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1. Introduction. The Neumann series representation of a function f(x)

defined when x^O is [3, p. 35°](1)

oo

(1.1) s,ix) = 22 anJv+2n+iix),
n—0

in which anv is defined for real values of v as

/, —»CO

t-^f(t)JvJr2n+l(t)dt.
0

Let iÄ, be the class of functions/(/) such that í"/(/)/(1+í)p+'+1/2 is in

7(0, oo) for some non-negative integer p and such that the limits

/•—° / OTT X\
(1.3) J       r»/*/(0 cos ( < - — + —J di,

X"^35 /        vit        ir\
t-wflfyúiU- — +—)&,

exist when a>0. The author [3] has proved the following theorems.

Theorem 1.1. If fit) belongs to zAy, then the series

00 y»  —»CO

(1.5) x-i„(x) = 22 20 + 2n + l)x~'Jp+2n+iix) r1fit)JH.t»+i(t)dt
n-0 «7 0

defines an entire function x_"5,(x).

Theorem 1.2. Suppose that v = 0 or —I and x>0. If fit) belongs tozA, and

is absolutely continuous on (0, x), then we have that

(1.6) s,ix) = /(*-) - /(0+)/0(*) -  f  /o(* - v)Fiv)dv,
J 0

where fit) is defined for negative values of t as ( —1)"_1/( — /) and

(1.7) Fit) = /'(0 - -y f V»/iW {/(< + t) - /(* - v)} dv.
I  J a
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Theorem 1.3. Suppose that x>0 and that either v> — 1 or v is an integer.

Then iff(t) belongs to zAv and is of bounded variation in some neighborhood of x,

we have that

1 r~*x

(1.8) s,ix) = — {/(x+) +/(x-)} - x     lim       I       rj,ixr)dr
2 iv=»,o=o J i

We propose in this paper to show that these three theorems remain true

when the class zAv is replaced by the larger class zA* of functions ft) such

that t"fit) is in 7(0, a) for each positive a and the limits (1.3) and (1.4) exist,

or by the class *BV of functions fit) such that £"/(/) is in 7(0, a) for each positive

a and the limits

(1.9) r t-ij(t)jv+i(t)dt,
J a

(i. io) r t-2ft)jvit)dt
J a

exist when a > 0. We first show in §2 that zA* = <BV. In §3 we show that our re-

sults are best possible in the sense that if /(/) is not in iS,, then the coeffi-

cients anv defined by equation (1.2) will not all exist, so that if the question

of convergence of the series (1.1) is to be meaningful, fit) must be in <BV. In

§§4 and 5 we prove the indicated generalizations of Theorems 1.1, 1.2, and

1.3. In §6 we show that the present theory is an actual extension of that in

[3] by exhibiting a function ft) in zA* which is not in zA,.

2. The proof that the classes zAf and <B, axe identical. Let the func-

tions Pit, v) and Qit, v) be defined by the equations

(2.1) /,(*) = i2/irtyi2[Pit, v) sin (I - 8.) + Qit, v) cos (t - J,)],

(2.2) Y,(t) = (2/irty'2[Q(t, v) sin (/ - Ô,) - P(t, v) cos (t - «,)],

where ô, = 1^/2-^/4. Then it is known [2, p. 199] that P(t, v) and Q(t, v)

admit the following asymptotic expansions:

00

P(t, «0~E(-1)"(". 2m)(2t)-2m,

00

Qit, v) ~ E (-l)m(", 2m + l)(2i)-2*"-1,

in which (v, q) =T(i'+g+l/2)/g!r(i' — g+1/2). The following lemma may be

proved readily with the help of the well known recurrence relations [2, pp.

45, 66]

J v—i — Jv+i — 27»,        F„_i — Fii+i = 2Y ?

.
f(t)J,(tr)dt.
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satisfied by the Bessel functions.

Lemma 2.1. The asymptotic expressions for Pit, v) and Qit, v) may be dif-

ferentiated term by term.

To prove that zA* = <B, we shall also need the following lemma, whose

proof can be made easily with the help of the second theorem of the mean for

integrals.

Lemma 2.2. 7e/ hit) be in Lia, b) for every a and b such that Z^a<b, and

suppose that the limit

/hit)dt
z

exists. If git) is of bounded variation on (Z, oo ), in particular if git) is absolutely

continuous on every finite interval iZ, b) and

(2.3) f    |g'(0|<ft<+ »,
J z

then the limit

f     Kt)git)dt
J z

also exists.

Suppose that/(¿) is in zA*. If we use equation (2.1) and Lemma 2.2 with

hit)=t-i'2ft) cos (i-ö,), git)=Pit, v+l), and t~lQit, v), and *(/) = rs'2/(¿)

sin (¿-5„), git)=tQ(t, v+l), and P(t, v), we infer that the limits (1.9) and

(1.10) exist and hence that zA*GBr. The fact that the inequality (2.3) holds

with these choices of g(t) follows from Lemma 2.1.

To prove the opposite inclusion we solve equation (2.1) and

Jv+i(t) = (2A¿)1/2[-E(í, v + 1) cos (t - Í,) + Q(t, v + 1) sin (t - 5,)],

and find that

cos it - 5.) = Wt)P,it) + J„+iit)Qvit),

sin it - 5„) = J,it)R,it) + Jl+i(t)Sr(t),

in which ,

Py(t) = Qit, v + l)T(t, v), Q,(t) = - Pit, v)Tit, v),

R,it) = Pit, v + l)T(t, v), S,(t) = Qit, v)Tit, v),

Tit, v) = (irt/2yi2[P(t, v)P(t, v+l)+ Qit, v)Qit, v + 1)}H

If /(/) is in <B„ we see from Lemma 2.2 that/(¿) will be in zA* provided the
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functions t~ll2Q,it), i1/2E„(7), tr^R^t) and tr*l*S,if) satisfy the inequality

(2.3). This statement is an immediate consequence of Lemma 2.1 and the

definitions of these functions.

Thus we have proved that zA* = 33„.

3. Existence of the coefficients a„„. We shall prove the following theorem.

Theorem 3.1. The quantities a„v defined in equation (1.2) all exist if and

only if fit) is in 43,,.

Let the Lommel polynomial Emfl(¿) be defined as [2, p. 296]

[m/2]

Em„(0 =   22 i-l)kit/2)2k-Tip + m- k)im - k)l/klTip + k)im - 2k)I,
k-0

where [m/2] is the largest integer which does not exceed m/2. These poly-

nomials have the property that [2, p. 294]

Jy+2n+lit)   —   R2n,v+lit)Jy+lit)   —   R2n—l,r+2Ít)Jrit).

Let us suppose temporarily that v> — 1 and define

/I —»CO

R'n.r+liOJr+lity-ifOdt,
N

Äj»-l.H.s(0.M<)f-l/(<)*,
if

ai(a) = 2(v + 2» + 1)  f   Jv+2n+i(t)rlf(l)dt,
J o

a'ñviN) = bnv(N) - Cnv(N).

It follows from the known inequality [2, p. 49]

(3-D |Ut)| g (í/2)VTGi + i),

valid when /u=0, that a'^ia) exists when ft) is in <8„ and

(3.2) | aUa) | ^ {aln/2"+2nTiv + 2n + 1)}   I    í" | /(/) | (ft.
•7 o

It follows from the definitions of the Lommel polynomials and Lemma

2.2 that the quantities bn,iN) and e„»(7Y) exist when/(¿) is in "B,,, and there-

fore a„„ = a^,(a)+ôni-(a) — c„v(a) exists when/(/) is in Œ3,.

To prove the converse, suppose that anv exists (w = 0, 1, • ■ • )• Since oto»

exists, t_1fit) Jv+iit) is in 7(0, a) for every positive a. Let ai be less than the

smallest positive zero of J„+i(/). Then if O^a^ai, the function t~l~"J,+iit)

has a positive lower bound mv on the interval (0, a). The integrability of t'fit)

over the interval (0, a) is then a consequence of the inequality
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/' | ft) |   g  m?Cl\  ft) | Jy+lit)

valid when 0^/ = a. If a>ai, there is an integer n such that J,+2n+iit)>0

when ai^t^a. We can in fact [2, p. 485] let n be any integer for which

v+2n+l >a. The integrability of t'ft) over the interval (ai, a) is now a conse-

quence of the existence of a„». The limit (1.9) exists since ao» exists. To see

that the limit (1.10) exists we use the identity

%iv + 2)t~2J,it) = - rV^W + [4i"3(>' + 1)(f + 2) - r*]/m(0.

Since ao, and ai„ exist we can infer the existence of the limit (1.10) from

Lemma 2.2.

Theorem 3.1 has thus been proved when v> — 1. When v^—l every part

of the direct proof is valid as stated above except the proof that a'm(a) exists.

Since for any value of v

oo

Jr+2r*+i(t) = 22 i-l)mit/2)'+2»+l+2™/mWim + v + 2n + 2),
m=*0

the series converging uniformly when 0 5=/^ a, and since

tv+2n+2m | f(fi |   ̂    ff*«+2mp | JfQ |

when O^t^a, we can still conclude that a'm(a) exists, even though the

inequality (3.2) may fail to hold. In the converse part of the theorem our

proof that the limit (1.9) exists fails when v= — 1 and that the limit (1.10)

exists fails when v = — 2. When v= —I we use the identity

3t-i-Joit) = (24r3 - 4r1)72(0 - t-Viit).

Since ai„ and a2, exist we can infer the existence of the limit (1.9) from

Lemma 2.2. When v= — 2 we use the identity

8r27_2(i) = - t-Voit) + (48r3 - t-^Joit).

Since a2r and a3, exist we can infer the existence of the limit (1.10) from

Lemma 2.2.

In the rest of this section we shall derive some inequalities satisfied by

bnr and c„, when v> — 1 which will be helpful in proving the main theorems.

If we substitute the definition of R2n,v+iit) into the equation defining ô„,(7V)

and use the second mean value theorem we find that

bv(N) = 2(i- + 2w + 1)22 UUN) f " t-lfit)Jt+iit)dt,

in which N<£k and

UkniN) = i-l)kiN/2)2k-2"Tiv+2n-k+l)i2n-k)\/k\i2n-2k)Wiv+l + k).
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Similarly, we find that

n—1 p vk

cn,(N) = 2(v + 2n + 1) 22 Vkn(N)        t~2f(t)Jv(t)dt,
fc-0 J N

in which N<r¡k and

VkniN) = i-l)kNiJV/2)2k~2n+i

■T(v + I + 2n - k)(2n - 1 - k)\/k¡i2n - 1 - 2k)Wiv + 2 + k).

Let us define

M,iN) = max    I    t~2fit)J,it)dt   + max    I    r1/(<)7»+i(0^

Then if N^2x, it follows from the inequalities

n n

22 [   UkniN) I   ̂     22 I   tM2x) |   =   (-l)"i?2n,v+l(2ix),
¿=0 ii=0

ti—1 n— 1

22 I   ̂ -(AO I    ̂     Z I  ̂ n(2x) |    =   2¿X(-1)"-I7t2n-1.»+2(2ÍX),
*-=0 fr-0

that

(3.3) | b„(N) | = 2(i- + 2n + l)M»(7V)(-l)"i?2n,»+i(2ix),

(3.4) | Cn,iN) | ^ 4(i- + 2n + l)ixMyiN)(-l)"-1R2n^i,„+2(2ix).

4. Proof of Theorem 1.1 with zAy replaced by©». The following lemma

has been proved earlier by the author [3, Lemma 5.1].

Lemma 4.1. If the series (1.1) converges when x=ß, then the series (1.5) de-

fines an analytic function x~"sv(x) when \x\ < \ ß\.

To prove the generalization of Theorem 1.1 it is therefore sufficient to

show that the series (1.1) converges for each positive value of x when f(t)

is in 33„. Suppose temporarily that v> —1. It follows from the inequalities

(3.1) and (3.2) that the series

co

(4.1) 22 a„via)Jv+2n+iix)
n-0

is dominated by the series

(4.2) (-0    | ¿ (j) "/rip + In + l)r(* + 2n + 2)| j V | ft) \ dt,

and is therefore convergent when a = 2x.  Moreover,  since the inequality

Í3.3) holds, the series
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(4.3) 22 bm(N)J„+2n+i(x)
n=0

is dominated by the series

00 / x \ "+2""

2M„(/V)22 (-l)"Ä,».,+i(2ix)(—)
n-0 \ 2 /

r(v + 2« + l)

when 7Y^2x. It is known [2, p. 302] that

lim iix)"+mRm,ß+ii2ix)/T(fi + m + 1) = /„(2ÍX) = í>7„(2x).

Since 7„(2x)>0 when x>0, there exists a function '/'„(x) such that

(4.4) I imx»+™Rm,ß+i(2ix)/r(ß + m+ l)7M(2x) | ^ ¿,(x).

The series (4.3) is consequently dominated by the series

CO

(4.5) 2-'Jf,(/V)/„(2*)1M*)*224-",
n=0

and is therefore convergent when N = 2x. Similarly, since the inequality (3.4)

holds, the series

CO

(4.6) 22. Cn,(N)f+2n+l(x)
n=0

is dominated when 7V> 2x by the series

00

(4.7) 2i-M,(A0/„+i(2x)^,+i(x)x222 4"">
nr=0

and is therefore convergent when N = 2x. Since

anv = a'nr(2x) + bnv(2x) — cnv(2x),

it follows that the series (1.1) converges for all  positive x. This completes

the proof of Theorem 1.1 with zA, replaced by 33, when v> — 1.

If v^ — I we use the identity

q—l ■ /» -»co

(4.8) sv(x) = 22 2(>' + 2n + l)J,+2n+i(x)  I       t-xf(t)Jv+2n+i(t)dt + sv+2q(x),
n-0 J 0

which is valid for any positive integer q. If q= 1+ [( — v —1)/2], then q is

positive and v + 2q> — 1. Since zA* is obviously a subset of A*+2l, it is clear

that 33,, is a subset of <Bv+2q. It then follows from our previous analysis that

x~"~2îi,+2S, and hence also x_"5,+2g, is an entire function. Since the finite series

in equation (4.8) obviously becomes an entire function after multiplication by
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x~", we conclude that x~".s,(x) is an entire function for any value of v. These

remarks complete the proof of Theorem 1.1 with zA, replaced by 33„.

The analysis used to prove Theorem 1.1 may be extended slightly and

used to prove the following lemma which asserts the possibility of inter-

changing the order of integration and summation in the definition of s„(x).

Lemma 4.2. If fit) is in 33, and x>0, then

s.ix) =   I       t-xf(t)fa(x, t)dt,
J 0

in which

CO

faix, t)   =   22 2iv ■+■ 2n+  l)/,+2„+l(x)7„+2n+lW-
n=0

Since the series t"l~"faix, t) converges uniformly in / on any finite interval,

and since ffit) is integrable over any finite interval, it is sufficient to show

that

00 CO

(4.9) lim   22 I bnviN)Jr+2n+iix) 1=0,     lim   22 I cn,iN)Jt+2n+iix) \ = 0.
jy=co   n=0 jv=co   n_0

Since limjv^oo Af„(7V)=0 when fit) is in 33„, the truth of the relations (4.9)

when v> — 1 is an immediate consequence of the fact that the series (4.3)

and (4.6) are dominated respectively by the series (4.5) and (4.7). When

v¿ — 1 we merely apply the idea behind equation (4.8) to see that the rela-

tions (4.9) still hold.

For future reference we note as a consequence of the fact that the series

(4.1) is dominated by the series (4.2) that

CO

(4.10) lim    221 0-nvia)Jv+2n+lix) I   =  0
a=0    n=0

when v> — 1. It is easy to see that equation (4.10) also holds when c^ — 1.

5. Proof of Theorem 1.2 and Theorem 1.3 with zA, replaced by 33„. The

proof of Theorem 1.2 is formally the same whether/(/) belongs to zA, or to

33,. The only part of this formal manipulation [2, p. 534], [3, p. 375] that

needs examination is the proof that the integral

n —»CO

(5.1) L„it,v)ft)dt    ■
/.

converges uniformly in v on the interval (0, x) when

L,it, v) = it- vfUiit -v) + (-!)'(/ + vfUiit + v)

and fit) is in 33„. We use the identities [2, pp. 145, 143]
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00

Jiit- v) =   J^Jm+i(t)Jm(v),
m=—oo

00 oc

Jlit +  V)   =     22    Jl-m(t)Jm(v)    =     22    i-l)mJm+lit)Jmiv),
m=—co m=—co

in which the right-hand sides are uniformly convergent in / and v on the set A

defined by the inequalities TV' 2: ¿ 2; 2x 2:2z> for any fixed x and N'. Expanding

the terms it + vf1 into power series in v we thus find that

CO CO

L,it,v)= 22 HJm+i(t)Jm(v)vp[i + (-i)m+^]/t^1,
m=—co p=0

the double series being uniformly convergent on A. If Neumann's factor

€m = l + ôm0 be introduced [2, p. 22], we find that

00 00

L,(t, ») = IE e-lAnW - Jm-i(t)]jm{v)v*[í + i-l)-+*+*]/2t*+l
m=0 p=0

00 OO

= IleJ/^i) - Jm-iit)]Jmiv)v"-'[l + i-í)*+*]/2t*í-'.
m=0 p—v

Remembering that v is either 0 or —1, we split the sum over m into a sum

over even m and a sum over odd m. In this way we obtain

Lvit, v) = Lviit, v) - 7,î(î, v) + L.oit, v) - L,¿t, v),

in which for example

CO CO

Lnit, l)   =   II t2,J2m+lit)J2,niv)v2^"/t2^-".
771=0 p=0

If we use identities like

Jîm+lit)   =  Jv+lit)R2m~v,v+lit)   ~  Jrit)R2m-v-l,r+2it),

it is seen that 7„/(¿, v) =L'vSit, v) —L'^it, v) where for example

CO CO

Liiit, t) = EE tïmf+iit)R2m-,,,+iit)J2miv)v2*-'/t2*+1-'.
m=0 p=0

The existence and uniform convergence of the integral (5.1) will then be a

consequence of the existence and uniform convergence of eight integrals

like (5.1) with 7, replaced by 7¿ and L'Jj. We shall now prove that

/. iV'

Ciit, v)ft)dt = lim AiN, N') = 0
N

uniformly in v on the interval (0,  x).  The other seven integrals may be
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handled by similar methods. If we use the definition of R2m-,,v+i and the

second theorem of the mean as in §3, we find that

IX
iV

J,+iit)R2m-,,>+iit)fit)r-1-2'>dt < N'-2"MyiN)i2m-R2m-v,y+iiiN)

g i2vy-2*>MriN)i2m-R2m-r,r+ii2iv)

whenever TV'2: TV 3:2t;. If we now use the inequalities (4.4) and (3.1) we see

that

oo      oo /I  \ 2m+2p—v

! A (TV, N') | ^ M,iN)fi2v)faiv) 22 22 «*» ( — )
m—o j>=o        \ 2 /

Since ij/,(v)Iv(2v) is bounded when 0 ^v Six and since TI7„(TV) approaches 0 as TV

approaches oo when /(/) is in 33», it follows that A iN, TV') approaches 0 as

TV and TV' approach oo, uniformly in v.

The proof of Theorem 1.3 with zAv replaced by 33, is also formally the

same. Let /(TV, a, t) befit) if a^tf^N and zero otherwise. Let s„(TV, a, x) be

the Neumann series expansion for/(TV, a, t). Just as in [3, p. 380] we find

that

/—»CO •»  iV

rJ,ixr)dr I     ft)J,itr)dt.

Since it follows from equations (4.9) and (4.10) that

lim     í»(TV, a, x) = i„(x)
a=0,iV=«

when /(/) is in 33„ we conclude that Theorem 1.3 remains true when zAr is

replaced by 33„.

6. The proof that zA, is properly contained in zA*. It is obvious that

zAv is a subset of zA„*. If cvf» were not a proper subset of zA*, the material

of this paper would be merely an alternative and simpler derivation of the

results obtained in [3]. We shall now show that the function fit)

= pi2et cos (e2f)g(¿) lies in zA* but not in zAy provided that git)=t~* when

O^igl and g(/) = l when t^l. It is obvious that /'/(/) is in 7(0, a) for any

positive a. The existence of the integrals

(6.1) /I —»00 n  —>00e1 cos (e21 ± t)dt, I       e' sin (e21 ± t)dt
o 7 o

can be proved with the help of a lemma of Titchmarsh [l, p. 22]. The integral

(1.3) and the integral

/_,c0                         /      v*      t\
e< cos (e2t) sin Í t-1-\dt,
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whose integrands are linear combinations of the integrands in (6.1), therefore

exist. It follows from Lemma 2.2 that the integral (1.4) also exists. Hence

ft) is in zA*.
To see that/(i) is not in zA, it is sufficient to show that

Kp =   I    21-*t-pe' | cos e2' | dt = + oo

J 1/2

whenever p 2:0. The substitution u — e2t shows that

/CO y»  CO

(log u)~vu~1121 cos u I du = fau)du.

Using the first theorem of the mean, we conclude that

6,1/2 1/2

fau)du = 2/un (log un)J.(471+3) tt/2

where (4w+3)ir/2<m„<(4m+5)tt/2. If w2:16, raèexp  [(log 7)/(21'"-1)],

then unSTn, log un^2l,p log w, and so

(4n+5)x/2

^(î<)<7m 2: l/(7w)1'2(log »)".
(4i!+3)ir/2

Similarly, we have that

(4n+7)r/2

/

I fau)du = 2/z¿/2(log Vn)V 2: l/(7re)1/2(log nf,
(4n+5)ir/2

where iin+5)ir/2^Vnú (4»+7)tt/2 and n satisfies the inequalities written

above. The divergence of the integral Kp is now a consequence of the diverg-

ence of the series

CO

22 i/w1/2(iogw)*
71=2

for any positive integer p.
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