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1. Introduction. Recently M. Schiffer and the present writer gave new

proofs, based upon the notion of a kernel function, of the existence of a num-

ber of canonical conformai maps of a multiply-connected domain [6, 7](1).

The arguments given were the outcome of investigations of the duality of

various extremal problems in the conformai mapping of multiply-connected

regions, such as that of Schwarz's lemma to the Szegö kernel function

[l, 2, 4, 5, 8, 9, 10]. Much of the reasoning was facilitated by an elementary

knowledge of Hubert space Z,2.

Here we shall continue to discuss relations between extremal problems.

In this study, a number of existence theorems will be developed, in simplified

form, by arguments based upon the uniform convexity of the Banach spaces

Lp with p> 1 [3]. To work thus with minimum functions in Lp is a departure

from the classical procedure, often encountered in the calculus of variations,

of using minimum functions in Hubert space L2 for existence proofs. We shall

show that our basic extremal problems in Lp and Lq are related when

1        1
—+ —= 1,
P       1

thus bringing forward once more the well known duality of these two spaces.

Furthermore, in the case of special normalizations in multiply-connected

domains, we shall prove that certain problems in the classes Lp are related

to those in Z,2 and those in the space Li of functions of bounded variation

and the space Lx of bounded functions, and we shall thus extend earlier re-

sults [4]. Here it is to be remarked that Li and Lx correspond to one another

in much the same way as do the spaces Lp and Lq with í/p-j-í/q = í.

Our discussions will touch upon relations between problems in Lp, La and

Lpq/(q-p), Lq/2, \/p-\-\/q — \, which generalize the earlier work on L\, Z2, Lx

[4, 7], and we shall investigate the case p<l.

2. The fundamental existence theorem. Let D be a finite domain of the

2-plane bounded by n simple closed curves &, C2, • • • , C„ which have con-

tinuously turning tangents. Denote by C the total boundary C= ¿2"-i C¡

of D. Let A denote the class of all functions <j>(z) which are analytic in the

closed domain D-\-C, and let B denote the class of all functions \p(z) of the

form
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1 1
m =

2iri  z — t
+ *«,

393

<t>EA,

where t is a fixed point in D. We shall denote by Lp, p>\, the class of com-

plex-valued functions/(z) defined for zÇ.C which have a finite norm

<f |/f»h&,
and which satisfy the conditions

(1)

(2)

f(z)cb(z)dz = 0,

f(z)H*)dz = 1,

ds = \dz\,

<t>EA,

t GB.

Note that the function f(z) =1 is in this class.

Since the spaced of all complex-valued functions n(z) defined for zÇiC

and possessing a finite integral

fi(z) \pds

is uniformly convex for p> 1 [3], that is, since for any pair p, p&£p the con-

ditions

\pds ^ 1,
ß + v

ds è  1 - e®     | rt\pds  g   1, ®     |  V

imply a relation

<b   \tx- v \pds g S(e), lim 5(e) = 0,
Je '^o

we find readily that there exists in Lp a function f0(z) which minimizes

f(z)\"ds,

that is, a function fo(z) such that

(3) / | /„(*) \*ds £ f(z)\pds, /e¿*

That fo(z) is unique also follows.

If now <j>(z) Ç.A and X is any complex number, we verify easily that the

function



394 P. R. GARABEDIAN [November

f(t) =/o(Z){l + X[0(Z) -*(/)]}

is in Lp, since the conditions (1) and (2) are satisfied. Hence we obtain from

(3) the inequality

(f | /oí«) |'ds á «I /oto |p | 1 + X[0to - *(0] Ns-
./ c J c

But a simple calculation yields

| 1 + X[*(a) -<t>(t)]\p= l + pRe{\[<j>(z) -</>«]} +0(|x|2),

and thus

Rei\a" | /oto | *[*(«) - 4>(t)]ds\ + 0( | X |2) è 0.

Since X is arbitrary, we deduce that

(4) <b   | /oto |"*to<fa = 4>(t) <f | /oto \pds, <t>GA.

Since, by (2),

we have

and we can set

1        1
/oto — -dz = 1,

c 2iri  z — t

£ \fo(z)\"ds > 0,

Pto :

| /oto |P^
C

From (4) we have

(5) £ p(z)4>(z)ds = 4>(t).

Now let w and w* be any pair of points in one component of the exterior

of D. We set

<b(z) = log-
z — w

and find
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z — w* t — w*
p(z) log-— ds = log-

c z — w t — w

Taking real parts of both sides of this formula and noticing that p(z) is real,

we obtain a relation of the form

r i i
(6) <b   p(z) log -j-r ds  =  log -¡-t- - Cij,

J c \z — w\ \t — w\

where ctj is a real constant which depends only upon the component of the

exterior of D in which w lies.

For w£Z>, we set

l r l
(7) G(w, t) = log -¡-¡-* p(z) log -j-¡- ds,

\w — t\       J c \z — w\

and we notice that G(w, t) is harmonic for w£Z> except for the logarithmic

singularity a.tw = t.

We note that if Wi and w2 are points on a normal to C, situated at equal

distances from C along this normal, and if zÇzC, then

(8) log
Wi

z — w2
0     as     | w2 — a» 11 —> 0,     uniformly for z (EC,

since C has a continuously turning tangent. Since the logarithm on the right

in (6) is uniformly continuous when w ranges over any bounded subset of the

exterior of D, it follows readily that the integral

1
p(z) log -,-¡- ds

c | z — w\

is a continuous function of w across C, and therefore in the finite part of the

w-plane. By comparing (6) and (7), we now find

(9) lim G(w, t) = otj, w&D.
w—>Cj

Hence G(w, t) is harmonic in D, except for a logarithmic singularity at w = t,

and has constant boundary values a,- on each curve C¡, j = 1, • • • , n.

In the particular case n = 1 of a simply-connected domain, we verify that

«1 = 0 and that G(w, t) is the Green's function of D. Once in possession of the

Green's function, it is not difficult to show by the usual procedure that the

simply-connected domain D can be mapped conformally upon the interior of

the unit circle. Thus we have presented a simple proof of the Riemann map-

ping theorem, and, indeed, if we take p = 2, even the condition of uniform

convexity of J^p becomes elementary.

3. Extremal problems in Lp. We now return to the case of a multiply-



396 P. R. GARABEDIAN [November

connected domain D, but we make the assumption that the curves &, • • ■, Cn

are analytic. From (9) and the Schwarz principle of reflection we conclude

that G(w, t) is harmonic on C. Since the normal derivative of the potential

1
p(z) log -j-¡- ds

c \z — w\

has a jump of 27r times the density p(z) when w crosses C at z£ C, we find that

the normal derivative of G(w, t) with respect to the inner normal v to C is

dG(w, t)
■-— = 2irp(w).

dv

Thus the extremal function/0(s) £¿p has a modulus |/o(z)| which is propor-

tional to the pth root of the distribution of mass

dG(z, t)

dv

We proceed to apply more general variations to the extremal function

/q(z)£Lp. If </>£.4 and X is a complex number, then /0(z)+X[$(z)— <p(i)]

is in Lp, and hence

£ | /o(z) \»ds^£ \ /o(z) + Xfato - *(<)] \pds.

But

\fo(z) + \[<t>(z)-^>(t)]\p

= I /o(z) \p + pRe W-^r [*to - *(*)]} +0(\ X |2),
l       /oto »

and therefore

do) £l-^*(z)ds = m£l-^ds.
Jc     fo(z) Jc     /o(z)

The reader can verify that [<p(z) —<p(t) ] can be replaced by [fo(z) — 1 ] in this

argument, and hence

ds = d>   \f0(z)\pds > 0.
c     /oto Je

Thus we can set

r   r -|-i/(p-d

(H) ^to =fo(z)\j>   \fo(z)\pds\
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to obtain

(12) £ f  ''  <b(z)ds = <j>(t), cbGA,
J c      k(z)

while at the same time, by (1),

(13) (h  k(z)<b(z)dz = 0, <¡>EA.

We introduce the class £2 of functions g(z) defined and integrable on C

and satisfying

(14) * g(z)<i>(z)dz = 0, 0 £ A.

Clearly &(z)£ß, and by Cauchy's theorem and (12),

/(  1        1 ! k(z)\p )
<f>   {— — - '    z'(s)\<t>(z)dz = 0, d>EA,

J c \2in  z — t k(z) )

where z(s) is the parametric representation of C in terms of arc length, whence

i    i      Utolp
(15) m(z) = —-' '   ¿'(s)

2iri  z — t k(z)

is also in Q.

Now for any function g(z) £Q, set

1    /" z — w*
(16) T(w, w*) =-(b g(z) log-— dz, w, w* £ D.

2iriJc z — w

The function Y(w, w*) is analytic for w, w*£Z>, while for Wo, w0* in a com-

ponent of the exterior of D we have

1        /* Z —   Wo*
(17) — 0 g(s) log-& = 0,

2xz^/ c z — Wo

since

log-
Z  —   Wo

is in A in this case. We let z0 and z* denote two points on a component Cj

of C, and we choose w and w* to lie on the normals to C¡ at z0 and z*, respec-

tively, while Wo and w0* are to lie on opposite sides, with respect to Cj, of

these same normals, at the same distances as w and w* from z0 and z*, respec-

tively. Under these circumstances, we have
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z — w* z — Wo | | i
log-log-> 2wi     as     | w — Wo | —» 0,     | w* — w0 | —» 0,

z — w z — Wo

when z lies on one arc of C between z0 and z0*, while for z on the remainder of C

z — w*             z — w0* ill i
log-log-> 0     as     | w — w01 —► 0,   | w* — w0* | —> 0,

z — W Z — Wo

provided that we choose, once and for all, suitable branches of the logarithm.

Thus we find from (16) and (17) that

g(z)dz,

and, indeed, the integration is to be extended from z0* to z0 along C¡ in the

positive sense with regard to D [cf. 7]. Thus the indefinite integral

J    g(z)dz

along C of each function g£Q represents the continuous boundary values on

C of a function Y(w) analytic for wÇzD, but possibly multiple-valued there.

Hence both the normalization condition (1), or also (13), and the variational

condition (12) lead us to conclude that the expressions involved yield the

boundary values of functions analytic in D.

We can set in particular

1    r z — w*
(18) Ti(w) =-*   k(z) log-dz,

2iriJ e z — w

\   r z — w*
(19) T2(w) =-(t  m(z) log-dz.

2iriJ c z — w

Let 7 be a small arc of C, and let 70 be an arc inside D which, together with y,

bounds a small simply-connected subdomain A of D not including the fixed

point ¿££>. Then by Cauchy's theorem

/Ti(z)<t>o(z)dz = 0,     <b        T2(z)<j>o(z)dz = 0
7+70 ■'    7+70

for every function <po(z) analytic in A+y+Yo, since Ti(z) and T2(z) are an-

alytic in D and continuous in D-\-C. Since k(z) is integrable of order p over C,

and since m(z) is integrable of order q = p/(p — \) over C, we find by applica-

tion of Holder's inequality to Cauchy's formula that Tí (z) grows at most like

|z — Zo|l/î_1 and T2'(z) grows at most like \z — z0|1/p_1 as z^z0£C along non-

tangential paths. Hence IY (z) and T2 (z) are integrable over ya and we can

integrate (18) and (19) by parts to obtain
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(20) f   Tí (z)<Pi(z)dz +   f k(z)<pi(z)dz = 0,
<f7o J 7

I    r2' (z)4>i(z)dz +  I m(z)(bi(z)dz = 0,
•^7o * i

where now <pi(z) can be an arbitrary function analytic in A+y+Yo, since

<pi (z) =<po(z). The second identity can be rewritten in the form

Till ï r   \ k(z)\p
(21) {—-T2' (z) \ <t,i(z)dz +        {-~- z'(s)<t>i(z)dz = 0,

J yo  \2ti z — t ) J  7     k(z)

feto |"
k(z)

since

1        1

2iri  z — t

is analytic for z£A.

If A is sufficiently small, the function z'(s) can be continued analytically

from y into A, since the curves C are assumed to be analytic. Also, returning

to the function G(w, t) of formula (7), the normal derivative dG/dv can be

continued analytically throughout A+y+Yo- But \k(z)\ is proportional to

the pth root of dG/dv, and hence, in a small region A containing none of the

finite number of possible zeros of dG/dv, the function \k(z)\ can be continued

analytically. Denote by 7\(z) the continuation of z'(s) in A+y+Yo, and de-

note by T2(z) the continuation of \k(z)\ in A+y+Yo- We set

4>i(z) = Ti(z)T2(zy-p<j>2(z)

and obtain from (21) the new identity

(22)

f   i—-T2' («)1 Ti(z)T2(z)*-p<l>2(z)dz
J y.   \2iri  z — t )

+   Ç k(z)(z'(s))^2(z)dz = 0.
J y

By the reasoning applied to the functions of class 0, we conclude from

(20) and (22) that the functions

In z — w* 1    r z — w*
r3(w) = —       ri (z) log-— dz + —     ¿to log-dz,

2TriJy0 z — w ¿iriJy z — w

i   r   ( i     i ") *-
r4(w) = —:\   {—:-r2' (z)} Ti(z)T2(zy-p log-

2iriJy0   {2ti  z — t ) z —

1    r _ z — w*
+ —      k(z)(z'(s)Y log-dz

2ti J y z — w

w*
— dz
w
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are, for w*£A fixed, analytic functions of w in A with boundary values

k(z)dz,

/W r%V3k(z)(z'(s))Hz =  j    k(z)(dz)

on y. Thus finally

T3(w) = r4(w) + const.

on y.

Our conclusion is that r3(w)+r4(w) andîT3(w) — iVt(w) are real on y and

hence may be continued analytically across y by the Schwarz principle of

reflection. Thus T3 (z) =k(z) is analytic on y. and it follows that k(z) is an-

alytic on the entire system of curves C, since y is an arbitrary arc of C.

An integration by parts can be applied to the derivatives

dk(z(s)) dm(z(s))
k'(z) = —^ z'to,       «'(S) = —1!^ z'to,

as as

which we have now shown to exist, in order to prove that they are in the class

ß. It follows that the analytic functions

u ^     1 £   Kz) J        , *     1 £  m{z) J
k(w) = —; (p    -dz,        m(w) =-<b   ■-dz

2ttíJ e   z — w 2iriJc   z — w

in D have boundary values k(z) and m(z), respectively, on C, and are, in-

deed, analytic in the closed region D-\-C. This follows as well for m(w) as

for k(w) by virtue of the relation (15) for m(z) in terms of k(z).

With these preliminaries behind us, we define the new domain function

1        1
l(w) =-m(w),

2wi  w — t

which is analytic in D-\-C, except for the simple pole at w = t. Clearly, l(w)

has the boundary values

1        1 \k(z)\p
-m(z) =-z'to,
2iri   Z — t k(z)

and thus we find that the pair of analytic functions l(w) and k(w) satisfy the

remarkable differential identity

(23) l(z)=^-^-z'(s),
«to

for zÇiC. It will be our object now to deduce from this identity a number of
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analytic and extremal properties of the domain functions l(w) and k(w).

Finally, we remark that (23) can also be written in the dual form

I /to I3
(24) k(z)=^-z'(s),

l(z)

where

p 1        1-+-=1,

p- 1 p        q

since \l(z)\ 5= | ¿(z) | p for z£C. This new form of the identity will already lead

the reader to suspect that l(z) will have extremal properties in a class L„

which are analogous to those which k(z) possesses by virtue of its definition

in terms of the extremal function/0(z) £Lj,. For the case p = q = 2, the rela-

tions (23), (24) are already known [4, 6, 7].

Since l(z) has a simple pole of residue l/27r¿atz = ¿, we find from Cauchy's

theorem

(25)

r r    k(z) \p
k(t) = <b l(z)k(z)dz = <t    •-—z'(s)k(z)dz

Jc Jc     k(z)

= (b  I k(z) \pds = <b   | l(z) \"ds,

as is also apparent directly from the variational relation (12). We now prove

that among all functions <p(z) £.4 with <p(t) = 1, the function

makes the integral

/.
\<t>(z)\pds

c

a minimum, and that it is the unique function in A with this property. For,

by Holder's inequality

1 = 4>(t) = <f> l(z)<i>(z)dz

è (£ | l(z) ¡"ds^  "(£ | *(*) \»ds\ \

with equality holding if and only if

<t>(z)/k(z) = const.



402 P. R. GARABEDIAN [November

on C, by (23). Hence

(26) min      £ I <b(z) \pds =( £ I l(z) \"ds) "  = k(ty~p.
4,GAMt) = lJc \Jc /

Of course, it was from this initial extremal property of/0(z), in the original

class Lp, that we arrived at the analytic properties of k(z), and thus (26) holds

for a much wider class of analytic functions than A.

More striking, then, is the following inequality. Let iZ'(z) be any function

of B. Then by the residue theorem and Holder's inequality

k(z)$(z)dz       l / r ,       i    Y'Y f ,       ,   V"

=  {(fc | Hz) \"ds^    °(f | *(*) |«^  *,

with equality holding for and only for the function ip(z) =l(z), by (24). Thus

l(z) is that function in B which yields the smallest value of the integral

*to \qds,

1 =

c

or, in other words,

(27) min £ I ̂ (z) \<ds = £ I l(z) \«d$ = kit).
*GbJc Jc

We thus have, in addition to the differential relations (23), (24) between the

pair of extremal functions k(z) and l(z), the following identity between the

minima for the extremal problems (26) and (27) solved by k(z) and l(z):

(28) (min  <j>  I \p \"ds )    (      min      <f>   \ <t>\pds)    =1.
\íeí/c /   \*e«i)=i/c /

Let Lq denote the class of functions g(z) defined for z(E.C, with

(p   | g(z) \qds < oo,

and such that

g(z)<p(z)dz = <t>(t), 4>^A.h
The reader will verify with small difficulty that the boundary function l(z),

which is in this class La, yields the minimum value to the integral
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/.I ¿to \'ds, g £ £,.

With minor changes in technique, we could have arrived at all the results

and identities of this section by starting with the class Lq and the extremal

problem

/.
g(z) \gds = minimum

c

in this class, using the uniform convexity of the corresponding class £q oí

all complex-valued functions integrable of order q over C to obtain the exist-

ence of the function l(z). Note that l(z), then, solves the problem (27) in a

much wider class of analytic functions than the class B.

The principal point of interest thus far is, therefore, the remarkable rela-

tions existing between k(z) and l(z), and the consequent duality between the

extremal problems (26) and (27) in the classes Lp and Lq with

Í/P + 1/q = 1.

We proceed to derive, in closing this section, a few more analytic properties

of the pair of functions l(z) and k(z).

From (23) we have

*to*to*'to-|*to!'fc.O onC.
Since l(z)k(z) has but one simple pole in D atz = t, we conclude from the argu-

ment principle that the product l(z)k(z) has at most n — 1 zeros in D. Thus l(z)

and k(z) have together at most n — 1 zeros. Furthermore, we have on C

2tt dG(z, t)
l(z)k(z)z'(s) =

k(t) dv

where G(z, t) is the potential function of the formula (7) with constant

boundary values on each curve Cj bounding D. Thus, clearly,

(29) -l(z)k(z) = -'-i
k(t) dx dy

Also, by (23),

k(z)p

l(zY

has unit modulus on C, although this function is in general multiple-valued in

D. Thus

log k(z)p — log /(z)«
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has imaginary boundary values on C. This fact, together with (29), can be

used to determine k(z) and l(z) in terms of the solutions of various Dirichlet

problems, and thus we can relate our new problems (26) and (27) to classical

potential theory [cf. 4, 8, 9].

Finally, let f (z) be a conformai transformation of the domain D in the

z-plane onto a new domain D* in the f-plane, and let /*(f) and k*(Ç) be the

functions in D* with extremal properties corresponding to those of l(z) and

k(z) in D. If f'(2) = 1, then we should expect to have

(30) l(z)dz^ = /•(f)df1'«t

(31) k(z)dzllp = k*(0dí1!p.

That is, we should expect k and / to be differentials of orders i/p and 1/q,

respectively. However, for p9*29*q this follows only when the transforma-

tion £"(z) does not reverse the sense of rotation, taken to be positive with re-

spect to the domain, of the curves C¡ bounding D, for only under this restric-

tion are the functions

MV" MA1'*

\dz)    '        \dz)

single-valued in D. Thus (30) and (31) hold for and only for transformations

f (z) carrying the outer boundary of D into the outer boundary of D*. These

remarks follow from the fact that when orientation of a boundary curve C¡

is preserved under the correspondence f (z), then

ACj arg f'to = 0,

while when orientation of C¡ is not preserved,

Ac. arg f (a) = ± 2.

Thus ior p, qj*2, it must be borne in mind that our extremal problems in Lp

and Lq have only a restricted, although significant, degree of conformai in-

variance.

4. Further relations among extremal problems. It has been shown in the

papers [4, 7] that for p = q = 2, the function l(z) has no zeros, while the func-

tion k(z) has » — 1 zeros interior to D. Now since k(z) and l(z) are unique, it is

not hard to show that they depend continuously upon p and q. Thus for values

of p and q sufficiently near 2, the zeros of the corresponding functions l(z)

and k(z) are all given to k(z). This must be so, for example, in some interval

2^gá2+t, p = q/(q — l) ^2. For these values of q we can set

(2t)"2-1   k(z)

¿to = 2T«to»,        K(z) =-:- —-,
i l(z)

and we obtain in L(z) a function analytic in D-\-C, except for a double
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pole at z = i with leading coefficient í/2-rri, while in K(z) we obtain a function

regular throughout D + C with K(t) =0, K'(t) = (2ir)"l2k(t) >0. Now we have

L(z)K(z)z'(s) = (2,r)*/2/to2^-z'to
l(z)

= (2w)"lH(z)k(z)z'(s) ê 0 onC,

apd furthermore

| K(z) I^/Cs-p)
(32) L(z) = -——-z'(j), onC,

K(z)

since

(2t)"2 U(z)|p
27rî7(z)2 = ——-l(z) ' '   z'(i)

(2t)''2-1// k(z)       K

I yfe(z)|p I Us) I «€-»»/€<«/<•->»
= (2t)"2 ' '    z'to = (2tt)"2^-z'(s).

ÜT(z) X(z)

From (32) we obtain alternately

I ¿to |"2
{M) k(z) =   ;;    z'to.

Z(z)

Since

1 1
= 1,

g/2      #?/(î - p)

we see immediately that the differential identities (32) and (33) are altogether

analogous to (23) and (24). We shall proceed to deduce extremal properties

of L(z) and K(z) from (32) and (33) which are altogether analogous to those

of l(z) and k(z). For p = q = 2 this has already been done in the paper [4].

Let Lp5/(g_p) be the class of functions <p(z) analytic in D+C with <p(t)

= 0, <p'(t) = 1. Let Lq/2 be the class of functions ip(z) analytic in D-\-C except

for a pole

1 1 a_t
¿(z) = -;-— H-h «o + ct\(z - t) + ■ ■ ■

2iri  (z — t)2       z - t

of order two at z = i. From a strict pedagogical point of view, the reader can

define, alternately, the classes LP?/(3_P) and Lq/2 to consist merely of the

boundary values of the functions described. Clearly

K(z)
£ IPÎ/(g_p),       L(z) £ Lq/2.

K'(t)
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We maintain that

(34) £ | 0(z) |M/<«-*>dj ^ K'(t)-2i<«-v = (2ir)-"i^^k(t)-2i^-2\

for 0£LPÎ/(4_p), with equality holding for and only for

K(z)
<p(z) = —— •

K'(t)

Indeed, by Cauchy's theorem and Holder's inequality, we have

1 = <b  L(z)<t>(z)dz

/   r \2lg/   r \(í-p)/p«
i{j>jL(z)\*>2ds)    ^j>J<t>(z)\™i^ds) , 0 £ ¿M/(S_P»

and by the identity (32), equality can hold for and only for the function

<p(z)=K(z)/K'(t). The inequality (34) follows when we remark that

/      /• \ (2/s)(p«/(«-p)) /      /• \2p/(<r-p)

( *   |¿(z)|"2¿5j = (  <j> L(z)K(z)dz)

= K'(t)2p"-"-p) = isr'(02/(9"2).

Likewise, we obtain the inequality

(35) £ | *(*) l5/2^ ^ #'(<) = (2t)"2*«, 4> £ ¿ï/2,

with equality holding for and only for the function \p(z) —L(z). Indeed, this

follows from Holder's inequality and (33), since we can write

K'(t) = <b t(z)K(z)dz

^(f   l'Atol"2^)   ( <f>   I K(z)p«i«>-pHs\\ , ^£¿í/2.

We note that by the procedure of §3, the inequalities (34) and (35) can be

obtained with far more general classes of functions LPqnq-P) and Lq¡2 than we

have used here.

For the case p = q = 2, the inequalities analogous to (34) and (35) have been

obtained in a previous paper [4]. In that work, the Holder inequality was

not required, and the estimates were therefore all the more elementary. The

results obtained there relate an extremal problem in a class LM of bounded

functions and an extremal problem in a class Li of functions of bounded
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variation to our problems in L2. The problem referred to in the class Lx is

nothing more than the extension of Schwarz's lemma to multiply-connected

regions, while the problem in ¿i is one of distortion of length in conformai

mapping. Of course, the class L2 to which these classes L\ and L„ are related

leads to the Szegö kernel function [4], and the identities (23), (24) and (32),

(33) may be viewed as extensions to the Banach spaces Lp of the boundary

relations usually arrived at in the theory of kernel functions in Hubert space

L2.

Combining (34) and (35), we have

/ /• \2/V C \<«—pllpq
(36)        I    min    <h   \\p\"i2ds)    (      min       (h   \<p\pql(-q-p)ds\ =1,

\^&Lql2   J C / V *ELM/(s-J>)   J C /

in analogy with (28). We have here also, however, additional identities such as

(q—pMpq        \

*expg/(«-p) Jc' / 2r
(37)        (   min   <b   \^\"ds)        (      min       ¿>   I <f> |p«/<«-P><fc )

LK+EbJc /    J  \*6iP5,,„)/c /

Thus we can relate extremal problems in the four classes Lv, Lq, Lpq/(q-P),

Lq/2, if l/p-\-l/q = l, 2^g^2+e. Furthermore, it is evident that if e can be

chosen large enough so that for integral w = 2+e^5 = 2 the extremal functions

l(z) corresponding to these values of q continue to have no zeros, then we can

relate problems in classes ¿pa/tg-^p), ¿9/(„+d to our original problems, where

ju runs over all integers between 1 and m—1, inclusive. Indeed, we merely

divide the differential

l(z)k(z)dz

into new component factors defined by the formula

[i(zY+1] {~}dz = Kz)k(z)dz
. l(t}

to arrive at this conclusion, and these factors yield our new extremal func-

tions.

It is worth remarking that in doubly-connected domains the above case

where e can exceed 1 may occur, and that, indeed, a situation can arise which

leads to arbitrarily large values of e. To see this, we return to the study of the

pair of domain functions l(z) and k(z) through Dirichlet problems mentioned

at the end of §3.

Let D be the annulus 1 < | z\ <p, let

log | z |
»to =

logp

and suppose l<¿<p. Then the functions l(z), k(z), and consequently the

functions
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q log l(z) - p log k(z),        l(z)k(z),

can exist in D with l(z)9*0 there if and only if there is a point f with

—p <f < — 1 and with

(38) qu(t) + MD = g.

This can be verified easily directly, or by the methods in [4], for one notices

that the point z = f is merely the zero of k(z) in D, so that Green's theorem

yields (38). From (38) we find that q must be given by the formula

J_ = 1 =      »(f)

p       q 1 - co(0 '

thus, by suitable choice of £", q can have any value > 1, but not greater than

1 u(t)
1 +- 2 +-■-

1 - u>(t) 1 - co(/)

Hence when the point of normalization z — t is sufficiently close to the outer

boundary, | z\ =p, oí D, the upper estimate on q exceeds any prescribed inte-

gral value m, and all the dualities displayed above can occur. Notice the par-

ticular role played here by the outer boundary of D, a result of the incom-

plete conformai invariance of our extremal problem when q 9* 2.

Thus we see that the fundamental properties of our extremal functions Z(z),

kiz) follow from application of the basic differential identity (23), together

with Holder's inequality and the general method of contour integration. When

a new identity of this form, such as (32), can be obtained, even by mere

algebraic manipulation, the new functions involved, such as Liz) and Kiz),

are immediately shown to possess extremal properties to correspond with the

identity. Thus various unexpected relations are obtained between these sev-

eral extremal problems in the multiply-connected domain D.

5. Normalization at infinity. With our normalization so far in the finite

domain D we have had to require that q be not too large in order to obtain

the results (34), (35). We shall now assume that D is infinite and that the

point z = t of normalization is the point at infinity. The symmetry obtained

in the new normalization will to some degree offset the lack of complete

conformai invariance of our problems in Lp, p9*2, and will lead to a new

relation amongst extremal problems in all classes Lq with no restriction on q

of this indefinite nature.

Transforming z = t to z= °o , taking q = p = 2 in (23), and multiplying by a

suitable factor of 2iri, we find that there exist in D two functions ¿(z) and kiz)

with expansions

z       z2
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1    a        b2       bi
Kz) = ——+—+ — +•••, « > 0,

l    z       zl       z6

about the point at infinity, which satisfy on C the identity

(39) Z(z)=Jj^Jlg'(s) ^kizYz'is).
k(z)

The function l(z) is found to have no zeros in D-\-C and no changes of argu-

ment over the curves C¡ [4], so that l(z)" is defined and analytic throughout

D-\-C for all p. Of course, kiz) has in D n zeros, counting the zero at infinity.

The two functions /(z), kiz) are Szegö kernel functions [4].

We can set

Liz) = mi+i = i + • • •,

kiz) 1    a
Kiz) = -U =__+... ,

Z(z)"       i    z

and Liz), Kiz) are found to be analytic throughout D. If we set

2 2
p = --, f*"——' Kp,q< <*>,

1 — M 1 + P

we find immediately from (39) the identity

I Kiz) \p
(40) ¿(s) =   ' '    z'to, onC,

Kiz)

or

I ¿to I3
(41) Kiz) =   '    y'    z'to, onC,

¿to
and also

l_     J_      1 -M+ l+/i _

p q  ' 2

From (40) we find that if

tf-to = 1 + • • • , I z I  large,

is analytic in D-\-C, then

2ira = £xPiz)Kiz)dz ̂ ( £ \ f(z) N*)    ( <f I ̂ (z) N*)     i

with equality holding for and only for \piz) =¿(z). Also, from (41), if
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1    « il
<f>iz) --h • • • , \z\ large,

î    z

is analytic in ¿>+C, then

2 ira L(z)<p(z)dz è ( é>   | ¿(z) N*)    ( $   I <t>(z) \pdsj     ,

with equality for and only for <p(z) =K(z). Thus, by our usual methods, we

find

(42) min  (t   \\p\ids = (b   \ L\"ds   = 2ira,
* J c J c

(43) min  (h   \ <j> \pds = <L   \ K \pds = 2ira,
* J c J c

and similar inequalities [4] hold in ¿i and Lx for the extremal functions

Hz)

/to
l(z)2    and    1,    l(z)k(z),

corresponding to the limiting values ¿u = l, p= —1. Thus far we restrict our-

selves to the cases — 1 <p < 1.

In this way we get for all our extremal problems the same extremal func-

tions, except for exponents. Hence our problems in Lp and Lq lead back here

to the kernel functions in ¿2 already studied [4, 7] and to Schwarz's lemma in

¿„o and distortion of length in ¿i.

6. The cases p<í, q<i. The discussions in §5 lead us to ask whether

it is possible to solve problems such as (26), (27) or (42), (43) when p <\ or

g<l. The cases p = \ and ç = l are already known to yield to our present

method [6, 7]. We shall show here that all our problems have solutions for

positive p<\, q<l, and that identities of the form (23), (24) are satisfied by

the extremal functions, but we shall not be able to obtain the uniqueness of

the extremal functions in this case, nor a duality between Lp and Lq with

l/p-\-l/q= 1. Indeed, for q = 1 examples are easily found where the extremal

functions are not unique, for example, the extremal function l(z)k(z) of §5 is

not unique in h\.

It will be necessary to change our method in order to discuss cases where

p<\. We shall return to ideas developed previously [1,4], and since the work

is no longer so elegant or new as that of the foregoing sections, we shall be

content to sketch proofs, giving reference to the earlier papers for detailed

exposition of method. A point of exceptional interest will be, however, the

fact that §5 can be extended, including a uniqueness proof, for sufficiently

large q < 1.

Suppose, then, that we try, for example, to find an extremal function/0(z)
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for the problem (26), with p<\. We can certainly pick a minimal sequence

fm(z) with

<P   \fmiz)\pds —*      inf        Q>   \<i>iz)\pds,
J C *&Af*(f)-i J c

where A is the class of functions analytic in £> + C. If/m(z) has zeros zu • • • ,z„

in D, then we can write

log I /m(z) I = - 12 ei2-, zß) + log I Fm(z) |,

where g(z; f) is the Green's function of D, and where Fm(z) is analytic in D.

We can vary the zeros z\, ■ • ■ , z„ to new positions Zi*, • • • , z„* and thus de-

fine a new function /„(z) by the formula

log | fliz) | - - Z «to £ + log | F.to |,
M-l

provided that

¿f {p=\J a \

dgiz; Zp)     dgiz; z*)-) .
-> ds = 0,         ; = 1, • • • , m,

E Ufa a*) -«(*;*,.)} = s >o,
^=1

so that the new function/*(z) is single-valued and /*¡(¿) =e5>l, while on C

r*

| /m(z) I   =   I fm(z) | .

Now for sufficiently small ô > 0 all these equations can be satisfied by making

suitable choice of the points z*, provided that zu ■ • ■ , z„ are not all critical

points of a harmonic function

u*    < rt j. ¥\ £ dg^'z) »Hz) = giz; t) + ¿_\j<b   -—ds.
i-i  J a    dv

This follows, indeed, by application of the implicit function theorem [l, 4J.

Since, by the argument principle, Ä(z) can have at most n — 1 critical points

in D, we conclude in particular that if a>n — 1, then we can replace the

competing function /OT(z) in our minimal sequence by the new function

e~sfmiz), and this function will yield for the norm

I /to \'ds
c
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a value less than that obtained with fm(z). If we increase ô in this process

until it becomes as large as possible, then clearly the function e~ä/OT(z) will

have at most n^i zeros. Thus we can assume in the first place that our mini-

mal sequence/m(z) consists of functions with at most w — 1 zeros. We note, in

passing, that the above function h(z) plays a role analogous to that of the

function Giz, t) of formula (7).

It follows now that the zeros of the functions of our minimal sequence can

be assumed to have at most n — 1 limit positions fy in D. We can, indeed,

choose, with no loss of generality, only competing functions <p(z) of the form

<t>(z) = <l>i(z)F(z),

where F(z) is analytic in D+C with Fit) =1, F(fy) =0, and where <piiz)9*0

in D. In this discussion, if we count a zero of order greater than one according

to its multiplicity, all statements remain valid [4].

Now let r bean integer so large thatr£>> 1. The periods of the logarithms

of our competing functions /OT(z), now assumed to have zeros only at the

points fy, are of the form

2-iriipjT + Vj),        0 S Vj < t, on C.

For a suitable subsequence/OT(i(z) of the minimal sequence fm(z) the integers

vj all tend to limits, /=1, • • • , n. Thus we may equally well assume in the

first place that the v¡ have their limit values. Hence, finally, we see that there

is no loss of generality in our extremal problem (26) if we assume that our

competing sequence /™(z) consists of functions of the form

/»to = 4>m(zyF(z),

where F(z) is fixed, with zeros at the points fy and with fixed changes of argu-

ment about the C¡.

Thus our problem reduces to that of finding

min       <b   \F(z) \p\<l>iz) \TPds.
*£¿,*M-i Jc

Here | F(z) | p merely plays the role of a positive weight function to be taken

into consideration in our problem, that is, we replace ds by | F(z) |p ds as a

measure along C. Since rp>i, the new problem has a unique extremal func-

tion /f(z), as can easily be verified by application of the methods of §§2 and

3. Indeed, the weight function | F(z) | p does not add serious difficulties to

our work. Thus the original problem possesses an extremal function

/oto =Íf(zYF(z),

and since F(z) may be chosen to be analytic on C, and fv(z) can be proved

to be analytic on C by the methods of §3, it follows that the extremal function

foto is regular on C as well as in D.
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Once in possession of the analytic extremal function/0(z), it is not hard

to make the variations of §3 and to prove that an identity of the form (23)

holds with

Hz) = /oto[y |/otor«fc]
l/(l-p)

Thus the problem (26) always possesses at least one extremal function /0(z)

which satisfies an identity (23) in terms of the usual associated pair of func-

tions ¿(z), kiz) when p>0. No uniqueness can be deduced in general, since

Holder's inequality does not hold with p < 1. But/0(z) is the unique extremal

function of the form </>(z)rF(z), for fixed F(z), since the minimum problem

with weight function | F(z) | p and exponent rp> 1 has a unique solution.

Thus the more important deductions of §3 carry over to the case p<i,

and we have the less obvious result that our extremal problems in Lp have

here nonvanishing solutions, even though no inequality is available from ele-

mentary processes.

We proceed now to study the problem (42) for g<l. A similar study can

be made generalizing the work of §4, carried out for g>2 near 2, to the case

of values of g<2 and sufficiently near 2, but we leave the results there for

the reader to complete.

By the considerations of this section, we see that the problem (42) always

possesses minimum functions ¿3(z), even when g<l, and that each of these

solutions satisfies an identity

I ¿«to I5 g
Kpiz) =   '    ').      z'to,        p = -i— < 0,

¿»to Q - 1

for suitable Kviz) associated with ¿s(z). In the notation of §5, we shall prove

that for g sufficiently near 1, ¿5(z) is unique and is given by the formula

(44) ¿.(s) = lizY+",        p = 2/q - 1 > 1.

This will complete the results of §5.

First, we remark that in the paper [4] it was shown that ¿i(z) =/(z)2 is

unique. It follows therefore from the relation

lim <p   | Lq \"ds = <p   | ¿i | ds
«-»i J c J c

that

lim ¿9(z) = ¿to2,

since ¿,(z) has at most n — 1 zeros and since | ¿g(z) | q is on C of the form

| £,(,) |« = Lqiz)KPiz)z'is) è 0,
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and this quantity is proportional to the normal derivative of a generalized

Green's function such as that given in formula (7). Thus ¿s(z) has no zeros in

D+C and no changes of argument on the Cy for q sufficiently near 1, g<l.

Thus we can define

l(t)   =  LqizY'2,

and we discover that this function has all the properties described for it in

§5, when g is near 1. Hence, by the uniqueness of Z(z), proved in §5, we find

that ¿9(z) is unique and is given by (44).

Let g0 < 1 be a number for which (44) holds. Then we can show by con-

sidering the relation

lim ¿,(z) = ¿so(z)

that for g<go sufficiently near g0 the formula (44) holds. The argument here

is, indeed, that just given for g0=l. Hence there is no smallest g0 for which

(44) holds.

We close by obtaining an inequality directly which is related to the prob-

lem (42) in the infinite domain D. Similar inequalities can be derived for our

other extremal problems.

Let giz, oo ) be the Green's function of D with a positive logarithmic

singularity at z= co , and let^(z) = 1 +</>(z) be any function of the class used in

(42), so that<£(z) is regular in D-\-C and vanishes at infinity. Then by Green's

theorem we have

£ — \f\»ds -£ —ds =£ — { | 1 +4>\p - l]ds
Jc dv Jc dv Jc  Bv

fi-{|M,*|*}*
c    dv

= f f gA{\ I+4>\>}dxdy

= p2 f f g | (1 + *)^V* I dxdy i£ 0,

with equality holding for and only for ^(z) = 1. Hence

(45) £ — | yff \pds è £ —ds = 2ir,
J c dv Jc dv

and we have, finally, the inequality

r,     i 2t
(46) <p   \iPiz)\"ds >

max —
c    dv
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Also, we have, from (45) and Holder's inequality, for all p>0 the inequality

k 0/(0-1)     i l-<2

(47) <j>   | Hz) \pds è (2x)«< (f> I — J ds>      , Q > 1.

We remark that if the function G(w, 2) of (7) ,with t= <x>, should coincide

with the Green's function g(w, oo) of D, then (45) can be reformulated in

such a way as to yield a sharp inequality for the problem (42). If this should

be the case, it can be shown that (42) has the solution (44) for all g>0.

Finally, we point out that when the infinite domain D has rotational sym-

metry about the origin, the functions Giz, ») and g(z, <») do coincide,

except for an inessential additive constant.
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