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1. Introduction. In any study of a class of linear algebras the main goal

is usually that of determining the simple algebras. The author has recently

made a number of such studies for classes of power-associative algebras de-

fined by identities^) or by the existence of a trace function(2), and the results

have been somewhat surprising in that the commutative simple algebras

have all been Jordan algebras.

In the present paper we shall derive the reason for this fact. Moreover we

shall derive a structure theory which includes the structure theory for

Jordan algebras of characteristic p.

We shall begin our study with a consideration of power-associative com-

mutative rings 31 under the customary hypotheses that the characteristic of

31 is prime to 30 and that the equation 2x = a has a solution in 31 for every a

of 3f. We shall show that if 31 is simple and contains a pair of orthogonal

idempotents whose sum is not the unity quantity of 31, then 31 is a Jordan ring.

We shall apply the result just stated to commutative power-associative

algebras 3Í over a field g of characteristic prime to 30. If such an algebra 31

is simple we shall show that 31 has a unity quantity e, and so there exists

a scalar extension $ of the center § of 31 such that e is expressible as a sum

of pairwise orthogonal absolutely primitive idempotents of SI«. We define the

maximal number of such idempotents to be the degree of 31 and use the re-

sult on rings to see that every simple algebra of degree t>2 is a Jordan alge-

bra. Every Jordan algebra of degree t^2 is a classical Jordan algebra, that

is, an algebra of one of the types obtained (3) for algebras of characteristic

zero. We define the radical of a commutative power-associative algebra to be

its maximal nilideal and show finally, that every semisimple algebra has a

unity quantity and is expressible uniquely as a direct sum of simple algebras.

2. Elementary properties. Let 31 be a commutative ring whose character-

istic is prime to 30. Then it is known (4) that 31 is power-associative if and only
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if x2x2 = (x2x)x, an identity which is equivalent to the multilinear identity

4[(xy)(zw) + (xz)(yw) + (xw)(yz)] = x[y(zw) + z(wy) + w(yz)]

(1) + y[x(zw) + z{wx) + w(xz)] + z[x(yw) + y(wx) -f- w(x;y)]

+ w[x(yz) + y(zx) + z(xy)].

If m is any idempotent of 31 we may write 3I = 3L(l)+3L(l/2)-|-3UO)

where 3l„(X) is the subgroup of the additive group of 31 consisting of all

quantities X\(X) in 31 such that x\u=\x\. Moreover, every x of 31 is uniquely

expressible in the form x = Xi+Xi/2+Xo with X\ in 3I„(X). The multiplicative

relations between these modules have been determined(6) and may be ex-

pressed as the following formulas for xy = z:

xxyi = 2i,        xoyo = z0,        Xiyo = 0,        xinym = zi + z0,

xiyi/2 = zi/2 + zo,        xoyi/2 = »1/2 + *i.

The ring 31 is said to be u-stable if aciyi/2 = Zi/2, xoyi/2 = Z1/2, that is,

3L(X)3Ul/2) Ç3ÎM(l/2) for X = 0,1. It is known («) that Jordan rings are «-stable

for every idempotent u. We shall now give an example of a power-associative

ring which is not w-stable. It provides a simple proof of the property that

power-associativity is not equivalent to the Jordan identity as well as an ex-

ample of an unstable power-associative algebra of any characteristic prime

to 30.

Consider the algebra 31 with a basis u, f, g, h over a field % whose char-

acteristic is not 2, 3, or 5, and let

u2 = u,    p = g2 = h2 = uh = fh = gh = 0,     uf = f,    ug = 1/2 g,   fg=h

Then SlM(l) =«g+/r5, ««(1/2) =gv5> 21,(0) = Ag, «,(1)8.(1/2) is not contained
in 3Iu(l/2), and 31 is not stable. We need only prove then that x2x2 = (x2x)x

for every x of 31. Let x = au-{-ßf-\-yg + oh. Then x2 =a2u-{-2aßf+ayg + 2ßyh

and so

a;2*2 = oâu + 4a3/3/ + a3yg + 4a2ßyh.

Also x2x = asu + 2a2ßf+1/2 a2yg+a2ßf+aßyh + l/2a2yg + 2aßyh = a3u + 3a2ßf

+a2yg+3aßyh, (x2x)x = a4u+3asßf+1/2 a37g+a3j3/+a2/37Ä+l/2 a37g+3a2/3y/í

= a4M+4a3/3/+a3yg+4a2/37Ä = A:2 as desired. We have shown that 21 is a

power-associative algebra and is not stable.

3. The basic machinery. The relations in (2) imply that the mapping

ai/2+öo-^(ai/2+ßo)xi = ai/2x1 is an endomorphism of the module 3Iu(l/2)

+ 3l„(0) which we may write as

(5) See Theorem 2 of PAR. The existence of the characteristic root one-half will cause our

formulas to contain a number of fractions such as 1/2, 3/2, and 5/2. The reader should always

read such formulas as 1/2 xyz as {l/2)xyz and not as (2xyz)~l.

(') See Theorem 6 of JA2.
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(3) ai/2*i = ai/nSi/i(xi) + ßi/2^o(*i).

Here ai/2Si/2(xi) is in 2L(l/2) so that Si/2(xi) is an endomorphism of 2Iu(l/2).

Also ßi/25o(xi) is in 3L(0) and so 5o(xi) is a homomorphism of 3I„(l/2) into

3L(0). Note that when 21 is a linear algebra over a field % the mapping

•Si/2(xi) is a linear transformation of 2L(l/2), and So(xi) is a linear mapping of

3l„(l/2) into 2L(0). While we shall state our proofs for rings they will hold,

with only trivial alterations, for algebras.

The first of our tools will be a result of the substitution of x = Xi, y = yi, z

= u, w = Wi/2in (1). We use the properties u(wi/2yi) =M[wi/25i/2(y1)+wi/25o(yi)]

= 1/2 Wi/2Si/2(;yi), Xi[u(yiWi/t)] = 1/2 xx\wV2SV2{yi)] = 1/2 xi(y1Wi/2), and (1) be-

comes

2(x1yi)wi,2 + 4xi(;y1ie>1/2) + 4;yi(x1Wi/2) = 2xi(yiWi/2)

(4) + 2yi(xiWi/2) + u[xi(yiw1/t) + yi(xiWi/2) + (xlyi)wU2]

+ 3(xiyi)w1/2.

The component in 2I„(0) of the term of (4) in which u appears as an external

factor must be zero and so (4) is equivalent to the relations

Si/2(x1y1) = Si/2(xi)SM2(yi) + 5i/2(yi)5i/2(xi),

l/2.i>o(xi;yi) = 5i/2(xi)50(yi) + 5i/2(>'i)5o(xi).

The formulas of (2) also imply that

01/2X0 = 0i/2T'i/2(xo) + 0i/22\(xo),

where T\/2(xo) is an endomorphism of 2Iu(l/2) and !Ti(xo) maps 2lu(l/2) into

2I«(1). We substitute x = x0, y = yo, z = u, w = Wi/2 in (1), and obtain a formula

which is readily seen to be equivalent to

.,. Tu2{x0yü) = Ti/2(xo)T1/i(yo) + Ti/2(yo)TM2(xo),
(6)

l/2T1(x0yo) = Ti/i(xo)Ti(yo) + Ti,2(yo)Ti(xo).

Let us finally obtain some relations between the mappings 5\ and T\.

We substitute x = Xo, y—yi, z = u, and w+wx/2 in (1) to obtain 4(wi/2xo)yi

= x0[M(wi/2yi) +Wi/2yi+l/2wi/23'i]+yi[ii(wi/2Xo) + l/2wi/2x0]+w [(w1/2xo)yi

+ (wi/2yi)xoj. Then 4[i£7i/2ri/2(xo)+wi/2ri(xo)]3'i = 4wJ/ir1/2(xo)5i/2(yi)

+4wi/2r1/2(xo)5o(yi) +4 [wi/2ri(xo) ]yi = 5/2wi/2Si,2(yi)Ti,2(xo)+3wi,2S1/2(yi)ri

■ (xo) + 3/2 [wi/25o(yi) ]xo + 3/2wi/27\/2(xo)Si/2(;y]) + wi/2ri/2(xo)5o(yi) + 5/2 w1/2

[Zi(xo)]yi. Equating components in 3I„(l/2) we obtain 5/2 Wn2Tii2{xti)Sy2{yi)

= 5/2 Wi/25i/2(3'])7,i/2(xo). Our hypothesis that the characteristic of 21 is prime

to five implies that

(7) Sii2{yi)Tm{xv) = Ti/2(xo)Sin(yi).

We    also    equate    components   in   2I„(1)    to    obtain   3/2 [wy2Ti(xo)]yi
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= 3t»i/25i/2(yi) 7\(xo), and equate components in 31,(0) similarly. Use the fact

that the characteristic of 31 is prime to three to obtain the pair of results

which we state as

[wi/2Ti(x0)]yi = 2w1/sSi/i(yi)T1(x0),

(  ) r i
[wi/250(3'i)Jxo = 2a)i/2J'i/2(xo)5o(yi).

The relations (5)-(8) will be used frequently in our proofs.

Our first result will be an application of (5). We consider the mapping

Xi—>2Si/2(xi). Define the operation 2.4 -B=AB+BA for any endomorphisms

A and B on 21,(1/2), and see that 251/2(xi) -2Si/S(yi) =251/2(*iy1) by (5).
Then we have the first part of the following lemma.

Lemma 1. The mapping X\—>25i/2(x]) is a homomorphism of the ring 21,(1)

onto the special Jordan ring consisting of the endomorphisms 5i/2(xi). The kernel

of this homomorphism is an ideal Sßu of 21,(1) which contains the ideal S, of 2Í

of all quantities x 0/31,(1) such that xwy2 = 0for every wJ/2 o/31,(1/2). Moreover

To complete our proof we note that 33, is the set of all quantities Xi of

2Iu(l) such that 5i/2(xi)=0 and that fë, is the set of all Xi of 33, such that

So(xi) =0. Hence 33,3(5«. If ci is in (5, and a is in 21, then a = ai+ai/2+ao,

aci = aiCi. But by (5) we have 5i/2(aiCi) =0, So(aid) =0, and so 6U is an ideal

of 31. Evidently if bi and c\ are in 33, then 50(&iCi) =0, 33^Ç(S«.
The relations of (6) are the result of interchanging the roles of X = 1 of

(5) with X = 0. Thus (6) provides a lemma which is the counterpart of Lemma

1. Since we shall not use this result we shall not state it.

4. Adjunction of a unity quantity. Our study is concerned with nonasso-

ciative rings 31 with the property that 1/2 a is a unique element of 31 for every

a of 31. Then the characteristic of 31 is prime to two. We now imbed 21 in a

unique ring 9î =21+ [e] with a unity quantity e. If 31 has finite characteristic m,

the subring [e] of 9Î is isomorphic to the ring of residue classes of the integers

modulo m. Otherwise [e] is isomorphic to the ring of all rational numbers

whose denominator is a power of two. In every case every element of 9î is

uniquely expressible in the form r = a-\-ae for a in 21 and ae in [e]. The ring

9Î has the same characteristic(7) as 31.

The identity (1) is linear in x, y, z, w and is satisfied identically whenever

any one of x, y, z, w is a unity quantity. It follows that 9Î is power-associative

if and only if 31 is power-associative. Evidently 8Î is commutative if and only

if 31 is commutative. We shall now prove the following result.

Lemma 2. Let f be an idempotent of 31 so that g = e—f is an idempotent of the

C) For a discussion of the characteristic of a nonassociative ring see the reference of foot-

note (4). The construction of 5R is the well known construction as given, for example, in the

author's Modern higher algebra, Theorem 2.5.



1950] POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS 507

attached ring 3t = 2l+[e] and fg = 0. Then 3^(1) =9t„(0) =31/(1), 9i/(l/2)
= 31/(1/2), 9t/(0)=9tfl(l) =31/(0)+ [g]. If 21 is also simple but has no unity
quantity, every nonzero ideal of 9Î contains 21.

For if r is in 9î/(X), then r/=(<z+ae)/=a/+a/=Xr=Xa+aXe. It follows

that aXe = 0 and so ae = 0 if X= 1, 1/2. But then r is in 31, 3Î/(X) = 2l/(X) for

X = l, 1/2. When X = 0 then a=fli+ai/2+ao, af= — af = ai+l/2ai/2, ai/2 = 0,

ai= — af, r — ao+a(e—f), 9î/(0) =31/(0)+ [g]. Since g = e—f we have gai = eax

—/ai = 0, gai,2 = eai,2—fa1/2 = l/2 <z1/2, g(a0+ag) = (e— f)a0+ag=a0+ag and

the first part of our lemma has been proved.

Let us now suppose that 35 is any nonzero ideal of 3v and that 31 is simple,/

is an idempotent of 31 but 31 contains no unity quantity. The intersection 35o

of 31 and £> is an ideal of 31. Since 21 is an ideal of 3Î if So = 0 then 31© = 0. If

d = di-\-di/2-\-do is a nonzero element of 3), the quantity/¿ = ¿1+1/2 ¿i/2 = 0,

¿i = ¿i/2 = 0, d = do = ao — ag where an is in 31/(0). Evidently we may multiply

by a power of two if necessary and so assume that a is an integer. If the set

«31 (of all sums aa for a in 31) is the zero set, then every aa = 0, 21 has char-

acteristic a divisor m of a, ae = 0, ag = 0, d = ¿0=00 = 0 which is contrary to

hypothesis. Evidently a2l is an ideal of 21 and so a3l = 31. Let © be the set of all

quantities 5 of 31 such that as = 0. By our proof ©5^31. But if as = 0, then

a(sa) = (as)a = 0 and so © is an ideal of 31, © = 0, aa = 0 if and only if a = 0.

Since a2l = 3l there exists a quantity c in 21 such that ao=ac. Then fao=a(jc)

= 0, (/c)=0, and c is in 21/(0). We form bod = bo{ao — ag) =a(b0c — bo) =0, and

we also form oi/2á = a(&i/2c—1/2 &!/2) =0 to obtain boC = bo, ôi/2c=l/2 bi/2. Since

c is in 31/(0) we have &ic = 0. But then b(f+c) =b for every b of 31 contrary to

our hypothesis that 31 has no unity quantity. This completes our proof.

5. Decomposition relative to a set of idempotents. The decomposition of

a ring relative to a set of pairwise orthogonal idempotents depends upon a

result whose proof is rather trivial in the case of Jordan rings.

Lemma 3. Let u and v be orthogonal idempotents of a power-associative com-

mutative ring 31. Then (au)v — (av)u for every a of tí.

The property of our lemma is the statement RuRv = RvRu for the cor-

responding right multiplications. The identity (1) is equivalent to

Rx(,yz)  + Ry(zx)  + Rz(xv)   =   4:(RxRVz + RyRzx + RzRxy)

—   (RyzRx + RzxRy + RxyRz)   —    [Rx\RyRz +  RzRy)

+ Ry(RxRz + RzRx)  + Rz(RxRy + RyRx) \.

Put x = y = u and z = v in this relation and use u2 = u, vu = 0 to obtain

2 2

(9) 4RVRU — RURV = 2{RURV + RURVRU + RVRU).

If we put x = y = x = win the relation above, we obtain
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(10) 2R.I = 3RÍ - Ru.

We now left multiply (9) by i?, and also right multiply by Ru to obtain

4RvRl-RuRvRu = 2(RvRl+RuRvRl+R2uRvRu). By subtraction we obtain

4RvRl+R2uRv- 5RURVRU = 2{RVR% -R\RV) = 3(RVR2U - R2URV) - (RvRu-RuRv).

But then

2 2

(11) RvRu — 5RuRvRu + 4i?,i?¡, = RuRv — RvRu-

Equation (11) implies that 2RvRl-10RuRvRu = 2RuRv-2RvRu-8R2uRv,
and (9) implies that 2RvRl+2RuRvRu=-RURV+4:RVRU-2R2URV. Subtract-

ing and deleting the factor 3 we obtain

2

(12) 4RURVRU = 2RVRU — RuRv + 2RURV.

Substitute this result in (9) to obtain

2 2

(13) 4RVRU = 6RVRU — RuRv — 6RURV.

Our next manipulation begins with the right multiplication of (13)

by Ru to obtain 6RvRl-RuRvRu-4:RvRl = 6RvRl-RuRvRu-2Rv(3Rl-Ru)
= 6R2URVRU, that is,

2

(14) 6RURVRU = 2RVRU — RURVRU.

We also left multiply (12) by 3RU to obtain 12R2uRvRu = 6RuRvRu-3RlRv

+ 3(3Rl-Ru)R* = 6(RlRv+RuRvR*)-3RuRv. By (14) we have 6R\RV
+ 6RuRvRu = 3RuRv + 4:RvRu-2RuRvRu, that is,

2

(15) 82?,i?„i?, = iRvRu + 3RURV — 6RURV.

Combine this result with (12) to obtain 5RURV = 10RlRv and so

2 2

(16) RuRv — 2RURV,        2RURVRU = RVRU,        2RVRU = 3RVRU — 2RURV.

We have not used the fact that v is idempotent and we shall do so now. By

symmetry we have

2 2

(17) RvRu = 2RVRU,       2RvRuRv = RuRv,       2RURV = 3RuRv — 2RVRU.

We use (16) to write ±RvR%Rv = 2RvRuRv = RuRv by (17). But also 4RvRlRv

= 6RvRuRv — 4i?,i?„ = 3RuRv — 2 {3RuRv — 2RVRU) = 4i?„i?, — 3RuRv Then 4RVRU

— 3RuRv = RuRv, RuRv = RvRu as desired.

As a consequence of Lemma 3 we may now prove the following important

decomposition theorem.

Lemma 4. Let u and v be orthogonal idempotents. Then the intersection of

31,(1/2) and 31,(1/2) contains (au)v = (av)u for every a of %.



1950] POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS 509

For we write a = 0,(1) +0,(1/2) +a,(0) with a,(X) in 3l,(X). Then au = a,(l)

+ 1/2 0,(1/2) and, since v is in 0,(0), (au)v = l/2 vau{\/2), [(au)v]u

= 1/2m[î;0,(1/2)] = 1/2!;[m0u(1/2)] = 1/4to„(1/2). Thus (au)v is in 21,(1/2)
and is also in 3I„(l/2) by symmetry.

The following result implies that if u, v, and w are pairwise orthogonal the

intersection of 31,(1/2), 2l„(l/2), and 3I„(l/2) is zero.

Lemma 5. Let u, v, w be pairwise orthogonal idempotents o/2I. Then [(au)v]w

= 0 for every a of 21.

For e = u-\-v is orthogonal to w, and if b — {au)v then ub=1/2b, vb = í/2b

by Lemma 4, eb = b. But w is in 3Ie(0), b is now in 3Ie(l) and so bw = 0 as de-

sired.

We are now ready to obtain the decomposition of a power-associative

ring relative to a set of pairwise orthogonal idempotents. We let 9Î be a

commutative power-associative ring with a unity quantity e and suppose

that e = ei+ • • • -\-et for pairwise orthogonal idempotents e¡ of 3?. Every

quantity a of 9î has the form

a = (2ae)e — ae = a(2Re — Re) = ^ aa
i Hi

where

(18) a-u = (2ae¡)ei — aei,        0,-,- = a,< = 4(0e¿)e¡.

This expression is unique(8) and we have written 9î as the sum of its modules

5Ry = dtSi where $¿,- = 9^(1) and 9îiy is the intersection of 9íe¡(l/2) and 9tej(l/2)

for all distinct i and j. If g = ej+e/, then 9í8(l) =E = 9íi¿+9(,7+9íi/ is a sub-

ring of m such that 6ei(l) =9t,i = eej.(0), (£.«(1/2) =(£e,(l/2) =8ty, €,,(0) -.««.
But then (2) implies that

(19) SR^ii C din + 8fc (* F* j).

If ^5^«', j and q^i, j, then ^Ç^fl), SîpgSSî^O) where g = ei+ej or e¿ ac-

cording as ij^j or »=j. It follows that

(20) *,#* = 0 (p^ ij-q^ ij).

The properties of (19) and (20) are quite trivial but this is not true of the

important property

(21) Vlijdïjk S 8ïa (i s* i, fc;¿ * *).

To prove this result we let w = d +e,-\-ek and see that © = 3i„(l) «=9i</+8Í/¿

+ 8ím + 9ííj+SR«+81a. Put g = ei + es and see that 9tyÇ©,(l), 9tyi:Ç©8(l/2),

and so (2) implies that 9îyUîi*ç:©(,(l/2)+@1,(0) =9íi* + 3tit + 5Rt*. Put h=e¡
+ek and see that 9l<yC©»(l/2), SRyic©*(l). By (2) we have 8î<f9ly*QS*(l/2)

(s) Cf. §14 of JA2.
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+@»(0)=9î,7+9îi* + 9î«- Since 9c,* is the intersection of ©,(1/2) +©„(0)

and ©Ä(l/2)+©fc(0) we have (21).

6. The ring theorem. Let 9Î be a power-associative commutative ring

whose characteristic is prime to 30. We assume first that 9Î has a unity quan-

tity e = ei+e2+e3 for pairwise orthogonal idempotents e,-. We shall also as-

sume that either 9î = 3l is simple or that 9î is the result of adjoining the

unity quantity e to a simple ring 31 which contains the idempotents ex and e2

but does not have a unity quantity. By Lemma 2 every nonzero ideal Ê of 9t

contains 31.

Let g be any one of the idempotents/=ei + e2, A = ei+e3 ,and k = ei-\-es and

define the ideals 33, and (£, of Lemma 1. Then (5, is an ideal of 9Î contained

in 9c,(l), and if ©„^O the subring 9c,(l) contains 31. However et and e2 are

both contained in 9i,(l) except when g=f, and in this case we can conclude

that 9t,(l) =31/(1) contains 21. This implies that f is the unity quantity of 21,

which is contrary to our hypothesis that either e is the unity quantity of 21 or

21 has no unity quantity. It follows that <5, = 0.

By §5 we may write 9t = 9cii+9t22+9t33+9ti2 + 9ti3 + 9t23. The ideal 33, of

9t,(l) is defined by the property 33,9t',(l/2)C9c,(0). Now (21) implies that

9t,79c,(l/2) =9t,(l/2). If £>„ is the intersection of 9ciy and 33„ then 2),9î,(l/2)

is contained in both9î,(l/2) and 9c, (0) and is zero, 3)iÇËB,©(, = 0. Since 33g is

an ideal of 9c,(l), the components of any & = &,■,■+&,•,•+&,•/ are in 33, and so the

component ô,/ = 0. Thus 33, = 33,i©33,y where 33,i is the intersection of 33,

and 9?«, 33,y is the intersection of 33, and SRyy.

Define the submodule 33 =33/+33a+ 33*. By Lemma 1 the subring 9Îa(1)

= 9cn+9ci3+9t33 has the property that 9c*(l) — 33* is a Jordan ring. Since a

Jordan ring is stable, it follows that 9cii9ti3Ç9ci3+33,,. But 33/i9ti3Ç9t/(0)
= 9Î33 and so 33/i9ci3Ç33M. Evidently 33/i9c23 = 0. By symmetry 33/29c23Ç33*3

and so 33/9c/(l/2) OB. Since 33/9t/(0) = 0, and 33/9c/(l) Ç33/ since 33/ is an ideal
of 33/(1), we know that 33/9ÎÇI33. By symmetry we see that 33a9Î £33, 53*9ÏÇ33,
339tCI33. Since 33Ç9î11©9t22©9c33, our hypothesis about the ideals of 9Í im-

plies that 33 cannot be a nonzero ideal of 9c. Hence 33 = 0. We have proved

the following result.

Lemma 6. The subrings 9cn+9ci2+9c22, 9cii+9ti3+9t23, 9c22+9c23+9Î33 are

Jordan rings, and so 9î,-i9îi/Ç9îi7 for ij^j and i, j= 1, 2, 3.

Let us now write ? = 9c,¿+9c¿y+9íyy, 9c = 9t« + 9íyjb, 9Jc = 9cM. Then g

= 9c,(l), 9Jc - 9Î,(0), 9Î = 9U1/2) where g is one of the idempotents/, h, k. But

«e(l)»i(l/2) = SR4i?R«+SR,-,-SRJ-t+9l«({R«+8i,-i)CtR«+8ii* = 9l, $«,(0)81,(1/2)
= 9î**(9î« + 9îy;t)Ç9îi* + ûîy* by Lemma 6 and we have proved that

(22) m C 9c,       WyiQ 9Î.

We may also use (5) and (6) for the idempotent g where (22) implies that

■So(xi) = Ti(xo) =0. This yields
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(23) Wi/2(xxyx) = (wi/2X\)y\ + (w1/iyx)x\ (X = 0, 1),

where we have written z\ for the general element of 9t,(X). By (7) we have

(24) (tt>ift«k)yi-\ = (w1/2yi-\)xx (X = 0, 1).

We shall also prove the following result which will be seen later to imply that

9c is a Jordan ring.

Lemma 7. Let x\ be in 9c,(X) for X = 0, 1. Then

(25) (wx,2yi/2)x\ = [(x\y1/2)wi/2 + (xx.Wi/2)yi/2]x

and

(26) [wi/2(y1/2xx)]i-\ = [yi/2(wi/2x\)]i-\.

For proof we apply the Jordan identity

(27) (wx)(yz) + (wy)(xz) + (wz)(xy) =  [w(y2)]x + [w(xz)]y + [w(xy)]z

in the ring 8. Put w = wa, x = xti, y=ya, z = e,- in (27) to obtain 1/2 (w<y«i<)y<y

+ (w<yy«)*«+l/2 WiAxaya) = 1/2 xuiy^wa) +y¿y(w<yx<i) +e¿[w¿y(x,-<y,-y) ]. Then

x«(w¿yy,y)+w(xy) =y¿y(x¿t-w¿y)+2e¿[te'iy(x¿iy¿y)] and so we have

(28) Xii(wijyii) = eiiyaixiiWij) + ^¡(y.-yx,-,)],

(29) ei[{xuy{j)Wii\ = «yl(*««'<y)y<i].

These results are special cases of (25) and (26) and we pass on to the general

case.

Let us assume first that Xi is in 9c¿í. If yi/2 and wy2 are in 9cy*, all products

in (25) and (26) vanish and so the relation is valid. If yi/2 and wi/2 are in 9t<*

we use (28) and (29) for the Jordan algebra 9t,i+9cii+9c** and obtain (25) and

(26) immediately. There remains the case where yi/2 = y,* and wi/2 = wjk. We

apply (23) for the idempotent e,+c* and have Wjk(xuyik) = (wy*x«)3\-*

■Jr{wjkyik)xii={wjkyik)xu since xitwy* = 0. But this yields (25) and (26).

Assume next that Xi =x,y. If y = yik and w = wik then x<y(y,•*»,*) = (xjyyy*)w,*

+ (xijWik)yik by (23). This yields (25) immediately. The components in 9t**

= 9t,(0) of all terms are zero and so (26) holds. There remains the case

y=yik, w = w¡k. We substitute these values with z = e¡ in (1) to obtain

2xij(yikwjk) + 2wjk(xijyik) = Xij{yikWjk) + wjk(xijyik) +yik(xijwik) + ey[x¿y(y<iWy*)

+y<*(x,-JWy*)+wy*(x,-y;yii:)]. However e¡ [y<*(*fyWy*) ] = 0 and so we have x,y(y,*wy*)

+Wjk(xijyik)=yik(xijwjk)+ej[xi,iyikwjk)+wjk(xi1yik)]. Since Xij{yikw;k) is in

9fc<i+9tyy, wjk{xi}yik) is in 9îyy+9c*ifc, and yik(x{jWjk) is in 9c«+9t**, we may

equate components and find first that e*[(x¿yy,*)wy*] =ek\yik(xijW¡k)\ which is

(26). We also see that e< [x,y(y<*Wyt) ] = e< [y.^x.-yWy*) ]. Interchange i and j and

y  and  w  to  obtain  ej[xij(yikwjk)]=ej[wjk(xijyik)],   add  to get  x,y(yi*Wy*)
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= ei[yik(xijWjk)]+ej[wjk(xijyik)], and (25) is proved. This completes our proof

in the case X = l.

In the case X = 0 we have x = x**. As above (23) implies that Wjk(xkkyik)

= {WjkXkk)yik + {wjkyik)xkk = (wjkxkk)yik. This yields (26). Equation (25) is

automatically satisfied since {wjkyik)xkk = 0, ek [{xkkyik)wjk] = ek [{xkkwjk)yik\ = 0.

The remaining case is that where y = y<*, w = w>¿* and (25) and (26) follow

from (28) and (29).

The results just obtained are sufficient to prove our theorem on power-

associative commutative rings.

Theorem 1. Let tí be a simple commutative power-associative ring whose

characteristic is prime to 30, and let SI contain a pair of orthogonal idempotents u

and v such that u-\-vis not the unity quantity of 31. Then 21 is a Jordan ring.

For proof we note that Lemma 2 implies that 31 can be imbedded in a ring

9t with a unity quantity e = ei-\-e2+e3 for pairwise orthogonal idempotents

ei = u, e2=v, e3 and that 9t = 9cn+9t22 + 9t33 + 9ci2+9ci3 + 9c23 where Lemma 6

holds. Moreover we have (22), (23), (24), (25), (26).

The Jordan identity (27) is linear in x, y, z, and w and so it suffices to

prove this identity for the variables in component submodules 9t,y. If all four

of the variables are in ? = 9c,-, + 9c<y+9tyy, then the Jordan identity holds by

Lemma 6. If three factors are in 8 and one in 9c = 9c**, then all products in

(27) are zero and (27) holds trivially. Hence let three factors be in 2 and one

in ÜJc = 9t,-*+9íy*. The Jordan identity (27) is an identity Jiw; x, y, z) = 0

which is symmetric in x, y, z but not in w. The power-associative identity

(1) is the identity

J(w; x, y, z) + J(x; y, z, w) + J(y; z, w, x) + J(z; w, x, y) = 0,

and if J(x; y, z, w) =/(y ; z, w, x)=J(z; w, x, y) =0 then also J(w; x, y, z) =0.

Hence we need only consider the case of (27) in which w = w\, x=Xi/2, y=y\,

z = z\. We then use (23) to write

B = (x1/2yx)(zxwx) + (xMiZ\)(y\Wx) + (xi/2wx)(yx3x)

= (xi/2w\)(yxz\) + [(xi/2;yx)wx]zx + [(xi/2zx)wx]yx

+ [(xi/2yx)zx + (xi/2zx)yx]wx.

But [(xV2yx)zx + (xi/2zx)yx]wx = [xi/2(yxZx) ]wx = xi/2 [wx(yxzx) ] - (xi/2wx) (yxZx)

and so if = [(xi/2yx)wx]zx+ [(xi/2zx)wx]jx+ [wx(zxyx) ]xi/2 as desired.

We next assume that only two factors are in £. If one of the remaining

factors is in ÜÜÍ and one in 9Î we may write w = Wi-\ or w = w\ or w = Wi/2. In

the first case we take w = Wi_x, x = xi/2, y=yx, z — z\ and have wy = wz = 0,

H = (wi_xXi/2) (yxZx), K = [wi_x(xi/2yx) ]zx + [wi-x(xi/2Zx) ]yx = Wi_x [(xi/2yx)zx

+ (xi/2Zx)yx]=Wi_x[xi/2(yxZx)] = (xi/2wi_x)(yxZx) by (23) and (24) so that we

have the Jordan identity H=K. Next write w = w\, x = xi/2, y=y\, z = zi_x
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and haveif=(wxyx)(xi/2zi-x),^= [wx(xi/2zi_x)]yx+[wx(xi/2jx)]zi_x and H=K

by (23) and (24). Thus J(w\; xx, yi/2, Zi_x)=/(xx; wx, yi/2, Zi_x) = 7(zi-x;

w\, xx, yi/2) =0 from which J(yi/2; xx, w\, zi_x) =0, and the identity is proved.

There remains the more difficult case where two of w, x, y, z are in 8

and two are in 50Î. We first write w = Wi/2, x = xx, y=y\, z = Zi/2 and

have ii= (wi/2xx) (zi/2yx) + (wi/2Jx) (xxZi/2) + (W1/2Z1/2) (xxyx), K = [wi/2(xxyx) ]zi/2

+yx[wi/2(xxZi/2)]+[wi/2(yx)zi/2]. We compute

(30) xx [wi/2(yxZi/2) ] = [(xxwi/2) (yxZi/2) ]x + {wi/2 [xx(yxZi/2) ]} x,

and

(31) yx[wi/2(xx2i/2)] = [(yxwi/2)(xxzi/2)jx + {wi/2[yx(xxzi/2)]}x

by the use of (25). Also (25) implies that

(xxyx)(wi/2zi/2) = {[(xxyx)wi/2]zi/2}x + {[(xxyx)zi/2]wi/2}x.

It follows that

Kx = xx[wi/2(yxZi/2)] + yx[wi/2(xxZi/2)J

+ { [(xxyx)wi/2]zi/2}x = [(xxwi/2)(yxzi/2)]x

+ [(yxwi/2)(xxzi/2)]x + {wi/2[(xxyx)zi/2]}x

+ (xxyx)(wi/2Zi/2) — {wi/2[(xxyx)zi/2]}x = ffx.

Also Ki-\= { [(xxyx)wi/2]zi/2}i_x and iîi-x = [(xxWi/2)(yxZi/2)]i-x+[(xxZi/2)

•(3'x«'i/2)]i_x= {zi/2[(wi/2x\)yx+(wi,2yx)xx]}i-\by (26). Hence (23) implies that

K~i-\ = i2i_x, H = K.
We next write w — W\, x = Xi/2, y = Jx, z = Zi/2. Then we know

that H= (wxXi/2) (yxZi/2) + (wxyx) (xi/2zi/2) + (wxZi/2) (x1/2yx) = xi/2 [zi/2(wxyx) ] +yx

• [zi/2(wxXi/2)]+wx[zi/2(xi/2yx)] by the result above. Since K = Xi/2[w\

■(y\Zi/2)]+y\[w\(xi/2zi/2)]+zi/2[w\(xi/2y\)], the Jordan identity is true if and

only if

xi/2[u!\(y\Zi/2) — zi/2(wxyx)] + yx[wx(xi/2zi/2) — zi/2(wxXi/2)]

= Wx[zi/2(xi/2yx)] — Zi/2[wx(xi/2yx)].

However Zi/2(wxyx) = (zi/2wx)yx+wx(yxZi/2) by (23), and w>x(xi/2zi/2)

= [(wxXi/2)zi/2 + (wxZi/2)xi/2] by (25), so that yx[wx(xi/2Zi/2)] =yx[(wxXi/2)zi/2]

+yx[(wxZi/2)xi/2]. It follows that (32) is equivalent to

(33) yx[(wxZi/2)xi/2] + zi/2[wx(xi/2yx)] = wx[zi/2(xi/2yx)] + xi/2[(zi/2w>x):yx].

We now compute

(34) yx[(wxZi/2)xi/2] = [(yxxi/2)(wxzi/2)]x + { Xi/2[;yx(wxZi/2)]}x,

(35) {zi/2[wx(x1/2yx)]}i-x = {(zi/2wx)(xi/2yx) }i-x,
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(36) {xi/2[yx(wxzi/2)]}i-x = [(x1/2yx)(zi/2wx)]i-x,

(37) wx[zi/2(yxXi/2)] = [(îeizi/2)(yxxi/2)]x + {[wx(yxXi/2)]zi/2}x.

If we label the terms in (33) as a, b, c, d and so need a-\-b = c-\-d, then (34)

states that a = k\+d\, (35) states that ¿i_x = &i-x, (36) states that &i_\

= ¿i_x and hence that oi_x = ¿i_x, (37) states that c = k\-\-b\. Then a+b

= k\+d\+bi-\+b\, c-\-d = k\+b\+d\+bi-\ and so (33) holds. This proves
the Jordan identity when two factors are in 8 and two in 9JÎ.

The only remaining case is that where at most one factor is in £. Then at

least three factors are in 9Jc + 9c = 9t,* + 9îy* + 9c** and so at least two factors

are in S' = 9t,¿+9ci* + 9c** or in 8" = 9tyy+9ty*+9t**. This completes our proof.

The theorem just proved holds for algebras (not necessarily finite-dimen-

sional) as well as for rings. The proof goes through with practically no change.

However it holds as corollary of the ring result since an algebra without

proper algebra ideals is easily seen to have no ring ideals. Indeed let 21 be a

simple algebra not a zero algebra of order one over $. Then 31 = SI2. If 9JÎ is

any nonzero ring ideal of 31, the set SDig of all finite sums ¿^X<z,- with X, in

g and Zi in 9JÎ is an algebra ideal, SJcg^O, 9Jcg = 3I, every x of 31 has the form

x= XX;z<. But then xy= ZX-iT^y), z¿(X¿y) is in 9Jc, 3I = 3I2Ç9Jc, 9Jc = 3I, 31 is a
simple ring.

7. A theorem on special Jordan algebras. An algebra 31 over a field

% of characteristic not two is called a special Jordan algebra if 31 has a faith-

ful representation x^>Tx as a vector space 3Io of linear transformations Tx

on a vector space such that Txy=l/2 {TxTy-\-TyTx). We shall prove the fol-

lowing result for algebras over a field 5 of characteristic not two.

Theorem 2. Let ti.be a special Jordan algebra with a unity quantity e which

is an absolutely primitive idempotent of 21. Then there exists a scalar extension

fio/S such that 31« = e$ + 9c where 9Î is the radical of 21«.

By a well known argument, if 31« = e$ + 9c where £ is the algebraic closure

of g. then there exists a subfield ? of finite degree over g such that 2Ig = eS + 9îo.

It is therefore sufficient to consider the case where % is algebraically closed

and so every quantity x of 21 has the form x = ae-\-y for a in g and y nil-

potent. Since x is a linear transformation, x is singular if and only if x is

nilpotent.

We may identify 21 with its representation by linear transformations and

shall use x-y for the product 1/2 (xy+yx) of 31 where xy is the associative

product. It is also known(9) that the representation may always be selected so

that e is the identity transformation.

(9) For if ex-\-xe — 2x where e is an idempotent linear transformation, then ex+exe = 2ex,

xe+exe = 2xe and so ex— xe = 2(ex—xe), ex=xe, x is in the space of linear transformations for

which e is the unity quantity. These linear transformations are then transformations on a sub-

space for which e is the identity transformation.



1950] POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS 515

If a is any quantity of 31, the right multiplications Ra, Raa generate an

associative algebra 3Ia which is known(10) to be nilpotent when a is nilpotent.

If 33 is any nilpotent subalgebra of 31, the right multiplications Rb defined for b

in 33 generate(10) an associative algebra 33* of linear transformations on 31,

and 33* is nilpotent. Since 33 is a nilpotent Jordan algebra of linear trans-

formations, the enveloping associative algebra 33o is nilpotent(n).

Let 33 be a maximal nilpotent subalgebra of 31, and let S = 33+eS- If

S = 31 there is nothing to prove. Hence we assume that (5^31 and that there

exists an x in 21 and not in S. We now form x33** = 0 for k sufficiently large.

But then there exists an x not in Ë such that xb-\-bx is in S for every b of 33.

Since x = ae-\-y where y is not in Ë and is nilpotent, we know that yb-\-by = xb

+ bx — 2ab is in Ê. Hence we may assume that x is nilpotent. We now prove

Lemma 8. The quantities bxb, xb2-\-b2x, x2b2-\-b2x2, xb2x, bx2b, bxc+cxb,

xbc-\-cbx, x(bc-\-cb)x are in 33 for every b and c of 33, and cxvx-\-xbxc is in S.

For xb+bx=ße+b' with ß in ft and b' in 33. Then b(xb + bx) + (xb + bx)b
= b2x+xb2 + 2bxb = 2ßb+bb'+b'b is in 33. By hypothesis b2x+xb2=ß2e+b2'

for ß2 in g and b2 in 33, 2bxb = -ß2e+b" with b" in 33. But ß2e+b" is singular

only when ß2 = 0. Hence bxb and b2x-\-xb2 are in 33. Now (¿>+c)x(£>+c)

= bxc-\-cxb-\-bxb-\-cxc is in 33 and so bxc+cxb is in 33.

We now see that (bxb)x-\-x(bxb) =ye-\-bi for y in ft and &3 in 33. Form

(ße+b')2=ß2e+2ßb'+b'2 = (xb+bx)2 = x(bxb) + (bxb)x+xb2x+bx2b. Since bxb

is in 33 the quantity x(bxb)-\-(bxb)x is in S. It follows that ôx2ô+xô2x = Se + 64

for ô in ft and ö4 in 33. We also form x(xô+ôx) + (xè+ôx)x = x2è+ôx2 + 2xôx

= 2ßx+(xb'+b'x)=2ßx+5e+b6. Then 2bx2b+b2x2+x2b2+2(xbxb + bxbx)

= 2ß(ße+b') + 20b+bb5+bbb. It follows that b2x2+x2b2 + 2bx2b = ee+bs

for e in g and b6 in 33. However xí>2+&2x = ¿>2 is in 33, x262+2>2x2+2x¿>2x

= xô'+ô'x=Xe+&7, bx2b — xb2x is in E. Since bx2b-\-xb2x is in E so are bx2b

and xô2x. But both quantities are singular and so must be in 33.

The quantity (xb)2+(bx)2=ß2e+2ßb'+b'2-xb2x-bx2b and so b2x2

+x2b2 = 2ß2e+2ßb' + 20b+bh+b5b-2bx2b-2[(xb)2+(bx)2] is in 33. The

quantity x(b-\-c)2x — xb2x-\-xc2x-\-x(bc-\-cb)x is in 33 and so x(bc-\-cb)x is in 33.

We now form cbx+xbc+c(ße+b'-xb) + (ße+b'-bx)c = 2ßc+cb' + b'c-(cxb

+bxc) which is in 33. Now cxbx-\-xbxc=(ye + c' — xc)bx-\-xb(ye-\-c'— ex)

= y(bx-\-xb)-\-c'bx-srxbc' — x(cb-\-bc)x which is in Ë by the results already

proved.

The quantity 2xèx = x(x& + 6x) + (xo + èx)x—(x2è+&x2) is in the algebra

31. If xbx is in S for every b of 33, then xbx is singular and is in 33. But then

(xbx)b + b(xbx) is in 33, (ße + b')2 + (xbx)b+b(xbx)+bx2b+xb2x is in 33 and is

nilpotent, b' is nilpotent and so /3 = 0. We have proved that in this case

xb+bx is in 33 for every b of 33.

y (10) See Theorem 1 of JA2.

(") See Theorem 8 of JAI.
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Assume now that there exists a quantity ¿i in 33 such that yi = xd\x is not

in 33. Evidently yi is nilpotent. Then y2 = y\ — x(d\x2di)x = xd2x where d2 is in

33. If y2 is not in 33 we continue the process and obtain a quantity y3 = y1 = xa3x

where d% = ¿2x2¿2 is in 33. But the nilpotency of yi implies that this process must

yield a quantity y such that y2 is in 33 while y — xdx is not in S and d is in 33.

Evidently yb+by = xdxb+bxdx is in 6 by Lemma 14. We now let yb + by—ße

+ b' and compute y(ße + b') + (ße+b')y = 2ßy + (yb' + b'y) = y2b+by2 + 2yby.

If yb' + b'y=ß'e+b", then ß'e+b"-(y2b + by2) =2(yby-ßy) is singular and

b"-(y2b + by2) is in 33. Then /3' = 0.

Assume that 33i is the set of all quantities bi of 33 such that ybi + biy is in

33. By Lemma 8 we see that 33i2332. The result above shows that

yb + by = ße + £>i

where &i is in 33i for every b of 33. Also yy2+y2y = 2y3 is nilpotent and so y2

is in 33i. It follows that 3) =yft + QHs an algebra and that 33! is an ideal of SD.

Let yb + by =ße-\-b, where ßy^O, for some b. We may take j3 = l without loss

of generality. The homomorphism w—>Wo of 35 onto 3) —33 maps e onto the

unity quantity eo of 3) and y onto yo, b onto bo such that yobo + boyo = eo.

Also yo = (y2)o = ^o= (o2)o = 0. But then the fact that y is not in (5 implies that

mo = 1/2 (yo+bo+e0)^eo, m2 = 1/2 (e0 + 2y0+2èo+ôoyo+yoôo) =m0. The class

Mo must then contain an idempotent u?¿e contrary to the hypothesis that e

is primitive. It follows that yb + by is in 33 for every b of 33, 33i = 33, @ = yft + 33

is a subalgebra of 31 containing 33 as an ideal @ — 33= y ft, (£ — 33 is a nilalgebra

contrary to our hypothesis that 33 is maximal. We have proved that 31 always

contains a nilpotent quantity x not in 33 such that xb+bx and xbx are in 33

for every b of 33.

If xb + bx = b' then xb'+b'x = b" = x2b+bc2 + 2xbx and so x2¿> + ¿>x2 is in 33.

Assume now that xkb+bxk = bk is in 33. Then xh+1b+bxk+1=x(bk — bxk)

+ (bk — xkb)x = xbk+bkx— [(xbx)bk~1+bk~1(xbx)] which is in 33 since x¿>x is in

33. It follows that (g = ft[x]+33 is an algebra and that @-33 = ft[x] is a nil-

algebra, (5^33, S is nilpotent. This contradicts our hypothesis that 33 is

maximal and implies that 21 = eft+ 33 as desired..

8. Principal idempotents. Consider an idempotent e of 31 and write

3I = 3le(l) + 3Ie(l/2)+3le(0). If x is in 21 we use (1) with w = e, x = y = z to ob-

tain 4(ex)x2 = ex3+(ex2)x+2[(ex)x]x. When x is in 2le(l/2) this relation be-

comes x3 = ex3+(ex2)x. But if x2 = Wi+Wo, then x3 = x(wo+Wi)=x[Si/2(wi)

+ T1/2(w0) ] +xSo(wi) +xTi(wo) = ex3+wix= 1/2 x [S1/2(wi) + TV2(w0) ] +xTi(w0)

+xSi/2(wi)+xSo(wi). We have proved the relation

2
(38) «1/jSiMwO = Xi/2T1/2(wo),        wi + wo = xi/2.

By (5) we see that Si,2(w\) =2*-1[Si/2(w1)]i and similarly TV2(w%) =2k~l

[rv»(wo)]*.Butif*[5Vi(wi)]* = x[7'v,(t»o)]*,then*[5Vi(«ii)]*+1 = *[7,i/»(wo)]*

Si/2(w1)=xSi/2(wv[Ti,2(wo)]h by (7). Hence x[Si/2(wi)]* = x[:Ti/2(wo)P for all
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positive integers k and so x-Si/2(Wi) =x7\/2(w0:) for every k.

An idempotent e of 31 is said to be principal if there is no idempotent

orthogonal to e. Then 3le(0) is a nilalgebra and we may now obtain a proof of

a result previously proved only for stable algebras, and which will be com-

pleted in Theorem 7.

Lemma 9. Let ebe a principal idempotent of a commutative power-associative

algebra 21 whose characteristic is prime to 30. Then the quantities of 3Ie(l/2) are

nilpotent.

For if e is principal we have wk0 = Q for some k since wo is in 3Ie(0). Then

xi/25i/2(wî)=0. Put z = x2k+l=xx2k = xwk = x(w\+wk0)=xwl = xSo{w\). It fol-

lows that z is in 3le(0) and is nilpotent, x is nilpotent.

9. The first property of simple algebras. Let 31 be a commutative power-

associative algebra with a unity quantity e over a field ft of characteristic

prime to 30 and suppose that e = u+v where u and v are orthogonal idem-

potents. Then we may write 2l = 3li + 2I2 + 2Ii2 where 2li = 21,(1) =2L(0),

2I2 = 3I„(0) =3I„(1), 3i,2 = 3I,(l/2) =2L(l/2). We adopt the corresponding nota-
tion x = Xi+xi2+x2 for the quantities of 21 and will use (6), (7), (8) with the

subscript zero replaced by two. Thus Xiyi2=yi25i/2(xi)+yi252(xi), x2y12

= yi2Pi/2(x2)+yi2Pi(x2). We now prove

Lemma 10. Let 2Ii = Mft + ®i, 3l2=i>ft + ©2 where ® = ©iffi®2 is a nilalgebra.

Then xy =ae+g for every x and y of 3112 where a is in ft and g is in ®.

We begin our proof by observing that the mapping 1/2 Xi—*Si/2(xi) is a

homomorphism of 3li onto a special Jordan algebra and its maps the nil-

algebra @i onto a nilpotent Jordan algebra 'ißi of linear transformations

Pi = 2.Si/2(gi) on 2Ii2. It is known(n) that the enveloping algebra of ißi is nil-

potent and so $1 is nilpotent. Similarly the mapping x2—>2 7\/2 (x2) maps every

g2 of @2 on P2 = 2Ti/2(g2) where P2 is nilpotent. By (7) we have PiP2 = P2Px

and hence Pi+P2 is nilpotent. It follows that $ = $i + $2 is a vector space of

nilpotent linear transformations P = Si/2(gi) + Ti/2(g2) and that the enveloping

algebra of $ is nilpotent.

Suppose now that x is any nonzero quantity of 2Ii2 and so write x2 = wx

+w2, Wi = au+gi, w2=ßv+g2 for g¿ in ®¡, a and ß in ft. Apply (38) and

compute xSi/2(w{) = 1/2 ax+xSi/2(gi) =xPi/2(w2) = 1/2 j3x+x7\/2(g2). Hence

(a—ß)x = xP where the linear transformation P = 2r"i/2(g2) — 2Si/2(gi) is nil-

potent. Since x^Owe must have a = ß. We now let x and y be in 2Ii2 and write

x2=a0e+g', y2=ße+g", (x+y)2=ye+g'". This yields 2xy = (x+y)2 —x2—y2

= (7 — cto — ß)e+(g'" — g' — g"), xy=ae+g as desired.

Lemma 11. Let yi252(xi) be in ®2 for every Xi of 2li and y\2 of 2112. Then

yi2Pi(x2) is in ®ifor every x2 of 2l2 and yi2 of 3li2.

For Ti(v) =0, and we need only prove thatyi2T"i(g2) is in @i for every g2 of
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®2. Suppose that there is a quantity pi2 in 3li2 and a quantity g2 in ®2 such

that fi=pi2Ti(g2) is not in ®i. Then /i has an inverse in 3Ii and fifl~1=u

= 2pi2Si/2(f1~l)T1(g2)=yi2Ti(g2) by (8) where yi2 = 2^i25i/2(/r1) is in 3Ii2. Then

we have

(39) yi2g2 = bu + u,        bi2 = yi2ri/2(g2).

We next write

(40) 6i2g2 = cX2 + a,     ci2 = &i2ri/2(g2),     Ci = Ji2ri(g2).

By (6) we have yi2gl=yi2Ti/2(gl)+yi2Ti(g22) =2[yi2Pi/2(g2)]P1/2(g2)+4[yi2ri/2

(g2)]Pi(g2) and so

(41) yX2g2 = 2c12 + 4ci.

Let us substitute y = z = yi2, x = w = g2 in (1) and obtain

(42) 2[2(y12g2)   + yi2g2] = g2[g2yi2 + 2(g2yi2)yi2] + yi2[yi2g2 + 2(y12g2)g2].

This becomes 4(ô12+M)2+2y22g2=g2(g2y22) + 2g2(&i2yi2 +1/2 yi2)+yi2(2c12+4ci)

+ 2yi2(oi2g2) = g2(g2y212) + 2g2(ôi2yi2) +b12 + u + 2ynci2 + 4y12ci + yi2Ci2 + 2yi2cx

= 4¿»22+4&i2+4M + 2y22g2. Computing the components in 3ii and 2I2 we obtain

(43) 3m + 4m(6i2) = 4M(y12ci2),

2 2 2     2
(44) 4vbu — 4tf(yi2Ci2) = 6¿>2 + g2(g2yi2) + 2g2(¿»i2y12) — 2y12g2,

where &2=yi2^2(ci) is in ®2 by the hypothesis of our theorem and all other

terms of the right member of (44) are also in ®2.

We now substitute y = z = yi2, w = u, x = h2 in (1) and use the fact that

u(h2y\2) =&2(y22w) =0 to obtain

(45) 4yi2(yi2Ä2) = yi2(yi2Ä2) + 2y12[«(yi2A2)] + h2yi2 + 2u[y12(yi2h2)].

Write

(46) yi2Ä2 = ¿i2 + ¿i,        ¿i = yi2^i(Ä2),        ¿12 = yi2Ti/2{h2)

and obtain 3yi2(¿i2+¿i) =2M(yi2¿i+yi2¿i2)+A2y22+2yi2¿i+yi2¿i2. This yields

yi2¿i + 2yi2¿i2 = 2(yi2¿i)M + 2M(yi2¿i2)+A2y22 and the component in 3l2 is

2
(47) 2(y12d12)v + yi250(¿i) = h2yu.

In the particular case where A2 = g\ we may use (41) and have ¿i2 = 2ci2, ¿1 = Ac%

so that

2 2
(48) 4(y12ci2> + 4Ô2 = g2y2-

Since b2 is in ®2 so is v(yi2ci2). By (44) the quantity 4vb2l2 is in ®2 and by
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Lemma 10 both yi2Ci2 and o22 are in ®. But then (yi2Ci2)M and b\2u are in ®

and this contradicts (43).

Let us now return to the study of simple power-associative commutative

algebras 31 over a center ft of characteristic not two, three, or five. We let

$ be the algebraic closure of ft so that 31« is simple and every primitive

idempotent of 21« is absolutely primitive. Define the degree of 21 to be the

maximum number of elements in all sets eit ■ ■ ■ , et of pairwise orthogonal

idempotents e< of 21«. Thesum/=ei+ • • • +et will then be a principal idem-

potent of 31« and the e¿ will be primitive idempotents of 21«.

If t>2 or t = 2 but/is not the unity quantity of 31 we apply Theorem 1 to

see that 21« is a Jordan algebra. But then 21 is a Jordan algebra. Thus when

¿^ 2 the algebra 31 is either a Jordan algebra or has a unity quantity.

Let t = \ and thus assume that 21 is a simple algebra containing a primi-

tive idempotent quantity u which is the only idempotent of 31«. There is no

loss of generality if we take $ = ft. Adjoin a unity quantity to 31 as in §4 and

obtain an algebra 9î = 3l+z>ft with a unity quantity e = u+v and which is

such that all nonzero ideals of 9t contain 31. If 31,(1/2) =0 then 21 = 31,(1)

©31,(0) contrary to our hypothesis that 31 is simple. Thus 9i,(l/2) =3I„(l/2)

5^0. Since m is a principal idempotent, the algebra 31,(0) =®2 is a nilalgebra.

By Lemma 1 the algebra 21,(1) contains an ideal 33, which is a zero alge-

bra and is such that 31,(1)— 33, is a special Jordan algebra 3. The unity

quantity of 3 is the image u' of m and must be absolutely primitive since

every idempotent element of 3 is the image of an idempotent of 31,(1) when

31 is power-associative. By Theorem 2 we have 3 = w'ft + § where § is a nil-

potent Jordan algebra. But then 31,(1) =wft + ®i where ®i-33, = §. It fol-

lows that ®i is a nilalgebra and that we have the hypotheses of Lemma 10

for the algebra 9Î.

If x and y are in 3i,(l/2) then xy=ae+g where a is in ft and g is in ®i + ®2

by Lemma 10. But x and y are in 21 and so xy is in 31, xy=g, 31,(1/2)31,(1/2)

Ç®. If y is in 21,(1/2) and x is in 31,(1), then xy is in 31,(1/2)+31,(0). But then
yS2(x) is in ®2 = 31,(0) and the hypothesis of Lemma 11 is satisfied, yz is in

31,(1/2) + ®! for every y of 31,(1/2) and z of 9c„(0). It follows that 33 = 21,(1/2)
+ ®i+®2 is an ideal of 9î. However 33 does not contain m and so 33 = 0,

21,(0) =31,(1/2) =0, a contradiction. We have proved the following property.

Theorem 3. Every simple commutative power-associative algebra of char-

acteristic prime to 30 is either an algebra of degree one or two with a unity

quantity or is a Jordan algebra.

10. Jordan algebras of degree two. Let 31 be a Jordan algebra with a

unity quantity e = u+v where u and v are orthogonal idempotents, and write

3l = 3Ii + 3ii2 + 3I2 as in §9. Since 31 is a Jordan algebra we have the properties

3li2íi2C¡2íi2, 3I23li2Ç3Ii2. Thus «(g,yi2) = 1/2 g¿yi2 for every g,- of 3l¿ and y12 of

2Ii2.
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Theorem 4. Let 3li = Mft + @i, 3I2 = z'ft+®2 where ® = ®i©®2 is a nilalge-

bra. Then 33 = ® + ®3li2 is a nilideal of 2Í.

We begin by interchanging w and x in the Jordan identity (27). The left

members are unaltered and so the right members must be equal, that is,

we have the identity

(49)   [w(yz)]x+ [w(xz)]y + [w(xy)]z =  [x(yz)]w+ [x(wz)]y+ [x(wy)]z.

Put y = yi2, z = g2, w = wi2, x = u and obtain

[wi2(yug2)]u + 1/2 (w>i2yi2)g2 = 1/2 (yi2g2)wi2 + 1/2 (wi2g2)yi2,

where we have used the property xz = 0 and [w(yi2Wi2)]g2 = 0. Write

wi2(yi2g2) =ae + hi+h2, (wi2g2)yi2 = ße + ki + k2 for a and ß in ft, hi and ki in

®i, h2 and k2 in ®2, where we have used Lemma 10 and the fact that yi2g2

and Wi2g2 are in 2Ii2. We substitute these expressions in the formula above and

have

au + h + 1/2 (wuyi2)g2 = 1/2 (a* + h,+ h2) + 1/2 (ße + ki + k2).

Since (îfi2yi2)g2 is in ©2 we have au = 1/2 «m + 1/2 ßu, 1/2 (av+ßv) =0. Thus

a=ß, a=-ß, a=ß = 0. This proves that 2Ii2(2Ii2@)Q®. By symmetry

2li2(3Ii2®i)Ç® and so 3Ii2(2li2®)Ç®ç:33. But then 2l33 = (3Ii2+2li+2I2)

• (SI12®+® ) = 2l12 (2Ii2® ) + (2Ii + 3I2) (3Ii2® ) + (2Ii+2l2) ® + 2li2® ç 3li2® + 3Ii2®

+ ® + 2Ii2®Ç33 where we have used the fact that [yi2.Si/2(gi)]a2= ^12^1/2(02)]

•5i/2(gi), [yi25i/2(gi)]01=yi25i/2(gi)5i/2(ai) = yi2Si/2(gi0i) — [yi2Si/2(ai)].Si/2(gi) to

prove that (2Ii+2I2)(2ii2®)C2li2®. This proves that 33 is an ideal of 21. If S3
were not a nilideal, it would contain an idempotent w = wi + Wi/2+w2 = w2

— w2i + wl+w2l/2 + 2wi/2(wi + W2). But then wi/2 = 2wi/2(wi+w2) =wi/2P where

P = 2Si/2(wi)+2ri/2(w2) is nilpotent since «/,■ is in ®,-. It follows that w1/2 = 0

and that the idempotent w is in the nilalgebra ® which is impossible.

We now have the following consequence:

Corollary I. Let % be a simple Jordan algebra of degree two over a center

whose characteristic is prime to 30. Then 21 is a classical Jordan algebra of degree

two.

For the ideal 33 of Theorem 4 must be zero and every quantity of the

scalar extension 31« of 21 has the form x=au+ßv+xi/2 where x2/2 =/(xi/2) • e

with /(xi/2) a quadratic form in the coordinates of Xi/2. This is the classical

Jordan algebra of degree two.

11. Classification of simple Jordan algebras of characteristic p. We shall

proceed to extend the result of Theorem 4 to the case t>2. We let 31 be a

Jordan algebra whose unity quantity eis the sum c = ei+ • • • +et of pairwise

orthogonal idempotents e, and so write 31 as the sum of subspaces 31,-y = 31/,- for

î ¿j and ¿,7 = 1, • • • ,/. Here 2í¿, = 2Ie,(l) and 2f,y is the intersection of 3Ie,.(l/2)

and 2ley(l/2). Theorem 4 may now be extended as follows:
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Theorem 5. Let 3I,i = e¿ft + ®¡ where ®¿ is a nilalgebra, and define ®,-y

= 3l<y(®¿ + ®y)/or ifáj, ®,y* = 3I,y(®y3Iy*)/or i,j, k all distinct. Then the sum ®

of the spaces ®¿, ®,y, and ®ty* is an ideal of 21 which contains none of the

idempotents et.

We note first that ®<y = ®y< = 31¿y. We also substitute w = wjk, x = eit y=ya,

z — giin the Jordan identity (27) and obtain

(50) (Wjkgi)ya =   Wy*(y,-ygi).

We also substitute x = eit y=y¡y, z = gk, w — wik in (27) and obtain

(51) yu(wikgk) = gk(yn-Wjk).

We have thus proved the relations

(52) ®,y* = ®kji £ 31;*, SL.i(3Iy*G*) ç 31«®*.

Theorem 4 is applicable and yields the relations 3t«®iy£®<y, tLij®aQ®i

+ ®y. Since 2IPS®iy = 0 if p and q are distinct from i and j and since (52) im-

plies that 2I*i®,y = ®*,y+®y*, we have proved that 31®<y£®. Evidently our

definitions have been so constructed that 2Í®¿CZ®.

Let us now pass to the more difficult task of proving that 2l®,y* = @. We

put x = Xi, w = Wijt y = yjk, z = g} in (27) and obtain (x¿w,y) (yy*gy)

= Xi[wij(yjkgj)]. Since x.w.y is in 3l,y we have proved that

(53) »,-,<&,* £ ®iy*.

By symmetry 3l**®,y* = ®¿y*. But ®,y* = 3l,* and so 2lPP®,y* = 0 for every

p^i, k. Hence  (££_, 2IPp)®,y*c:®¿y*.

We next write x = x,y, w = Wi¡, y = yjk,z = g¡'m (27) and obtain (x,yw¿y) (xy*gy)

+ (Wijgj) (XiiVik) + (Wijyjk) (x.-ygy) = Xi} [wiy(yy*gy) ] +yy* fr\y(x,ygy) ] +gy [w,y (yy*X,-y) ].

Evidently gy [w¿y(yy*x¿y) ] is in ©y*. By Theorem 4 the product îf<y(x<yfy) is in ®,-

+ ®y and so yy* [wiy(x.ygy) ] is in @y*. The products (w.yyy*) (x,-ygy) and (xtyyy*)

■(wail) are clearly in 2I,*(2Iiy®y)ç:2I*yGy = ®y* and (x¿yw,y)(yy*gy) is in

(3Ii + 3ly)®y* = 3Îy®y*Ç®J*. We have then shown that x¿y[w¿y(yy*gy)] is in ®y*,

that is,

(54) Xißiju = ®y*.

Substitute x = x,*, y=yy*, w = Wa, z = gj in (27) and obtain (WijXik)(g¡y¡k)

+ (w¿ygy)(x¿*yy*) = [w,-y(gyyy*)]x¿*+^(x.-yyy*) ]gy. The term (w.yx,*)(gyyyt) is in

®y+®* by Theorem 4, (xikyjk) (w,-ygy) is in ®i + @y and [w¿y(x,*yy*) ]gy is in ®y.

Hence x¿* [w,-y(g,yy*) ] is in ®j + ®*, that is,

(55) 31,-*®iy* £ ®¿ + ®*.

There remains the possibility that t>3 and so that there exists a subscript

p7*i,j, k. Evidently 3Ij„®<y* = 0 unless q = i or k. Put x = x,*, y=yy*, w = w,-y,

z = gy in (27) and obtain {wí¡Xíp) {y¡kg/) = x¿p [w¡y(y,*gy) ], a result which may be
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written as

(56) 31<p®iy* C ®py*.

This completes our proof that 31®,/* ÇI® and that ® is an ideal of 31. Since the

intersection of ® and SI« is @¿¿, no e< is in ®.

Let us now assume that 9t is a Jordan algebra over an algebraically closed

field ft and that 9c has a unity quantity e = ei+ • • • +et for absolutely primi-

tive idempotents e<. We first apply Theorem 6 in the case where 9c is simple.

Then some 9c<y?i0 and we may apply Lemma 1 to see 9Î« has an ideal 33,-

which is a zero algebra and is such that SI¿¿ —33< is a special Jordan algebra.

As in the application of Theorem 4 we see that 9t¿í = e¿ft + @¿ where ®t- is

nilpotent. By Theorem 5, ®i is contained in a proper ideal ® of 9c, ®¿ = 0,

We next assume that m is a principal idempotent of a simple Jordan

algebra 21 over an algebraically closed field ft and adjoin a unity quantity e

to 21 to obtain an algebra 9t = 2I+eft = 3I+^ft where v = e - u. Clearly 21,(1/2)

¿¿0 and 9t«(0) =21,(0) +nft where 21,(0) is a nilpotent Jordan algebra. Since

every nonzero ideal of 9Î contains 31 we may again apply the argument

above to see that some 9c,y?¿0 for every i=i, ■ ■ ■ , t — 1 where we have

written u = d+ • • • +et-i, v = et. Then 9c¿í = e¿ft + ®;. We again apply

Theorem 5 and see that every ®, = 0, 9t,¿ = etft. Note that in this case 31,(0)

= 0.

By Lemma 9 the quantities of 31,(1/2) are all nilpotent. Then if x = x¿í,

we have x2=a(e»+e() by Lemma 10. But then the nilpotency of x implies

that a = 0, x2 = 0, 2xy = (x+y)2 — x2 — y2 = 0 for every x and y of 9t¿( where

»-1, • • • ,t-l.

We now observe that the quantities of 9Î are uniquely expressible in the

form x = £i«i+ • • • +£tet+ ¿J«y x,y in both of our cases. Define the function

t(x)=£i+ • • • +£¡ and r(x, y)=r(xy). Since 9c is commutative, we have

T(x, y) —T(y, x). The function t(x, y) is a bilinear function and the property

t(x, yz) =r(xy, z) will follow if proved for components in subspaces 9c»y.

Since 9tiy9ty* = 9c,* and r(x,*) =0 for iy¿k, it is evident that r(x, yz) =r(xy, z)

= 0 unless all three of x, y, z are scalar multiples of e¿ or x = x«, y=y,y, z = Ziy

or x = x¿y, y=yy*, z = zki. The first case is trivial. If x = Xü, then x = £e¿, x(yz)

= &i{yijZi/) =&i(yei+ye/) =7¿e< and (xy)z= 1/2 ZyaZtj = 1/27$(c,-+ey) so that

r{xy, z)=7£ = t(x, yz). Also x,yyy* = w,i, (x,yyy*)z*< = w¿*z*¿=a(e¿+e*). Define

yy*z*< = 0y¿, xty0y£ = /3(ei+Cy). Apply (26) for the idempotent g = e3+e* and

y = yy* = yx, x = x,-y = Xi/2, z = zki = zm to obtain e,- [(x,-yyy*)z*i] = ae, = e¿ [x,y(yy*z*¿) ]

=/3e¿. Then r(xy, z) = 2a = 2/3=r(x, yz).

The properties just obtained imply that the set of all quantities x of 9Î

such that r(xy) =0 for every y of 9c »s 0« ¿¿«0/ 0/ 9Î. Since T(e,e¿) =T(e,) = 1, this

ideal contains no one of the idempotents e,-. But in both of our cases every

ideal of 9c contains ci+ • • • +et-i. We state our result as
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Lemma 12. Let 9c be the ideal of all quantities x of 9t such that r(xy) =0

for every y of 9c. Then 9Î = 0.

We shall now apply the result just obtained in the case where 31 was as-

sumed to have no unity quantity. We have already seen that 9cí¡9c,í = 0 and

so r(xiiy,i) =0 for every y¿¡ of 9Î« where xit is in 9t,t. Now 9tií9ty¡c:9t;y and so

r(xityjt)=0. But then r(xy) =0 for every x and y of 31,(1/2). Since 9î„(l/2)

= 31,(1/2) and 9c„(l)9t„(l/2)ç:9c,(l/2), 9t,(0)9t,(l/2)ç9t„(l/2), we see that
r(xy) =0 for every y of 9c if x is in 9t„(l/2). By Lemma 12 we have 31,(1/2) =0,

a contradiction.

We have now proved that every simple Jordan algebra 31 has a unity

quantity e, and that there exists a scalar extension $ of the center of 21

such that e = ei+ • ■ ■ +et for pairwise orthogonal idempotents e,- of 33 = 21«

such that 33e<(l) =e,ÎÎ. Assume now that Ä = ft and so 33 = 31. We then prove

Lemma 13. The subalgebras 3)iy = 3I,-»+3l»7+3Iyy are all simple algebras of the

same order s+2.

For let ® bean ideal of 3)<y. If g = e»+ey+g<y is a nonzero quantity of ®, the

component g<y is also in @. Suppose first that there exists a quantity 0,7 in 3I,y

such that gi,aij¿¿0. Theng<ya,y = 7(e,+ey) and ® contains e,+ey and so ® = 3\y.

Otherwise g«y0¿y = O for every «<y of 3I»y, r(gjy0,y) =0 and it is easily seen that

T(g>ja) =0 for every a of 31. By Lemma 12 we see that g¿y = 0. It follows that

g = aei +ßej and that ® contains e¿g = ad and e,-g — ßej. In either case ® contains

aij = 2eiaij, @32I,y, 2I,y = 0. If every 31,* = 0, then 3t,,.(l/2) =0, 3I = 3te<(l)
©21^(0) contrary to our hypothesis that 31 is simple. It follows that there

exists an integer k^i, j such that Sla^O. If 0^ = 0 for every c« of 31,*, then

"¡*0,-* = O for every o¿* and o,* of 31,* and it is again true that t(0,*0) =0 for

every a of 31, 31,* = 0 by Lemma 12. Hence there exists a quantity e,* in 31,*

such that Ca^O and we may assume  that e2t = e¿+e*.

We now let g be any integer for which 3I<, = 0. We substitute x = y = e¿*,

z = fl,*, w = ek'm (27) to obtain 1/2 e^i + ei*^*©,*) = 1/2 0,*+2 [e* (<:,■*«,*)]«,■*.

But e,*0,* is in 31,-, = 0 and so 0,* = 0, that is 31,* = 0. We define v to be the sum

of all idempotents e, for which 2I<, = 0 and u to be the sum of all the idem-

potents e* for which 21,* 5^0. Clearly e, is one of the components of u and e¡

is one of the components of v. Moreover every 2I,* = 0. But then 21,(1/2) =0,

2I = 2I,(1)©21„(0), a contradiction. Hence 2l<y5¿0, © =35,y is simple. We have

actually proved that if 31 is simple, every 3I,y 5^0 and it is known(12) that the

spaces 3I,y all have the same dimension s.

The result above is now adequate for a classification of simple Jordan

algebras of degree t>2 as in the case of algebras of characteristic zero and

(u) This is the result of Lemma 18 of JA2. The basic properties are actually contained in

the proof of the present lemma.
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without a word of change(13). We call the type of algebras so obtained the

classical Jordan algebras and collect our results as follows:

Theorem 6. Every simple Jordan algebra of degree ¿ S: 2 over a center ft of

characteristic not two, three, or five(u) is a classical Jordan algebra. Every

simple power-associative commutative algebra over ft, which is not a nilalgebra,

has a unity element and is either a classical Jordan algebra or has degree t = 1 or 2.

It is not yet known whether there exist commutative power-associative

algebras which are nilalgebras but are not either solvable or nilpotent. It is

also not known whether Theorem 2 can be extended to arbitrary power-

associative commutative algebras, but we shall do so for algebras of character-

istic zero. It also seems to be exceedingly difficult to determine the structure

of simple power-associative algebras of degree two.

12. The general structure theory. Let 31 be any power-associative com-

mutative algebras over ft of characteristic prime to 30. If 33 and S are nil-

ideals of 31, their sum 33 +S is also a nilideal of 31. It follows that 31 has a

maximal nilideal 91 which we call the radical of 31. We call 31 semisimple if

9Î = 0 and it is easy to prove that 31 — 9c is semisimple.

Let us note that if 31 has a unity quantity e, there is no principal idem-

potent of 31 except e. Indeed if/ is an idempotent, so is e—f and/(e—/) =0,

ey^f, implies that/is not principal.

Theorem 7. Let e be a principal idempotent of a commutative power-associa-

tive algebra 31 of characteristic not 2, 3, or 5. Then 3Ie(l/2)+3Ie(0) is contained

in the radical of 31.

The theorem is trivial for algebras of order m = \. Assume it true for all

algebras 33 of order m<n where n is the order of 31. If 31 is not semisimple,

we form 33 = 31 — 9c and see that 33 has order m<n. The homomorphism of 21

onto 33 sends e onto an idempotent m of 33 and 3le(X) onto 33,(X). Hence u is

principal in 33. But 33 is semisimple and the hypothesis of our induction im-

plies that 33,(1/2)+33,(0) =0, 3Ie(l/2)+3le(0)ç:9c as desired. There remains

the case where 31 is semisimple.

If 31 is simple it has a unity quantity e by Theorem 6. Since e is the only

principal idempotent of 21 we have 3le(l/2) =2le(0) =0 and our result is true.

Assume then that 31 contains a nonzero ideal 35^31. Since 31 is semisimple 3)

is not a nilideal of 21 and must contain a principal idempotent e. Write 35

(I3) All of the material on pages 562-567 of JA2 is valid without change.

(") The theorems of this paper are not true for algebras of characteristic two but are prob-

ably true for algebras of characteristic three and five. The proofs will involve the use of the

associativity of fifth and sixth powers in addition to the associativity of fourth powers (which is

all that has been utilized here). The question is being studied as the subject of a Ph.D. disserta-

tion at the University of Chicago.
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= 35,(1)+35,(1/2)+35,(0) and let 9Jc be the radical of 33. By the hypothesis
of our induction

35.(1/2) + 35,(0) C 9Jc.

We may also write 21 = 21,(1)+31,(1/2)+31,(0) and it should be evident that

35,(X) is the intersection of 35 and 3Ie(X). However xe =Xx is in 35 for every x of

31 and so 31,(1)+31,(1/2)Ç35,

31 = 35,(1) + 35,(1/2) +31,(0).

Moreover 35,(0)31,(0) Ç35 as well as in 31,(0) since 31,(0) is an algebra. It fol-

lows that

35,(0)81,(0) Ç 35,(0).

We suppose now that xo is in 31,(0) and that yi/2 is in 35e(l/2). Use (1) with

x = z=xo, y = w=yi/2 to obtain

2 2       2 r 2 -1

4(x0yi/2)   + 2x0yi/2 = xolx0yi/2 + 2(x0yi/2)yi/2J

+ ym[y\nxo + 2x0(x0yi/2)].

Since yi/2 is in 9JÎ so is y2/2 = z0+zi. Thus zo is in 35,(0) and so 2x\y\l2 = 2x\zo

is in 9JÎ. Also yi/2x2 is in 3le(l)+21,(1/2) =35, and since yi/2 is in 9JÍ the product

yi/2(yi/2x?) is in 9JÍ. Write

x0yi/2 = bi + bi/2,       bi = yi/22ni(x0).

Then x0(x0yi/2) = x0b1/2 = ci/2+c1 is in 35 and yi/2[x0(x0yi/2)]=yi/2(ci/2 + Ci) is in

9Jc. We now compute (x0yi/2)yi/2 = (oi+&i/2)yi/2 = 0i/2yi/2+yi/2Si/2(oi) +yi/2S0(bi).

Since yi/2 is in 9JÍ we know that yi/2S0(Z>i) is in 35,(0), c>i/2yi/2=gi+go where go

is in De(0). Thus [èi/2yi/2+yi/25'o(0)]xo is in 9JÍ. We have proved that

w = 4(x0yi/2)2 — 2x0[yi/2Si/2(bi)]

is in ÜD?. However yi/25i/2(ôi)ri/2(xo) is in 35e(l/2) and is in 9JÎ. By (8) we know

that2yi/25i/2(0i)ri(xo) = [yi/2Ti(xo)]h = b2 and (xoyi/2)2 = 0i+2ôi&i/2 + 02/2 where

we already know that 2ôiôi/2 + ô2/2 is in 90?. Thus Ab\ — b\ is in 9JÎ and so b\ is in

m.
Define ®(x0) to be the set of all quantities of 35,(1) of the form Zi/2ri(x0)

for any fixed x0 of 21,(0) and Zi/2 ranging over all quantities of 35,(1/2). By

(8) we know that [zi/2ri(x0)]yi = 2|zi/2Si/2(yi)]ri(xo) and so ®(x0) is an ideal

of 35,(1). Form 35 — W and see that the homomorphic mapping d—>d' of 35

onto the semisimple algebra 35'=35 — 9JÎ is such that every ¿' is the image of

an element ¿i of 35,(1). Then the image of ®(x0) is an ideal of ®'(xo) of 35'.

But we have shown that if ¿>x is in ®(x0) then b\ is in 9JÎ, (o¡)2 = 0 and so

@'(xo) =0, @(xo)Ç9Jc. Thus x0y1/2 is in 9Jc, that is. 21,(0)35,(1/2) = 9J?.
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We already know that 9Jc3I,(l) = 9Jc35,(l) C9Jc, 9Jc3I,(l/2) = 9Jc35,(l/2) QW.
Also 9Jc = 9Jci+35,(l/2)+35,(0) where 9J?i is the intersection of 9JÎ and 35,(1),

9Jc8I,(0) =35.(1/2)21,(0)+35,(0)21,(0) ÇZÇfJÎ by the proof above. We have
proved that 9DÎ is a nilideal of 21 contrary to the hypothesis that 21 is semi-

simple. It follows that 9JÎ = 0, 35=35,(1) is a semisimple algebra with the

unity quantity e, 35,(1/2) =0, 21 =35 ©31,(0). But then 31,(0) is an ideal of 21
and must have a unity quantity u by the proof just completed. The idem-

potent f=e+u is the unity quantity of 31 and is the only principal idem-

potent of 21, 21/(1/2)^21/(0) =0 is contained in the radical of 31. This com-
pletes our induction and proves the theorem.

The theorem just proved implies that if 31 is semisimple, it has a unity

element. Moreover the proof above implies that if 35 is an ideal of 31, it is

semisimple and has a unity quantity e, 31 =35 ©31,(0). We thus have the de-

composition of the following theorem. The uniqueness is well known.

Theorem 8. Every semisimple power-associative commutative algebra of

characteristic not two, three, or five has a unity quantity and is uniquely ex-

pressible as a direct sum of simple algebras.

13. Simple algebras of degree one and characteristic zero. We shall close

our discussion with a proof of the following generalization of Theorem 5 for

the characteristic zero case.

Theorem 9. Let tí be a simple power-associative commutative algebra of

degree one over a center ft of characteristic zero. Then 31 = eft where e is the unity

quantity of 31.

We shall first prove the following elementary property.

Lemma 14. Let e be a primitive idempotent of a commutative power-associa-

tive algebra 31 over an infinite field ft 0w¿ let $ = ft(£i, • • • , ¿r) for independent

indeterminâtes £i, • • • , £r over ft. Then e is a primitive idempotent of 21«.

It is clearly sufficient to prove the lemma for r = l and Ä = ft(£). Let

3 = S:[l] t>e the ring of polynomials in £ and the unity quantity e of 31 and

let 33 = 31,(1). If 33« contains an idempotent uj¿e we may write u=<p~1v for

<j> in 3 and v in 33g. Let «i, • • ■ , uq form a basis of 33 over ft such that Mi = e

and so write v = Ç\Ui+ ■ ■ ■ +Çmum for f< in Q. At least one fi^O for i>\

since otherwise u=<p~1Çie = <p-ifâe and ((p~1Çi)2 = (<p~1Çi), cp^Çi^O, <p~1Çi = l,

u = e, a contradiction. Then there exists a quantity £o in ft such that </>(£o)f »(£o)

7^0. But the quantity m0= [<K£o) ]-M£o) ^0 and m0 is evidently an idempotent

of 33. This contradicts our hypothesis that e is a primitive idempotent of 31.

We now assume that 31 is simple and of degree one. By Theorem 6, 81 has

a unity quantity e and the hypothesis that 31 has degree one implies that e

is absolutely primitive over the center ft of 31. We may assume that ft is

absolutely closed without loss of generality. The algebra ft [0] of polynomials
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in a (but not in e) is an associative algebra and so ft [0] = S + 9c0 where 9ca is

the radical of %[a] and 6 is semisimple. Since 31 is commutative S=eft,

a=ae+b where a is in ft and b is nilpotent.

Let Mi = e, u2, • • ■ , un be a basis of 31 over ft and select the m,- to be nil-

potent in the case m>1. Let &,•••,{« be independent indeterminates over

ft. $ = S(ii, • • • . £»), 3 = ft[ii, • • • , in]. By Lemma 14 we see that e is a
primitive idempotent of 21«. Write x = £iWi + • • • +£„«„ and see that ®[x]

= 35+9ci where 9c* is the radical of S [x] and 35 is semisimple. Since eis primi-

tive, 35 is afield,35 = $(y) where we may assume that y is in $[x]. If 35 has de-

gree s > 1 over S the quantity y is a root of an irreducible polynomial <p(\) with

coefficients in 3, leading coefficient unity, and degree j. Write y=fiMi+ • • •

+f„M„ with f,- in 3- Evidently some ¿",^0 and we may assume that fr^O.

The discriminant of <p(k) is a polynomial A(£x, • • • , iO^O since </>(X) is ir-

reducible and there exist values £10, • • • , i„o in ft such that ir(£io, • • • , £„o)

5^0 where ir = f2A. The corresponding element yo=y(£io, • • • , i„o) is not in

eft and is a root of <£o(X) =<p(k; £10, • • • , i,o)=0. Evidently </>o(X) has dis-

criminant A(£io, • • ■ , ^0)7^0 and distinct roots. But yo—ße is nilpotent for

some ß in ft, the minimum function of yo divides both (X—ß)n and <£o(X)

which is possible only if y0=ße, a contradiction. Hence 5 = 1, 35 = e$,

x — e^(£i, •• -, ?n) is nilpotent for some i^(£i, •••,£,) in $.

The quantity x of 31s is a root of/(X) = |X7 —i?x| =0 where Rx is the linear

transformation a—>ax. The polynomial /(X) is homogeneous of degree n in

ii, • ■ ■ > in, and is divisible by the minimum function g(X) of x. But then

g(X)=g(X; ii, • • • , in) is a polynomial in X with leading coefficient unity

and which is homogeneous in X, ii, • • • , in- However g(X) divides

[X-iKii, • • • , in)]" and so X-^(Íi, ••',£») divides g(X), $&, ■ • • , £„) is

in 3, ^ must be a linear homogeneous function in £1, • • • , £„. Indeed g(X)

= (X— \p)r where r is the degree of g(X), ^r has degree r. Hence we may write

lA = 7iii+ • • - +7nin for 7,- in ft, and write ^(a)=7iiio+ ■ ■ • +7ni»o where

0 = £io«i+ • • • +inottn. Then m,- — e^(u¡) is nilpotent and so is m,- for *>1.

It follows that ¿(u/) =7. = 0 for i>\, \p(ui) = 71= L iKii, •••»£*) =ii- Then

all quantities of 9c = M2ft+ • • • +M„ft are nilpotent and every nilpotent

quantity of 31 is in 9c. If b and c are in 9Î so are b+c, b2, c2, (b + c)2, 2bc

= (b+c)2 — b2 — c2, 9Í is a subalgebra of 31, 9i is a proper ideal of 31. But 21

was assumed to be simple and so 9c = 0, that is, n = 1, 21 = eft as desired.

The University of Chicago,

Chicago, III.


