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1. Introduction. This paper is an outgrowth of an attempt to give a uni-

fied treatment of certain results in the theory of rings. For example, in a

recent paper [5](*) it was shown that the set of all elements of a ring £ which

generate regular ideals(2) is itself an ideal in £. In that paper it was observed

that the proof of this result is in many ways analogous to the proof in Brown

and McCoy [4] that the radical of £, as defined in [3], is an ideal. In §2 of

the present paper a theorem will be proved in the general setting of group

theory which yields as special cases both of these results as well as a number

of other cases of some interest. Some notation needs to be introduced before

stating this theorem.

Let G be a group additively written, although G is not required to be

abelian; and let fi be a fixed set of endomorphisms of G which includes all

inner automorphisms. The i2-subgroup of G generated by an element b may

be denoted by (b). It is assumed that a mapping £ is given which associates

with each element a in G a unique subgroup £(a) of G in such a way that if

a, bGG, then

Pi. F(a + b)ŒFia) + ib),

P2. b G Fia) implies that £(a + b) ÇJ Fia).

Under these conditions, G may be called an (£, Q)-group.

Note that E(a) is not required to be an fi-subgroup, but if it happens to

be an ß-subgroup, P2 is implied by Pi.

An element a of G may be said to be F-regular if and only if a G Fia), and

a subset of G is called F-regular if and only if each of its elements is E-regular.

The theorem mentioned above (Theorem 1) states that if G is an (£, ü)-group,

the set N= {aGG; (a) is F-regular} is an F-regular ü-subgroup of G which

contains every F-regular ü-subgroup of G.

In §3 it is shown how to make any O-homomorphic image of G into an

(£, 0)-group and then it is proved in Theorem 3 that the fi-group G — N has

no nonzero E-regular O-subgroup.

In some of the applications to rings it will not be necessary to require the

Presented to the Society, April 28,1950; received by the editors February 27, 1950 and, in

revised form, April 7, 1950.
(!) Numbers in brackets refer to the bibliography at the end of the paper.

(?) The word regular is being used in the von Neumann sense, that is, an element a is regu-

lar if and orrly if there is an element x such that axa = a, and an ideal is regular if and only if

each element of the ideal is regular.
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associative law of multiplication, and thus some of our results are obtained

for not necessarily associative ring or narings. Accordingly, §4 is devoted to

a discussion of the concept of regularity in a naring, and certain results are

proved which generalize some of those established in [5] for rings. In §5 an

application of Theorem 1 is obtained for the case in which the naring is spe-

cialized to an alternative naring. In the following section there are given a

number of other illustrations of the application of Theorem 1 to rings.

Starting with §7 the assumptions on £ are strengthened, and it is then

possible to express N as the intersection of a certain class of Q-subgroups of

G. Inasmuch as a precise statement of this and other related results requires

some additional notation, a detailed account will be postponed until later.

The treatment is based on recent work of Brown [2] and in turn generalizes

his results. Special cases of our Theorems 6 and 7 give at least an important

part of the theory of each of the following: the radical or, more generally, the

F-radical of a ring [3]; the radical iF-radical) of a naring according to

Smiley [10]; the Jacobson radical of a ring [7]; the Jacobson radical of a

naring or cluster as presented by Brown [2], Thus, for the first time, these

diverse theories are here subsumed under one general theory.

In the Jacobson theory the concept of primitive ring plays an important

role, while subdirectly irreducible rings of zero F-radical enter naturally into

the theory of the E-radical. Previous attempts to unify these theories have

failed at least partly because of the difficulty of obtaining an appropriate

generalization of these quite different concepts. Such a generalization is ex-

hibited in §8, and the rest of the theory then follows by an easy extension of

the work of Brown [2].

The referee has pointed out that Theorems 1-3, 6, and 7 make no essential

use of the associativity of addition, and that our proofs (except for that of

Theorem 1 which can be suitably rephrased) are valid in the more general

setting of a loop with operators. We are also indebted to the referee for sug-

gestions which have improved our proof of Theorem 5 as well as the discus-

sion of §5.

2. Existence of greatest E-regular fl-subgroup. Let G be an (£, i2)-group

as defined in the introduction. Since Û is assumed to contain all inner auto-

morphisms, an 0-subgroup of G is necessarily a normal subgroup. It follows

readily that (a+ô)ÇJ(<z)-f-(&), a fact which will be used presently.

We may now prove the following theorem which is fundamental for our

purposes:

Theorem I. If G is an (£, Q)-group, the set N = {aGG; (a) is F-regular}

is an F-regular Q-subgroup of G which contains every F-regular Q-subgroup of G.

If z, wGN, we show first that (z—w) is E-regular. If aGiz — w), the ob-

servation made above shows that a = u — v for some u in (z), v in («/). But

u = a+v is F-regular since zGN, so a+vGFia+v)ÇZ Fia)+ iv) by Pi. Thus we
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may write a+v= — b+Vi for some b in £(a) and Vi in iv). It follows that

a= — b+Vi — v = v2 — b for suitable v2 in the normal subgroup (»). Hence

a+bGiv)Qiw). Since wGN, a + bGFia+b)QFia), by P2 since bGFia).

Since £(ö) is a group, aGFia). Thus (z —w) is E-regular, and z — wGN. If

uÊfi, then zcoG(z), (zw)Ç(z); thus zuGN. This shows that iV is an fl-sub-

group of G, and it is certainly E-regular. If H is an E-regular ß-subgroup of G,

and bGH, then ib)QH, (è) is E-regular. Hence bGN, so Í7CJ7V. This com-
pletes the proof of the theorem.

In view of the properties just proved, N may be called the greatest F-regu-

lar Sl-subgroup of G.

Before proceeding, we may illustrate this theorem by a few simple ex-

amples. First, let G be the additive group of a ring R, and let Í2 be the

identity automorphism together with the set of all right and left multiplica-

tions by elements of £. Thus an S2-subgroup is just an ideal in £. Let us set

Fia) = {ar — r + 23 ixiavi — x¿yt)},

where r, x¿, y, range over £ and the sums are finite. It is easily verified that

properties Pi and P2 hold, and thus G is an (£, i2)-group. In this case,

N is the radical of £ as defined in [3], and Theorem 1 furnishes an elementary

proof, closely related to that in [4], that the radical is an ideal.

As a next example, let G and Q be as in the preceding example but define

Fia) = {ax — x; xGR}- It then follows that N is the Jacobson radical of £.

If we let £ be an arbitrary naring (or cluster [6]), and take £(a) to be the

right ideal generated by the set {ax — x; xGR}, Theorem 1 shows that N is

an ideal which naturally has been called the Jacobson radical of the naring

(or cluster) [2].

Again, with the same definition of G and Q, £ now being a ring, let Fia)

= aRa. Thus aGFia) if and only if a is regular, and Theorem 1 asserts that

that there exists a greatest regular ideal in an arbitrary ring [5].

Additional applications of this theorem will be given after §3.

3. Extension to Œ-homomorphic images. We return to the general case

in which G is an arbitrary (£, fi)-group. If K is an O-subgroup of G, then it is

well known that G — K is an Q-group under the natural definition (a+E)co

= au+K. Conversely, any O-homomorph G* of G is fi-isomorphic to G — K,

where K is the fi-subgroup of G which is the kernel of the homomorphism.

The following theorem gives a natural way to make G* into an (£, 0)-group,

the i2-homomorphic image of £(a) being denoted by Fia)*:

Theorem 2. If a—>a* is an Q-homomorphism of an (£, ti)-group G onto an

Q-group G* and we set Fia*) = Fia)*, then Fia*) is well defined and under this

definition G* becomes an (£, Q)-group.

First we show that Fia*) is well defined, that is if a* = b*, then Fia)*

= £(6)*. Let K be the kernel of the fi-homomorphism of G onto G*, so that
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a* = b* implies that a = b + k for some k in E. Then by Pi, £(a) =£(& + &)

QFib) + ik), and hence E(a)*Ç£(&)*. In like manner, it follows that Fib)*

Ç£(«)*, and thus we must have Fia)* = Fib)*.

The following calculation now shows that Pi is satisfied in G*:

Fia* + b*) = FHa + b)*) = F(a + b)* Ç (£(a) + (b))* = F(a)* + (b*).>

To prove P2 we observe that if b*GF(a*) = F(a)*, then b — cGK for some c

in F(a). Thus

£(a* + &*) = F(a* + c*) = F((a + c)*) = F(a + c)* Q F(a)* = F(a*),

and the proof of the theorem is completed.

For the moment, let us denote the N of Theorem 1 by N(G) to emphasize

the particular (£, i2)-group G being considered. Now if G* is any Q-homo-

morph of G, the preceding theorem shows that N(G*) has meaning. We may

now prove the following result:

Theorem 3. If G is an (£, Q)-group, the greatest F-regular Q-subgroup of

G — N(G) is the zero subgroup, that is, N(G — N(G)) =0.

Let a* denote the coset a + N(G). If b*GNiG-NiG)) and aGib), then

a*Gib*). Hence a*GF(a*) = F(a)*, so a + cGN(G) for some element ein

Fia). It follows that a + cGFia + c)QF(a) since cG£(a). Hence aGFia),

bGNiG), b* = 0, and the proof is completed.

It is easy to apply this theorem to the examples given above in which G

is the additive group of a ring £, and ti consists of the identity automorphism

together with all right and left multiplications. In this case N is an ideal in £,

and by a natural definition of multiplication in the £2-group G —TV, it becomes

the residue class ring R/N. Furthermore, an O-subgroup of the additive

group of R/N is just an ideal in R/N. Thus, for example, in the case of the

first illustration given above, Theorem 3 merely states that if N is the radical

of £, then the residue class ring R/N has zero radical.

We showed in Theorem 2 that if G is an (£, fi)-group, then there is a

natural way to make any fi-homomorph G* of G into an (E, fi)-group. The

following theorem shows that in a certain sense this procedure can sometimes

be reversed:

Theorem 4. 7/ a—>E(a) is a mapping which associates with each element a of

the Q-group G a unique Q-subgroup F(a) of G with the property that, in each

Q-homomorph G* of G, a* = b* implies that F(a)* = £(&)*, then G is an (£, Q)-

group.

It may be emphasized that heretofore F(a) has been required merely to be

a subgroup of G, but a part of the hypothesis of this theorem is that it be an

fi-subgroup. To reach the desired conclusion we need only show that in G,

F(a) has properties Pi and P2. Accordingly, let a and b be elements of G,
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and let G* be the O-homomorph G—(b) of G. Since ia+b)* = a*, one of our

hypotheses implies that £(a+6)* = £(o)*. Thus F(a+b)QF(a) + (b), which

is just property Pi. Property P2 then follows immediately since F(a) is here

an fi-subgroup.

Before proceeding to further applications, we may observe that this

theorem makes it possible to apply Theorems 1 and 3 to the E-radical of a

ring as developed in [$]. This will be mentioned again in §6.

4. Regularity in a naring. Let G be the additive group of an arbitrary

naring £, and let Q be the set of all right and left multiplications together

with the identity automorphism. If cGR, c induces a right multiplication

p(c) and a left multiplication X(c). Let P denote a finite product of one or

more right multiplications, and A a finite product of one or more left multi-

plications.

liaGR, let F(a) denote the set of all finite sums ^¿aPi-aA*. For example

(ax)(ya) + (((ar)s)t)(ua) is in F(a). Since, by definition, each P*(Ajt) must

contain at least one right (left) multiplication, an expression such as (ax)a

+ aa need not be in F(a). However, if a = (ax)a+aa, substitution of the en-

tire right member for certain of the elements a appearing in the right member

shows that aGF(a). We shall say that an element a is regular if and only if

aGF(a), while a subset of £ is regular if and only if each of its elements is

regular. If £ happens to be associative, it is clear that the present definition

of regularity coincides with the well known one of von Neumann, except

that we do not require a unit element.

It is easy to verify that F(a) is a subgroup of G satisfying conditions

Pi and P2, and hence G is an (£, 0)-group. Thus Theorems 1 and 3 show the

existence of a greatest regular ideal M(R) in R, and that M(£/M(£))=0.

These are generalizations of results obtained in [5] for the case in which £

happens to be associative. We shall now indicate a proof of the following

theorem, which is well known if £ is a ring.

Theorem 5. If £„ is the complete matrix naring of order re over a naring R,

then Rn is regular if and only if R is regular.

It is almost obvious that £ is regular if £„ is regular, and we shall accord-

ingly confine our remarks to the other part of the theorem. The proof will be

based on the observation that if a — c is regular and cGF(a), then a is regular.

If uGR, let Un denote the element of £„ with (i, j) entry u and zeros

elsewhere. Supposing £ regular, let £ be an element of £„ with (/, /) entry

bij. Since ba is regular, we may write &¿,-= ̂ kbijPuk-bijAijk. We associate

with the element biS an element E^Py* BA'ijt of £(£) in £n, where the first

factor of each P' is obtained from the first factor p(x) of the corresponding

P by replacing x by Xji, and the remaining factors of each P' and all factors

of each A' are obtained from the corresponding factors p(y) of P and X(z) of

A by replacing y by Yu and z by Zu. For example, if b = bi¡ and b = (&x)(y(zô))
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+ Hibs)t)u)ivb), the associated element of £(£) is iBX^iYuiZaB))

+ iiiBSji)Tu)Uii)iViiB). We now define £" = £- ¿*EP^-EA^. It follows

from the above italicized observation that if some B*' is regular, then £ is

regular. If b% is the (r, s) entry of £*', it may be verified that

(1) brs = brs — 2_, briPijk-biSA.ijk.
k

Clearly b% = 0 by the equation defining the regularity of bi¡. Moreover b*/s = 0

if br> = brj = 0 or if bre = bit = 0.

It now follows from (1) that if AGRn, then Ai = Au has its (1, 1) entry

zero, and that A2 = A]* has its (1, 1) and (1, 2) entries zero. Proceeding to

introduce zeros elementwise by rows, and setting m = n2, we see finally that

Am = A™^i is the zero matrix, which is regular. This implies that Am-i is

regular, and after re2 backward steps we infer that A is regular, completing

the proof.

Actually, a somewhat more precise theorem can be proved in that

Theorem 4 of [5] can be completely extended to the naring case. However,

the complexity of the notation makes it probably not worth while to write

out the details of the proof.

5. Regularity in an alternative naring. We now assume that £ is an

alternative naring, namely, that iab)c — aibc) is an alternating function of its

arguments a, b, c. Thus (ax)a = a(xa), and we may denote this element by

axa without ambiguity. Let G and Q be as in the preceding section, but de-

fine Fia) —aRa. Following Smiley [9], we shall say that a is regular if and

only if aGFia). It is easy to verify Pi and we shall show that P2 holds. This is

done by means of the following identities valid in any alternative ring(3):

(2) iax)iya) = aixy)a,

(3) iaxa)y = <z(x(ay)).

We must show that ia+asa)tia+asa) = Ha+asa)t)ia+asa) is in Fia)

for all s, I in £. After applying the distributive laws, it may be verified as fol-

lows that each of the four summands is in Fia). Using (2), iat)iasa) =a(¿(<zs))a.

By (3), Hasa)t)a = aisiat))a. Finally, (3) shows that Hasa)t)iasa)

= iaisiat)))Has)a) which is in Fia) by (2). Hence P2 is satisfied.

It follows that G is an (£, 0)-group, and Theorems 1 and 3 show the

existence of a greatest regular ideal N(R) in R and that N(R/N(R)) =0.

If £ is alternative, not only is iV(£) defined, but also the M(£) of the

preceding section. Obviously A^(£)ÇM(£), but the exact relation between

them is an unsolved problem.

One other remark may be in order. It may be shown that £„(re>l) is

(s) Apparently (2) and (3) were first proved by Moufang [8] from an identity of Zorn [il,

12].
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alternative only if £ is associative. However, if £ is alternative, £„ is still a

regular naring in the sense of §4 whenever £ is regular under either definition.

6. Additional applications to rings. Throughout this section £ will be an

arbitrary (associative) ring, and in our applications it is to be understood

that G is the additive group of £ and Q the identity automorphism together

with all right and left multiplications by elements of £. We shall, for the

most part, confine ourselves to giving various definitions of F(a) which

satisfy Pi and P2 and therefore make G into an (£, i2)-group. The actual

verification of these properties will be left to the reader.

Example 1. Set F(a) =a2£, and hence aGF(a) if and only if a is strongly

regular as defined by Arens and Kaplansky [l]. The TV of our Theorem 1 is

then the greatest strongly regular ideal in £.

Example 2. We now set F(a) = a(a). In this case, aGFia) if and only if

a = aai, where aiG(a). We shall say that a is weakly regular if and only if

aGF(a), and Theorem 1 states the existence of a greatest weakly regular

ideal in £.

We pause to make a few remarks about weak regularity. In the first place,

it is clear that if a is regular, it is weakly regular. Following Arens and

Kaplansky [l ] let us call an element a biregular if and only if (a) = (e), where

e is a central idempotent. If a is biregular, then for some integer re and some

element r or R, a = ne + er, where e is a central idempotent. Thus ae = a with

eG(a), and hence a is weakly regular. This shows that biregularity of an ele-

ment a implies that a is weakly regular. On the other hand, examples given by

Arens and Kaplansky show that regularity neither implies nor is implied by

biregularity, so weak regularity coincides with neither. Moreover, weak regu-

larity of every element of a ring implies that the ring is semi-simple in the

sense of Jacobson.

Further discussion of this concept would take us too far afield, but we

may remark that if in the statement of each theorem in [5 ] the word "regular"

is replaced by "weakly regular," the resulting theorem is true. The proofs

follow the same general pattern as those of the corresponding theorem in [5]

but naturally involve somewhat longer and more involved calculations.

Example 3. Let F(a) be an ideal, defined for every ring, and such that in

any homomorph £* of £, F (a*) = F(a)*. Theorem 4 then shows that G is an

(£, 0)-group, and the N of Theorem 1 is in this case the E-radical of £[3].

Actually, the associativity of multiplication plays no role here as was pointed

out by Smiley [10] in extending these results to narings.

Example 4. Define £(a) to be the set of all polynomial expressions of the

form n2a2+nsai+ ■ ■ ■ , where the re¡ are integers. It is easy to verify that

aGFia) if and only if axa=a, x a polynomial in a with integral coefficients.

Thus aGF(a) implies that a is regular in the subring of £ generated by a.

Example 5. Let F(a) be the set of all elements of £ of the form ay — y,

where y is a polynomial expression of the form nia+n2a2+ ■ ■ ■ , the re¿ being
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integers. The greatest E-regular ideal in £ is certainly contained in the

Jacobson radical of £, and coincides with it in any ring in which the Jacob-

son radical is a nil ideal. This follows at once from the formula which shows

that a nilpotent element is necessarily E-regular [7, p. 304]. In general,

however, the greatest E-regular ideal in £ is properly contained in the

Jacobson radical.

7. Definition of (£, Çlu fl)-group and related concepts. In order to give a

unified account of various theories of the radical of a ring we need to

strengthen our requirements Pi and P2 on the mapping £. Let G be an arbi-

trary group, additively written, A the group of inner automorphisms of G,

Í2i and Q fixed sets of endomorphisms of G such that AÇ^QiÇZQ. By (a), we

shall means as before the i2-subgroup of G generated by a, and (a)i will de-

note the fii-subgroup of G generated by a. We now, and henceforth, assume

that there exists a mapping E which associates with each element a in G a

unique fii-subgroup E(a) in such a way that for all a, b in G,

P. Fia + b)QF(a) + (b)i.

Under these conditions we shall call G an (£, Qi, Q)-group.

We may observe that since E(a) is now required to be an fli-subgroup,

bGFia) implies that (è)iÇE(a), and hence properties Pi and P2 are certainly

satisfied. Thus an (£, Qu i])-group is an (£, 0)-group, and Theorem 1 is im-

mediately at our disposal. Furthermore, it is easy to show that the definition

of Fia*) used in Theorem 2 makes any 0-homomorph G* of the (£, fii, Q)-

group G into an (E, fii, fi)-group, and so the results of §3 likewise remain

valid for (£, fii, fi)-groups.

An- fii-subgroup I of the (E, fii, fi)-group G is said to be modular if and

only if there exists an element e not in I such that £(e)Ç£ A modular

fii-subgroup / is large if and only if there exists an element e not in I such

that E(e)Ç£ with the additional requirement that e is contained in every

fii-subgroup which properly contains I. By use of Zorn's lemma, any modular

fii-subgroup of G can be extended to a large modular fii-subgroup which does

not contain e.

8. Intersection theory and subdirect sums. If / is any subgroup of G,

let us set £ = {aGG; (a) ÇI7}, that is, I' is the greatest fi-subgroup of G con-

tained in I. This notation will be used consistently henceforth.

We may now prove the following result:

Theorem 6. If Gis an (£, Oi, Q)-group, the set N= {aGG; (a) is F-regular}

is the intersection X of all Q-subgroups M' where M is a large modular Qx-sub-

group of G.

We show first that XQN. If a$N, then &€££(&) for some b in (a). Then

Fib) is modular, and use of Zorn's lemma yields a large modular fii-subgroup

M such that b G M. Since bGia), it follows that a G M' ; so a GX.
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Conversely, NÇ1X. For if aGX, there exists a large modular fii-subgroup

M such that a$M'. Hence Z>GM for some b in (a). Now there exists an ele-

ment e not in M such that Fie)CM and such that any fii-subgroup which

properly contains M must contain e also. Thus eGib, M)\, that is, e — c+m

for some c in (¿>)i and m in M. Suppose that aGN. Then cG(ô)i£(ô)£(<x),

so cGFic). Hence, by property P, e — mGFie — m)Ç.Fie) + im)i<Ç.M, so

eGM, a contradiction. Hence aGN, and the proof is completed.

An (£, fii, fi)-group may be said to be primitive if and only if it contains

a large modular fii-subgroup M such that M' = 0. It follows from the preced-

ing theorem that if G is primitive, then N = 0. We shall next prove the fol-

lowing lemma:

Lemma. If M is a large modular üi-subgroup of G, then the (£, fii, fi)-

group G — M' is primitive.

Denoting natural fi-homomorphic images in G* = G — M' by asterisks, we

first show that M* is a large modular fii-subgroup of G*. Let e be an element

not in M such that E(e)ÇIM, and such that any fix-subgroup of G which

properly contains M also contains e. Then £(e*) = £(e)*ÇAf*. If e*GM*,

then «GM-f-M' = M, so e*GM*. This shows that M* is modular. Now let

M* be any fii-subgroup of G which properly contains M*. Then M* is the

image of an fii-subgroup Mi of G which properly contains M. Hence eGMi,

c*GMi*, and M* is necessarily a large modular fii-subgroup.

To prove that M*' = 0, suppose that a*GM*'. Then (a)* = (a*)ÇM*, so

(a)ÇM+M' = M. Thus aGM', a* = 0 and the proof is finished.
Our final theorem is the following:

Theorem 7. An (£, fii, Q)-group G¿¿0 is Q-isomorphic to a subdirect sum

of primitive (E, fii, Q)-groups if and only if N = 0.

Let G be fi-isomorphic to a subdirect sum of primitive (E, fii, fi)-groups

Gi. This implies that G contains a set of fi-subgroups Et- such that G, is fi-iso-

morphic to G — Ki, and ("(£¿ = 0. Under the natural fi-homomorphism of G

onto Gi with kernel £,, iVmaps into Nid) which is zero since G,- is primitive.

Thus^cn^.= 0.
Conversely, if 7V = 0, Theorem 6 shows that Ç\M' —0, where the M¿ are

the large modular fii-subgroups of G. Thus G is fi-isomorphic to a subdirect

sum of the (E, fix, fi)-groupsG — Ml, each of which is primitive by the lemma.

This completes the proof of the theorem.

We conclude with some examples of the applications of the theory of this

section. First, let G be the additive group of a ring £, let fii be the set of all

right multiplications together with the identity automorphism, and fi the

elements of fii together with all left multiplications. Thus an fii-subgroup of

G is a right ideal in £, and an fi-subgroup is an ideal. Let £(a) be the set

{ax — x;xGR}- In this case iVis the Jacobson radical of £, and G is primitive

if and only if £ is a primitive ring. If £ is taken to be a naring or a cluster,
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and we modify £(a) to be the right ideal generated by the set {ax — x ; xG£},

N becomes the Jacobson radical of the naring or cluster [2].

Next, let G be the additive group of the ring £, fi the set of all right and

left multiplications together with the identity automorphism, and fix= fi. Let

£(a) be an ideal such that under ring homomorphism £(a*) = £(a)*. By

Theorem 4 we know that this implies property Pi which coincides with P in

the present case. The ideal N is now the F-radical of £. A large modular

fii-subgroup is an ideal M=M' which, for some a not in M, contains £(a)

and has the property that any ideal which properly contains M also contains

a. Thus G is primitive if and only if £ is a subdirectly irreducible ring with

zero £-radical(4). If, as a special case, £(a) is chosen to be the (two-sided)

ideal generated by the set {ax —x; xGE}, N is the radical. A large modular

fii-subgroup is a maximal ideal M such that R/M has a unit element, and G

is primitive if and only if £ is a simple ring with unit element. Again, if £

is taken as a naring instead of a ring, it is easy to modify these remarks so as

to obtain the results of Smiley [10] on the F-radical or radical of a naring.

More generally, the theory of the F-radical or radical of a cluster can be

readily obtained in like manner.
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