
ON ITERATIVE METHODS IN LINEAR
DIFFERENTIAL EQUATIONS

BY

KENNETH S. MILLER

1. Introduction.

1.1. Statement of the problem. The problem we are interested in is that of

estimating rates of convergence in solving differential equations by an itera-

tive process. Suppose we have a differential equation and a method for com-

puting a sequence of approximate solutions uo, «1, ■ • • , uk, • • • which satisfy

the boundary conditions and have the property that uk approaches a solu-

tion as k becomes infinite. Also, let us suppose that it is desired to have the

solution such that the error (defined in some appropriate sense) be less than

a certain prescribed quantity, 8. The task we set ourselves is to determine

how many times we must iterate the approximate solution to obtain the de-

sired accuracy. In other words, we would like to say at the outset that after

k iterations the quantity re* will yield an error less than ô while the uk-i iterant

will not yield the desired accuracy. We shall thus have shown that k is the

minimum number of operations that have to be performed. We consider

this problem (formulated in §1.2) for a certain class of differential systems.

1.2. Analytic formulation of the problem. We shall restrict ourselves to

linear differential equations. Let L be the linear differential operator

dn d"-1
(1) L = —+Piix)---+---+Pnix)-

dxn dx"-1

where the p%ix) are real continuous functions in the closed finite interval

[0, c]. Let

(2) Uaiu) m Vaiu) + Zaiu) =Ca, a = 1, 2, • • • , re,

where F„(re) = 'ZtUai w(i)(0), Z„(«) = J£¿Baiu™ic), a = l, 2, • • • , re, be
a set of nonhomogeneous boundary conditions such that the completely

homogeneous differential system

Lu = 0,        Uaiu) = 0, a = 1, 2, • • • , n,

is incompatible^). The Aai, Bai, Ca are constants.

Analytically, then, our problem is to find a solution of the equation

Lu = 0 subject to the boundary conditions Uaiu) = Ca, a= I, 2, - • -, re. Cer-
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tain additional restrictions must be placed on the initial values and on the

interval [O, c]. These will be discussed in §1.4.

1.3. The main results. To carry out the program outlined in §1.1 we

prove three main theorems. First, we associate with each interant umix) an

"error" em(x) defined by the equation Lumix) = emix). We then show the

existence of two operators M and N such that: (i) L = M+N, and (ii)

¿m+iix) = ( — MN~)emix) where N~ is an appropriately defined "partial in-

verse" of the operator Ni2). The only assumption made on the boundary

conditions Uaiu), a = l, 2, ■ ■ -, re, needed to prove this theorem is that the

differential system

Nu = 0,        Uai«) = 0, a = 1, 2, • • • , re,

is incompatible.

The second theorem, and the main one of the paper, shows that M and N

can be so chosen that the operator — MN~ is self-adjoint and of finite norm.

In order to prove this, certain additional restrictions have to be put on the

boundary conditions.

Finally, in the third theorem, we show that as m—►», em—>0 and umix)

approaches a solution of the differential system

(3) Lu = 0,        Uaiu) = C«, a = 1, 2, • • • , re.

For this proof, more restrictions on the boundary conditions as well as on the

.length of the interval [0, c] have to be made.

In short, then, we establish a transformation T=—MN~ with the fol-

lowing properties:

(i)  T is self-adjoint and of finite norm.

(ii)  em+i=Tem.

(iii)  em—>0 as m—>oo.

The operator T is obtained with no restrictions on the original operator L

(except that of continuity of its coefficients), but involves restrictions on the

boundary conditions and on the length of the interval.

The value of (i) above is seen by the following considerations. Let

{ipkix)} be a complete orthonormal set associated with T with correspond-

ing characteristic values {X^} (multiplicities included). Then if we write

«o(x) = X"-i ba^aix), e„(x) = T"eoix) = J^-i baK^aix) and ||e„(x)||2 = (e„, e„)

= S"-i b2J?an where ||Én(x)[| is the norm of e„ix) and (en, e„) is the Hilbert

space inner product. Estimates of the rapidity of convergence can be drawn

from the values of the Xa.

The symmetry of the operator T is essential for our theory. If the operator

were not self-adjoint, it is possible that no expansion in characteristic func-

tions could be made. Information on rates of convergence can be deduced

from operators which, although self-adjoint, are not of finite norm. On the

(*) A construction, formally equivalent to this, is considered in [l, p. 263].
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other hand, little information can be drawn from a transformation which has

finite norm but which is not self-adjoint. For if T has the norm Nt, then all

we can say about the convergence of the e's is that ||e»i+*|| á-Wr||e»»||- That is,

we are only bounding our errors from above. In fact, since the bound, Bt,

has the property Bt^Nt (where the < sign will be assumed in general) we

could use Bt in place of Nt to obtain a better estimate of the convergence

of the e's. Thus only over estimates are available when the transformation

is not self-adjoint.

1.4. Restrictions on the differential system. The restrictions on the boundary

conditions necessary for Theorem 2 could be phrased in many ways. The

one we have chosen seems most natural. Take any re — 1 of the re incompatible

boundary conditions, say Ui, U2, • • • , Un-i- Then if we can determine an

reth boundary condition t/„(re) such that a certain system of linear algebraic

equations has a solution, then the operator T is symmetric. In order to prove

Theorem 3, however, a further restriction must be placed on the Uaiu) and

on the interval [O, c]. Examples have been constructed which show7 that these

restrictions do not lead to a vacuous theory.

1.5. Secondary results. In Theorem 4 we obtain the result that M+N

= N+M where M+ and N+ are the formal or Lagrange adjoints of M and N

respectively. This theorem is used in proving Theorem 5, which exhibits a

system of differential equations which the coefficients of the operators M and

N satisfy. These differential equations may be of use in actually computing

these coefficients.

1.6. Machine methods. One of our main interests is the application of

iterative processes to mathematical machines, in particular to continuous

devices. Suppose we have obtained by a continuous device an approximate

solution umix) of Lu = 0 which satisfies the boundary conditions. Then we

have Zwm(x) =em(x) where era(x) can be computed as accurately as desired

(for example, by the use of a digital device) from the given rem(x). [It is im-

portant to note that any iterative process must contain an exact calculation

in each step. ] Now it is not difficult to invert a differential operator by ma-

chine methods. Suppose N~ has been obtained. Then Am(x) can be computed

by Am = N~em and the next iterant constructed: rem+i(x) =«m(x) — Am(x). [See

Theorem 1.] Scale factors can be adjusted to obtain better results at each

step. The symmetry of the operator (with its real pure point spectrum) en-

ables us to estimate the accuracy of our iterative process.

1.7. Notation. We shall use the following abbreviation for determinants

whenever convenient. Let F be a determinant with the element F(¿, /) in

the ¿th row and jth column, ¿, j = 1, 2, ■ • • , re. Then we shall write

F = \Fii, 1),F(¿, 2), • ■ • ,F(i, »)[„,,,.,,.

2. Preliminary lemmas. We shall establish two lemmas which will be useful

in proving Theorem 2. The construction of Lemma 2 is also necessary for the
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proof of Theorem 1. First, we give a definition.

Definition 1. Let {<bi(x), </>2(x), • • • , <-£„_2(x), ̂(x), 4>2(x)} be re linearly

independent solutions of Lu = 0 where the operator L has been defined in

§1.2. Let {</>i(x), • • • , 4>n-2(x)} be re —2 of these functions so chosen that

their Wronskian w(x) is not identically zero in [O, c]. Then we define the

linear differential operator M by the equation:

,, +1   i ,«>, s    .CO, N ,«> , ■.      CO i
MU = —yy    0i   (x), <p2   (x), ■ ■ ■  , <t>n-2Íx), U      |<=o,l. • •-,»-2

(4) Wix)

= S2(x)m(b_2) + S3(x)M(n-3) +  • • *  + Snix)u.

Lemma 1. Hypothesis. Let L be the linear differential operator defined in §1.2.

Let M be the operator defined in Definition 1. Let N = L — M.

Conclusions, (i) M is of order re —2 and N is of order re. (ii) L = M+N.

(iii) The Wronskian of L is identical with that of N.

Proof. The proof is clear.

We shall now construct a "partial inverse" N" of the differential operator

Abusing the familiar Green's function construction [l, p. 254]. This construc-

tion is valid for any incompatible linear differential system.

Lemma 2. Hypothesis. Let

dn d"-1
N = —- + riix)- + • • • + rn(x) ■

dxn dx™-1

be a linear differential operator where the r¿(x) are real continuous functions in

the closed finite interval [0, c]. Let {</>i(x),<£2(x), • • • , (/>„(x)} be re linearly inde-

pendent solutions of Nu = 0 and let Wix) be their Wronskian. Let

(5) gix, f) ■- ± 2""1(-l)n | 4>iix), 0,(0, */(f), 0.;'(f), • • • , 4*~*\t) |i=i,2,...,»

where the + sign is taken if x^ and the — sign is taken ¿/x^f. Let

(6) Nu = 0,        Uaiu) = 0, a = 1, 2, • • • , re,

where the Uaiu) have been defined by Equation (2) be an incompatible linear

differential system. Let the ß;(f) be solutions of the linear algebraic equations

n

(7) E «iiXWiiii) + Uiig) =0, / = 1, 2, ■ • • , re.
í=i

Conclusion.

(8) Gix, t) = —y I" ¿ aitbiix) + gix, f)l
IF(f) L <=i J

¿5 the Green's function for the system of Equations (6).
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Proof. A direct calculation shows that if n(x) is any function of the class

82 in [O, c], and if

(9) «(*) =   f  Gix, ï)viï)dt,
J 0

then Nu=vix) almost everywhere and Uaiu)=0, a = l, 2, • • • , re. We shall

write Equation (9) symbolically as w(x) = Ar~z,(x), Uaiu) =0, a = l, 2, • • • , re,

and the lemma shows that Nu = NN~v = v.

3. The fundamental transformation. We shall now establish the result

that em= — MN~em-.i.

Theorem 1. Hypothesis. Let the differential operator L and the boundary

conditions Uaiu), a = 1, 2, • • • , re, be as defined above. Let N be any differential

operator of order re such that

Nu = 0, Uaiu) =0, a = 1, 2, • • • , re,

form an incompatible system, and such that

L = M + N,

where M is an operator of order re —2. Let wo(x) be any function [G Cn] which

satisfies the initial conditions U„iuo) = Ca, a = l, 2, • • -, re. Let

em(x) = Lumix),       Am(x) = N-tmix), m = 0, 1, • • • ,

Umix) = Mm_i(x) — Am-iix), m = 1, 2, • • • .

Conclusions.

(i)                   emix) = - MN-em-iix), m = I, 2, ■ ■ ■ ,

(Ü) Uaium)   =  Ca, «  —   1, 2,  • •  •  , tt', 7» ■»   1, 2,  • •  •   .

Proof. Any solution of Lu = 0 has the property that it is of class C". [For

if we assume only the existence of the reth derivative, the equation /(n)(x)

= — £i(x)/(B-1)(x) — _• • • —pnix)fix) shows us that /(n)(x) {where fix) is

any solution of Lu = 0} is continuous. ] Therefore there is no loss of generality

in assuming the first iterant w0(x) to be £C". Since this is the case, e0(x) is

continuous, and hence integrable. Therefore Af-eo(x) is meaningful and

Ao(x)GCn. Similarly Ai(x), A2(x), • • • GCn. By definition of N~, i/«(Am)=0

for m = 0, 1, 2, • • • and a = l, 2, • • • , re. Therefore, since Mo(x) satisfies the

boundary conditions [Equation (2)], wm(x) =«o(x) — A0(x) — Ai(x) — •••

—Am_i(x) also satisfies them. Hence (ii) of the conclusions is satisfied.

We now prove (i). By hypothesis,

. «m  =  LUm  =  LUm-l  ~ LAm-l   =   «m-l  ~   (iV +  M)Am-l

= €m_i — AAm_i — MAm_i = — MAm-i
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since AAm_i = em_i by Lemma 2. Now Am_i = JV-em_i. Substituting this result

in Equation (10) gives us

«m■ - - MN-em-ii*),

which is the desired result. In general tm+k— ( — MN~)kem-

4. Symmetry of MN~. We now prove our main theorem.

Theorem 2. Hypothesis. Let M and N be as in Lemma 1. Let N~ be the

partial inverse of N as constructed in Lemma 2 using the Green's function

Gix, f). Let Uaiu), a = l, 2, ■ • ■ , re —1, be as defined by Equation (2). Let

{tj>i(x), ■ ■ ■ ,<bn(x)} be re linearly independent solutions of Nu — 0 with

Wronskian Wix).

Conclusions. If an nth boundary condition U„iu) can be determined such

that conditions (i) and (ii) of Equation (16) below are satisfied, then the trans-

formation MN~ can be represented as an integral operator with a real continuous

symmetric kernel F(x, ?) ¿re the rectangle R: {0 5= x :£ c, OrS^-gc}.

Proof. By definition of N~, N~f=Jc0G(x, f)/(f)df where G(x, f) is given

by Equation (8). Since M involves derivatives only up to and including

order re —2, we may write [l, p. 257]

(11) MN-f = M    f °Gix, t)fit)dt =  f ° M-Gix, ?)/(?)#

where it is understood that M operates on functions of x only. Let F(x, f)

= M-Gix, f) be the kernel of the integral equation (11). E(x, f) is obviously

real and continuous. Our task is therefore to determine i/»(w) such that

Fix, f) =F(f, x). From Equation (8)

Fix, t) = M-Gix, t) = —— MT ¿ otifttiix) + gix, f)l
wit)      L ¿=i J

1        r
[an-.iit)M<bn-iix) + an(C)M<¡>n(x)}

(12)

+

W(t)

(-1)

21F(f)

0 0 ■ • •      0        M<bn-iix)    M4>nix)

*i(rt    **(r)   • • • *«-»(*■) <t>n-iiû    *»(r)
*i(f)    «2(f)   • ■ • «U(f) 0»-l(f)     0»(f)

(n-2) ,   . (n-2) ,   . (n-2) ,   .        (n-2) ,   . (n-2) ,   .

01 (f)   02 (f)  • • •  0„-2    (t)   0»-l     (f)      0» (?)

since Af0i(x)=O for ¿=1, 2, • • • , re —2.

For convenience in the ensuing manipulations we introduce the notation

(») Cf. footnote 2.
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IFf(x) to mean the minor of 0«)(x) in the Wronskian W(x),

W(x)   =  | 01*  (X), 02'  (x),   •  •  •   , 0»    (X) |i=o,l,...,»-l

and Daß to mean the minor of Ua(<t>ß) in the determinant D(U),

D(U) m | Ui(<bi), Ufa), ■ ■ ■ , Ui(<bn) 1^1,2,...,».

Now, Equation (12) may be written in our new notation as

F^ V = t^StT [*~-M)WT\x) + an(t)Wn-i(x)}
W(Ç)W(x)

(13)

± mil, i [wVi(m7\x) - w7\t)WnZ\(x)}.
2W(Ç)W(x)

Since in the second expression in Equation (13) the + sign is taken when

xij? and the — sign when x^?, it is evident that this expression is sym-

metric. It is only to render the first term of Equation (13) symmetric that

the boundary conditions must be adjusted. Hence it remains to show that

H(x, f) =. an-i(t)wT\x) + an(t)WnnZl(x)

is symmetric. A necessary and sufficient condition that F(x, f) be symmetric

is that a„_i(f), a»(f) be such that H(x, ?)=/z"(?, x).
Let us express a»_i and a» in terms of the minors of D(U) and W(x).

From Equations (7) and (5), we obtain after some straightforward calcula-

tions

(14)       a» = ——- E (-1) V;+Í(f)E (- D*"^« { Vaitß+l) - Zaite+l) } ,
¿D(U)   0=0 a-1

(is) an_i = -¿— e (-1)V;;ia-)E (- i)a_1^.»-i {vai<t>ß+i) - z.^,)}.

We now turn to the question of determining Un such that H(x, £") is sym-

metric. Write

a^) = ̂ 77^2 (-i)V;:î(f)/,+i
¿D(U) ß=o

where

»

h+i = E (-1)-1^»} Vai4>ß+i) - Za(4>ß+i)}, ß = 0,l,---,n-l.
a-l

Now we   recall   that   V»(u)» £¡3¿«<if(0(0)   and   Zn(re) = E?-o-B»i«(i)(c)-

Expanding Iß+i by minors of the last row, we may write:
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ß+i . ß+i.
Iß+i = E [Y/   Anj + r)j   Bnj],     ß = 0, 1, • • • , re - 1.

j'-o

Treating an-iit) in the same manner leads to

Jß+l  =   E   [£+1Ani + e^Bni],        ß -  0,  1,  •••,»-   1.
í-o

Also diU), where

d(U)m\ Uii4>i), Uii4>2), • ■ • , Uii4>n-2), Uii^i), Ui (<í>2)| ¿=1,2, •••,»,

can be written as

diU)   =   E   [TiAm+PiBnil
j=0

The 7j+\ rfj+1, ¿jf-1, 0f+1, 17, py are constants.

Now for symmetry we shall require:

(i) Iß+i = 0, 0 = 0, 1, •••,«- 3,

/ß+i = 0, ß = 0, 1, • • • , re - 3,

(16) /» = /„-i,

diU) = ß^0,

DiU) =^0;

(ii) the rank of the augmented matrix to equal the rank of the matrix of

the coefficients.

The last two conditions of (i) insure that Lw = 0, t/0(«) =0 and Nu = 0,

Uaiu)=0 are both incompatible systems.

Equations (16) represent at most 2w —1 equations on the 2re quantities

An}, Bnj,j = 0, I, • • • , re — 1. Now such a system of linear algebraic equations

always has a solution [4, p. 46]. Choose any such set of A'n¡, B'n],j = 0, 1, • • •,

re —1. We shall assume that

Uni«)  =   E^»í«0)(0)  +   E Bnfll^ic).
y-o y-o

We see immediately, by virtue of Equations (16), that Equations (14) and (15)

become

«»(f) = -^ [(-irv::îo-)/„_i + (-irvr'G-)/»],

an-iit) = ̂ - [(- Dn- v::îG-)/»_i+(- irvr1«-)/»].
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It is evident that i/(x, f) is symmetric. This proves our theorem.

Let us consider the integral operator MN~ just obtained as a linear trans-

formation in Hubert space. We use ?2 (the class of all complex Lebesgue

measurable functions which are square summable) as our realization of ab-

stract Hubert space. From [2, Theorem 3.8, p. 101 ], we see that MN~ is

self-adjoint with finite norm. The desired properties of the spectrum follow

from [2, Theorem 5.14, p. 193]. In particular, all points in the spectrum of

— MN~ are characteristic values of finite multiplicity. Hence the arguments

given in §1.3 of the introduction are valid.

5. The existence theorem. In order to prove that um(x) approaches a

solution of the differential system of Equation (3) as m—»°o, we shall have

to place additional restrictions on the 17's and on the interval [0, c\.

The kernel E(x, f) of the integral operator MN~ is a function of DiU).

The determinants DiU) and ¿(Í7) are functions of the end point c. Also, the

coefficients Ana, Bna, <x = 0, 1, • • • , re — 1, are functions of the end point c.

To indicate these relations explicitly, we write

DiU)   m A[Anaic),  Bnaic),  c], i{U)   ■  i[AnJfi),   5»„(fi), c],

Fix, ?)   m  Q[x,  t, Anaic),  Bnaic),  c]

where O^x^c, O^f^c. If we consider the end point c as a variable, we may

write

Kiy, z) = A[A„aiy), Bnaiy), z],        kiy, z) m ô[Anaiy), Bnaiy), z],

A(X, f, y, Z)  = Q[x, f, Anaiy), Bnaiy), ¡¡]

where the "c" on which the coefficients of £/„ depend [that is, Ana, Bna] has

been replaced by y; and where the "c" on which DiU) and diU) depend [that

is, the "c" appearing as the argument of 0„ in the linear expressions £/,(0y) ]

has been replaced by z. In particular, we note that

Kic, c) = DiU),        kic, c) = diU),       A(x, t, c, c) = F(x, t).

Now, the additional and final requirements that we place on the boundary

conditions and on the interval are:

(i) *(0, 0) F-s 0, (ii)        A(0, 0, 0, 0) < oo.

[Note that (ii) implies and is implied by K (0, 0)^0.]

We now prove a lemma (sufficient to establish Theorem 3) which shows

the existence of an interval [0, c*\, 0 <c* ^ c with certain desirable properties.

Lemma 3. Hypothesis. Let kiy, z) and A(x, f, y, s) as defined above have the

properties that k(0, 0)^0 and A(0, 0, 0, 0) < °°.

Conclusion. There exists a c*, 0<c*ac, such that for all c', O^c'^c*:

(i)   |A(x, f, y, z)\ ¿B, 0^x, f, y, z^c' and B a constant.

(ii) c'<l/B.
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(iii) kiy, z)9¿0, Oúy, z¿c'.

Proof. Since A is a continuous function of all four variables, there exists

a (right-handed) neighborhood [0, Ci] such that

I A(x, t,y,z)\^B, 0 = x, f, y, z ¿ cu

and this relation certainly holds for any non-negative values less than cx.

Since kiy, z) is a continuous function, and ¿(0, 0)^0, there exists a (right-

handed) neighborhood [0, c2] such that

Ky, *) Va 0, 0 = y, s â C2,

and this relation is also valid for any non-negative value less than c2 .Then if

we define c* as: c* = min [ci, 1/25, c2], this c* satisfies the conclusions of our

lemma.

We are now in a position to state our convergence theorem.

Theorem 3. Hypothesis. Let MN~, Fix, f), e„(x), and rem(x) be as defined

above. Let k(0, 0)^0 and A(0, 0, 0, 0) < w. Let c satisfy the conclusions of

Lemma 3.

Conclusion. The sequence of functions wo(x), «i(x), • • • converges uniformly

to a solution u(x) of the differential system of Equation (3).

Proof. We have shown in Theorem 1 that em = — MN~em-i and in Theorem

2 that MN-f = Jc0Fix, f)/(f)áf. Hence em(x) = -f¿F(x, f)em_i(r)c?f. Iterating
this equation yields

f* c *% c

em+kix) = (-1)»  I      • • ■ Fix, ti)Fiti, t2) ■ ■ ■ F(f*_i, tk)emitk)dtidt2 ---dtk
Jo dû

and |em+*(x)| ^HiBc)" where |em(x)| £H in [0, c]. Since Be<1, the se-

quence { em(x)} converges uniformly to zero.

Now by definition of the em(x), em(x)=L«m(x) or

n-2 2

Umix) = E dift>i(x) + E ei^i(x) + Irtm(x)
»'=1 «=1

where the di and e< have been so chosen that Uaium) = Ca, a = 1,2, ■ ■ ■ , n;

and where L~ is a partial inverse of L based on the Green's function con-

structed for the incompatible system Lu = 0, £/„(«) =0, a = l, 2, • ■ ■ , re.

By hypothesis, the interval [0, c] was so chosen that kiy, z) does not vanish

in the rectangle R: {O^y^c, O^z^c}, and in particular k(c, c)^0. Hence

L~~ is bounded. Therefore, since the em(x) converge uniformly to zero,

»-2 2

un(x) -* E di<t>iix) + E «**<(*)
«°-i i=i

uniformly. It is evident that the right-hand member of this equation is a



1950] ITERATIVE METHODS IN DIFFERENTIAL EQUATIONS 205

solution of the differential system of Equation (3).

6. Secondary results.

Theorem 4. Hypothesis. Let L, M, and N be the linear differential operators

defined above with the further restriction that pi(x), p2(x), ■ ■ ■ , pn(x)GCn.

Let M+ and N+ be the formal or Lagrange adjoints of M and N respectively,

that is,

» fin—a n Jn—a

M+u = E (-1)""" -(Sau),        N+u = E (-1)"-" -(rau)
„=2 dx"-" a-0 dx"-"

where ro(x) = l, ri(x)=pi(x).

Conclusion. There exists an interval [a, b] contained in [0, c] such that

M+N=N+Min [a,b].

Proof. We shall first show that N = PM where P is a linear differential

operator of the second order. It will then be seen that a sufficient condition

for M+N to equal N+M is that P be formally self-adjoint. We show that this

is the case.

Now, Mu = 0 has the re —2 linearly independent solutions (0i(x), 02(x),

• • • , 0„_2(x)} and Nu = 0 has the re linearly independent solutions {<f>i(x),

02(x), • • • , 0»(x)}. Let

R = A(x)—+B(x)- + C(x).
dx' dx

be a linear differential operator such that R[M<f>n-i(x)] =O = E[Af0n(x)].

Then the operator RM has J0i(x), 02(x), • • • , 0„_i(x), 0„(x)} as re linearly

independent solutions. Hence N = h(x)RM [3, p. 224] where h(x)^0. Let

d2 d
P = h(x)A(x) -■ + h(x)B(x)-h h(x)C(x). m h(x)R

dx2 dx

d2 d
m a(x) — + b(x) — + c(x).

dx1 dx

where h(x)A(x) =a(x), h(x)B(x)=b(x), h(x)C(x)=c(x). Then we have the

result that N = PM where P is the linear differential operator of the second

order

(17) P-aix) — + bix) — + dx)-.
dx¿ dx

Now M+N= M+PM and N+M=M+P+M [3, p. 254]. Hence if we can show

P is formally self-adjoint, that is, P=P+, we shall have established our

theorem.

P+u = au" + (2a' - b)u' + (a" - b' + c)u.
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Comparing this with Equation (17), we see that in order for P to equal P+

it is sufficient that a'(x) = Z>(x). We shall prove that this is indeed the case.

Writing PMu in expanded form we have

PMu = ai2M(n> + [a(2s2' + St) + bs2]u<-n-v + • • •

and

Nu = w<"> + piix)u<-n-v + r2(x)«<n-2) + • • • .

We can determine <z(x), ¿>(x), and c(x) by equating coefficients of re(a) in PM

and N. [All but three of these relations must be redundant. ]

(18) From the coefficient of uM: as2=l.

(19) From the coefficient of w^-1': a(2s2' +s%)+bs2 = pi.

From Equation (4) it is readily seen that

- [Wix)s2ix)\ = - [Wix)soix)\.
dx

Expanding this equation and remembering that the Wronskian Wix) satis-

fies the equation W'+piix)W=0, we have

(20) si + so- pis2 = 0.

In Definition 1, the re —2 functions 0i(x), 02(x), • • • , 0„_2(x) were so chosen

that their Wronskian w(x)^0. Since w(x) is continuous, there exists a point

and a neighborhood of this point such that w(x) ^ 0 in this neighborhood. Let

this region be the [a, b] interval (a subset of [0, c]) referred to in the state-

ment of the theorem.

Multiply Equation (19) by s2, replace as2 by 1 by virtue of Equation (18)

and subtract Equation (20). There results s2 + bsl = 0 or b= —s'2/s\. But from

Equation (18), a = l/s2. Hence a' = b, as was desired to be proved.

Theorem 5. Hypothesis. Let M, N, M+, N+ be as in Theorem 4. Let

Xaß = Saix)rßix)—raix)Sßix)=sapß — paSß, a, ß = 0, 1, • • • , « where s0(x)

= 5i(x)=0 and r0(x) = l, riix)=piix).

Conclusion. In the interval [a, b]

i    *

ÇÀX)   =   E  E  (—1)   Cn-a,n+k-i-aXa,k-a  =  0, a   ̂    W,
fc=2 a-0

j = 3, 4, • • -, 2w, where Ca,-ß is regarded as zero for a, ß>0.

Proof. Consider the expression Qu=iM+N — N+M)u. From Theorem 4,

<2m = 0 in [a, b]. We shall calculate the coefficients of w(a) in Qu. They will be

the gy(x) functions mentioned in the theorem. Necessarily, they must all be

identically zero. While g,(x) =0,/ = 3, 4, ■ • • , 2re, represent 2w —2 equations,
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actually only re—1 are independent since they are differential equations on

there—1 functions 52(x), s3(x), • • • , s„(x). [By dependent we mean that some

gy(x) can be expressed as a linear combination of some other of the g,(x) and

their derivatives, with constant coefficients.] We shall compute the gy(x).

Now

Qu = M+Nu - N+Mu =J2H (-1)-"-< [sarß - rasß]--} .
a=o ß=o dxn~a ( dxn~n

Introducing Xaßix) and noting that [/(x)g(x)](m) = E™-o Cm.,J0')g(m'^) where

Cm.n is the binomial coefficient, Qu becomes

»       * n—a , .

V1  "^  /       1\B~"*   V /" v(»-«-T)    (n-3+T)
öre=2^2J(—1) Z, C»-,,, 7Aa|S «

a—0 ß-0 7=0

Let/ = re —y+/3. Then

(21) QU - ¿ ¿    E  (-D^U^.n^-yZlr^'«'2""".
a-0 /S— 0  ?'=a+0

Let

Qre = (-l)"[?„(x)«(2") + gtC*)«««-» + • • • + Ç2»(x)«]

be the defining equation for the gy(x). We see that the coefficient of

(-l)nM<2n-'> is gy(x). From Equation (21)

i       * . ._, .

(22) q¡ix)   =   E  E (~1)   Cn-a,n+k-i-aXa,k-a, «  á  «,
k—0 a-0

for all/ = 0, 1, • • • , 2re, with the proviso that n + k^a+j. We note that the

denominator of the binomial coefficient in Equation (22) is precisely n + k

— (j+a). So if we adopt the convention that the binomial coefficient Ca,-ß,

a, ß>0, is defined as zero, Equation (22) is correct as it stands with no

qualifying statement.

Due to introducing soix) and Si(x) (which are actually zero), we may write

Equation (22) with the summation extending from k = 2 to j instead of from

ft = 0 to j, since these cases are vacuous.
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