NEUMANN SERIES OF BESSEL FUNCTIONS. II

BY

J. ERNEST WILKINS, JR.

1. Introduction. The Neumann series representation of a function f(x)
defined when x=0 is [3, p. 359](%)

)

1.1) (%) = Z s vyonta1(%),

n=0

in which a,, is defined for real values of » as
(1.2) oy = 200 + 20 + 1) f U T same (D) dL.
0

Let ¢4, be the class of functions f(£) such that #f(¢)/(14¢)»++12 is in
L(0, «) for some non-negative integer p and such that the limits

(1.3) f a " 26 cos (t - % + %) s,

i . v o
(1.4) f 178/2f(¢) sin (t 3 + Z) dt,

exist when @>0. The author [3] has proved the following theorems.

TuEOREM 1.1. If f(t) belongs to <A,, then the series

(1.5)  zx7s(x) = i 20 + 21 4+ a7 Totoni1(%) f _mt"lf(t)f,+2,,+1(t)dt
0

n=0
defines an entire function x7s,(x).

THEOREM 1.2. Suppose thatv=0 or —1 and x>0. If f(t) belongs to A, and
s absolutely continuous on (0, x), then we have that

10 ) = fle=) = 1000 — [ Iz = oF @

where f(t) is defined for negative values of t as (—1)""f(—t) and
1 L]

N FO=10-— [ TR+ - 16— ).

S 0

Presented to the Society, February 25, 1950; received by the editors August 13, 1949,
(*) Numbers in brackets refer to the bibliography at the end of the paper.

55




56 J. E. WILKINS [July

THEOREM 1.3. Suppose that x>0 and that either v> —1 or v is an integer.
Then if f(t) belongs to A, and is of bounded variation in some neighborhood of x,
we have that

(1.8) s,(x) = -;— {(j@+) + f(x—)} — = lim f1 T T () f T,

N=w,0=0
We propose in this paper to show that these three theorems remain true
when the class ¢/, is replaced by the larger class e4;* of functions f(f) such
that #f(¢) is in L(0, a) for each positive ¢ and the limits (1.3) and (1.4) exist,
or by the class B, of functions f(¢) such that #f(¢) is in L(0, a) for each positive
a and the limits

(1.9) [Tronaoa,

(1.10) f—wt‘zf(t)fy(t)dt

exist when a>0. We first show in §2 that c4*=8,. In §3 we show that our re-
sults are best possible in the sense that if f(¢) is not in B,, then the coeffi-
cients a,, defined by equation (1.2) will not all exist, so that if the question
of convergence of the series (1.1) is to be meaningful, f(#) must be in B,. In
§§4 and 5 we prove the indicated generalizations of Theorems 1.1, 1.2, and
1.3. In §6 we show that the present theory is an actual extension of that in
[3] by exhibiting a function f(¢) in e4}* which is not in o/,.

2. The proof that the classes <4* and B, are identical. Let the func-
tions P(¢, v) and Q(¢, v) be defined by the equations

(2.1) J,(8) = (2/wt)12[P(t, v) sin (¢t — 6,) + Q(t, ») cos (¢t — 5,)],
(2.2) Y,(t) = (2/x)12[Q(t, ») sin (¢ — 8,) — P(t, ») cos (t — &,)],

where 8, =vw/2—m/4. Then it is known [2, p. 199] that P(¢, ») and Q(¢, »)
admit the following asymptotic expansions:

0

P(t, v) ~ 22 (= 1)™(v, 2m)(20)~2m,

m=0

0, ») ~ 2 (—1)™(v, 2m + 1)(28)—2m1,
m=0
in which (v, ¢) =T'(v4+¢+1/2)/q'T'(v—g+1/2). The following lemma may be
proved readily with the help of the well known recurrence relations [2, pp.
45, 66]

Joor = Jpg1 =21y, Y,y — YV, =2V,
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satisfied by the Bessel functions.

LeMMA 2.1. The asymptotic expressions for P(t, v) and Q(¢, v) may be dif-
ferentiated term by term.

“To prove that <4*=®B, we shall also need the following lemma, whose
proof can be made easily with the help of the second theorem of the mean for
integrals.

LEMMA 2.2. Let h(t) be in L(a, b) for every a and b such that Z<a<b, and
suppose that the limsit
f h(t)dt
4

exists. If g(t) is of bounded variation on (Z,=), in particular if g(t) is absolutely
continuous on every finite interval (Z, b) and

2.3) f ¢ dt < +

then the limit

f et
Z .

also exists.

Suppose that f(¢) is in <4}. If we use equation (2.1) and Lemma 2.2 with
h(t) =t73%f(8) cos (¢—09,), g(t) =P(t, v+1), and ¢71Q(¢, v), and k(t) =152f(¢)
sin (¢—34,), g(t) =tQ(¢, v+1), and P(¢, v), we infer that the limits (1.9) and
(1.10) exist and hence that e4;* CB,. The fact that the inequality (2.3) holds
with these choices of g(¢) follows from Lemma 2.1.

To prove the opposite inclusion we solve equation (2.1) and

Joa(t) = (2/at)12[—P(t, v + 1) cos (¢ — 6,) + Q(t, » + 1) sin (¢ — 5,)],
and find that
cos (t — &) = J()P.(t) + J,1()Q.(2),
sin (¢t — &) = J(OR() + Joa(9)S:(0),

in which

P,(t) =Q@, v+ 1)T(, v), Q,(¢) = — P(t, v)T(t, v),
R,(t) = P(t, v+ 1)T(t, v), Sy(®) = 0@, »)T(2, »),
T(t, v) = (xt/2)\2[P(t, »)P(t, v + 1) + Q¢ »)Q(, » + 1)
If f(¢) is in B,, we see from Lemma 2.2 that f(¢) will be in <4} provided the
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functions £-12Q,(¢), tY/2P,(t), t~V2R,(¢) and #73/2S,(t) satisfy the inequality
(2.3). This statement is an immediate consequence of Lemma 2.1 and the
definitions of these functions.

Thus we have proved that 4} =8,.

3. Existence of the coefficients a,,. We shall prove the following theorem.

THEOREM 3.1. The quantities a,, defined in equation (1.2) all exist if and
only if f(t) is in B,.
Let the Lommel polynomial R,,(f) be defined as [2, p. 296]

Rmu(t) = [mzm(—l)"(t/Z)“‘""F(# +m — k) (m — k)R (u + k) (m — 2F),
k=0

where [m/2] is the largest integer which does not exceed m/2. These poly-
nomials have the property that [2, p. 294]

Jy+2n+1(t) = RZn,v+l(t)JV+l(t) - Rzn—l.v+2(t)JV(t)-

Let us suppose temporarily that v> —1 and define

Bu(N) = 20 + 21 + 1) f T Ranys T, (O (1),
N

ew(N) =200 + 20 4 1) f —MRZ,,_I.,+2(t)Jv(t)t-‘f(t)dt,
N

am(a) = 2(v + 2n + 1) f aJ,+2n+1(t)t“f(t)dt,
0

d;:(N) = bnv(N) - Cm'(N).
It follows from the known inequality [2, p. 49]
(3.1) | 7.0 ] = ¢/2%/T(w + 1),

valid when u =0, that a,,(a) exists when f(¢) is in B, and

3.2) | ai(@) | S {a27/27T( + 20 + 1)} f v 1) | de.
0

It follows from the definitions of the Lommel polynomials and Lemma
2.2 that the quantities ,,(N) and c..(IV) exist when f(¢) is in B,, and there-
fore @n,=an(a)+b..(a) —cw(a) exists when f(¢) is in B,.

To prove the converse, suppose that a,, exists (=0, 1, - - - ). Since ao,
exists, £~ () J,41(2) is in L(0, a) for every positive a. Let a, be less than the
smallest positive zero of J,.1(¢). Then if 0=<a =<ay, the function ¢=1"J,;,(¢)
has a positive lower bound m, on the interval (0, @). The integrability of #f(¢)
over the interval (0, @) is then a consequence of the inequality
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11| <m0 £ ] T

valid when 0=<t¢=a. If a>a,, there is an integer # such that J,;2,41(¢) >0
when a;<t<a. We can in fact [2, p. 485] let # be any integer for which
v+2n+1>a. The integrability of #f(f) over the interval (a;, @) is now a conse-
quence of the existence of @,,. The limit (1.9) exists since ao, exists. To see
that the limit (1.10) exists we use the identity

20 + 2)t72,(t) = — t™,ys(t) + [430 + 1)@ + 2) — 71]7,5a(2).

Since ao, and a,, exist we can infer the existence of the limit (1.10) from
Lemma 2.2,

Theorem 3.1 has thus been proved when ¥> —1. When » < —1 every part
of the direct proof is valid as stated above except the proof that a,,(a) exists.
Since for any value of »

L

Trseng1(t) = D2 (—1)m(t/2)r+2m+142m/mID(m + v + 20 + 2),

m=0

the series converging uniformly when 0=<¢=a, and since

1|

when 0=¢{=<a, we can still conclude that a,,(a) exists, even though the
inequality (3.2) may fail to hold. In the converse part of the theorem our
proof that the limit (1.9) exists fails when »= —1 and that the limit (1.10)
exists fails when v= —2. When »= —1 we use the identity

3UT0(f) = (2465 — 40Ta(0) — 1T4(0).

tr+2n+2ml f(t)l < gintimp

Since a;, and @», exist we can infer the existence of the limit (1.9) from
Lemma 2.2. When v= —2 we use the identity

81-2T_o(t) = — t7U5(t) + (4872 — 1) J5(¢).

Since a2, and a3, exist we can infer the existence of the limit (1.10) from
Lemma 2.2.

In the rest of this section we shall derive some inequalities satisfied by
bu» and ¢,, when v> —1 which will be helpful in proving the main theorems.
If we substitute the definition of Rs,,,+1(f) into the equation defining b,,(V)
and use the second mean value theorem we find that

b (V) = 20 + 20+ D)3 Ul [ 500 T0a(0)ds,

L3
k=0 N

in which N<§; and
Uin(N)=(—1)¥(N/2)2* 20D (p+ 20— k+1)(2n— k) |/ k! (2n—2k) T (v+ 14 k).
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Similarly, we find that

cnw(N) = 2(v + 21 + 1)”il Vin(N) " 12 (1) T, (t)dt,
k=0 N

in which N <n and
Vin(N) = (—1)¥N(N/2)2k-2n+1

T4+ 142n—k)Q2n —1— k)/RI(2n — 1 = 2k)IT@+ 24+ k).
Let us define

M,(N) = max
£2N

f Et—2f(t)J,(t)dt' + max
N £EZN

£
[ rroraoa).
N
Then if N=2x, it follows from the inequalities ‘

il U(N)| < él Uin(2%) | = (=1)"Ranr41(2i%),

k=0
n—1 n—1
SHV@)| £ | Via(22) | = 2i2(—1)"Rsn_1,42(2i%),
k=0 k=0
that
(3.3) | bu(N) | < 20 + 20 + 1) M,(N)(—1)"Rsn »42(2i%),
(3.4) | can(N) | < 4(v + 20 + 1)iaM,(N)(—1)"Ron1,,42(2i%).

4. Proof of Theorem 1.1 with 4, replaced by B,. The following lemma
has been proved earlier by the author [3, Lemma 5.1].

LEMMA 4.1. If the series (1.1) converges when x =3, then the series (1.5) de-
fines an analytic function x~s,(x) when | x| <|B|.

To prove the generalization of Theorem 1.1 it is therefore sufficient to
show that the series (1.1) converges for each positive value of x when f(¢)
is in B,. Suppose temporarily that »> —1. It follows from the inequalities
(3.1) and (3.2) that the series

4.1) 2 au(@) viania(2)
n=0
is dominated by the series

4.2) (i)'“{ > ﬁ)“ / TG+ 20+ )T( + 20 + 2)} fo vl 50| a,

2 =0 \ 4

and is therefore convergent when a=2x. Moreover, since the inequality
(3.3) holds, the series
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(4.3) Z brw(N)T vt 2n41(%)

n=0

is dominated by the series

© v+2n+1
2UL(N) Y (— 1) Ronpsa(2i) (—’25) /164 m+ )

n=0

when N 2=2x. It is known [2, p. 302] that
lim (22)** "R ui1(2i%)/T(u + m + 1) = J,(2ix) = #1,(2x).

Since I,(2x) >0 when x>0, there exists a function ¥,(x) such that
(4.4) | imat "Ry 41(2i%) /T + m + 1)L(25) | < $u(a).

The series (4.3) is consequently dominated by the series

4.5) 2 ML ()L 2a)(w) 5 S 4,

n=0

and is therefore convergent when N =2x. Similarly, since the inequality (3.4)
holds, the series

(4.6) E Cnv(N )T ptenta(%)

n=0

is dominated when N =2x by the series

(4.7 2 M(N) Lpa (22) ()22 2 477,
=0

and is therefore convergent when N =2x. Since

Qpy = a,'w(Zx) + 5,.,(22) — cwr(2%),

it follows that the series (1.1) converges for all positive x. This completes
the proof of Theorem 1.1 with <A, replaced by B, when »> —1.
If v< —1 we use the identity

g—1 - —500
4.8) s(x) = 2200+ 2n + I)J,+2,.+1(x)f Y ()T ranr1(8)dE + Svraq(),
n=0 0

which is valid for any positive integer ¢. If g=14[(—»—1)/2], then g is
positive and »+2¢> —1. Since <4} is obviously a subset of A4}, it is clear
that B, is a subset of B,,s,. It then follows from our previous analysis that
X7""295,,4,, and hence also x77s,,44, is an entire function. Since the finite series
in equation (4.8) obviously becomes an entire function after multiplication by
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x~*, we conclude that x~’s,(x) is an entire function for any value of ». These
remarks complete the proof of Theorem 1.1 with e/, replaced by B,.

The analysis used to prove Theorem 1.1 may be extended slightly and
used to prove the following lemma which asserts the possibility of inter-
changing the order of integration and summation in the definition of s,(x).

LemMmaA 4.2, If f(t) is in B, and x>0, then
s@ = [ rY@sa o,
0
in which

0
(2, 1) = 2220 + 20 + D ssansa(2)sronia(t).
n=0
Since the series 17, (x, £) converges uniformly in { on any finite interval,
and since #’f(¢) is integrable over any finite interval, it is sufficient to show
that

(4.9) lim 2| bu(N)Jrsnna() | = 0, Dl,im 2| N T oiana(2) | = 0.
=® n=0 =% n=0

Since limy.., M,(N)=0 when f(¢) is in B,, the truth of the relations (4.9)
when »> —1 is an immediate consequence of the fact that the series (4.3)
and (4.6) are dominated respectively by the series (4.5) and (4.7). When
v=< —1 we merely apply the idea behind equation (4.8) to see that the rela-
tions (4.9) still hold.

For future reference we note as a consequence of the fact that the series
(4.1) is dominated by the series (4.2) that

(4.10) lin; > | am(@)Trsznsa(x) | = 0
a= n=0
when »> —1. It is easy to see that equation (4.10) also holds when » < —1.
5. Proof of Theorem 1.2 and Theorem 1.3 with 4, replaced by B,. The
proof of Theorem 1.2 is formally the same whether f(f) belongs to <4, or to
B,. The only part of this formal manipulation [2, p. 534], [3, p. 375] that
needs examination is the proof that the integral

(5.1) fo —ML,.(:, )f(2)dt

converges uniformly in v on the interval (0, x) when
L(t,v) = (¢t — o) Uit — v) + (—1)*C + o)~ V1¢ + v)
and f(¢) is in B,. We use the identities [2, pp. 145, 143]
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Tt =) = 3 TmisTm(®),

M=-—0c0

JE4+D) = 35 Tn®Tn®) = 3 (=)™ ma(T ),

M=—c0

in which the right-hand sides are uniformly convergent in ¢ and v on the set A
defined by the inequalities N’ =¢=2x =29 for any fixed x and N’. Expanding
the terms (¢+9)~! into power series in v we thus find that

L, o) = 5 3 TuaTnlop?[1 4 (= 1)mrto] /i,

m=—co p=0

the double series being uniformly convergent on A. If Neumann’s factor
€n =1+ 08,0 be introduced [2, p. 22], we find that

Lt D) = 55 enlTmis(®) = Tmoa® V@)oot + (= 1)mho] /2541

m=0 p=0

= 33 enlmis(l) = Tna @ [1 + (= 1)mto] /207417,

m=0 p=v

Remembering that » is either 0 or —1, we split the sum over m into a sum
over even m and a sum over odd m. In this way we obtain

L,(t, v) = La(t, v) — L,2(¢, v) + Lys(t, v) — Lu(2, v),

in which for example

Lyl(t, 7}) = Z E ezm]2m+1(t)ng(v)v““"/t“““’.

m=0 p=0
If we use identities like
Jem1(8) = Jos1(8) Rams,p11(8) — Jo(t) Rem—y—1,42(2),
it is seen that L,;(¢, v) = L},(¢, v) — L,/ (¢, v) where for example

0

le(t, v) = Z Z €2mS i 1(8) Rom—y v1(8) T 2m(v) 0277/ 2041,
m=0 p=0
The existence and uniform convergence of the integral (5.1) will then be a
consequence of the existence and uniform convergence of eight integrals
like (5.1) with L, replaced by L,; and L,;. We shall now prove that
NI

lim Lyy(t, v)f(t)dt = lim A(N, N') = 0
NN=wx N

uniformly in » on the interval (0, x). The other seven integrals may be
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handled by similar methods. If we use the definition of Rym—s,,+1 and the
second theorem of the mean as in §3, we find that
NI

]y+l(t)R2m_.y.y+1(t)f(i)tp_l—2pdt é N”_szy(N) 122 m—vR21n_y,y+1(iN)
N

< (20)2M,(N)i2™ Ramy »+1(2i0)

whenever N'= N =2v. If we now use the inequalities (4.4) and (3.1) we see
that

) L) 2m+2p—v
| AW, N) | £ MUN)L20)s(0) 2 3 eom (%) -
m=0 p=0
Since ¥,(v) I,(2v) is bounded when 0 <v <x and since M,(V) approaches 0 as N
approaches « when f(¢) is in B,, it follows that 4 (X, N’) approaches 0 as
N and N’ approach «, uniformly in v.

The proof of Theorem 1.3 with <4, replaced by B, is also formally the
same. Let f(N, a, t) be f(¢) if a<t< N and zero otherwise. Let s,(V, a, x) be
the Neumann series expansion for f(N, a, t). Just as in [3, p. 380] we find
that

—00 N
(N, 4, %) = {f(x4) + f(x=)}/2 — = f v, (xr)dr f F)T () de.

Since it follows from equations (4.9) and (4.10) that

lim  s5,(N, a, x) = s,(x)
=0 N=
when f(¢) is in B,, we conclude that Theorem 1.3 remains true when o/, is
replaced by B,.

6. The proof that 4, is properly contained in <4;. It is obvious that
A, is a subset of <A*. If oA, were not a proper subset of 4%, the material
of this paper would be merely an alternative and simpler derivation of the
results obtained in [3]. We shall now show that the function f£(¢)
=12 cos (e*)g(t) lies in <A4* but not in <4, provided that g(¢) =¢~ when
0=<t¢=<1 and g(¢) =1 when ¢=1. It is obvious that #f(¢) is in L(0, @) for any
positive a. The existence of the integrals

6.1) f et cos (et + t)dt, f et sin (et + t)dt
0 0

can be proved with the help of a lemma of Titchmarsh [1, p. 22]. The integral
(1.3) and the integral

f—wa . (2[) . (t ll7l'+ T)dt
et cos (e sin| ¢t — — 4+ — ) dt,
a 2 4
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whose integrands are linear combinations of the integrands in (6.1), therefore
exist. It follows from Lemma 2.2 that the integral (1.4) also exists. Hence
f@) is in AX.

To see that f(¢) is not in o/, it is sufficient to show that

L]
K, = f 21-r4=7et| cos et | dt = +
2

whenever p =0. The substitution « = e? shows that

K,= f (log %)~?u~1/2| cos ul du = f é(u)du.

Using the first theorem of the mean, we conclude that

(4n+5)=x/2
f o(u)du = 2/u:,/2(log u,.)p
(

4n43)x/2

where (4n+3)71/2<u,<(4n+5)w/2. If n=16, n=exp [(log 7)/(2Y»—1)],
then u, <7n, log #, <27 log n, and so

(4n+5)x/2
f s(w)du = 1/(Tn)"%(log n)>.
(

4n+43)x/2

Similarly, we have that

(AntTyx/2 e ) ' e .
[ san = 2/mog 0" 2 1/ (g W,

(4n+8)x/2 .
where (4n+5)w/2=v,=<(4n+7)w/2 and n satisfies the inequalities written
above. The divergence of the integral K, is now a consequence of the diverg-
ence of the series

2 1/nti(log n)?
n=2

for any positive integer p.
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