-/(c) £jbicn<rB„)/£.i<rBk) =S X-/(c),

and therefore

X-^diam c)2//(c) á (diam c)2<3(<r£*)/^3(c Pi <r£4) ^ X-(diam c)2//(c).

By 6.3, if 5 is a sphere of diameter equal to diam c, with center on the axis

of b, and which does not meet either base of b, then

(diam c)2-JZs(o-Bk)/^(cr\oBk) ^ (diam s)2-£3(<rBk)//Z3(s H <rBk).

Our problem is thus reduced to the following calculus problem:

Let



1950] ON THE MEASURE OF CARTESIAN PRODUCT SETS 273

£ = £8 H £ [x\ + x\ g r2];

then find the number s such that

r/401 gsá lOOr,    and   4i2/^3(£ C~\E[\x\ g s]) is least.

It is easily checked that s = r • 3-1/4• 21/2, and that

4s2/£j3(£ H £ [ | x | g s]) = 4(xr(1081'4 - 121'4))-1.

Hence

(diam c)2//(c) ^ X""1 • (diam î)* -.£3(<r£*)/G(s H <r£*)

â X_1-4(x(1081/4 - 121/4)/2-il/*r1-(xMlfc/4M2)

= 2.(1081/4-121/4r1-X-1.

This proves Part 3.

£or/4. X3(£)^X-1-7r-(2(1081'4-121'4))-1>(l.l)-X-1.

Proof. Recall that £ is compact and hence we may assume that any cover-

ing of £ by complete sets of positive diameter is finite. Let F be such a finite

covering of £ by complete sets whose diameters are less than dx- Then by

Parts 1,2, and 3,

(c G £ and/(c) * 0) -♦ ((diam c)2/fic) ^ 2(1081'4 - 12l'4)-*-X-*).

Also by the definition of/, it is obvious that

E/to ^ i.
cGf

Hence

E (x/4)(diam c)2 è 2(1081'4 - 121'4)-1X-1-(x/4) E/(«)
t£p cGp

^ x^-^lOS1'4- 121'4)-1-X~1

>(i.i)-x->.

By the definition of 3C|, we conclude that

3C2(£) â x-2_1-(1081/4 - la"4)"*^"4 > (l.l)-X"4.

The proof is complete.

6.19 Corollary. Sl(£)>S2(^).

Proof. It is easy to see that in general,

stiX) ^ WniX) for X C E", 0 g A g re.
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Moreover it is obvious that S2(-4) gl, hence

S2(£) è 3C3iB) > l^sliA),

so that for sphere measure, it is likewise not true that the measure of a

cylinder set is the product of the measure of the base by the height.

6.20 Remark. Since 3C|(£)>0, it follows that 3<£iA)>0.

6.21 Remark. By [R, 5], we have

cliB) ¿ c\iA).

Since C\iA) ^ 1, we conclude that

C2(£) è 1 < 3C2(£),

thus proving that C\ s^X2,.

6.22 Remark. By means of the construction in 6.10, examples can

immediately be constructed in En for w>3, for which the Hausdorff measure

of a product set is not equal to the product of the measures of the com-

ponents.
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