A THEORY OF POWER-ASSOCIATIVE
COMMUTATIVE ALGEBRAS

. BY
A. A. ALBERT

1. Introduction. In any study of a class of linear algebras the main goal
is usually that of determining the simple algebras. The author has recently
made a number of such studies for classes of power-associative algebras de-
fined by identities(*) or by the existence of a trace function(?), and the results
have been somewhat surprising in that the commutative simple algebras
have all been Jordan algebras.

In the present paper we shall derive the reason for this fact. Moreover we
shall derive a structure theory which includes the structure theory for
Jordan algebras of characteristic p.

We shall begin our study with a consideration of power-associative com-
mutative rings A under the customary hypotheses that the characteristic of
9 is prime to 30 and that the equation 2x=a has a solution in U for every a
of A. We shall show that if A ss simple and contains a pair of orthogonal
1dempotents whose sum is not the unity quantity of U, then N is a Jordan ring.

We shall apply the result just stated to commutative power-associative
algebras ¥ over a field § of characteristic prime to 30. If such an algebra A
is simple we shall show that ¥ has a unity quantity e, and so there exists
a scalar extension & of the center § of A such that e is expressible as a sum
of pairwise orthogonal absolutely primitive idempotents of Ag. We define the
maximal number of such idempotents to be the degree of 2 and use the re-
sult on rings to see that every simple algebra of degree £>2 is a Jordan alge-
bra. Every Jordan algebra of degree t=2 is a classical Jordan algebra, that
is, an algebra of one of the types obtained(®) for algebras of characteristic
zero. We define the radical of a commutative power-associative algebra to be
its maximal nilideal and show finally, that every semisimple algebra has a
unity quantity and is expressible uniquely as a direct sum of simple algebras.

2. Elementary properties. Let A be a commutative ring whose character-
istic is prime to 30. Then itis known(%) that ¥ is power-associative if and only
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(*) For these studies see the author’s Power-associative rings, Trans. Amer. Math. Soc. vol.
64 (1948) pp. 522-593. We shall refer to this paper as PAR.

(%) See the paper, A theory of trace-admissible algebras, Proc. Nat. Acad. Sci. U.S.A. vol.
35 (1949) pp. 317-322.

(3) See Theorem 28 of Jordan algebras of linear transformations, Trans. Amer. Math. Soc.
vol. 59 (1946) pp. 524-555, and Theorem 17 of A4 structure theory for Jordan algebras, Ann. of
Math. vol. 48 (1947) pp. 546-567. We shall refer to these papers as JA1 and JA2.

(*) On the power-associativity of rings, Summa Brasiliensis Mathematicae vol. 2 (1948) pp.
21-33.
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if x2x?= (x2x)x, an identity which is equivalent to the multilinear identity

4[(xy)(zw) + (22)(yw) + (zw)(y2)] = x[y(zw) + z(wy) + w(yz)]
(1) + y[x(zw) + 2(wx) + w(xz)] + z[x(yw) + y(wx) + w(xy)]
+ wlx(yz) + y(zx) + 2(xy)].

If u is any idempotent of ¥ we may write A=A, (1)+A.(1/2)+A,(0)
where 2,(\) is the subgroup of the additive group of A consisting of all
quantities xx(A) in A such that xyu =Ax,. Moreover, every x of ¥ is uniquely
expressible in the form x=x14x12+% with x\ in ,(\). The multiplicative
relations between these modules have been determined(®) and may be ex-
pressed as the following formulas for xy=3:

(2) X1¥y1 = 21, XoYo = 2o, X1Yo = 0, X1/2Y1/2 = 21 + 2o,
Z1y172 = 2172 + 2o, %oY1/2 = z12 + 21

The ring A is said to be wu-stable if x1y12=212, XoYy2=3212, that is,
A N)AL(1/2)SAL(1/2) for A=0,1. Itis known(®) that Jordan rings are u-stable
for every idempotent #. We shall now give an example of a power-associative
ring which is not u-stable. It provides a simple proof of the property that
power-associativity is not equivalent to the Jordan identity as well as an ex-
ample of an unstable power-associative algebra of any characteristic prime
to 30.

Consider the algebra A with a basis «, f, g, & over a field § whose char-
acteristic is not 2, 3, or 5, and let

w=u, fP=g2=KB=uh=fh=gh=0, uf=f ug=1/2¢g, feg=1"r

Then A.(1) =uF+fF, Uu(1/2) =gF, A(0) =£F, A(1)A.(1/2) is not contained
in A.(1/2), and U is not stable. We need only prove then that x%x?= (x%x)x
for every x of . Let x=au+Bf+vg+06k. Then x?=ca?u+2a0f+ayg+26vh
and so

x%x? = otu + 4a®8f + aPyg + 4a’Bvh.

Also x*x =a*u-+2a23f+1/2 a®yg+o2B8f +aByh+1/2 a?yg+2aBvh = oPu—+3026f
+ayg+3afBvh, (x2x)x=ctu—+3a38f+1/2 adyg +a?Bf +a2Byh+1/2 adyg+3a2Byh
=o'u+4030f +adyg+4a?Byh =522 as desired. We have shown that U is a
power-associative algebra and is not stable.

3. The basic machinery. The relations in (2) imply that the mapping
a12+ao—(ar2+ao)x1=aizx1 is an endomorphism of the module A.(1/2)
+%.(0) which we may write as '

(°) See Theorem 2 of PAR. The existence of the characteristic root one-half will cause our
formulas to contain a number of fractions such as 1/2, 3/2, and 5/2. The reader should always
read such formulas as 1/2 xyz as (1/2)xyz and not as (2xyz)~1.

(%) See Theorem 6 of JA2.
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3) ay72%1 = @175S1/2(%1) + @1/250(%1).

Here a1/2512(%1) is in A, (1/2) so that Sy2(x1) is an endomorphism of A, (1/2).
Also @1/2S0(%1) is in A,(0) and so Se(x:) is a homomorphism of A,(1/2) into
A.(0). Note that when ¥ is a linear algebra over a field § the mapping
Si/2(x1) is a linear transformation of A,(1/2), and So(x1) is a linear mapping of
A.(1/2) into A.(0). While we shall state our proofs for rings they will hold,
with only trivial alterations, for algebras.

The first of our tools will be a result of the substitution of x=x;, y=91, 2
=u, w=uwy;in (1). We use the properties #(wi2y1) = u [w1/2S1/2(y1) + w1250 (31) |
=1/2w1S12(31), %1 [w(y1w1/2) | =1/2 21 [01081/2(31) | =1/2 1(311/2), and (1) be-
comes

2(x1y1) w2 + 4x1(y1wis2) + dyi(2awye) = 221(y1%172)
4) + 2y1(@1w10) + ul(n1w172) + yi(xwiss) + (2131 wyse]
+ 3(x1y1)w1/z.

The component in %, (0) of the term of (4) in which # appears as an external
factor must be zero and so (4) is equivalent to the relations

Su2(%1y1) = S1/2(21)S1/2(31) + S1/2(31)S172(%1),
1/28o(x131) = S1/2(21)So(y1) + S1/2(y1)So(1).

The formulas of (2) also imply that

®)

ay1/2%0 = 01/2T1/2(xo) + 01/2T1(xo),

where T7/3(x0) is an endomorphism of N, (1/2) and Ti(x0) maps A.(1/2) into
A.(1). We substitute x =x,, ¥y =20, 2=u, w=w;2 in (1), and obtain a formula
which is readily seen to be equivalent to

T1/2(%0y0) = T1/2(%0) T1/2(y0) + T1/2(y0) T1s2(%0),
1/2 T1(x0y0) = T1/2(%0) T1(y0) + T1/2(y0) T1(%0).

Let us finally obtain some relations between the mappings S\ and Th.
We substitute x=xo, y=v1, 2=u, and w+wy, in (1) to obtain 4(wi.x0)y
= o[ u (wiz2y1) + wyay1+ 1/ 2wyay1 ] + y1 [ w (wisax0) + 1/ 2w1s%0] 4+ u [(wi/2%0) 31
+ (wyy)xe]. Then  4[wipTije(x0) +wieTi(x0) Iy1 = 4wieTya(0) S12(y1)
+4w1/2T1/2(xo)So(y1) +4 [w1/2T1(xo) ]3’1 = 5/2‘101/251/2(3’1) T1/2(x0) +3w1/251/z(y1) Ty
+(%0) + 3/2 [w1/2S0(31) Jwo + 3/ 2112 T1/2(%0) 112 (1) + w172 T1/2(%0) So(31) +5/2 w12
[T1(x0) ]31. Equating components in %,(1/2) we obtain 5/2 wj;Ty2(x0)S1/2(y1)
=5/2 w12S12(31) T1/2(x0). Our hypothesis that the characteristic of ¥ is prime
to five implies that

(7 S12(y1) T1/2(%0) = T1/2(%0)S172(31).

(6)

We also equate components in %,(1) to obtain 3/2 [wy2Ti(x0) ]y
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= 3w1/2S1/2(¥1) T1(x0), and equate components in %, (0) similarly. Use the fact
that the characteristic of ¥ is prime to three to obtain the pair of results
which we state as

[wllle(xO)]yl = 2w1/5S1/2(31) T1(%0),
[@1/5S0(y1) |20 = 21/2T'1/5(0)So(31).
The relations (5)—(8) will be used frequently in our proofs.
Our first result will be an application of (5). We consider the mapping
%1—2S12(%1). Define the operation 24 -B=A4B+BA for any endomorphisms

A and B on ﬂu(l/Z), and see that 251/2(36])'251/2(3’1)=251/2(x1y1) by (5).
Then we have the first part of the following lemma.

®)

LEMMA 1. The mapping x1—2S12(x1) is @ homomorphism of the ring A, (1)
onto the special Jordan ring consisting of the endomorphisms Sij2(x1). The kernel
of this homomorphism is an ideal B, of N.(1) which contains the ideal €, of A
of all quantities x of .(1) such that xwy;, =0 for every wi of Nu(1/2). Moreover
B.CC..

To complete our proof we note that 9B, is the set of all quantities x; of
A.(1) such that Sy;(x;) =0 and that €, is the set of all x; of B, such that
So(x1) =0. Hence B.2C.. If ¢, is in €, and a is in ¥, then a=a;:+a1.+ao,
aci=a,6. But by (5) we have Sip2(aic;) =0, So(a:c;) =0, and so €, is an ideal
of A. Evidently if b, and ¢, are in B, then So(bic;) =0, BECE..

The relations of (6) are the result of interchanging the roles of A=1 of
(5) with A=0. Thus (6) provides a lemma which is the counterpart of Lemma
1. Since we shall not use this result we shall not state it.

4. Adjunction of a unity quantity. Our study is concerned with nonasso-
ciative rings ¥ with the property that 1/2 ¢ is a unique element of ¥ for every
a of A. Then the characteristic of A is prime to two. We now imbed ¥ in a
unique ring % =%+ [e] with a unity quantity e. If % has finite characteristic m,
the subring [e] of 9 is isomorphic to the ring of residue classes of the integers
modulo m. Otherwise [e] is isomorphic to the ring of all rational numbers
whose denominator is a power of two. In every case every element of R is
uniquely expressible in the form 7 =a+ae for ¢ in ¥ and ae in [e]. The ring
R has the same characteristic(?) as .

The identity (1) is linear in %, ¥, 2, w and is satisfied identically whenever
any one of x, ¥, z, w is a unity quantity. It follows that 8 is power-associative
if and only if A is power-associative. Evidently & is commutative if and only
if A is commutative. We shall now prove the following result.

LEMMA 2. Let f be an idempotent of A so that g=e—f is an idempotent of the

(7) For a discussion of the characteristic of a nonassociative ring see the reference of foot-
note (4). The construction of R is the well known construction as given, for example, in the
author’s Modern higher algebra, Theorem 2.5.




1950] POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS 507

attached ring R=U+[e] and fg=0. Then R;(1)=R,(0)=A(1), R,(1/2)
=%,(1/2), R;0) =R, (1) =A,(0)+ [g]. If A s also simple but has no unity
quantity, every nonzero ideal of R contains U.

For if 7 is in ®;(\), then rf=(a+ae)f =af+af =N\r=Na+ahe. It follows
that aAe=0 and so ae=0 if A\=1, 1/2. But then r is in A, R;A) =A,\) for
A=1, 1/2. When A=0 then a=a1+ai2+ao, af=—af=a1+1/2ay;, a12=0,
ar= —of, r=ao+ale—f), R,(0) =;(0)+ [g]. Since g=e—f we have ga,=ea,
—fa1=0, gayp=eaip—fay2=1/2 aip, glaotag)=(e—flartag=ao+ag and
the first part of our lemma has been proved.

Let us now suppose that D is any nonzero ideal of & and that U is simple, f
is an idempotent of A but A contains no unity quantity. The intersection Do
of A and D is an ideal of A. Since A is an ideal of R if Do=0 then AD=0. If
d=d;+dy;s+do is a nonzero element of P, the quantity fd=d;+1/2 dy;»=0,
di=dy2=0, d=do=ao—ag where a, is in ¥;(0). Evidently we may multiply
by a power of two if necessary and so assume that « is an integer. If the set
¥ (of all sums aa for a in %) is the zero set, then every aa =0, U has char-
acteristic a divisor m of a, ae=0, ag=0, d =do=ao=0 which is contrary to
hypothesis. Evidently o is an ideal of % and so o =%. Let & be the set of all
quantities s of A such that as=0. By our proof &=. But if as=0, then
a(sa) = (as)a=0 and so & is an ideal of ¥, ©=0, aea=0 if and only if a=0.
Since a =¥ there exists a quantity ¢ in % such that ao=ac. Then fao, =a(fc)
=0, (f¢) =0, and ¢ is in A;(0). We form bod =bo(ao—ag) =a(bec —bo) =0, and
we also form byed =a(b1j2c —1/2 bys2) =0 to obtain boc = by, b1jsc =1/2 bys. Since
¢ is in 9;(0) we have b;c=0. But then b(f4c¢) =b for every b of A contrary to
our hypothesis that A has no unity quantity. This completes our proof.

5. Decomposition relative to a set of idempotents. The decomposition of
a ring relative to a set of pairwise orthogonal idempotents depends upon a
result whose proof is rather trivial in the case of Jordan rings.

LeMMA 3. Let u and v be orthogonal idempotents of a power-associative com-
mutative ring N. Then (au)v= (av)u for every a of U.

The property of our lemma is the statement R,R,=R,R, for the cor-
responding right multiplications. The identity (1) is equivalent to

Riwe + Ryoy + Riczyy = 4(RzRy: + RyR,. + R.R.,)
- (Rysz + RzzRy + Rzsz) - [Rz(Rsz + RzRy)
+ R,(R.R. + R.R.) + R.(R.R, + R,R.)].

Put x=y=wand z=vin this relation and use #?=wu, vu =0 to obtain

9) 4R,R, — RuR, = 2(RuR, + RuR.R. + R.R.).

If we put x=y=x=u in the relation above, we obtain
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(10) 2R} = 3R, — R..

We now left multiply (9) by R, and also right multiply by R, to obtain
4R,R2—R,R,R,=2(R,R:+R.R,R:+R:R,R,). By subtraction we obtain
4R,,Ri+R§R,, - SRuR'uRu = Z(RaRi —R‘ZR,,) = 3(R,,R,2, - thth) - (RvRu _RuRv)-
But then

(11) R,R. — 5SR.R,R. + 4R°R, = R.R, — R.R..

Equation (11) implies that 2R,R:—10R,R,R,=2R.R,—2R,R,—8R:R,,
and (9) implies that 2R,R:+2R,R,R,= —R.R,+4R,R,—2R%R,. Subtract-
ing and deleting the factor 3 we obtain

(12) 4R.R.R. = 2R,R. — RuR, + 2R.R..
Substitute this result in (9) to obtain

(13) 4R,R. = 6R,R. — RuR, — 6R.R,.

Our next manipulation begins with the right multiplication of (13)
by R. to obtain 6R,R:—R,R,R,—4R,R:=6R,R:—R.,R,R,—2R,(3R2—R.)
=6R.R,R,, that is,

(14) 6R.R,R. = 2R,R. — RuR,R..

We also left multiply (12) by 3R, to obtain 12R:R,R,=6R.R,R,—3R.R,
+3(3R:2—R,)R,=6(R:R,+R.R,R,)—3R,R,. By (14) we have 6R:R,
+6R,R,R,=3R,R,+4R,R,—2R.R,R,, that is,

(15) 8R.R,R, = 4R,R, + 3R.R, — 6R.R,.
Combine this result with (12) to obtain 5R,R,=10RZR, and so

(16) RuR, = 2R.R,,  2R.R.R. = R,R.,  2R.R. = 3R,R. — 2R.R,.

We have not used the fact that v is idempotent and we shall do so now. By
symmetry we have

(17) R.R, = 2R:R.,  2R,R.R, = R.R,,  2R.R. = 3R.R, — 2R,R..

We use (16) to write 4R,R2R,=2R,R,R,=R,R, by (17). But also 4R,RZR,
=6R,R.R,—4R,R2=3R,R,—2(3R,R,—2R,R,) =4R,R,— 3R.R,. Then 4R,R,
—3R.R,=R,R,, R,R,=R,R, as desired.

As a consequence of Lemma 3 we may now prove the following important
decomposition theorem.

LEMMA 4. Let u and v be orthogonal idempotents. Then the intersection of
A.(1/2) and N,(1/2) contains (au)v = (av)u for every a of A.
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For we write a =a,(1) +a.(1/2) +a.(0) with a,(\) in %, (\). Then au=a.(1)
+1/2 a.(1/2) and, since v is in a.(0), (aw)v=1/29va,(1/2), [(au)v]u
=1/2u(va,(1/2)]=1/2v[ua.(1/2)]=1/4va,(1/2). Thus (an)v is in A.(1/2)
and is also in %,(1/2) by symmetry.

The following result implies that if %, », and w are pairwise orthogonal the
intersection of %,(1/2), A,(1/2), and A,,(1/2) is zero.

LEMMA 5. Let u, v, w be pairwise orthogonal idempotents of A. Then [(aw)v]w
=0 for every a of U.

For e =u-vis orthogonal to w, and if b= (au)v then ub=1/2b, v6=1/2b
by Lemma 4, eb=>5. But w is in %.(0), & is now in A.(1) and so bw=0 as de-
sired.

We are now ready to obtain the decomposition of a power-associative
ring relative to a set of pairwise orthogonal idempotents. We let &%t be a
commutative power-associative ring with a unity quantity e and suppose
that e=e;+ - - - +e; for pairwise orthogonal idempotents e; of . Every
quantity @ of % has the form

a = (2ae)e — ae = a(ZRi —R) =2 aij

=Y
where
(18) Ay = (2ae,~)e,-‘ — ae;, a;; = aj; = 4(ae)e;.

This expression is unique(®) and we have written R as the sum of its modules
Rij=RN;i where Rii =R, (1) and N;; is the intersection of R.,(1/2) and R.;(1/2)
for all distinct ¢ and j. If g=e;+ej, then R,(1) =C=R;;+ Ri;+Ns; is a sub-
ring of R such that €,,(1) =R =C,;(0), €.,(1/2) =C,,(1/2) =Ryj, €.,(0) =R
But then (2) implies that

(19) R © R + Ris (7 5 7).
If p=4, j and ¢#7, j, then R;;CTR,(1), Rp ER,(0) where g=e;-+}¢; or e; ac-
cording as 757 or 7=3. It follows that

(20) ER‘J'ERPQ =0 (P # ir .7; q = i: j)'

The properties of (19) and (20) are quite trivial but this is not true of the
important property

(21) RN S Rix (i 5% 7, ks 5 = k).

To prove this result we let w=e; +¢;+¢; and see that S =R,(1) =R;;+R;;
+ R+ Rij+ R+ R Put g=e;+¢; and see that R;;TS,(1), R CS,(1/2),
and so (2) implies that R;;RxCSS,(1/2)+S,(0) =R+ R+ Rix. Put h=e;
+e; and see that R;;SS,(1/2), Rz CSSi(1). By (2) we have Ri;RxCSS1(1/2)

() Cf. §14 of JA2.
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+&a(0) =R+ Ra+Rei. Since Ra is the intersection of &S,(1/2)+S,(0)
and &©,(1/2)+&4(0) we have (21).

6. The ring theorem. Let ! be a power-associative commutative ring
whose characteristic is prime to 30. We assume first that i has a unity quan-
tity e=e;+e;,+e; for pairwise orthogonal idempotents e;. We shall also as-
sume that either R =% is simple or that R is the result of adjoining the
unity quantity e to a simple ring 2 which contains the idempotents e; and e,
but does not have a unity quantity. By Lemma 2 every nonzero ideal € of R
contains ¥.

Let g be any one of the idempotents f=e;+e;, h=e1+¢3 ,and k=e;+¢; and
define the ideals B, and €, of Lemma 1. Then G, is an ideal of & contained
in R,(1), and if €,540 the subring R,(1) contains A. However ¢; and e; are
both contained in R,(1) except when g=f, and in this case we can conclude
that R,(1) =A,(1) contains A. This implies that f is the unity quantity of X,
which is contrary to our hypothesis that either e is the unity quantity of % or
A has no unity quantity. It follows that €,=0.

By §5 we may write R =R+ Rao+ Raz+ Riz+ Ris+ Res. The ideal B, of
R,(1) is defined by the property B,R,(1/2) CR,(0). Now (21) implies that
RN, (1/2) =R,(1/2). If D, is the intersection of R;; and B,, then D, RN,(1/2)
is contained in both R,(1/2) and R,(0) and is zero, D, CE¢,, D, =0. Since B, is
an ideal of R,(1), the components of any b ="b;;~+b:;+b;; are in B, and so the
component b;;=0. Thus B,=B,:PB,; where B,; is the intersection of B,
and Ri;, B,; is the intersection of B, and NR;;.

Define the submodule B =%8,4 81+ B:. By Lemma 1 the subring R4(1)
=R+ Ris+Rss has the property that Ri(1) —By is a Jordan ring. Since a
Jordan ring is stable, it follows that RuRisCSRiz+Bs. But BaRi: SR,(0)
=R3s and so B N13C Bis. Evidently Bj1Ra3=0. By symmetry B 2Ra3 Bis
and so B;R,(1/2) ©B. Since B;R,(0) =0, and B;R;(1) CB; since By is an ideal
of B,(1), we know that B;R C Y. By symmetry we see that BoRCB, BeNCTY,
BRCB. Since BT Ru D R D N33, our hypothesis about the ideals of RN im-
plies that B cannot be a nonzero ideal of R. Hence B=0. We have proved
the following result.

LeEMMA 6. The subrings Ru+ R+ Rae, R+ Ris+ Res, Roo+Ras+-Ras are
Jordan rings, and so R:Ri; SRy for i#j and 1, j=1, 2, 3.

Let us now write L=Ru+RN:;;+R;;, N=Ru+Rix, M=NRwx. Then L
=R,(1), M=R,00), R=R,(1/2) where g is one of the idempotents f, &, k. But
R (1)R,(1/2) =RiiRax+ RisRie+ R (R + Ri) SR+ Rin =N, R(0)R,(1/2)
=R (Rir+Rix) SR+ Rjx by Lemma 6 and we have proved that

(22) MSRN, MRCN

We may also use (5) and (6) for the idempotent g where (22) implies that
So(x1) = T1(x0) =0. This yields




1950] POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS 511

(23) wiz2(oyn) = (wi2m) 9 + (wWi720) 0 (A=0,1),
where we have written 2z, for the general element of ®,(\). By (7) we have
(24) . (w1220) Y12 = (W172Y1-0) %n A=0,1).

We shall also prove the following result which will be seen later to imply that
R is a Jordan ring.

LEMMA 7. Let x) be in R,(\) for A\=0, 1. Then

(25) (wipyr) o = [(mny12)wiye + (Bawise)y12hh
and
(26) [wl/z(yx/zxx)]l—x = [yl/z(wl/zxx)]l—x.

For proof we apply the Jordan identity
27) (wx)(y2) + (wy)(x2) + (wa)(xy) = [w(yz)]x + [w(xz)]y + [w(x)]z

in the ring €. Put w=w;;, x=x;;, y=79;;, 2=e¢; in (27) to obtain 1/2 (w;;x::)y:;
+ Wiy ) i 1/2 i (%3955) =1/2 %2:(yi5wi5) +935(wisis) + i [wi;(x::5) |. Then
%ii(Wiyis) Fw(ey) =y (%iws;) + 26 [wi;(x:9:;) | and so we have

(28) vis(wiiyes) = e[ yii(wawis) + wii(yizi) |,
(29) eil(xayi)wii] = e;[(xuwin)yis].

These results are special cases of (25) and (26) and we pass on to the general
case.

Let us assume first that x; is in Ri;. If 12 and wy)» are in R, all products
in (25) and (26) vanish and so the relation is valid. If y.2 and w/; are in R
we use (28) and (29) for the Jordan algebra R:;+ Rix+ RNix and obtain (25) and
(26) immediately. There remains the case where y12=v: and w2 =wp. We
apply (23) for the idempotent e;+e. and have wjr(xiyir) = (Wikss)Yix
+ (Wikyin)%is = (Wiyix) i since x;;wi=0. But this yields (25) and (26).

Assume next that x; =x;;. If y=1y; and w=w;; then x;;(vawi) = (%i;yir) Wir
+ (x:;wa)yax by (23). This yields (25) immediately. The components in Rix
=R,(0) of all terms are zero and so (26) holds. There remains the case
y=vi, w=wj;z. We substitute these values with z=e; in (1) to obtain
2245 (yawin) 2w (®sy ) = %i;(yawie) + wie(Xiya) + ya(iwi) + e[ (yawie)
+ya(xiwi) Fwin(xiya) |. However e;[ya(x:;win) ] =0 and so we have x;;(yaw;x)
Fwin(xiya) =y (swn) €5 [x:(yawn) +wi(eiya) | Since xij(yawn) is in
R+ Nis, win(xipyie) is in R+ Rex, and ya(xiwi) is in R+ Riw, we may
equate components and find first that e [(x:jyix)wix | =ex[ya(xijwin) | whichis
(26). We also see that e;[x:;(yawi) | =e:[ya(xijw;) ]. Interchange 7 and j and
y and w to obtain e; [x,-,-(y,-k'w,-k) ] =e; ['wjk(x,'jy,'k) ], add to get xi;(yaws)
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=e;[ya(xiwin) | +e;[win(x:;9:) ], and (25) is proved. This completes our proof
in the case A=1.

In the case A=0 we have x=xi. As above (23) implies that w;(xxy:x)
= (wjkxkk)y,-k+(w,~ky,~k)xkk= (wjkxkk)yik. This yields (26) Equation (25) is
automatically satisfied since (w;xyir)Xur =0, ex [ (Xryir)wir ] = e [ (Xwjn) v ] = 0.
The remaining case is that where y=1y, w=w; and (25) and (26) follow
from (28) and (29).

The results just obtained are sufficient to prove our theorem on power-
associative commutative rings.

THEOREM 1. Let U be a simple commutative power-associative ring whose
characteristic is prime to 30, and let U contain a pair of orthogonal idempotents u
and v such that u+v 1s not the unity quantity of A. Then N 1is a Jordan ring.

For proof we note that Lemma 2 implies that % can be imbedded in a ring
R with a unity quantity e=e;+e,+es for pairwise orthogonal idempotents
e1=u, e=v, ¢3 and that R =R+ Roo+ RNss+ R1z+ Ri15+Res where Lemma 6
holds. Moreover we have (22), (23), (24), (25), (26).

The Jordan identity (27) is linear in x, ¥, 2, and w and so it suffices to
prove this identity for the variables in component submodules %;;. If all four
of the variables are in =R;;+R:;+R;;, then the Jordan identity holds by
Lemma 6. If three factors are in € and one in N =Ry, then all products in
(27) are zero and (27) holds trivially. Hence let three factors be in € and one
in M=Ra~+Rix. The Jordan identity (27) is an identity J(w; x, y, 2)=0
which is symmetric in x, ¥, 2 but not in w. The power-associative identity
(1) is the identity

J(w; %, 9,2 +J(x; 9,2 w) +J(y; 2w x) +J(z v % 9 =0,

and if J(x; 9, 2, w) =J(y; 2, w, x) =J(2; w, x, ) =0 then also J(w; x, y, z) =0.
Hence we need only consider the case of (27) in which w=w», x=x172, y=m,
z=2. We then use (23) to write

H = (2120) (@mwr) + (#1722) (mwn) + (x172m0) ()
= (z122) (ma) + [(x12m)en]on + [(x1720) a1
+ [(x12)20 + (217220) 1] n.

But  [(xyay)an + (m1pa)yn]wn = [x12(nm) Jwn = 21 [un(ha) ] — (x12m0) (a2
and so H = [(x1200)wn Jan+ [(x1/222) w0 Iya+ [wn(2ayn) |21z as desired.

We next assume that only two factors are in 2. If one of the remaining
factors is in I and one in N we may write w=w;_» or w=w, or w=wy,. In
the first case we take w=w;_\, x=x152, y=9\, 2=2 and have wy=wz=0,
H= ('wl—-)\xlﬂ) (yxzx), K= [wl—x(xl/zyx) ]Zx + [wl-x(xx/zzx) ]yx = Wi\ [(xl/zyx)z).
+ (@120 ] = wia[212(08) ]| = (®1w1) (ha) by (23) and (24) so that we
have the Jordan identity H=K. Next write w=wy, x=X12, =9, =21\
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and have H= (w)‘y)‘) (xl/zzl_)\), K= [*w)‘(xl,zzl_;‘) ]y)‘-l- [w)‘(xl/zy).) ]21_)‘ and H=K
by (23) and (24). Thus J(wn; %a, Y2, 21a) =J(Xn; Wr, Yz, 21n) = J (3123
W, X, Yy2) =0 from which J(yy2; %5, wa, 21-2) =0, and the identity is proved.

There remains the more difficult case where two of w, x, y, 2 are in ¢
and two are in . We first write w=wys, x=xr, y=9\, z=22 and
have H = (wi%) (21291) + (w1200) (03212) + (Wrye21/0) (agn), K = [wra(eayn) ]2/
+ o [wip(0rzi2) |+ [w12(00)212]. We compute

(30) an[wre(nzie)] = [(@w12) (mer2) h + {wre[o(nze) ]
and
(31) wlwia(nzy) ] = [(mwy) @z + {w12[n(nzy) ]

by the use of (25). Also (25) implies that
(o) (wrs2z12) = { [(mam)wrelziehy + { [(5a)z172] wise fa
It follows that
K, = xx[W1/2(yx21/2)] + yX[w1/2(x>\ZI/2).|

+ {[(xxyx)'wl/zlzl/z}x = [(xx‘wl/z)(ym/z) ]x

+ [(nwiye) (0az12) s+ {wre[(mam)za/2] fa

+ (@) (wipz1y2) — {wi[(om)ze]fr = Hh
Also Ki={[m)wizlasbia and  Hio = [(mawy) (hz2) i+ [(6az12)
c(mawrye) o= {Zl/z [(w1220) 2+ (w17290) 20 ] }1_)\ by (26). Hence (23) implies that
Kl_)\=H1._)\, H=K.

We next write w=w,, X=x13, Y=\, 2=2,. Then we know
that H = (wx1/2) (92172) + (0390) (X1/221/2) + (w0a21/2) (X17290) = %12 [3172(20390) |+
[z12(nxrje) |+l 212(%1290) ] by the result above. Since K =iy
- (1212) |+ [wn(x1/22172) | 42172 [n(x1/290) ], the Jordan identity is true if and
only if
xl/z[wx(yxzm) - lez(wxyx)] + J’A[wx(xl/ezllz) - Zl/z(wxxllz)]

= w[z12(2120) ] — 2172 [r(21/290) ].

(32)

However  ziyp(wnn) = (Zipwn)mtwn(nzye) by  (23), and  wn(xi2212)
= [(wnxy2)z+ (wrzye)x12] by (25), so that y[wa(x12212) | = [(wawr/2)21/2]
+9[(wazy/2)%172) . It follows that (32) is equivalent to

(33) yx[(wle/z)xl/z] + 21/2[wx(x1/zyx)] = ‘wx[zl/z(xl/zyx)] + xx/z[(zl/zwx)yx]-

We now compute
(34) nl(rz2) 512] = (g2 (wazee) s + {x12[n(onzye) T
(35)  {zplwa(@iem) 1} = {Guaw) (®120) } o
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(36)  {xma[n(@ay) 1 = [(@12) (z12w0) ],
(37 w[z2(nx1/2) ] = [(wz12) nza2) Iy + { [a(nz1/2) 2172

If we label the terms in (33) as a, b, ¢, d and so need a+b=c+d, then (34)
states that a=~k\+d\, (35) states that b=k, (36) states that ki
=d;.» and hence that bi_x=di-\, (37) states that c=k\+0bx. Then a+b
=k t+dr+b1a+by, c+d=k+b+dr+b1-n and so (33) holds. This proves
the Jordan identity when two factors are in € and two in IN.

The only remaining case is that where at most one factor is in £. Then at
least three factors are in M+ N =RNu+ R+ R and so at least two factors
are in ¥ =R+ R+ Rix or in L7 =R;;4+Rjr+ Rix. This completes our proof.

The theorem just proved holds for algebras (not necessarily finite-dimen-
sional) as well as for rings. The proof goes through with practically no change.
However it holds as corollary of the ring result since an algebra without
proper algebra ideals is easily seen to have no ring ideals. Indeed let A be a
simple algebra not a zero algebra of order one over §. Then A= If M is
any nonzero ring ideal of ¥, the set Mg of all finite sums Y _\;z; with \; in
& and z; in M is an algebra ideal, Mg>=0, Mg=9, every x of A has the form
x= D A\gz:. But then xy= D>_z:\:y), z:\;y) is in M, A=A2CIM, M=, A is a
simple ring.

7. A theorem on special Jordan algebras. An algebra U over a field
T of characteristic not two is called a special Jordan algebra if % has a faith-
ful representation x—7T, as a vector space ¥ of linear transformations T,
on a vector space such that T,,=1/2 (T, T,+T,T.). We shall prove the fol-
lowing result for algebras over a field § of characteristic not two.

THEOREM 2. Let U be a special Jordan algebra with a unity quantity e which
is an absolutely primitive idempotent of A. Then there exists a scalar extension
& of T such that Ue=eR+ N where N is the radical of Ug.

By a well known argument, if g =eR 4+ N where R is the algebraic closure
of §, then there exists a subfield € of finite degree over § such that Ag=eR+ No.
It is therefore sufficient to consider the case where § is algebraically closed
and so every quantity x of ¥ has the form x=ae+y for « in § and y nil-
potent. Since x is a linear transformation, x is singular if and only if x is
nilpotent.

We may identify % with its representation by linear transformations and
shall use x-y for the product 1/2 (xy+yx) of A where xy is the associative
product. It isalso known(?) that the representation may always be selected so
that e is the identity transformation.

() For if ex-+xe=2x where e is an idempotent linear transformation, then ex-+exe=2ex,
xet-exe=2xe and so ex —xe=2(ex—xe), ex=xe, x is in the space of linear transformations for
which e is the unity quantity. These linear transformations are then transformations on a sub-
space for which e is the identity transformation.
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If a is any quantity of 9, the right multiplications R,;, R, generate an
associative algebra YU, which is known(!%) to be nilpotent when @ is nilpotent.
If B is any nilpotent subalgebra of %, the right multiplications R, defined for &
in B generate(!?) an associative algebra B* of linear transformations on ¥,
and B* is nilpotent. Since B is a nilpotent Jordan algebra of linear trans-
formations, the enveloping associative algebra B, is nilpotent(}).

Let 8 be a maximal nilpotent subalgebra of %, and let €=8B+e§. If
€ =9 there is nothing to prove. Hence we assume that €9 and that there
exists an x in A and not in €. We now form xB**=0 for k sufficiently large.
But then there exists an x not in € such that xb+bx is in € for every b of B.
Since x =ae+y where y is not in € and is nilpotent, we know that yb-+by =xb
+bx—2ab is in €. Hence we may assume that x is nilpotent. We now prove

LeMMA 8. The quantities bxb, xb2+b%*c, x2b%*+b2%x2, xb%x, bx?b, bxc+cxb,
xbc+cbx, x(bc+cb)x are in B for every b and ¢ of B, and cxvx+xbxc is in €.

For xb+bx=Re+b" with 8 in § and &’ in B. Then b(xb-+bx) + (xb+bx)db
=b%+xb2+2bxb=2Bb+bb'+b'b is in B. By hypothesis b2x+xb%= e+ by’
for B2 in § and by in B, 2bxb = —Bee+b" with b” in B. But B.e+b" is singular
only when B,=0. Hence bxb and b%c+xb? are in B. Now (b+c)x(b+c)
=bxc+cxb+bxb+cxc is in B and so bxc+cxb is in B.

We now see that (bxb)x+x(bxb) =ve+b; for v in § and b; in B. Form
(Be+b")2=P2%+2Bb"+b"2 = (xb+bx)2=x(bxd) + (bxb)x +xb2c+bx2b. Since bxb
is in B the quantity x(bxb) 4 (bxb)x is in €. It follows that bx2b+xb%x =de+ b4
for 6 in § and b, in B. We also form x(xb4bx)+ (xb+bx)x = x2b+bx2+ 2xbx
=2Bx+ (xb"+b'x) =2Bx+0de+bs. Then 2bx2b+b2x2+x2b2+42(xbxb+bxbx)
=2B(Be+b")+26b+bbs+bsh. It follows that b2x2+x2b2+2bx2b=¢ee-+bg
for € in § and bs in B. However xb2+b%x=b; is in B, x2b2+b2%x2+2xbx
=xb"+b'x =Ne+by, bx2—xb%x is in €. Since bx2b+xb%x is in € so are bx2b
and xb%. But both quantities are singular and so must be in 8.

The quantity (xb)2+ (bx)2=L%+20b"+b"2—xb*—bx? and so b2x?
+x2b? =2B%+20b’ + 26b+bbs+bsb — 2bx2b — 2 [ (xb) 2+ (bx)2] is in B. The
quantity x(b+c)*x =xb%c+xc2x+x(bc+cb)x is in B and so x(bc+cb)x is in B.
We now form cbx+xbc+c(Be+b"—xb)+ (Be+b" —bx)c=2Bc+cb’+b'c— (cxb
+bxc) which is in 8. Now cxbx+xbxc=(ye+c —xc)bx+xb(ye+c' —cx)
=v(bx+xb)+c'bx~+xbc’ — x(cb+bc)x which is in € by the results already
proved.

The quantity 2xbx =x(xb+bx) + (xb+bx)x — (x26+bx?) is in the algebra
A. If xbx is in € for every b of B, then xbx is singular and is in B. But then
(xbx)b+b(xbx) is in B, (Be+b")2+ (xbx)b+b(xbx) +bx2b+xb% is in B and is
nilpotent, b’ is nilpotent and so 8=0. We have proved that in this case
xb+bx is in B for every b of B.

(19) See Theorem 1 of JA2.
(1) See Theorem 8 of JAL.
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Assume now that there exists a quantity d; in 8 such that y; =xd.x is not
in 8. Evidently v, is nilpotent. Then y, =4 =x(dx%d;)x = xdsx where ds is in
$B. If y: is not in B we continue the process and obtain a quantity ys =y} = xdsx
where ds = dox%d, is in B. But the nilpotency of y; implies that this process must
yield a quantity y such that y2 is in 8 while y=xdx is not in € and d is in 8.
Evidently yb+by =xdxb+bxdx is in € by Lemma 14. We now let yb+by=0e
+b’ and compute y(Be+b')+(Be+b")y=28y+(yb'+b'y) =y2b+by>+2yby.
If yo'+b'y=pP'e+bd", then Be+b"" — (y2b+by?) =2(yby—By) is singular and
b’ —(y2+by?) is in B. Then §'=0.

Assume that B, is the set of all quantities b; of B such that yb,+b,y is in
¥B. By Lemma 8 we see that B;D82 The result above shows that

yb+by=Be+b1

where b, is in B, for every b of B. Also yy?+y2y=2y* is nilpotent and so y?
is in Bs. It follows that D=yF+ € is an algebra and that By is an ideal of D.
Let yb+4by=0e+b, where 350, for some b. We may take 8=1 without loss
of generality. The homomorphism w—w, of © onto D—B maps e onto the
unity quantity e, of © and ¥ onto yo, b onto bo such that yebo+boyo=eo.
Also ¥5 = (y%)o="0b%=(b2)o=0. But then the fact that y is not in € implies that
uo=1/2 (yo+bo+eo) #eo, ut= 1/2 (eo+2y0+2bo+boyo+yobo) =uo. The class
uo must then contain an idempotent u>e contrary to the hypothesis that e
is primitive. It follows that yb+by isin B for every b of B, B:1=B, E=yF+B
is a subalgebra of % containing B as an ideal € — B =yF, €— B is a nilalgebra
contrary to our hypothesis that 8 is maximal. We have proved that ¥ always
contains a nilpotent quantity x not in B such that xb+bx and xbx are in B
for every b of 8.

If xb+bx=20" then xb'+b'x =" =x2+bc®+2xbx and so x2b+bx? is in B.
Assume now that x*0+bx*=b; is in B. Then x*+1p+bx*tl=x(b;—bx*)
+ (b — x*b)x = xby +brx — [ (xbx)b*—14b*~1(xbx) | which is in B since xbx is in
$B. It follows that €= F[x]+B is an algebra and that §—B=F[x] is a nil-
algebra, €%, € is nilpotent. This contradicts our hypothesis that B is
maximal and implies that A =eF+ B as desired.

8. Principal idempotents. Consider an idempotent e of U and write
A=UA(1)+A(1/2)+A.(0). If x is in A we use (1) with w=e, x=y=23 to ob-
tain 4(ex)x?=ex3+ (ex?)x+2[(ex)x]x. When x is in %.(1/2) this relation be-
comes x%=ex3+(ex?)x. But if x?=w,+wo, then x3=x(wo+w)=2x[Si2(w1)
+ Tyya(wo) ] +2So(wr) +xT1(wo) = exd+wix =1/2 %[ Sya(w1) + Ty2(wo) ] +x T1(wo)
+xS12(w1) +xSo(w1). We have proved the relation

2
(38) %1/95172(w1) = %172T1/2(w0), w; + Wo = Xy1/2.

By (5) we see that Sl/z(w:) =2k-1 [S],/z('wl) ]k and similarly Tl/z(wﬁ) =21
[T1/2(wo) ] But if x [ Syye () ]* =2 [ Tuya(wo) |%, then x[Syz(wy) |¥+1 =2 Tya(wo) *
Sl/z(wl) = xSl/z(wl) [Tm(wo) ]’c by (7). Hence x [51/2(101) ]k =X [Tl/z(‘ZUo) ]k for all
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positive integers & and so xSy(w}) =xT12(w}) for every k.

An idempotent e of ¥ is said to be principal if there is no idempotent
orthogonal to e. Then %,(0) 7s a nilalgebra and we may now obtain a proof of
a result previously proved only for stable algebras, and which will be com-
pleted in Theorem 7.

LEMMA 9. Let e be a principal idempotent of a commutative power-associative
algebra A whose characteristic is prime to 30. Then the quantities of A.(1/2) are
nilpotent.

For if e is principal we have w}=0 for some k since wy is in %.(0). Then
%12S12(wf) =0. Put z=x2%+1=1xx2 = xwk=x(w}+w}) = xwh=xS,(w}). It fol-
lows that 2z is in %.(0) and is nilpotent, x is nilpotent.

9. The first property of simple algebras. Let A be a commutative power-
associative algebra with a unity quantity e over a field § of characteristic
prime to 30 and suppose that e=u-v where « and v are orthogonal idem-
potents. Then we may write A=U+Ao+A where A;=U.(1) =U(0),
Lo =A.(0) =A, (1), U2 =U.(1/2) =A,(1/2). We adopt the corresponding nota-
tion x =x;+x12+ %, for the quantities of A and will use (6), (7), (8) with the
subscript zero replaced by two. Thus X1y =y12Sy2(x1) +y1252(x1), %212
=y T12(%2) +y12T1(x2). We now prove

LEMMA 10. Let Ay =uF+ G, s =0F+ G, where & =G0 O, is a nilalgedbra.
Then xy=ae+g for every x and y of i where a is in § and g is in .

We begin our proof by observing that the mapping 1/2 x;—Sy2(%1) is a
homomorphism of ¥; onto a special Jordan algebra and its maps the nil-
algebra ®; onto a nilpotent Jordan algebra PB; of linear transformations
P1=2512(g1) on Az It is known(!!) that the enveloping algebra of P, is nil-
potent and so P, is nilpotent. Similarly the mapping x;—2T2(x2) maps every
g2 of &, on Py=2T1,(gs) where P, is nilpotent. By (7) we have P,P,=P,P,
and hence P;+ P, is nilpotent. It follows that = P,+P. is a vector space of
nilpotent linear transformations P =Sy2(g1) + T1/2(gz) and that the enveloping
algebra of P is nilpotent.

Suppose now that x is any nonzero quantity of ;s and so write x2=w,
+we, wi=au+g1, wy=Pv+g for g; in &;, @ and B in §. Apply (38) and
compute xSy2(w;) = 1/2 ax—+xS12(g1) =xT1p(we) = 1/2 Bx~+xT12(gs). Hence
(¢ —B)x=xP where the linear transformation P =277 (g:) —2S12(g1) is nil-
potent. Since x#0 we must have @« =(3. We now let x and y be in %;» and write
x?=aoetg’, y?=Pe+g"’, (x+y)2=ve+g'". This yields 2xy = (x+y)?—x2—y?
=(y—ao—PB)e+ (g —g —¢g'""), xy=ae+g as desired.

LEMMA 11. Let y125:(x1) be in &, for every x1 of Ay and y1o of Wis. Then
y12T1(x2) 25 1n &, for every x; of s and y12 of se.

For T1(v) =0, and we need only prove that y1,T1(g,) is in ®; for every g, of
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®2. Suppose that there is a quantity p1 in %12 and a quantity gz in @, such
that fi=p12Ti1(g2) is not in ®;. Then f; has an inverse in %; and fifi'=u
=2p1S12(f1 ) T1(ge) =312 T1(g2) by (8) where y12=2p12S1/2(fT") is in Uso. Then
we have

(39 Y1282 = b12 + u, b1z = y12T1/2(g2).
We next write
(40) b12ge = €12 + 1, c12 = b12T1/2(g2), c1 = b12T1(g2)-

By (6) we have ygs =y1T12(g3) +1:T1(g3) =2 [y12T1/2(g2) | Tu/2(g2) +4 [y12 T2
(g2) | T1(g2) and so
(41) yug: = 2¢12 + 4c1.

Let us substitute y=z=1yy,, x=w=g, in (1) and obtain

42)  2[2(y1280)’ + yuge] = gelgeyie + 2(gey1)yiz] + yre[ynnge + 2(yrsga)es].
This becomes 4(b1z+u) 2429382 = g2(g2%) + 2g2(b12y12+1/2 y12) + 12 (2c10+4c1)
+ 2y15(b12g2) = g2(g2y3s) + 282(12y12) + bia + % + 2919¢12 + 41961 + Yro€12 + 2y1201
= 4b},+4b1;+4u-+2y%g2. Computing the components in %; and %, we obtain
(43) 3u + 4u(brs) = 4u(yracia),

(44) 4‘vbiz — 4v(y12612) = 6b2 + gz(gzyfz) + 2g2(b12y12) — 23’?282,

where b; =%1,5:(c1) is in &, by the hypothesis of our theorem and all other
terms of the right member of (44)-are also in .

We now substitute y=z=y1;, w=u, x="h, in (1) and use the fact that
u(heyts) = ha(y3u) =0 to obtain

(45)  4y12(y12k2) = y12(y12k2) + 2y12[0(y12k2) | + h2yf2 + 2u[y12(y12hs) ].
Write

(46) Yizhs = dia + di,  d1 = y1T1(hs),  dr2 = y12T1y2( k)

and obtain 3yi2(die+di) = 2u(y12d1+y12d12) + hey2a+ 2¥19d1 + Viadie. This yields
Viad1+ 291912 = 2(y12d1)  + 20 (Y12d12) + k3%, and the component in U, is

(47) 2(312612)9 + ¥1250(d1) = hzyiz.

In the particular case where #; =g3 we may use (41) and have di2 = 2¢1s, dy =4c;
so that

(48) 4(y19612)0 + 4b2 = g:yg.

Since b, is in ®; so is v(y1c1e). By (44) the quantity 4vb% is in ®; and by
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Lemma 10 both yic12 and 8%, are in ®. But then (yici2)# and b%u are in ®
and this contradicts (43).

Let us now return to the study of simple power-associative commutative
algebras ¥ over a center § of characteristic not two, three, or five. We let
& be the algebraic closure of § so that e is simple and every primitive
idempotent of Agp is absolutely primitive. Define the degree of U to be the
maximum number of elements in all sets ey, « - -, e, of pairwise orthogonal
idempotents e; of . The sum f=e¢,+ - - - +e; will then be a principal idem-
potent of Mg and the e; will be primitive idempotents of ¥g.

If £>2 or t=2 but f is not the unity quantity of ¥ we apply Theorem 1 to
see that g is a Jordan algebra. But then ¥ is a Jordan algebra. Thus when
t =2 the algebra ¥ is either a Jordan algebra or has a unity quantity.

Let t=1 and thus assume that U is a simple algebra containing a primi-
tive idempotent quantity «# which is the only idempotent of Ug. There is no
loss of generality if we take & =§. Adjoin a unity quantity to % as in §4 and
obtain an algebra R=A+4oF with a unity quantity e=u-+v and which is
such that all nonzero ideals of i contain A. If A,(1/2) =0 then A=UA.(1)
@A.(0) contrary to our hypothesis that ¥ is simple. Thus R.,(1/2) =A.(1/2)
#0. Since u is a principal idempotent, the algebra %,(0) =®, is a nilalgebra.

By Lemma 1 the algebra %,(1) contains an ideal B, which is a zero alge-
bra and is such that f.(1) —B, is a special Jordan algebra &. The unity
quantity of & is the image #’ of # and must be absolutely primitive since
every idempotent element of & is the image of an idempotent of 2,(1) when
9 is power-associative. By Theorem 2 we have §=4'§+ 9 where 9 is a nil-
potent Jordan algebra. But then A,(1) =4F+®; where @ —B,=9. It fol-
lows that @, is a nilalgebra and that we have the hypotheses of Lemma 10
for the algebra 3.

If x and y are in A,(1/2) then xy =ae+g where @ is in § and gis in ©;+ G,
by Lemma 10. But x and y are in A and so xy is in ¥, xy=g, Au(1/2)A.(1/2)
CO.Ifyisin A,(1/2) and x is in A, (1), then xy is in A,(1/2) +2A.(0). But then
¥Se(x) is in ®2=N.(0) and the hypothesis of Lemma 11 is satisfied, yz is in
A.(1/2) 4 ©, for every y of Au(1/2) and z of R,(0). It follows that B=N,(1/2)
+®;:4+ O, is an ideal of R. However B does not contain % and so B=0,
A.(0) =Au(1/2) =0, a contradiction. We have proved the following property.

THEOREM 3. Every simple commutative power-associative algebra of char-
acteristic prime to 30 s either an algebra of degree one or two with a unity
quantity or is a Jordan algebra.

10. Jordan algebras of degree two. Let A be a Jordan algebra with a
unity quantity e =u-+v where » and » are orthogonal idempotents, and write
A=A+ W2+ Az as in §9. Since A is a Jordan algebra we have the properties
AW SUpo, LoWsoSNo. Thus u(giyie) =1/2 giyre for every g; of A; and y;, of
Ae.
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THEOREM 4. Let 1 =uF~+ O, Wo=vF+ . where & =GP O; 15 a nilalge-
bra. Then B =0+ OUs, 1s a nilideal of A.

We begin by interchanging w and x in the Jordan identity (27). The left
members are unaltered and so the right members must be equal, that is,
we have the identity

49 [w(y2) ]z + [w(x2)]y + [w(xy)]z = [2(y2)]w + [2(w)]y + [#(wy)]s.
Put y =1y, 2=g,, w=wys, x=u and obtain
[wm(yngz) ]u + 1/2 ('wnylz)gz = 1/2 (yngz)wu + 1/2 (wugz)ym

where we have used the property xz=0 and [u(yiw:s)]g.=0. Write
wu(yugz)=ae+h1+hz, (wugz)yu =Be+k1+kz for  and B in %, h1 and kl in
®1, ks and k; in &,, where we have used Lemma 10 and the fact that yi.g,
and wi.g; are in Ay2. We substitute these expressions in the formula above and
have

au + ki + 1/2 (w1ay12)ge = 1/2 (e + by + hs) + 1/2 (Be + k1 + ka).

Since (wiy12)g2 is in &, we have au=1/2 au+1/2Bu, 1/2 (av+Bv) =0. Thus
a=f, a=—f, a=B=0. This proves that (A& CE. By symmetry
N (Ure®) CE® and so Ap(A®)SOHCSVB. But then AB = Wi+-A1+Ay)
(U204 O) = Ao (W12®) 4+ (Az 4 Az) (A1) + A+ Az) O+ A ® S Ao ® + A1S
+©®+ A& CB where we have used the fact that [y1251/2(g1) Jaz = [12T1/2(a2) ]
-S12(g1)s [¥12S12(21) Ja1 = 312S1/2(g1) S12(a1) = 31251/2(£101) — [12S1/2(@1) | S112(g) to
prove that (U4 Az) (A12®) CA1®. This proves that B is an ideal of A. If B
were not a nilideal, it would contain an idempotent w=w~+ w2+ w,=w?
=w"{+w§+wf,2+2wl/z(wl+w2). But then w1/2=2w1/2(-w1+w2) ='w1/2P where
P =2815(w1) +2T1,2(we) is nilpotent since w; is in @,. It follows that w,;=0
and that the idempotent w is in the nilalgebra & which is impossible.
We now have the following consequence:

COROLLARY 1. Let U be a simple Jordan algebra of degree two over a center
whose characteristic is prime to 30. Then U is a classical Jordan algebra of degree
two.

For the ideal B of Theorem 4 must be zero and every quantity of the
scalar extension g of A has the form x =au+Pv+x12 where x2,,=F(x12) e
with f(xy2) a quadratic form in the coordinates of x:. This is the classical
Jordan algebra of degree two.

11. Classification of simple Jordan algebras of characteristic . We shall
proceed to extend the result of Theorem 4 to the case t>2. We let % be a
Jordan algebra whose unity quantity e is the sum e=e;+ - - - +e¢; of pairwise
orthogonal idempotents e; and so write % as the sum of subspaces %;; =, for
1=<jandz,j=1, - - -, . Here %;; =¥.,(1) and ¥;; is the intersection of A.,(1/2)
and ¥.;(1/2). Theorem 4 may now be extended as follows:
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THEOREM 5. Let Uyi=e;F+O; where ®; 1s a nilalgebra, and define ©;;
=W;;(®;+ ;) for 1545, Oijp=Wi;(O; ;1) for <, j, k all distinct. Then the sum &
of the spaces &;, Oi;, and O is an ideal of A which contains none of the
idempotents e;.

We note first that @;;=;;=A;;. We also substitute w=w;, x=e;, y =7y;j,
z=g; in the Jordan identity (27) and obtain

(50) (wigi)yii = wir(yiigi).

We also substitute x=e;, y=v;j, 2=g, w=w; in (27) and obtain
(1) yii(winge) = ge(yiiwin).

We have thus proved the relations

(52) Oijr = Orjs © Aix, Ws ;A ixGr) € Aix®.

Theorem 4 is applicable and yields the relations %;:®;;C®;;, %:;®;;S®;
+@®;. Since %,,®;;=0 if p and ¢ are distinct from 7 and j and since (52) im-
plies that %;;®;; = ®:;+®;, we have proved that AY;;C@. Evidently our
definitions have been so constructed that A®;C®.

Let us now pass to the more difficult task of proving that d®;;=©®. We
put x=x; w=w;, Y=y, 2=g; in (27) and obtain (x;w;;)(yxg;)
=x;[wij(yirg;) ]. Since x;w;; is in UA;; we have proved that

(53) Wit S Gijn

By symmetry Wu®ijr=0®i But &ip=%Uu and so A,p®i=0 for every
p#=i, k. Hence (O te1 Upp)®iin S Giji.

We next write x =x;;, W =w;;, ¥y =¥x, 3=g; in (27) and obtain (x;;w;;) (x;rg;)
+ (wisgs) iy n) + (wigyin) (%1ig5) = %5 [wii(Vings) | +-yin [wii(eiigi) 1+ g5 [wis (vinxis) |-
Evidently g;[w:;(y;%:;) ] is in ®;z. By Theorem 4 the product w;;(x:g;) is in ®;
+®; and so yx[wi;(xi;g;)] is in @;n. The products (wisyn)(xiig;) and (x:y;x)
-(wijg;) are clearly in Au(Uii®;) CUkiGi=0O; and (xi;wi;) (yigs) is in
(ﬂi‘i’ﬁj)@jk:g{j@jkg@jb We have then shown that X5 [-w,-,-(y,-,,g;)] is in @j},,
that is,

(54) AiiOiin = G

Substitute x =%, ¥y =9k, W=w;j;, 3=g; in (27) and obtain (w:jx:)(g;yjr)
+ (wiigs) (®ayn) = [wii(gyi) Jea+ [wi(xiyn) |g;. The term (wixa) (gys) is in
®;+ O, by Theorem 4, (x:ixy;x) (wijg;) is in ©;+®; and [w;;(xayi)lg; is in ;.
Hence x [wi;(giyin) | is in @;+©,, that is,

(55) WiGii S ©; + G

There remains the possibility that £>3 and so that there exists a subscript
p#1, j, k. Evidently %,,®:;x=0 unless ¢=1 or k. Put x=x4, y=y5, w=w,
z=g;in (27) and obtain (wij%:,) (Yjrg;) =% [wij(yrg;) ], a result which may be
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written as
(56) Wix®i ik S Opir

This completes our proof that AY;; C® and that @ is an ideal of . Since the
intersection of ® and U;; is ®;;, no e; is in ©.

Let us now assume that R is a Jordan algebra over an algebraically closed
field § and that & has a unity quantity e=e;+ - - - +e; for absolutely primi-
tive idempotents e;. We first apply Theorem 6 in the case where R is simple.
Then some R;;0 and we may apply Lemma 1 to see R;; has an ideal B;
which is a zero algebra and is such that %;;—3B; is a special Jordan algebra.
As in the application of Theorem 4 we see that R;;=e;F+; where @; is
nilpotent. By Theorem 5, ®; is contained in a proper ideal & of R, ®;=0,
Rii=eF.

We next assume that # is a principal idempotent of a simple Jordan
algebra A over an algebraically closed field § and adjoin a unity quantity e
to U to obtain an algebra R =A+eF=A+vTF where v=e—u. Clearly A,(1/2)
#0 and R.(0) =A.(0)+ovF where %,(0) is a nilpotent Jordan algebra. Since
every nonzero ideal of R contains ¥ we may again apply the argument
above to see that some R;;#0 for every 7=1, - - -, t—1 where we have
written #=e;+ - - - +eiy, v=e,. Then Ri=eF+ ;. We again apply
Theorem 5 and see that every &;=0, R:;i=e;F. Note that in this case %,(0)
=0.

By Lemma 9 the quantities of A.(1/2) are all nilpotent. Then if x =y,
we have x?=a(e;+e:) by Lemma 10. But then the nilpotency of x implies
that a=0, x2=0, 2xy=(x+y)2—x2—y2=0 for every x and y of R;, where
1=1,.-,t—1,

We now observe that the quantities of % are uniquely expressible in the
form x =&ey+ - - - +&ei+ 2 ic; %ij in both of our cases. Define the function
7(x)=b+ - - - +& and 7(x, y) =7(xy). Since R is commutative, we have
7(x, ¥) =7(y, x). The function 7(x, y) is a bilinear function and the property
7(x, v3)=7(xy, z) will follow if proved for components in subspaces R;;.
Since RN =R and 7(xa) =0 for 15k, it is evident that 7(x, yz) =7(xy, 2)
=0 unless all three of x, y, 2 are scalar multiples of e; or x =x;, y=7y;j, 2=2;;
or X =x;j, ¥y =1%Yjk, 3=2. Lhe first case is trivial. If x=x;;, then x=£e;, x(y2)
=tei(yi2:;) =Eei(vei+ve;) =vEe: and (xy)z=1/2 &yijz:;=1/2 v£(eit+e;) so that
T(xy, 2) =vE=7(x, v2). Also X:/¥jx="Wir, (X:i/Vir)2ki=Wirzk:i =a(e;+e;). Define
YVikski =aji, Xi;0;:=P(e;+e¢;). Apply (26) for the idempotent g=e;+e. and
Y =ik =In £ =Kij =12, 5= 2ki = 212 10 Obtain ;[ (xi;y ) 20s ] = s = e [x4;(ynzus) |
=fe;. Then 7(xy, 2) =2a=2B=7(x, y3).

The properties just obtained imply that the set of all quantities x of R
such that T(xy) =0 for every y of R is an ideal of R. Since 7(eie;) =7(e;) =1, this
ideal contains no one of the idempotents e;. But in both of our cases every
ideal of R contains e;+ - - -+ +e.1. We state our result as
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LEMMA 12. Let N be the ideal of all quantities x of R such that v(xy) =0
for every y of R. Then N=0.

We shall now apply the result just obtained in the case where A was as-
sumed to have no unity quantity. We have already seen that R;:%:;=0 and
so T(x:y::) =0 for every v;; of Rie where x;; is in Ri.. Now RiR;: S R;; and so
7(x:1yje) =0. But then 7(xy) =0 for every x and y of A.(1/2). Since R.(1/2)
=%.(1/2) and Ru(DRL(1/2) SRL(1/2), Ru(0)R.(1/2) SR.(1/2), we see that
7(xy) =0 for every y of R if x is in RN,(1/2). By Lemma 12 we have 2.(1/2) =0,
a contradiction.

We have now proved that every simple Jordan algebra U has a unity
quantity e, and that there exists a scalar extension & of the center of ¥
such that e=e;+ : - - +e¢; for pairwise orthogonal idempotents e; of B="a
such that B,,(1) =e;®. Assume now that  =§ and so B=A. We then prove

LeEMMA 13. The subalgebras Dij= Wi+ Wi+ Aj; are all simple algebras of the
same order s+ 2.

For let @ be an ideal of ©s;. If g=e;+¢;+g;; is anonzero quantity of @, the
component g;; is also in ®. Suppose first that there exists a quantity a.; in U;;
such that g;;a;;7#%0. Then g;;a:;="(e;+e;) and @ contains e;+¢;and so @ =D;;.
Otherwise g;;a:;=0 for every a;; of Usj, 7(gs0:;) =0 and it is easily seen that
7(gi;0) =0 for every a of A. By Lemma 12 we see that g;;=0. It follows that
g=ae;+Be;and that ® contains e;g =ae; and e;g =fe;. In either case ® contains
aij=2ea;;, O2W;;, Aiyy=0. If every =0, then A, (1/2)=0, A=, (1)
@A, (0) contrary to our hypothesis that ¥ is simple. It follows that there
exists an integer k1, j such that ;0. If a5 =0 for every au of Ui, then
aabi=0 for every a; and by, of A and it is again true that 7(axa) =0 for
every a of ¥, ;=0 by Lemma 12. Hence there exists a quantity e; in U
such that €70 and we may assume that e} =e;+e;.

We now let g be any integer for which 2;,=0. We substitute x =y =e;,
Z=ag, w=e;in (27) to obtain 1/2 eia+en(enamn) =1/2 agp+2 [er(enaor) e
But esagr is in I, =0 and so a,, =0, that is ¥,z =0. We define v to be the sum
of all idempotents e, for which %;;=0 and u to be the sum of all the idem-
potents e for which %;;>£0. Clearly e; is one of the components of # and e;
is one of the components of . Moreover every %,z=0. But then %,(1/2) =0,
A=A.(1)DA.(0), a contradiction. Hence ¥;;#0, @ =D;; is simple. We have
actually proved that if % is simple, every U;; #0and it is known(!?) that the
spaces ;; all have the same dimension s.

The result above is now adequate for a classification of simple Jordan
algebras of degree ¢>2 as in the case of algebras of characteristic zero and

(#) This is the result of Lemma 18 of JA2. The basic properties are actually contained in
the proof of the present lemma.
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without a word of change(®®). We call the type of algebras so obtained the
classical Jordan algebras and collect our results as follows:

THEOREM 6. Every simple Jordan algebra of degree t=2 over a center § of
characteristic not two, three, or five(**) is a classical Jordan algebra. Every
simple power-associative commutative algebra over §, which is not a nilalgebra,
has a unity element and is either a classical Jordan algebra or has degreet=1or 2.

It is not yet known whether there exist commutative power-associative
algebras which are nilalgebras but are not either solvable or nilpotent. It is
also not known whether Theorem 2 can be extended to arbitrary power-
associative commutative algebras, but we shall do so for algebras of character-
istic zero. It also seems to be exceedingly difficult to determine the structure
of simple power-associative algebras of degree two.

12. The general structure theory. Let A be any power-associative com-
mutative algebras over § of characteristic prime to 30. If 8 and € are nil-
ideals of ¥, their sum B4 € is also a nilideal of A. It follows that A has a
maximal nilideal N which we call the radical of A. We call A semisimple if
N =0 and it is easy to prove that A — N is semisimple.

Let us note that if 3 has a unity quantity e, there is no principal idem-
potent of A except e. Indeed if f is an idempotent, so is e—f and f(e—f) =0,
e#f, implies that f is not principal.

THEOREM 7. Let e be a principal idempotent of a commutative power-associa-
tive algebra A of characteristic not 2, 3, or 5. Then U.(1/2)+A.(0) s contained
in the radical of Y.

The theorem is trivial for algebras of order m =1. Assume it true for all
algebras B of order m <n where 7 is the order of %. If ¥ is not semisimple,
we form B=UA—N and see that B has order m <n. The homomorphism of A
onto B sends e onto an idempotent # of B and A.(A) onto B,(\). Hence u is
principal in 8. But 9B is semisimple and the hypothesis of our induction im-
plies that B,(1/2) +9B.(0) =0, A.(1/2) +A.(0) SN as desired. There remains
the case where ¥ is semisimple.

If ¥ is simple it has a unity quantity e by Theorem 6. Since e is the only
principal idempotent of % we have %.(1/2) =%,(0) =0 and our result is true.
Assume then that % contains a nonzero ideal D<9. Since ¥ is semisimple D
is not a nilideal of % and must contain a principal idempotent e. Write D

(13) All of the material on pages 562-567 of JA2 is valid without change.

() The theorems of this paper are not true for algebras of characteristic two but are prob-
ably true for algebras of characteristic three and five. The proofs will involve the use of the
associativity of fifth and sixth powers in addition to the associativity of fourth powers (which is
all that has been utilized here). The question is being studied as the subject of a Ph.D. disserta-
tion at the University of Chicago.
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=D.(1)+Ds(1/2) +D.(0) and let I be the radical of D. By the hypothesis
of our induction

D.(1/2) + D.(0) € M.

We may also write 2[=2L(1)+§I,(1 /2)+%.(0) and it should be evident that
D.(N) is the intersection of D and A.(N). However xe=Ax is in D for every x of
A and so A (1)+A(1/2)CD,

2[ = @e(l) + 90(1/2) + 2[6(0)°

Moreover D.(0)U.(0) D as well as in A.(0) since A.(0) is an algebra. It fol-
lows that

D(0)A(0) S D(0).

We suppose now that x, is in 2,(0) and that yy. is in D.(1/2). Use (1) with
X=g=2x, y=w=7Y2 to obtain

2 2 2
4(xoy1/2) + 2xoyf/z = xo[20y1/2 + 2(Xoy1/2) Y1/2]
2
+ yi2[y1/2%0 + 2x0(®oy1s2) ]

Since i is in M so is 32, =20+21. Thus 20 is in De(0) and so 2x3y%, = 2x22
iS in m. AlSO yl/2xg is in ﬂe(l)‘l'?l,(l/Z) =®’ and since y1/2 iS in ﬂn the pl‘Oduct
Yi2(y12%) is in M. Write

oY1z = b1 + byys, b1 = y12T1(%0).

Then xo(xoyl/z) =xobl/2=61/2+61 is in @ and Yi/2 [xo(xoyl/z)]=y1/2(61/2+61) is in
M. We now compute (Xoy1/2) Y172 = (b1+b1/2)¥1/2 = b1/2y1/2+31/2S1/2(b1) +31/2S0(b1).
Since ¥y is in M we know that 1/2S50(b1) is in D.(0), byjayij2 =g1+go where go
is in D,(0). Thus [b1/2y1/2+51250(b) Jxo is in M. We have proved that

w = 4(xoy1/2)? — 2%0[y1/2S1/2(b1) ]

is in M. However y1/251/2(b1) T1/2(x0) is in De(1/2) and is in M. By (8) we know
that 21/S1/2(b1) T1(%0) = [y1/2T1(%0) Jb1 =0} and (xoy1/2) 2= b7+ 2b1b12+ b} where
we already know that 2b:b12+} 5 is in M. Thus 45} — b7 is in I and so &} is in
m.

Define ®(x,) to be the set of all quantities of ©.(1) of the form 2,71 (x0)
for any fixed x0 of %.(0) and 2, ranging over all quantities of D.(1/2). By
(8) we know that [z1/2T1(x0) Jy1=2[21/2512(31)] T1(x0) and so ®(xo) is an ideal
of D.(1). Form D—M and see that the homomorphic mapping d—d’ of D
onto the semisimple algebra ' =D — M is such that every d’ is the image of
an element d; of D.(1). Then the image of ®(xo) is an ideal of &' (x0) of D’.
But we have shown that if b, is in ®(xe) then % is in M, (b{)2=0 and so
©'(x0) =0, ©(x0) SM. Thus xey1/2 is in M, that is. A.(0)D.(1/2) =M.
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We already know that I.(1) = MD.(1) SM, MA(1/2) =MD.(1/2) CM.
Also M =M +D.(1/2)4+D.(0) where I, is the intersection of IM and D.(1),
IMAL(0) =D (1/2)A(0) +D(0)A(0) "M by the proof above. We have
proved that I is a nilideal of ¥ contrary to the hypothesis that ¥ is semi-
simple. It follows that M =0, D=D,(1) is a semisimple algebra with the
unity quantity e, D,(1/2) =0, A=DPA.(0). But then A.(0) is an ideal of A
and must have a unity quantity « by the proof just completed. The idem-
potent f=e+u is the unity quantity of % and is the only principal idem-
potent of A, A,(1/2)=A,(0) =0 is contained in the radical of A. This com-
pletes our induction and proves the theorem.

The theorem just proved implies that if ¥ is semisimple, it has a unity
element. Moreover the proof above implies that if © is an ideal of ¥, it is
semisimple and has a unity quantity e, ¥ =D P U.(0). We thus have the de-
composition of the following theorem. The uniqueness is well known.

THEOREM 8. Every semisimple power-associative commutative algebra of
characteristic not two, three, or five has a unity quantity and is uniquely ex-
pressible as a direct sum of simple algebras.

13. Simple algebras of degree one and characteristic zero. We shall close
our discussion with a proof of the following generalization of Theorem 5 for
the characteristic zero case.

THEOREM 9. Let A be a simple power-associative commutative algebra of
degree one over a center § of characteristic zero. Then N =e§ where e is the unity
quantity of .

We shall first prove the following elementary property.

LEMMA 14. Let e be a primitive idempotent of a commutative power-associa-
tive algebra U over an infinite field § and let R =F (&, - - -, &) for independent
indeterminates &1, - - - , & over §. Then e is a primitive idempotent of Ng.

It is clearly sufficient to prove the lemma for r=1 and ®=§(§). Let
3 =g [£] be the ring of polynomials in & and the unity quantity e of % and
let B=A.(1). If Ba contains an idempotent #e¢ we may write u=¢~v for
¢ in 3 and v in Bg. Let u,, - - -, u, form a basis of B over F such that u;=e
and so write 9=8114 - -+ - Cmttm for & in & At least one {0 for 1>1
since otherwise ¥ =¢~11e=¢"2%e and (¢~1{1)%=(¢~1¢1), ¢~ 11520, ¢~y =1,
u =e, a contradiction. Then there exists a quantity & in § such that ¢(&){:(%o)
0. But the quantity o= [¢(£0) |=20(£0) #0 and u, is evidently an idempotent
of B. This contradicts our hypothesis that e is a primitive idempotent of 9.

We now assume that U is simple and of degree one. By Theorem 6, ¥ has
a unity quantity e and the hypothesis that % has degree one implies that e
is absolutely primitive over the center § of 2. We may assume that § is
absolutely closed without loss of generality. The algebra §[a] of polynomials
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in a (but not in ) is an associative algebra and so §[a] =€+ N, where N, is
the radical of §[a] and € is semisimple. Since U is commutative €=,
a=cae+b where « is in § and % is nilpotent.

Let u;=e, us, + - -, 4, be a basis of A over § and select the u; to be nil-
potent in the case n>1. Let &, - - -, £, be independent indeterminates over
F R=FE&, - - -, %), 3=Fl&, - - -, £&]. By Lemma 14 we see that ¢ is a
primitive idempotent of Ag. Write x=&ui+ - - - +£.u, and see that & [x]
=D+N ., where N is the radical of [x] and D is semisimple. Since e is primi-
tive, D is a field, © = 8 (y) where we may assume that y is in §[x]. If D has de-
gree s> 1 over & the quantity y is a root of an irreducible polynomial ¢(\) with
coefficients in &, leading coefficient unity, and degree s. Write y =+ - + -
+¢au, with §; in 3. Evidently some ;%0 and we may assume that {50.
The discriminant of ¢(\) is a polynomial A(&y, - - -, &,) 0 since ¢(N) is ir-
reducible and there exist values &0, + - -, £q0 in § such that w(£1, - - -, £no)
#0 where m={A. The corresponding element yo=vy(£10, - - -, £n0) is not in
eF and is a root of ¢o(A) =¢p(\; £, * * +, £x0) =0. Evidently ¢o(A) has dis-
criminant A(&y, - - -, £0) #0 and distinct roots. But yo—ge is nilpotent for
some B in §, the minimum function of y, divides both (A—B)* and ¢o(\)
which is possible only if yo=pe, a contradiction. Hence s=1, D=ef,
x—ep(t, - - -, &) is nilpotent for some (&, - - -, &) in K.

The quantity x of g is a root of fA) = |\ —R,| =0 where R, is the linear
transformation a—ax. The polynomial f(A) is homogeneous of degree n in
&, - - -, &, and is divisible by the minimum function g(A) of x. But then
g\)=g(\; &, - - -, &) is a polynomial in X\ with leading coefficient unity
and which is homogeneous in A, &, ---,&,. However g(\) divides
N—v¥(&, - - -, &))" and so N=y(&, - - -, &) divides gN), Y(&, - - -, &) is
in &, ¥ must be a linear homogeneous function in &, - - -, £, Indeed g(\)
= (A—y)" where r is the degree of g(\), ¥” has degree r. Hence we may write
Y=yi&1+ - - - +v.&. for v; in §, and write ¥(a) =710+ - - - +YnEno Where

a=tou+ - -+ +Eottn. Then u;—ed(u;) is nilpotent and so is u; for 1>1.
It follows that ¥(u:) =7v:=0 for 1> 1, Y(u) =v1=1, Y(&, - - -, &) =&. Then
all quantities of N =uF+ -+ - +u,F are nilpotent and every nilpotent

quantity of U is in N. If b and ¢ are in N so are b+c¢, b2, ¢%, (b+c)2, 2bc
=(b+c)2—b%—c? M is a subalgebra of A, N is a proper ideal of A. But A
was assumed to be simple and so M =0, that is, z=1, A =efF as desired.
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