ON THE MEASURE OF CARTESIAN PRODUCT SETS

BY
GERALD FREILICH

1. Introduction. There are various measure functions defined on the set
of all subsets of Euclidean #n-space, E*, which generalize the elementary con-
cepts of length or area, or in general, k-dimensional volume. These measures
are called respectively 1-dimensional, 2-dimensional, and k-dimensional
measures over E*. The following question then naturally arises:

For A and B orthogonal subspaces of E* with dimensions @ and 8=n—a,
andfor0=m=aand 0=k =B, 1sthe(m-+k)-dimensional measure of the cartesian
product of the finitely measurable sets SCA and T CB equal to the m-dimensional
measure of S times the k-dimensional measure of T?

In the case n=3, =2, =m=Fk=1, and T an interval, J. F. Randolph
obtained a partial answer for Carathéodory and Gross measures (see [R])(}),
A. P. Morse and Randolph obtained the affirmative answer for Gillespie
measure (see [MR]), while A. S. Besicovitch and P. A. P. Moran presented a
rough outline of a counter example for Hausdorff measure (see [BM]). By
using new methods the current paper obtains results for integral-geometric
(Favard) measure, Hausdorff measure, and sphere measure.

The cylinder case (8=1) for Favard measure is answered in the affirma-
tive (Theorem 4.5) and further generalized (Theorem 5.5) to k=g, thus com-
pletely answering the question if #» < 3. Partial results for the remaining cases
are contained in Theorems 5.7 and 5.8.

In 6.10 an example is constructed, using and extending the ideas of
Besicovitch and Moran, which answers the question in the negative for both
Hausdorff measure (Theorem 6.18) and for sphere measure (Theorem 6.19).
Moreover we obtain in this way a set for which the Hausdorff measure differs
from the Carathéodory measure.

Finally we obtain for XCE®", k<m =<mn, a new formula which expresses
Fr(X), in terms of the multiplicity integrals, with respect to ¥%, of the per-
pendicular projections of X into m planes, as an integral over the set of all
these m planes (¥4 is Favard k measure over E®).

2. Preliminaries.

2.1 DEFINITION. We agree that «©-0=0-w =0.

For S a set, v(S) is the number (possibly «) of elements of S. For F a
family of sets, ¢(F) = U,gpx.

For x a point,
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{2} = E[y=4l.

For f a function, f! is its inverse, and for X a set, (f| X) is the function
with domain (XMNdomain f) defined by

(f] X)(®) = f(x) for x & (X N domain f);
furthermore
N[f, X, 5] = vX N E [f(») = =),
fX)=E [y = f(x) for some z € X],

and for g also a function, (f:g) is the superposition function defined by
(f:8)(x) =f(g(x)) for all x.

2.2 DerFinNiTION. E* is Euclidean n-dimensional vector space with the
usual inner product and metric. We denote the origin of E" by 6. If ACE®
and BCE®", then

A+B=E"f\€[z= x + y for some x € 4, y € B].

Lebesgue n-dimensional measure over E" is denoted by ..
2.3 DEFINITION. If m and » are positive integers, and L is a function on
Em™ to E*, then L is linear if and only if

L(x + y) = L(x) + L(y) for x € E™ y € E™,
L(\-x) = \-L(x) for x € Em™, X\ a real number.

If L is a linear function on E™ to E*, 1 £7=<m, and I'is the 7th unit vector
of E™, then we shall write

LY=L= @4 Ly, -~ -, L.

By the matrix of L we mean the matrix with » rows and m columns whose
entry in the sth row and jth column (1=5i<#n, 1<j<m) is Lj. We make no
distinction between L and its matrix. If m <#, we define

A(L) is the square root of the sum of the squares of the determinants of
all m by m minors of L.

If f is a function on E™ to E*, 1 Sm <n, and x& E™, then we shall say that
L is the differential of f at x if and only if L is a linear function on E™ to E*
such that
1@ — ) —Le—A)| _

1 = 0.
P [z — =]

If L is the (unique) differential of f at x, then we lét
Jf(x) = A(L).
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2.4 DEFINITION. If 1<m=<n, then p; is the function on E* to E™such
that

P () = (%1, %2y * * * , %om) forx€E,
and 7} is the function on E™ to E® such that
n":‘(y)=(y11y2!'°'yym90)01°"10) for yEEm.

2.5 DEFINITION. Let G, be the set of all linear functions R on E* to E*
such that | R(x)| =|x| for *€E". The function p defined by the formula

p(R,S) = sup | R(%) — S(x) | for R € G,, S € Gn,
z|=1

metrizes G, in such a way that G, is a compact topological group with re-
spect to the operation, :, of superposition. G, is called the orthogonal group
of E*. We shall denote the identity of G, by "I.

We let ¢, denote the unique Haar measure over G, for which ¢.(G,) =1,
nonempty open sets are ¢, measurable and have positive ¢, measure, and the
¢ measure of a subset of G, is the infimum of the ¢, measures of open sets
containing it.

We shall use the following properties of ¢, (see [W, 8]):

If f is a ¢, measurable function on G,, then

f(R)deaR = | f(R)d$uR,
Gn G
and for SEG,,
15:Ri8R = [ JR:S)inR = [ fRIBR,
Gn Gn Gn
2.6 DEFINITION. If 1 <k =<u, then
k
8w B = [ AR[DdsR,
Gn

where (Rl %) is defined for REG.,, as the linear function on E* to E* such that

(R|5$=R}fori,j=1,2,- -,k
2.7 DEFINITION. Let

:.=E"m1.z[x.-=0fori=1,2,---,n—s],

and define the function N, on the cartesian product (G.XE"™*) to the set
A}, of all s-dimensional flat subspaces of E* by the formula

M(R, w) = R*Zw + {1 (w)}) for REG,, wE E .
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The motivation for this definition rests on the following fact:
Let ¥;,(F) be defined for each suitably restricted real-valued function F
on A} by the formula

e = [ [ FOR 0)ag sk

Then ¥}, is an invariant integral. (See [F3, 4].)
2.8 DEeFINITION. We say that g is a gauge over S if and only if Sis a
metric space,

dmngC?[xCS], and rnggC]:J[O§t§ w].

If g is a gauge over S, >0, define the function g, for x C.S by the formula
(%) = inf 3 g(y),
GE

B yEq
where GEB if and only if G is such a countable family that xCoG and
diam y =r whenever yCG.
We shall say that ¢ is generated by g if and only if g is a gauge (over .S)
and ¢ is the function on

E [z C5]
defined by
¢(x) = lim g.(x) for x C S-
r—0+

It is easy to check that ¢ is such a measure that closed sets are ¢ measurable.
2.9 DEFINITION. Suppose 1 <k <n. Let g, g2, g3, g« be the gauges over E»
such that

dmn g, is the set of all open spheres of E?,

dmn g is the set of all subsets of E®,
gi(x) = (R)~1-T(1/2)*1-T((k + 1)/2)-(diam x)*  for x Edmn g, i = 1, 2,
dmn g; is the set of all analytic subsets of E®,

g3(®) = B(n, 1 | Lal(pn: R)*(2)]dgnR for € dmn g,
Gn

dmn g, is the set of all convex open subsets of E®,
. k
&(®) = sup Lil(pn: R)*(2)] for x € dmn g,.

Then we define

LN
S, is the measure generated by g,
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k.

JC. is the measure generated by g»,
k

F» is the measure generated by g,

L
C. is the measure generated by ga.

S+ is sphere k measure over % space, 3Cs is Hausdorff measure, %% is integral-
geometric (Favard) measure, and Cy is Carathéodory measure. We also define
F5 by the formula

Fald) = 7(4) for 4 C E".

2.10 REMARK. Itis quite easy to see that S, 5%, 7%, and C¥ are invariant
under rigid motions of E*, and that they satisfy the condition that any subset
of En is contained in an analytic set of the same measure.

We shall use the fact that if 4 is an analytic subset of E*, 1 <k <n, then

k -1 k
7o) = om0 [ [ W61, 4, y)alisds.R

= B(n, k) f fEk'y[A N (R, ) 18.Crydd.R.
Gn
(See F2, 5.11] and [F3, 5].) Also it is obvious from 2.9 that
Fo = Lo

2.11 DEerINITION. If f is a function on a subset of E* to E*, then f is said
to be Lipschitzian if and only if there is a number M such that

|f(x)—f(y)l§M'lx-y| for all x, y € dmn f.

We shall make use of the fact that if f is Lipschitzian, dmn fC E*, rng fC E®,
then there exists a Lipschitzian function g on E* to E®such that (g|dmn f) =f.

Suppose 1 =k =n, ACE". Then we shall say that 4 is k rectifiable if and
only if there is a Lipschitzian function whose domain is a bounded subset of
E* and whose range is 4.

3. A new formula involving Favard measure. Though Theorem 3.1 is not
used in the remainder of this paper, I feel that it will be useful in future in-
vestigations concerning Favard measure.

3.1 THEOREM. If A is an analytic subset of E*, m and k are such non-
negative integers that k<m =n, then

7ad) = @m, B8, 1) [ [ NIGT:R), A, 3)dFndenr.
Gy E

Proof. With each S&G., we associate the orthogonal transformation
SEG. by the formulas
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3;‘=S: fori=1,.--.,m; ji=1-.--,m,
Si=0 fori=1,---,m; j=m3+1,---,m,
S:=6;’ fori=m+I,'-~,n;j=1,. <, n,

where ] is the ordinary Kronecker §-function.
The proof is divided into 3 parts.
Part 1. (p5:S:p7:R) = (p£:S:R) for REG,, SEGn.

Proof. For xEE®,
(95251 pm i R)() = (pizs:p:')(z xR)

t=1

- A(E(5e)7)

] m n L

(23 wR;St) T
1 ju=l §ml

k n n .

( I x.-R;E,f) r
1

jm1 f=1

=h—
=2
=
= (p

k._
n

:S:R)(x).

This proves Part 1.
Part 2. For R&EG,,

fEmN[@Z‘:R), A, 31875y = 8 ™ [ ) fﬂN[(plf:?:R). 4, 2JdLirdnS.

Proof. Let
A; = E"‘mg [N[(pn:R), A, 9] = i] fori=1,2---,
Ao=E"NE[N[(p2:R), 4, 5] = =].
Then A, and A;,fori=1,2, - - - , are analytic and hence ¥y, measurable sets,
and
AiNA; = for i % j;1 514,75 < o,
Therefore

[ N16TR, 4, 5lays

0

= 3 i Fu(ds) + - Fn(4o)

=1
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=X im0 [ [ WoniS), du Slduadons
=1 Gm V E*
t+ o 8m 7 [ [ Ni(phiS), du, 2lalszdpns
G vV EF

- son 0™ [ ) [ (Ziniehis), 4, 5]

$=1

+ 'N[(PZIS), Ay x]) d‘C"xd‘ﬁ"’S
— B(m, K" fG ] f,,a N[($4:S:pn 2 R), 4, 2)dLaxdbmS

= B(m, k)™ fa fE*N[(p::E:R), A, 2]dLsxddmS.

This completes the proof of Part 2.
Part 3.

74) = G, B/6, B [ [ NIGTiR), 4, 5187erds.R.
Gn v E™
Proof. Applying Part 2 and 2.5,

som, B [ [ NI, 4, y)a7npden
- fo , fo,.. fE*N[(P::E:R),A, #1d.Crxd$nSdgaR
- fo,. fo ” fE N[(pw:3:R), 4, 2]dLsrdduRdbnS
- fo,,. L ” fEkN[(P::R),A, #)d.Ls2d$sRddmS

- fa " fEkN[(Pﬁ:R), A, z)d.Cradg.R

= B(n, k)-Fr(4).

This completes the proof.
4. The integralgeometric (Favard) measure of cylinder sets. In this
section we consider the case in which =k=1.

4.1 LEmMA. If

1) 1<i<n,
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) S=(E"NE][|=|=1]),
3) ¥ is the function on E [x C S] defined by
Y(x) = $u(Ga N -g [Ri € X)) Jor X C S,
then
(@) W(X) = (Fen () gen (X) whenever X C S is a Borel se,

®) fa ¢(R)dgnR = (30 (S)) - L e()ds s,

whenever g is a continuous function on S.

Proof. By straightforward methods it is checked that
Y measures .S,
Open sets in the relative topology on S are ¥ measurable,

¥(S)=1,

¥(X) >0 whenever X is an open non-empty set in the relative topology
on S,

Y[0*(X)]=¢(X) whenever QEG,, XCS.
Hence ¢ is a Haar measure over S with respect to the transitive group G,
of isometries of S. Since

(32| E[=CSD

is also a Haar measure over S with respect to G,, we conclude by the unique-
ness of Haar measures (on Borel sets) that (4) holds. (5) is now easily checked.

4.2 LEMMA. If 1=4, jSn and —1=t=1, then
#GNE [R; = ¢]) = o.
Proof. By 4.1,
$uGa N B[Ry = 1]) = (57 () 527 (S N E [, = 1]).
Since
e (SN E [5;=1]) =0,

the proof is complete.

4.3 LEMMA. If n is a positive integer, and L is the set of those elements R of
G, for which *I* is a linear combination of R?, - - - , R*, then ¢,.(L) =0.
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Proof. If REL, then R'-»[*=0, and therefore R.=0. Apply 4.2.
4.4 LEMMA. If0Em<n—1, then

¢,,(G,.r\ %[ > R = 1]) =0,

Sm=m-2

Proof. If REG, is such that Z?.,,,HIR;I?: 1, then in particular, R, =0.
Apply 4.2.

4.5 THEOREM. If

1) 0=m=n—1, mandn are integers,

2 A= E*N E [x. = 0],

3) B=E"ﬂ§[x1=xz=---=x,._1=0],
(4) SCA, Sisanalytic, Fn(S) < w,

5) ' T C B, T isanalytic, _“f:(T) < o,

then

Fo (S + T) = FalT)- T2 (S).
Proof. If m=0, let g=F2(S) < . Then S consists of ¢ distinct points of 4.
Therefore (S+T') consists of ¢ distinct translates of T. Hence
1
FalS + T) = ¢-FalT) = F2(8)- Fa(D).

If m=n—1, let S'=(p3~")*(S). Since 53~' is an isometric mapping of S’
onto S, we use [F1, 4.5] to conclude that F3~'(S) =La-1(S’). Similarly, if

T'=E1r\§[(0,o,---,o,x)eT],

then F3(T)=.Li(T"). Thus by Fubini’'s theorem,

n—1

FoS + T) = LalS + T) = Laa(S)-Lo(T") = T2 (S)- FulD).

Assume now that 0 <m <xn—1. Without loss of generality we may assume
that F5(T) >0. Let K be the set of those elements R of G, for which

n

> R <y,

1=m+2
and for which R?, R?, - .-, R* *I* are linearly independent. Then by 4.3
and 4.4,

¢.(G. — K) = 0.

Also it is easily seen that for REK,
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e (B (R, e (B (R, -y (o (R,

are linearly independent. Hence, for each REK, we may consider orthogonal
transformations which leave »I* fixed and which rotate »I»*+1, . . . =" !in
such a way that they span the linear subspace generated by 7~ '(pr~ ' (R™*2)),

-« o, g (P (R™)). For this purpose, we shall say that P satisfies condition
I with respect to R if and only if REK, PEG,, and

P(nIﬂ) —_ nIn,

n_n—1

PCT™Y = on R/ | e on (R ],

% n

(*) P —Rn'Rn .n n—1

{ - I Rf.|2)1’2(1 - l R:lz)x/z
n—ie2 — R g
am0 (1 - I R: lz)l/z (1 —ﬂ_§—¢ | Ri+l+a+i|2)”2 (1 _"‘i““ I R:+1+a+i|2>"2

1 =0
ni i 2\ M?
1 - Rn ) n— n— ',
+ nIi—l < Z;)l l Nn I(Pn l(R‘))

2.1/2 nmi a1/ = T r (R )
- &N" (1= Z1&0T) G ®Y)|

i=1

for t=m—+2, - - -, n—1.

Further, we shall say that Q satisfies condition II with respect to Rif
and only if REK, Q&EG,—1, and there is a PEG, which satisfies condition I
with respect to R and for which

Q:-=P',.- foré,j=1,---,n—1.
In particular, we define the function f on K to G, such that if REK, then

(f(R); = P; fori, j=1, 1,

where P satisfies condition I with respect to R and also P satisfies equation
(*) fori=2, - - - , m—1. It is obvious that f is a continuous mapping associ-
ating with each REK a transformation f(R) which satisfies condition II
with respect to R.

Suppose REK and P satisfies condition I with respect to R. We shall re-
duce P to a canonical form. Define Up g = (P':R). Then forz=1,2, - - - , m,
we have
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"I'€ Ura(B N E [tmya = -+ = 2, = 0]),
because (Up,z);=0 for j=m-+2, ---,n,4=1,- - -, m, and hence
(Up) "' = 0.
We may therefore choose Up,g & Gmy1 such that
Up(Ura(CTNy -+ -, (UsaCT))mp) = "1 fori=1,---,m.
Define Vp rEG, by the formulas
Ver('T) = (Up2)s - -+, (Upa)in, 0, - -+, 0) fori=1,+--,m+1,
Ver(T)="T fori=m-42,---,m
Finally, let Wp,z=(Up,z: Vi) €EG.. Then it is easily checked that
WP.R("I") = ”I‘ fori=1,---,m,
Wer('I) = Upx('T) = (P :R)('T) fori=m+2,---,m,
(Wp,z)n = R, fori=m+2 - ,n

The remainder of the proof is divided into 8 parts.
Part 1. If P satisfies condition I with respect to R, then

n—m—1

fr Y[ + T) NNTNR, )Ly

f f V@) + D AN (Wom, (31, -+, %y ) |4Liyd L

Proof. Since .Lm11s invariant under transformations by elements of Gmy1,
and applying Fubini’s Theorem, we have

[ A6+ DONTT®R )]almiy

n—m—1

- j; MV[P S+ T)NNTT(R, 9))]dLmiry

n—m—1

= [ AP D AN R )il

n—m—1

= L"‘“ ’Y[(P *S) + )N A" (Up g, ﬁ;le(y)>]doCm+1y

= f N Y[(PTHS) + T) NN (Up r:Viw), 9))dLminy
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- f,,. fE AEEE) + D AN Wrm, (- 5 9) 1130 L

This completes Part 1.
Part 2. If P satisfies condition I with respect to R, then

m+1 . 1/2
| (o)™ | = (z| R,’.l”) > 0.

j=1

Proof. Since P and R are fixed, we omit the subscripts on Wpe, g. Notice
that

0=ww=wiia-| RPN+ wiTER,

n—1 (2 n12.1/2 n-1 _n
0= WMI'W”—I — W::{-zl.(l I Rn | ”_ I Rnl ) _ W”m:-:. Rn ‘an
a- l Rnlz)uz a- | R”|z)1/z

+ Wit R,
n . 1/2
1 2 (1-'22 IR,’.|2> n?
0=w""w" = wit - _ wa
(1 _ Z I R');|2) amem+-2
jemmt3
RRTY i1
(n—a—1) N1z (n—a1) Nz !
(1= "R (1= TS R
=1 j=0
m42 n
R. ‘R, w1 m2
o————+ W, R,
(1 — |Ry [y + ’
1=w""w™ = 3 |wi.
amm4-1
Hence solving for | W7*!|, we have
mil R, m+1
W“_. = - _—ﬂ—.W”
' (L —[Ra[pre 7"
............................ ,
mt1 R:.“ w1

Wm+1 = - - W,,

’



244 GERALD FREILICH [September

and therefore

R:|2 lR:—llz
wa | [1 | L ..
v R Ao TRERa - R TR T
+ IR:&+212
(1- = 1&))(1- = &)
j=m+3 j=m+2
- I Wm+1I2- ___L_ - 1
1- 3 |E[
Jmm4-2
m+1 . 1/2
|W,':‘+‘|=(2|R:|”) >0,
Jel

The proof of Part 2 is complete.
Part 3. If P satisfies condition I with respect to R, then

n—m—1

CE ({0} + NN (W, (0, -+, 0, ) = Z])
m+1 P9 1/2 1
- (ZIR,’.|) FAT) > 0.

fel
Proof. Let
T= Elﬁ@[(‘x"' von x)eT]‘

Recalling that

(WP.R)MI'(WP,R)‘ =0 for i = m 4+ 1,
(WP,R):H'1 =0 forj=1,---,m,
we have ‘
[({6") + DN (Wep, 0, -+, 0, 3)) = &]
There are numbers amys, * - - , a, such that

y W) 4+ Y e (Wer)i=0  forj=m+1,---,n—1,

fe=m+2

gy Wepmw + X ai (Wer) € T,

i=m+2

which implies that
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gy W)+ X a Y (Wem) - (Wen)i =y E Wem)n T,

jmmt1 immb2  jemtl
where (Wp,g)2t!. T shall mean

(E'NE[s= Wen) *. y for some y € T"].

Conversely, if y&(Wae,g)at" T, let
y (We.z)mia

Ompg = — )
~ (Wp,R)mit
1 2
9 (We.)mis + amya: (We,z)mis
Qmis = — ,
e (We,r)mi2
............................. ,
- (Wemhnt + amz- (Wemhoos + - - - + ans(Wp.p)oms
oy = — .

(Wp,r)n-1
Then it easily follows that
y‘(WP,R)nm+1 + X ao"(WP.R): erT.
immt2
Hence, by Part 2 and the fact that Li(7T") = %a(T) >0,

n—m—1

CE O} + DN Wer, 0+, 0,9)) = &)

1 m mbl L \1/2
= .Cl((WP,R)T ‘T') = | (WP,R)»+1 | '—CI(TI) = ( EI Rnl ) ?:(T) > 0.

=1

This completes Part 3.
Pagrt 4. If P satisfies condition I with respect to R, and Q&G,._; is such
that Qi=P; for ¢, j=1, - - - , n—1, then

J A+ 1N W, (w1 5 DNy

-1 n-1 n—m—1, (n—1 milo s \Y2
=L@ T ) (SIRT) R,

=1

Proof. Assume that

n—m—1 _(n—1)

g =7[@ o ) NI #)] < .
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Then
@A) M ™1, 2) = U {5},

=1

where 2¢7#3 for 155 and 2*€EE*for 1=1, - . -, q. Furthermore

f 7 Y[PTHS) + TN (Wezy (51, -+, %y 9)))dCay

=1, AU @) + D ONT W, @ s 2w 3)]ACy ,

E =l
= Q' fll‘y[({(xlr c x"l! 0' v ’0)} + T)
N X:—M—I(WP,R, (%1, =+« Zmy 9)) ]d‘-c!y

n—m—1

- ¢ Ll.,[({o"} + NN Wem, O, - -+, 0, 9)]dCsy.

Nowif (0, - - - ,0,a)and (0, - - -, 0,d) areboth in NJ™* Y (Wp,g, (0, - - -,
0, y)), then there exist numbers amy2, * * *, atn, and Bmyz, * + -, Bn such that

y*(WP.Ia):+1 + amye- (Wp.ze)r+2 + oo 4 o (Wpp)n = a,

g Wem)n™ + Bure Wephn' 4+« -+ + B (We ) = b,
{ y-(WP.R):ﬂ + amiz (Wep)mis = O,

y'(WP.R)::l-: + ﬁMz‘(WP.R):i: =0,

...........................

( n
ly' (WP.zi.’)::‘—ﬂ"xl + amye- (WP.R):‘:‘: 4+ e 4 an (Wpr)n-1 =0,

y-(Wehntt + Bz (Weg)os + + - + + B (Wp.z)or = 0.

From the definition of Wpe g we see that

(Wop)mites %0 forj=0,+-+,n—m—2,
hence
Omiz = Bmizy * * +, An = B,
and therefore (0, - -+, 0, a)=(0, - - -, 0, b). From this it follows that

n—m—1

J A+ DT s, 0, 0, )]l
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= GELHT + D NANT T (Wer, 0, -+, 0, 3)) = F)

= (fll RZI’)M-;%.(T) > 0.

d=1

Hence

j;l’y[(P_l*(S) + T) N )\:—m_l(WP.R: (xlv ttty Xmy y)) ]d‘CU’

m+1 . 1/2
- (1) A,
=
The same method handles the case ¢= «, since
m+1 i 1/2 1
(Zl R.| ) “Fa(T) > 0.
=1

This completes the proof of Part 4.
Part 5. If Q satisfies condition II with respect to R, then

(R, 3)]dLmrry

n—m—1

f Y[+ T) NN
Em+1

= ("fl Ril’)m-?i(r)- fE e SO N (@, )]s

i=1

Proof. Applying Parts 1 and 4, we have

(R» y) ]d‘C"H'ly

n—m—1

f YIS+ TN
Emﬂ

m+1 . 1/2
fx( 2| R, I’) Tu(D) 7@ 87V AN, ) |alwn

=1

m+1 : 2\1/2 n—1x A
(ZIRiI) @) [ 4l AN, )i

i=1
The proof of Part S5 is complete.

For the remainder of this proof, we associate with each PEG,_, the transfor-
mation PEG, by the formulas

< n— .
P = (P fori=1,--+,n—1,
P="r.

Part 6. If Q satisfies condition II with respect to R, and PEG,_;, then
(P: Q) satisfies condition II with respect to (P:R).
Proof. We have for 1=:<n—1,15k=<n,
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n n—1 .
(P:R)i = 3 R;-Pl=Y R;-Pi

) j=1 ju=l
and .
(B:R): = 3R} Pl = R,
Ju=1
Hence
@1 = P (R | 5B )
= (1 - | R:Iz)-llz'P(R:’ Sty R:—l)

n—1
=~ &N T R-P
j=1
—1/2

== | @R (PR, -+, (PR
n—-1 n-1

= pn (P:R)")/| pn ((B:R)],
—(P:R),f- (PZR): (=D n1
(1= | (B:R)i |21 — | (P:R)z |92

n—im2 _ (P:R)‘:H.“

+ §o . i2.1/2 n—il-a ir1rari2\1?
A= |ER (12 2 TR

(P:Q)(

1]

¢ (n—1) _i+a
n* I

-(P:R)

=1
1
n—i—l—a . . 1/2
(1 _ Z ' (P:R):;+l+a+,|2>
=0

(1 -3 (P:R)f.*"lz)m

+ =0 .(n-—l) o'—-l)
. n—1i irii 2 1/2
a-| (P:R):.[’)"’(l - Y| (B:R). )

i=1

n—1 n—1

= P(pn '(R)/| 22 (RY])
A= [RPHSRE

j=1

-1/2

= (1 = | B:RL Y U(B:R), - -+, (PiR)um)

= pn (B:RY/| g (B:R)Y |,

fort=m+2,-:---,n—1.
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It easily follows now that (P:(Q) satisfies condition II with respect to
(P:R).
Part 7.

TS + T) = F2(S)-FalD)- (B(n — 1, m)/B(n, m + 1))
m+1 P2 1/2
Gy J=1

Proof. Recalling the definition of f, and using Parts 5 and 6, we have for
PeGn—ly

Fa S+ 1)

=smmt 07 [ f 1+ DONTT®R 9tk

=smmt 07 [ [ A6+ D OANTTR, 9)]dlwirisnR

n—m—1

=m0 [ [ A[S+ DB, 9)lilenydtnR

-1 m+1 i 1/2 1
= B(n, m+ 1) -fK(ZlR,.I F(T)

i=1

n—1k n—m—1

A6 O (@R, )]ansdbR

Hence
NS+ 1)
_ :;T ' ’ _1. m+-1 R; 2 1/2
F(T)- (B, m + 1)) fa._,fx(,-}.:l‘ l)

n—1x n—m-—1

: fw'r[?n ) NN (Pf(R)), 2))dlmsddnRabnrP

= Fo(T)- (Blm, m + 1)) f K( 5 R:l,)m

=1

n—m—1

f fJ[f’:_l*(S) NNt ((Pif(R)), 8)]dLmadén1PddnR
= B(n — 1, m)(B(n, m + 1)) - Fa(T)

e o [ (Z1x |2>md¢nR

j=1
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= Fu(S)-Fa(T)-B(n — 1, m)- (Blm, m + 1))
m+1 i 1/2
.fa (EIR,.I) d6uR.

The interchange of the order of integration in the above is justified by the
following argument:
The function g defined on G, by

n—1%k n—m—1

g(P) = fEm‘Y [pn (S) NNy (P, %)]dLmx  for P € Gp,

is such that counter-images of open sets are analytic sets. Using the fact
that counter-images of analytic sets by continuous functions are again
analytic sets, we conclude that the function % on (Gs-1XK) is measurable,
where

n—1x n—m—1

h(P, R) = fEm‘/[ﬁn )N\ Ay (P:f(R), x)]dLom%,

for (P, R)E(Gn-1XK). The Fubini Theorem then applies immediately.
The proof of Part 7 is complete.
Part 8. o+ (S+T) =F2(S) - Fu(D).
Proof. To evaluate the factor

-1 m+1 i 1/2 .
B(n — 1, m)(B(n, m + 1)) ( 2| Ral ) d¢uR,
Gn \ =1
we take in particular
T0=Enn§[x1=x2= cee=2,,=0,12= x, = 0],

So=E"(\E[O§x.~§1fori=1,---,m,andxm+1=---=x,.=0].

Then
Fo (S0 + To) = 1 = Fa(To) = Fn(So),
therefore

(310 "tk

=1

B(n,m+ DB — 1, m) " = f

Gn

and we conclude that

Fo (S 4+ T) = Fo(S)-FalD),

for all S, T satisfying the hypotheses of this theorem.
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4.6 COROLLARY. If m+1=<mn, then

gn,m+ 60— 1) = [ ( IR |’)"2d¢,,ze.

'n \ j=1

Proof. Recall that for REG,,

(R)i=Ri for1 <4,j < n.
Hence by 4.5 and 2.5,

Bn,m+ D@ = 1,m)” = [ (fl K] l’)”qubnk

n \ 7=1

-[ (fl (R“)’}F)mdmk

n \ 7=1

mbl o \1/2
- (Zl&-l) d6.R.
Ga \ =1
The proof is complete.

4.7 REMARK. The preceding corollary affords a new method for the evalu-
ation of 8(n, m) which differs from the method in [F1, 5]. Roughly speaking,
by means of a “distribution measure,” we can express

[ (B8 ar

as the integral of a continuous function over the (#z—1)-dimensional surface
of the unit sphere in E*. Thus 8(n, m+1)(8(n—1, m))~! can be effectively
evaluated. Furthermore, it is quite easy to evaluate 8(n, 1) for all #. From
this information, 8(#n, m) can be immediately calculated. The details follow.
Let
S=ENE[|=]|=1]

Statement 1. For n=2m>1,

om (37

Bn—1,m—1) r(n+1>'r(ﬁ>
2 2

Proof. We let ¢ be the measure over S defined by
¥(X) = (G N E [R" € X]) for X C S.
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Then by 4.6 and 4.1,
B(n, m)

Bn—1L,m—1)

GERALD FREILICH [September

m 1/2
L(;lx@l’) d6nR

- (s sn™ (§|x,|’)mdac:“x.

Using generalized spherical coordinates (p, 61, - -

given by the relations

+y 0,-1) of a point xEE",

%o = p COS Op1,
Xn—1 = p Sin 60,_; cos O, s,
Xn—2 = p Sin 0,_; sin 6,2 COS O,_3,
............... ,
n—1
%2 = p- ] sin 6;-cos 6,
=2
n—1
X = p- H sin 6,
=1
we have
m 1/2
n—1 -1 2 n—1
(% (S)) -f(EI xfl) a3, x
8\ =1
* r L3 27 n—1 m n—1 1/2
f f v f f <Hsin201 + Z( 11 sin? 0;) cos? 0,-_1)
0 0 0 0 ol F=2 \ $=j
n—2
: ( 11 sin"0,~+1) d6,db; - - - dfn_2dOn—
=1
- L4 L 4 x 2 n—2
f f - f f ( II siniﬂ,-_,_1> d6:1d0; - - + d8p_2d8,_1
[} 0 0 [} g1
m—1

n—1

(

H sin? 0,-d0,~) . (
J=m 0

II | sini? o,-do,-> 2w

j=2v 0

n—1

I

f sin®1 xdx
)

E
f sin™! xdx
0

(]

L

sin~1 @ ,-dB,-) 27
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n 1 n+ 1\"1
*(3) @) ()
2 2 2
m 1 m 4+ 1\!
(7)) ()
2 2 2
1
(52
2 2
1
()
2 2
This completes the proof of Statement 1.

Statement 2. B(n, 1)=T'(n/2) - T'((n+1)/2)1-T(1/2).
Proof. By definition 2.6,

Bin, 1) = | AR|Ddé.R = | | Ri| dpnR.
Gp G,

By 4.1,

f | R}| douR = (52 (S) ™" f | 2| d3e s
G, 8

') x Lt 2
f f T f f sin®10,_; sin""2 60,5 - - - sin? 6,
[} 0 [} []

| sin 6y | 616 - - - dBu_sdB

- L3 L3 L4 2r
0 0 0 0

'd91d92 ¢ dow—zdon—l
n—1 x
2- H(f sin’ xdx)
=1\ 0

n—2 L4
27 H( f sin’ xdx)
j=1 0

T
= w“~f sin®! xdx
0

= 7 1.T(n/2)-T(1/2)-T((» + 1)/2)7
= I'(#/2)-T((» + 1)/2)7*-T(1/2)7,

hence

B(n, 1) = T(n/2)-T((» + 1)/2)7*-T(1/2)7%
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(1) o5

Statement 3.

(5 7(3)
Proof.
Bn,m) = Lo B lm— 1)
ﬁ(n—m+2,2)
'ﬂ(”—m+1,1)'ﬁ("_m+1r1)

) D)
() ()

P
(50 )

()5
)

This completes the proof.

5. The integralgeometric (Favard) measure of product sets. In this
section we consider the case in which 8==%.

« e e e

5.1 LemmMma. If
¢)) 1S k=n0=m=un— k;m, n, and k are integers,
) A=Enng[xn_,,+1=---=x,=o],
A3) B=E"NE[m="-=a=0],
(4 S CA4, S is analytic, Fn(S) < o,
(5) T=BNE[tnii EJifori=1,--,k]

where J; is an analytic subset of E* of finite L1 measure, for i=1, - - - , k, then
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It S + T) = T (S)- Fu(D).

Proof. Note first that (5) implies that T'CB is analytic.
The lemma will be proved by induction on k.
For k=1 and for arbitrary #, m with 0 <m <n—1, then 4.5 implies that

Fa T S+T) =F2(S) - Fa(T) < 0, since Fo(T) =La(J1) < .

Suppose now that the lemma holds for all 2 such that 1<k =g and for all
n, m, such that 0Sm <n—*k. Let k=¢+1 and let m, n be such integers that
0=<m =n—k. By the inductive hypothesis, we have

m4q, n—lx n—1% n—1% n—1k

Fot (Bn (S) + pn (D) = Facs(pn (S))-Facilpn (T)) < ,
since Ji,(£h1*(S)) =7 (S) < . Let

X = (nn ipm DS+ T),
Y=Enm_§[x1= e e == x"_1=0, anJ,‘],

Now

n—1k n—1%

T = FE@TS) + (@),
and since we are essentially dealing with Lebesgue measures,

n—1%k

FalX)- Foa(pn (1)) = Fa(D).
Also 4.5 implies that

FH X+ 7) = FX)-Fa¥) < o,
therefore

m4-k

Tn

n—1x

(X +7) = F2(5)- ot (1) F(D)
= Fu () Fu(D).
But X+ Y=S+7T. Hence
FoH S + T) = F2(S)-Fu(T) < o,
which completes the proof.

5.2 LEMMA. If conditions (1), (2), (3), (4) of 5.1 are satisfied and
() TCB I <, ENE[O-,0n- -, )T

is an open subset of E*, then

FoH S + T) = Fo(S)-FulD).
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Proof. Let
T'=ENE[Q--,0,u, -, =) ET]

Then by standard methods, we can obtain a decomposition of T’ into a count-
able number of parallelotopes (not necessarily open or closed) with “sides”
parallel to the coordinate axes. More precisely, we may express

’ !

T =UT,
=1
such that
T:iNT;=g for ¢ > j,
Ti=ENE[sEJiforj=1,---,kl,
where J; is a bounded interval of E! fori=1,2,3,---;j=1, -+, k. Let

Ti=E"NE[n=" - =a=0and (fnim, ", %) € Ti],

fori=1,2, 3, - - -. Then by 5.1, ¥2*¥S + T,) = o (S)-F(Ts), for 1=1,
2, 3, - - -. Moreover,
T=UT,
=1
T,\N\T;=& for § < j,
S+T=UGS+T),
=1
S+ToNES+T)=g for i # j§,

and therefore

TS+ 1) = S + T
f==]
- ily':%swﬁ(m

= Fr(S)- }:1 Fa(T2)
= F(S)-FulT).

The proof is complete.
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5.3 THEOREM. If conditions (1), (2), (3), (4) of 5.1 are satisfied and

(5" T C B, T is analytic, ?:(T) < o,
then Fn 5 (S+T) =F2(S) - Fa(T).
Proof. Let
T'=E*NE[0-,0, -, =) €T

Then T" is analytic, hence . measurable, and

LAT) = FalT) < .
Let ¢>0 and choose a set Wi, open in E¥, sucl; that
T"CW, and Lu(Wi) <Li(T) + e
Now (W1—T") is L measurable and
LW — T') = La(Wy) = Li(T') < e.
Hence we may choose W, open in EF, such that

W, —=T)C W C Wy,
Lr(We) LWy — T') + € < 2e.
For ¢=1, 2, define

W= E"f\EzJ [0 ="+ = 2% = 0and (Xp—sy1, -+ *, %) € Wi).

Then by 5.2 we have, for 1=1, 2,
F S + Wi = F(S)-FalWi) = Fo (S)-La(W.
Since S+(W{ —W{)C(S+T)C(S+WY), it follows that
TS+ W= W) = TS+ 1) = IS + w.

Hence

Fn (S): (La(W) — 2) £ Fu (S)- (Ca(W1) — Lx(W2))
= s+ wh = NS + W)
= s + (Wi — W)
<5 S+ 1)
< 9o S + W)
= Fn (S)-Lx(Wy).
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By the arbitrary nature of € and because

L(Ws) — 2¢ < Lo(Wr — W) S LCu(T) = Fa(T) = Lu(T') S La(W),

we conclude that

FrHS + T) = Fo(S) - Fu(D).

5.4 REMARK. Though the methods used in the proof of 4.5 can be general-
ized to prove 5.3, the above proof is simpler and more elegant.

5.5 THEOREM. If
(1) A is a subspace of E" of dimension (n—k), 1<k<n,
(2) B is the subspace of E™ of dimension k, orthogonal to A,
(3) 0Osm=n—k¢,
(4) SCA, S is countably ¥y measurable,
(5) TCB, T is countably F% measurable,
then
m+k m k
7S+ 1) = TS TaD).
Proof. By 2.10, we may just as well assume that
A=E"NE[gp="+ =2 =0]
B=E»ng[x1= coo =2, = 0].

Assume further that F7(S) < ©, 7%(T) < . Then since .S and T are respec-
tively ¥ and F* measurable sets, we can find analytic sets Uy and V; such
that

SCU,CA4, TCVv,.CB,
Fo(S) = WD, FuT) = FaV).
" Hence

FrU =8 =0,  FuVi-T)=0.

Choose analytic sets Up and V, such that
(U,—8S)CU,C4, (V.i—T)CV.CB,
Fu(Us) = 0, Fa(Va) = 0.

Then

U,— U, CS, Vi—V.CT,
7%‘((11 —Uy) = ?;k”(vl) = ?;<s>,
FalVi — Va) = FulV2) = Fa(D).
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By 5.3, we have

Tt UL+ Vi) = Fo(U2)-Fa(V2) = Fo(S)-Fo(T),
Fott (U = Us) + (V1 = V) = Fa(Us = U)-FalVi = V)
= F(S)-FalD).
Finally,

FS)-FAT) = Fo™ (U = Us) + (V2 — V)
<SS+ 1)

< 7t UL+ V)

= Fo(S)- 7o),

therefore

TS 4 T) = Fo(S)- Fa(D).

If now S is countably ¥; measurable, then we may express

S=US.', S.-f\S,~=,® foriiéj,
i=1
S; is Jn measurable and ;' (S:) < » for =1, 2, - - - . Similarly if T is count-
ably ¥ measurable, then we may write

T=UT.', T;f'\T,-=,® fOl'i#j.,

$m=l

T; is ¥ measurable and J5(T;) < for =1, 2, - - -, Then

Fr S+ T) = 71."“”( Us:i+ U T)
fm=] =1

[E )

- y:‘*"( U UG+ T,->)
=] j==1

0

= 3 f:??k(ss-l- T

tm=]l el

0 o0
m

3 FS) - FulTS)

$=1 jm=1

(Z5ea)-shm

=1

= Fr(S)- Fa(T).
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The proof is complete.
5.6 REMARK. If in the hypothesis of 5.5 we do not require S and T to be
= and Fr measurable respectively, then it is obvious that

FoH S + T) £ F0S)-Fu(D).

5.7 THEOREM. If

(1) A is a subspace of E* of dimension c,

(2) B is the subspace of E* of dimension 8=n—a, orthogonal to 4,

3) 0=m=a, 0ZEk=5,

(4) f is a Lipschitzian function, dmn f=X, where X is an L measurable
subset of E™, f*(X)=SCA,

(5) g is a Lipschitzian function, dmn g=Y, where Y is an L measurable
subset of E*, g*(Y)=TCB,
then

TS+ 1) = Fa ) TuD.

Proof. Without loss of generality, we may assume that
A=E"NE [tap ="+ =5, =0],
B=E"NE[m ="+ =2z.=0]

By [MF], we may further assume that both f and g are univalent.
Now for all functions %, v, such that dmn «C E™, dmn vC E*, rng uCE™,

rng vC E*, we define the function (# ®v) on (dmn % Xdmn v) CE™** (we shall
make no distinction between E™X E* and E™t*) to E* by the formula

(% Q® v)(%) = u(xs, *+ + 5 Tm) + v(Xmi1, * * *  Tmtk)
for x=(x1, - + +, Xmpx) Edmn (¥ Q®v). Then
(f®g) is univalent and Lipschitzian,
FeY*(X XY)=(S+T).

Letting Dk(x) denote the (total) differential of % at x, then by straight-
forward methods it is seen that for Lm4r almost all &(X X Y),

D(f® g)(Z) = Df(zb Ct zm) Q Dg(2m+1, cct zm+k)y
and therefore J(f®g)(2)=Jf(21, - -+, 3m) Jg(#m41, * * *, Zmyr). Hence by
[F2, 5.13],

FrH S+ T) = prw ® g), (X X 1), zlaye"™s

N f J( ® @Al
XY
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= [ 1@ [ Te9aley
X Y

- f N[f, X, x]d¥n = f Vg, 7, yla¥ay
biid B
= Fn(S)-In(T).

The proof is complete.

5.8 THEOREM. If

(1) A is a subspace of E* of dimension «,

(2) B is the subspace of E™ of dimension 8=n—a, orthogonal to 4,

(3) 0=m=a, 0=k=p,

(4) SCA is a countable union of m rectifiable, ¥ measurable sets of finite
T measure,

(5) TCB is a countable union of k rectifiable, ¥~ measurable sets of finite
F% measure,
then

ForE S + T) = Fo(S)- Fo(T).

Proof. We may just as well assume that S is m rectifiable, 75'(S) < 0,
T is k rectifiable, 73(T) < «.

Since the closure of a rectifiable set is rectifiable, we may choose analytic
m rectifiable sets S’ and S’ for which

S"CSCS' CA4, Fu(S") =Fn(S) = Fn (S

By 2.11, choose a Lipschitzian function f such that dmn f=E", f*(E™)
DS’DS". By the analyticity of S’ and S’/ and the continuity of f,

X' = (E"NE [f(x) € §’]) is an analytic set,
X" = (E»N E [f(x) € §”]) is an analytic set.
Let fi=(f| X", fo=(f| X",

Similarly choose Lipschitzian functions gi, g», with . measurable do-
mains and sets T, T'’, such that

mgg=T'CTCT =mgaCB, FA(T") = FuT) = Fu(T).
Then by 5.7,

.

FS)-FHD) = Fos)-FT) = 7S + 1) k
TS+ D) S TS+ T) = T (S) - Fu(T)
= Fo(S)-Fu(T).
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The proof is complete.

6. Hausdorff measure of product sets. In this section we construct a
subset 4 of E? such that the unit cylinder B with base 4 has larger 2-dimen-
sional Hausdorff measure than the I-dimensional Hausdorff measure of A.
In doing this we use and extend some of the ideas of Besicovitch and Moran,
who gave a rough outline of such a construction (see [BM]).

6.1 DEerFINITION. If C is a subset of E3, we shall say that

D is complete with respect to C,
if and only if D is such a bounded subset of C that
(# € C — D) — (diam (DU {p}) > diam D).

Unless otherwise stated, we shall mean in this paper by a complete set,
a set which is complete with respect to E3.

We shall make use of the fact that a set is complete (in E?) if and only if
it has constant width.

6.2 REMARK. For the properties of convex sets and, in particular, com-
plete sets, which we shall use, see [BF].

6.3 THEOREM. Let a>0,

C=ECE[n+mnsd/l

o >d>0. Then of all subsets of C with diameter less than or equal to d, the set
CNE[|z]=d2)

has the largest volume.

Proof. Let DC C be such that diam D =6 =d. Choose a convex set D,CC
such that DCD, and diam D;=34.

Let now H; be the supporting function of D; (see [BF, p. 23]). Then by
the “central-symmetrization” of [BF, p. 73], we define the function H, on
E3 by Ha(u) = (1/2)(H(w)+H(—u)) for uE E*. H,is the supporting function
of a convex set, call it D, with 6% as center and with the properties that
diam D,;=diam D=8, L3(D32)=L3(D1). Moreover if # € E?, |u| =1, us=0,
then lH,t(u)] <a/2, since D;CC. Hence IHz(u)l <a/2, which implies that
D,CC.

Finally we shall show that

D, C (CNE[|z] = d/2)).

Let 2ED,. Since D, has 6% as center, —2& D,. Hence
2-|z|=|s—(—2)| SdiamD., =86 =d, |3z|=d/2




1950] ON THE MEASURE OF CARTESIAN PRODUCT SETS 263

sECNE||z] = d/2].

Thus
LCNE[|z] =d/2]) 2 LeD2) = Lo(D),

and the proof is complete.

6.4 REMARK. The isodiametric inequality proved in 6.3 can obviously be
generalized to any cylinder symmetric with respect to its axis. However we
shall use only the result stated in 6.3.

6.5 DEFINITION. If ¢ is a bounded subset of E3, let g, be the function on

E? to E! such that for x € E?,
2(x) = 5(2;(6/\ E [z = (%1, %2, £), 0 £ ¢ < 1)),

6.6 THEOREM. If ¢ is a complete set of diameter d, and 6§ >0, then}
(x € E%, y € E? and l x — y[ <) ——>([ 2(x) — gc(y)l =< 232.(3d)1/%).

Proof. Let ¢;=p3*(c) and let 8 be the boundary of ¢;. The following fact is
well known:
If & is a convex function on the interval

(B'NE[os =50

to E; and A >0, then either
sup | B(x) — h(a)| = sup_ | B(%) = h(3)|,

|z—a| S\ lz—y|=

or

sup_ | W) — b@| = sup | h(=) = K.

lz— lz—y| =

Suppose now that xEcy, yEcy, and 0<|x—y] =4. Choose aEcy, bEcy so
that

{a}u{b}=ﬂf\];2[z=y+t(x—y), — o <t< w]

Since
(gclg[z=a+t(b—a),0§t§ 1))

is a convex function, we conclude that either

le@ — e = sup e = sla)],
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| (%) — g(9) | = sup | go(s) — g:(8)].
|z—bd| S8

Hence it follows that

2Ca, yél:,plz—vléa I g‘;(x) gc(y) ' 28, yélcl-?lz—ul§6 ‘ gC(x) gc(y) l

Now let xE8, yEc, 0<|x—-y| <%. By [BF, p. 127] there is a unique
number ¢ for which (x1, %, ) Ec. Since x is a boundary point of ¢;, there is a
supporting line L of ¢, through x. Let L’ be the line determined by (x,, x2, 0)
and (xy, %2, 1). Then obviously L and L’ determine a vertical supporting
plane to ¢ through (x;, x., £). Since c is a set of constant width, we may choose
%’ E€cy such that | ¥’ —x| =d, and such that (x{, ¢, {) Ec. Therefore ¢ is con-
tained in the sphere of radius d and center (x{, %7, £). The intersection of this
sphere with the plane determined by (x1, %3, 0), (31, ¥2, 0), and (1, ¥2, 1) is
then a disc of radius » £d, whose circumference passes through (x1, x, ).
Hence since the length of the vertical chord (of this disc) passing through

(y1, y2, t) is 2- (r2— (r— ]x——yl ))V2=2-(2r- Ix—yl —Ix—ylz)”z, we conclude
that

| go(%) — () | = g(y) S 2:@2r- |2 — 3| — | x — y[)1/2 = 2-(2d8)112.

Hence supj.—y=s | go(x) — gc(y)l =<232.(5d)'2. This completes the proof.
6.7 REMARK. If for each bounded subset ¢ of E? we let g/ be the function
on E? to E! such that

g(2) = Bs(cNE[5= (a1, 2, 8), — » <1< w]),

for x € E?, then 6.6 remains true with g/ substituted for g..

6.8 DEFINITION. Suppose # is a positive integer, B is a closed disc in E?
of radius ¢ >0 and with center s€ E? Let

Bo= (E*NE[| 2| < a]),
C = (E2N ]E [%1 = (j/n)a, x2 = (k/n)a, where j and  are integers]),
N =(CN By),
f be the function on E? such that f(x) = (1 — 1/N)x, for x € E2
We shall say that
A is the n-uniform spread of B,

if and only if

A= U ({ENE[|z—y—3|=saonN]}.
yEs*(CNBo) z

Since N=v(4) is obviously independent of the radius and center of B
and depends only on #, we shall call it N(z).
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6.9 REMARK. Let B be a closed disc in E? of radius ¢ >0, let 4, denote the
n-uniform spread of B for n=1,2, 3, - - -, and let

D, = inf ( inf |x— yl),
€ An, €4, axe \ 2Ea0, ¥E€q
for n=1, 2, 3, - - -. Then the following statements are easily checked:
(1) 4. C B,
2 (B EA4n a6 E A ar#a) > (@Nar=g) forn=1,23---,
(3 lm N(n)/(rn?) = 1,
n—sw

(4)  Dn=a/n—a/(n-N(n) — 2a/N(n),
(5) lim D,/(a/n) =1,

n—o

(6) lim Dy -N(n)/(xd’) = 1.

fn—>0

6.10 FUNDAMENTAL CONSTRUCTION. Let 7, =100 and define the increasing

sequence %y, #g, + -+ - inductively so that
N(nis) Z M, fori=1,23"-,
where for brevity we shall let
M; =[] NG=»)), fori=1,2,3---.
i=1

Let
o= {E*NE[| 2] 51/2]},

and define 4; inductively as follows:
Denoting the #;-uniform spread of a €41 by u(a), we define

4;= U (o) fori=1,2,3--.

a€E4i

It is obvious that if aE4;, then a is a closed disc in E? of diameter M;!
and that y(4:;)=M; fori=1,2,3, - - -.
For the remainder of this paper we shall let

d; = inf dist (a1, a2) for t=1,2,3,---.
6 E 4 6E 4> 01520,

Note that if in 6.9 we let B be some element of 4;_;, then
Dn‘- = d‘.

We now define
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A = n od;.
=0
Since Zaeg‘ diama=1for:=1, 2,3, - - -, it follows from the definition of
303 that 3¢3(4) <1.
We define B; for 1=1, 2, 3, - - -, as follows:
B;= U {exXE[0=y=1]}.
a€4; v
Further let
B = n oB;.

=0
Then
B=AXE[o=s:=1]

A and B will be fixed for the remainder of this section. Theorem 6.18
will show that 3¢3(B) >1=33(A4). But first we need some preliminary defini-
tions and theorems.

6.11 THEOREM. If ¢ is a complete set, then
0 é lim .Cs(cf\ GB;)/.Ca(O'B,‘) § 1.

Proof. For 1=1, 2, 3, - - -, define
lI/‘(S) = ‘Cz(S N O'A,')/.,Cz(o'A.') for S C E2,

Then ¢ is a measure over E?, Y;(E?) =1, and hence

[ r0 <1l = sup |01,
zEE?

for any Baire function f on E? to E.

Let C;, for =1, 2, 3, - - -, be the set of all functions f on E? to E! such
that (f | a) is constant for all aEA4;. The proof is divided into 4 parts.

Part 1. (fEC)—(limg., [fdys exists).

Proof. Just notice that if fEC;, then [fdy;= [fdy; for j=1.

Part 2. If g is such a continuous function on E? that for some =1 and for
allacA,,

(x€a,yEa) > (|gx) —gn]| = o),

I

then forj=1, k=1,

Se
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Proof. Define f1, foE€ C; as follows:

fi(x) = iéf g(y) if xEa€ 4,
fi(x) = g(x) if x € E?2 — ¢4;,
fa(x) = SIép g(») if xEa €4y
fa(x) = g(x) if x € E? — o4,

Then fi(x) < g(x) <f:(x) for xE E?, ”fz—fy,” =<e. Hence for k=7,

[ 5w = [ st s [ gan s [ uivs - f Fadbi.

[ rati— [ w5l = sl s

Since

we conclude that if j=17, k=7, then

‘fgd'h‘ - f gy

This completes the proof of Part 2.
Part 3. If g is a continuous function on E2, then

< e

— o < lim gy < .

k—w

Proof. Note that g is uniformly continuous on the closed unit disc centered
at the origin. Hence for any >0, we can choose =1 so that for all aEA4;,

(x€a,yE0)—(|gx) —g(»]| =e.

Apply Part 2 to complete the proof.
Part 4. 0=1lim;.e L3(cNoB;)/Ls(0B:) =1.
Proof. Applying 6.6 and Part 3, we have

— o <lim | gdy; < 0.
Since 0= fgedy:=L3(cNoB;)/Ls(0B;) <1 for i=1, 2, - - -, the proof is com-
plete.

6.12 COROLLARY. If ¢ is such a comblete set that for some 1 =1,

(CE4;,2E€a,yE a) > (| g() — g(9) | S @),

then




268 GERALD FREILICH [September

,Cs(c N O‘B,‘) lim Ca(c N O'Bj)
- - —_—— €.
La(oBy) jme  Ls(eBj) |

6.13 DEeFINITION. In view of 6.11, we define for ¢ a complete set,

f(e) = lim Ls(c M ¢B:)/Ls(oBs).
6.14 ConvENTION. We shall let C be the set of all complete sets ¢ such that
1
fleo) = ’e sup f(x), where X = E [« is complete and diam x < diam c].
z2EX z

6.15 LEMMA. Let N\>0. Then there exists an integer K such that if k2 K,
ceC, and
100M7" = diam ¢ = dipys- Mys1/(1007),
then
(1 =N f(e) = Ls(c N 0Bi11) [La(0Brs1) = (1 + N)-f(0).
Proof. By 6.9(6) choose K so large that for all k=K,

(399/400) - dis < 7w (2M2) " (N(nis)) " S (401/400)-dipa,
and
M = 1013/,
Assume =K Then

(401M:) ™" < (100m) " diyr Misr < (399M) .

Choose bE B, with base a4 and let E be a right circular cylinder whose
axis coincides with the axis of b, whose height is (2007)~1-dZ,,- M1, the
radius of whose base is (4007)~'ds, , - Mi+1, and which is completely contained
in b. Then

diam E < (100m) " drss- Mass,

and since there are more than 7((8007)!-dx41- Mx11)? elements of A,y con-
tained in the closed disc of radius ((4007)~'dis1- Miy1)det1 and center co-
inciding with the center of g,

-1 2

(7 ((800m) " dryrMir))  (T(2M ky1) ) - ((200m) " drpaMiss)
(M 1) ((2M 141)72)

f(E) 2

= (128-100°7) " dhp1- Masa.
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Let now ¢&C be such that
100M%" = diam ¢ = (1007) " -disr- Misa.
Then ‘
7(©) = (256-100° 1) s Mg,
Also, if aE A1, xEa, y<a, then by 6.6,

—1/2

| ge(2) — g3 | = 2% (diam 0" (W)™ = 2710 M3 N(mar)
Hence by 6.12,

—1/2

—-1/2

| (Calc N 6Bi41)/La(eBrra)) — f(0) | = 7% .10- M7 *N(#r41)
< 210 M7 - Na)™"” o
~ (256-100%- 7)1 drsr- Min fle

272256107 1" () - (drr- M N(mant) ) ™"
101N M N\
101172 1(0) ( ) l; (7r+1)
100w/ M- N(nx41)8
10" £(c)- M- N(masn)”™
10°.()- M7
\-f(o).

The proof is complete.

6.16 LEMMA. Let N> 0. There exists an integer K such that if k= K, then

(1) 100- M;'<ds,

(2) (401- M) 1< (100m)~1d2, - My < (399 M),

(3) If c is a complete set which is also complete with respect to some b By,
diam ¢=diam (¢cM\b), and

100 M;' = diam ¢ = (100m)=- @2, My,

I\

IATIATIA

then

L3(cN 0Bry) ) . (.Ca(c N oBy)

t=n= ( Ls(oBis) Ls(oBy)

)_1 < (14N,

Proof. Let ¢ be the infimum of the volumes of all complete sets of diame-
ter 1. Then ¢>0. By 6.9(6), (5), (3), choose K so large that for all 2= K,
(1) and (2) of this lemma hold, and M;=10%.¢71-\ 1,

Let k=K, and suppose ¢ satisfies the hypotheses of (3). Then since
diam c¢=d;, we see that ¢ intersects exactly one element of Bi, namely b.
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Because ¢ is complete with respect to b, diam (¢/N\b)=diam c¢= (100r)?
-day1- Miy1, we have

-1 2 3
.Cs(c N G'Bk) = q((l()()')r) 'dk+1'Mk+1) .

Let e Ay, be the base of b, and suppose ay, - + -, ON (ny,,) A€ the N(ney1)
elements of A1 contained in a¢. Now associate to each «; for =1, - - .,
N(ni41), a Borel set a! Ca such that

al! Naf =& for 1 = 7, a; C af, diam ! < 2dy.1,
N (ng41)
al = a, La(el) = 7 (2M )2 N(np41)™ 2
fuul
If x€a/, yEa/! for some 1 £7= N(ns41), then by 6.6,

—1,1/2

| (%) — &) | = 2" (2 dusr-diam 0 < 40+ (doa- M),

and hence
f g (®)dLa% — N(mag)- f e@)dLan| < 20-2 M Lot
t “ 1/2 —1/2 2

I.Cg(c N o‘Bk) bt N(nH.l).Cs(c f\ aBk.,.l) I é 40'dk+1'Mk T (ZMk)— .

Therefore,
_ Ls(c M aBit1) ) L3(c N eBp)\™!
I 1 ( «Ca(O'Bk-H) ) ( -Cs(UBk) )
= ‘ 1— ‘CS(C N a'Bk+1) 'N(nk+,)
La(c N oBy)

1/2 —1/2

40-dyyy- My ow QM) T

g- [(100m)~1-dhi1 My J?
_ (100m)
g

107 - (dlt:-l' M ::'1' N(ni41) 6)_W

100~ MkIl *N(nr41)®

q

10“((401 12 M N (i) m)‘”

14
1 -1
=E— M, =N
q

The proof is complete.
6.17 LEMMA. Let N> 1. There exists an integer K such that if kZ K, then
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(1) dk g 100Mk_1,

(2) (401- M) < (1007)~t-di, ;- Miy1 S (399 M)t

(3) If c&C s complete with respect to some b By, diam (bM\c) =diam c,
and

100M5" = diam ¢ = (1007) dpps- Mips,
then
X1 f(e) = La(c N 0Be)/Ls(oBr) = N-f(c).
Proof. Apply 6.15, 6.16.
6.18 THEOREM. 3C3(B) > 1= 303(4).

Proof. Note that in the definition of 33, we may restrict our coverings to
consist of complete sets. We can do this because every set in E? is contained
in a complete set of the same diameter.

LetA>1. Choose K as in 6.17. Then the theorem follows from Part 4 and
the arbitrary nature of A.

Part 1. If k=K, c is such a complete set that

100M5 < diam ¢ < di,  f() > 0,
then ‘
(diam ¢)%/f(c) = 100.

Proof. Since diam ¢=<d; and f(c) >0, ¢ intersects exactly one element of
By, say b. Let

7 =inf E [(21, %2, £) € (B N ¢) for some x;, 22).
Then
6N COGNE [r < 23 < 7 + diam ¢]),

and hence
f(©) < diam ¢ M3,
(diam ¢)?/f(c) = M-diam ¢ = 100,

This completes the proof of Part 1.
Part 2. If k=K, c is such a complete set that

iy < diam ¢ < (100r) - diga- Maps,  £(6) > 0,
then

(diam ©)/f(c) = 25.
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Proof. The set ¢ cannot intersect more than w(2-diam ¢/dy,1)? elements of
By, since p3*(c) is contained in a disc of radius equal to diam ¢. Hence, by a
similar argument as was used in the proof of Part 1, namely that the inter-
section of ¢ with an element of Bi, is contained in a cylinder of height equal
to diam ¢ and base radius equal to (2M},1)™!, we conclude that

. 2 .. -
fle) £ w(2-diam ¢/diy1) -diam ¢- M k,lq,
and therefore
. 2 .
(diam ¢)2/f(c) = drt1° M 41/ (4w -diam ¢) = 25.

This proves Part 2.
Part 3. If k=K, c is such a complete set that

(1007) - dps1- My < diam ¢ < 100M%,  f(c) > O,

then
(diam ¢)2/f(c) = 2-(1081/4 — 121/4)~1.\~1,

Proof. If ¢ C, then we can choose a set ¢’ & C such that diam ¢=diam ¢/,
and f(c¢’) >f(c). Hence
(diam ¢)*/f(c) > (diam ¢')*/f(c"),

so that we may just as well assume that ¢cEC.
Since diam ¢ £di, ¢ intersects exactly one element of By, say b. Now there
exists a complete set ¢’ such that

(cNd) C (N, diam (¢’ N b) = diam ¢ = diam ¢/,

¢’ is complete with respect to b.

Hence f(c") 2f(c), (diam ¢)?/f(c) = (diam ¢")?/f(c’), and so we may assume \
that ¢EC is complete with respect to b and that diam (dN\¢) =diam c.
Applying 6.17, we have

x—l-f(c) =< (3(6 N O'Bk)/‘ca(a'Bk) = Xf(C),
and therefore

A1 (diam ¢)2/f(c) < (diam ¢)?-Ls(eBx)/Ls(c M ¢Bi) = \-(diam ¢)?/f(c).

By 6.3, if s is a sphere of diameter equal to diam ¢, with center on the axis
of b, and which does not meet either base of b, then

(diam 6)2“63(0'315)/.63(6 N G'.Bk) g (diam 8)2'.Cx(d'Bk)/.Cs(s N O'Bk).

Our problem is thus reduced to the following calculus problem:
Let
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E=ENE[n+msr];

then find the number s such that
7/401 < s < 1007, and 4s.Cs(EN E [| ]| = s]) is least.

It is easily checked that s=r-3"14.212 and that
4s?/C(ENE [| | S s]) = 4(ar(1081/¢ — 121/4)71,

Hence

(diam ¢)’/f(c) = N - (diam s)" -La(oBx)/Ca(s N oBy)
= 408"t — 122 M) (e My AM)
= 2.@108"" — 12¥H7' 7

This proves Part 3.

Part 4. 3¢3(B) =\t -7- (2(108Y4—12114))=1 > (1.1) -\,

Proof. Recall that B is compact and hence we may assume that any cover-
ing of B by complete sets of positive diameter is finite. Let F be such a finite
covering of B by complete sets whose diameters are less than dg. Then by
Parts 1, 2, and 3,

(¢ € F and f(c) # 0) — ((diam ¢)?/f{c) = 2(1081/4 — 121/4)—1.\-1),
Also by the definition of f, it is obvious that
2 flo) z 1.
cEF

Hence

2 (w/4)(diam ¢)? = 2(108/4 — 121/4)=1. 31 (x/4) 3 f(c)
cEFr cEF

> 7271, (10814 — 121/4)-1. )1
> (1.1)-31,
By the definition of 3¢, we conclude that

1/4 -1 _—

gea(B) = =2 (1087 — 127N > (1.7l
The proof is complete. .
6.19 COROLLARY. S3(B)>Si(4).

Proof. It is easy to see that in general,

SHX) = 3H(X) for XCE,0< k<n




274 GERALD FREILICH [September
Moreover it is obvious that §3(4) <1, hence

S3(B) = 5¢3(B) > 1 = §1(4),

so that for sphere measure, it is likewise not true that the measure of a
cylinder set is the product of the measure of the base by the height.

6.20 REMARK. Since 33(B) >0, it follows that 3¢3(4)>0.

6.21 REMARK. By [R, 5], we have

Cy(B) = Ca(4).

Since Ci(4) =1, we conclude that

Ca(B) = 1 < 33(B),

thus proving that C33C3.

6.22 REMARK. By means of the construction in 6.10, examples can
immediately be constructed in E* for n> 3, for which the Hausdorff measure
of a product set is not equal to the product of the measures of the com-
ponents.
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