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1. A series

(1.1) ¿c
n-l

is said to be lacunary if all its terms are zero, except perhaps for a set of in-

dices

0 < »i < «2 < ■ • •

which satisfy the condition

fii+i/tii £ q > 1, i = 1, 2, • • • .

The Hardy-Littlewood "high indices" theorem [2](*) asserts that for a

lacunary series Abel summability implies convergence. Several proofs of this

theorem have since been given, and of these the proof of Ingham [l ] is of

particular interest to us.

Instead of considering the power series

00

(1.2) *(p) = Ew", osp<i,
71=1

it is useful to make the substitution

p = e~"

and, letting a, = c„,., transform the series (1.2) into a Dirichlet series

00

He'") = Z ö.c_"iS.

A more general Dirichlet series will be considered here, namely

oo

(1.3) /(s) = E a*e-x«8
n=l

where the X„'s satisfy the condition

(1.4) X„+iAnèç>l,        0<X!<X2<---.

The sequence {Xn} need not be a sequence of integers.
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(') Numbers in brackets refer to the references cited at the end of the paper.
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In the case where c„—>0 the convergence of (1.1) is implied by its Abel

summability as a special case of a well known theorem of Landau [3]. The

principal difficulty in the proof of the Hardy-Littlewood theorem is in showing

that for a lacunary series (1.1), Abel summability implies c„—>0. This is an

easily obtainable consequence of a result stated by Ingham, namely:

Iff(s) — E"-i o,rfi~^ri> and the X„'s satisfy (1.4),

then

\an\ ^ Aq sup |/(í) |

for all n, Aq being a function of q only, finite for all q>\ and bounded as q—> °o.

More recently Zygmund [5] has shown that if we consider a series (1.1)

such that the infinite series (1.2) converges for p(E[0, l] and <p(p) is of

bounded variation over [0, l], then lacunarity of this series would imply its

absolute convergence.

To demonstrate this theorem the inequality

00

(1.5) £|c| £AtV(¿;0, 1)
n—1

was proved, where V(4>; 0, 1) denotes the variation of <£(p) over [0, l]. The

inequality which was actually obtained by Zygmund was

00 *% 00

(1.6) El«-1 ^Ai I     \f'(s)\ds.
n=l J 0

Clearly the result of Ingham may be put in the form

(1.7) \an\ -X„ ^^3sup |.fi»|.

Then the inequalities (1.6) and (1.7) are seen to be the extreme cases, cor-

responding to m = 1 and m = °°, of the following inequality

(1.8) ¿ | a» | V1 á Aq,m f   | f{s) | mds.
n=l J 0

We shall establish this inequality.

Theorem 1. If the series (1.3) is lacunary, the sequence {X„} satisfying

(1.4), m>\, and

(1.9) f    |/'(j)|"dî < »,
J o

then

(1.10) ¿I^IX"1^,,«. f    \f(s)\mds
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where Ag,m is a constant depending on q and m alone.

The proof of this theorem utilizes the ideas of Ingham's proof of the

"high indices" theorem and of Zygmund's proof of his theorem on absolute

Abel summability.

We first prove (1.10) for Dirichlet polynomials.

Lemma. // 0<Xi<X2< • • • , X*+iAfcèq> 1 and m>\, then there exists

Aq,m depending only on q and m such that if

N

f(s) = E ake~^\

then

(1.11) E | a* fxr1 ^ ^4,,m f    \f'(s)\mds.
i=l J 0

If

(1.12) P(s) = E Pie-"IS, 0 < Ml < Ml < ■ ■ ■ ,
i

is a finite sum, then

N

(1.13) F(s) m E Pifißis) -   E akP{\ks).
i fe=i

We set

p(s) = e-"" - e~ßs, 0 < a < ß,

and

P(s)=  {[#(«)/i(«r)]'}*

where

1
a = c(a, ß) = -— log ß/a

ß — a

is the value of 5 for which p(s) attains its maximum, and r and R are positive

integers to be determined later. We note that ¿>(0) =p(<x) =0 and that p(s)

decreases steadily as we go either to the right or the left from s =o\ Also for 5

outside any neighbourhood of s = 1, | P'(s) \ < 1 if r is chosen sufficiently large.

Clearly

(1.14) E I Í* I = 2fi7íBr(<0
i

and
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(1.15) max m = Rrcrß.
i

Let /* denote the interval (g_1/2Xt \ g^X*1). These intervals are dis-

junct. Also for r sufficiently large and n^k,

(1.16)
|i"(X,,í)|-dí= iP'Wl-ásií \P'(s)\ds

gP(X„? ^x*1),

it

± 1/2, -1

the sign of the exponent of q being plus or minus according as k is greater

than or less than n, for the variation of P(s) over the interval (X»g-1/îXt \

X-nS1'2^1) is less than the largest value of the function in this interval.

By applying Minkowski's inequality to (1.12), we have

/     /» °° \   1/m r    ¡%<x> \   1/m

Uoo \   1/m
I/(,)!"&}   .

Thus

/ji'wrif-i{xi#,i«M,^'j'"iwi>

(1.17) < |Z|íi|}"max (^""'/"l/'Wfáí

= 2     p       (o)(Rr*ß) I/'(s) I  ¿5.
«J 0

We shall introduce the notation

-girt

(1.18) 7=| |P'(s)|'"¿5

and

(1.19) /,,*- \P,(s)\"ds.
Kq-^7

By again applying Minkowski's inequality to (1.12), integrating now over

It, we obtain

{    i      \ -nt, •. \m ,   ) l l     1—1/m   1/m x—* l l     1—1/m   1/m

<^   I    | F'(s) \ ds\       = | ak | X,      /      -  E I <*. I Xn      /.'*
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or

(1.20) E ki xi-i/m/i::+ \ f \F'(s)\mds\
nytk \Jlk y

lim
-^     I        I   1—1/m    1/m

è   \ak\\k      J

From (1.20) and the use of Jensen's inequality in the form

{a + b)m á 2m-1(«m + bm)

we have

ak |  Xfc    /.(1.21) rEi¿»|xírx/"^.:l"+ f iF'wpaîè i/2""li
L 71FÍ k J •/ 7¿

Holder's inequality gives us

(1.22) rEi-nix:-i/m/i::]"' = rE^rl^ÏEi^rxr1/:::].
L  npífc J L n?¿í: J \—ríTík J

Combining (1.21) and (1.22) and summing with respect to k we have

(1.23)

I i  „,,   .   if» x—v I \m   m-

I     | F'(s) |  ds = E I «* I  X,
•/ o *=i

Í     ,   m-l -^   (    1/m F  \-^      l/m~]m   ')   )

(1.24)

By choosing r sufficiently large we can obtain

P(s) < sR, s < q-1'2,

P(s) < (l/s)R,        s > g1'2.

Using this with (1.16) and the lacunarity property in (1.23) we have

(1.25)

I F'{s) |  ds ̂    E I a* I  XA     { 1/2     /
o t-i I

£[(£5)[5(^)T1
where the signs are chosen so that ± (j — k) >0, ± (n—j) >0.

But

7l/2     \Ä/m-|m-l

aw*-»)   Lm/W^«/  -I
t°°    //ilftS/»ir       •    //il/2\ Ä/m-lm— 1 I-       oo    / „l/2\ Ä/m"! m

2s(V) ][2?,(V) ] =[2S(V) ]•
and so (1.25) becomes
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/i oo JV /      I p       oo     /„l/2\Ä/m-|m-i

The infinite series

oo     /„l/2\Ä/m

t(*=)'

is essentially a geometric series with the term independent of the ratio re-

moved. It behaves then as does its first term and is small when R is large.

We may choose R so large that the variation of P(s) is greater than one on

the set of points (q~in, q+lli) where |P'(s)| >1, and thus

j = r   i p>fs) i ds > i.

Choose R so large that

100     /f)H2\Slmm

2 ±(Ç)'
¿=i \ ?l /

<
2»-s

This in conjunction with (1.26) and (1.17) yields the lemma with

A9,m = 2™~1+R'-p-mIi'-(<r)(Rr(Tß)m-1.

We note that  (1.26) could have been written with /¿° | F'(s) | mds replaced

by^»"*|j^(s)|«ás.
In order to prove Theorem 1, let I¡ denote the interval [S, q1'2^1]. Then

the infinite series (1.3) differentiated term by term converges uniformly in

Is to f'(s). Therefore if we denote the iVth partial sum of (1.3) by/iv(s),

(1.27) f \fUs)\mds-+ f l/Wl-áí, N-^oo,

and so

(1.28) ' h
f   \f'N(s)\mds^   f   |/'(i)|"dj +

J 0
^ f'{s)  mds +

for N^N0(e, S, m).

Then by the lemma

(1.29) E| a*** | ̂ r1 ïAq,mfX\f(s)\mds + e.
n=l 7 0

Letting N—>«, 5—>0, e-^0 in that order we obtain (1.10).
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2. The absolute Abel summability of Zygmund is equivalent to the finite-

ness of the integral

J a
(2.1) \4>'(p)\dP

J 0

which represents the total variation of <f>(p) over the interval [0, l].

This integral is connected with a function which has been studied by

Littlewood and Paley [4] and Zygmund [5], namely,

(2.2) gm(6, *) = I j   (1 - p)-11 *'(Pe") | m¿p|
1/m

where <p is any function regular in | z\ < 1, for clearly (2.1) is gi(0, <p).

We shall consider the integral

(2.3) ym(d, 4>) =   f   (1 - p)m-1pm-1U'(p«w) \mdP, m > 1,
Jo

where

00

(2.4) *(!) = !«•», |«l <1,
/fc=i

and the «¡¿'s satisfy the condition Wi+i/wt è <Z > 1, ¡ft, 2, • • • . The intro-

duction of the factor pm_1 is unimportant, for it only moderates the inte-

grand near 2 = 0, a point at which its was already sufficiently well behaved.

Its purpose is to facilitate the transformation to a Dirichlet series.

We shall prove the following theorem, a theorem about 7m(0, <p), m> 1.

Theorem 2. If the series (1.3) is lacunary, m>\, the sequence {X„} satisfies

the condition

(2.5) 0 < k < Xi < X2 < • • • ,     Xn+i/X„ è q > 1, « = 1, 2, • • • ,

and

(2.6) f   (1 - e-')"-11 f'(s) \mds < oo.

(2.7) ¿|«»hsí¿M.» f   (l-í-O"-11/'(*)!"*•
n=l J 0

The proof of this theorem is much like that of Theorem 1. We begin by

proving it for Dirichlet polynomials.

Lemma.  If 0<fe<Xi<X2< • • • , Xi+1 /X* = 2> 1,  and m>\,  then there
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exist A h,q,m depending on h, q, and m such that if

N

f(s) = E a*e-X*'
*=i

then

(2.8) EI^|m = ^M,m I    (1 - «r')"-1 !/'(*) I"«fcEU*h = ¿M,m f   (l-e-«)-i|/'(5)
*=1 J 0

Suppose that P(s) and F(s) are defined as in (1.12) and (1.13). Then by

Minkowski's inequality

-{  f   (1 - e-«)^-1!^ (i)|™dij
1/ra

^EJ/j^rd-e-r-M/'wr^}1'

= ei i«i /•"/"{/D"d - «-*)-ii/w r*}1'"

since min¡ ju¡ = iîma > 1 for r sufficiently large. Thus

f   (1- e—)m~1|í"W|ra¿í
^o

-iísi^iiá^rrd-^—i^r*
(2.9) ' J     Jo

/ \    m y» 00

= I E I #11 I    max 0*,) —1J    (1 - «-•) —> | /'(s) I mo

= 2«•*••/>-mn'{a){Rraß)m-x I    (1 - ¿r*)'»-11 f'(s) \  ds,
Jo

By again applying Minkowski's inequality we also have

I r (i - «-o—11 **(*)!■*}
1-1 /    rs"2

(2.10) = I fli I X* '"* I P'(j) |" (1 - e-'/x*) —i¿j
Jg-l/2

-  E Un I C    \    I I i"(i) I "(I  - l-N ~lái i "
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But

(2.11) (1 - e-1'^*112) = - (-[■—(-J -•••)>
\      Kq1'*       2l\Kq1"/ )

Cq,h

K

since Xi>A>0 and

(0l/2            1     /„l/2\2 \ 0l/2

_«_+±(i_\-)<q—-

X»        2!\Xn/ /       X,

Using (2.11) and (2.12) in (2.10) we have

Urn

|  f (1 - e-')m-l\F'{s)\mds\

(2.13)

â u*
1-1/m   1/m ^, ,   /XnÇ1/2\1-1/"'   1/m

Cs,fc       J —   2^ I   a" I   I - ] Jn,k
npik \     Xfc     /

X    0l/2\l-l/m     .
An y        \ 1/w

a„\ [
Urtk

By applying Jensen's inequality to (2.13) we obtain

E I ßn |  ( '-— ) A,* +1(1  —  «) | ™(S) |    <W
(2.14) L'^ V-X*-/ J '*

-*■       i ¡m    m—1

= ̂ =rl^l c-a/-

Holder's inequality gives us

[r\   /jl/2"11—1/m    ,,   -I m

E 4—1  /i:ri
(2.15) - L x* J     J

^   EI an r (-)   a.*    E a.*
Ln^i \     Xfc     / JLnjifc J

Combining this with (2.14) and summing with respect to k, we have

n-l

(2.16)

f (i - «-•) —*1P(i) I "¿s = E I °k Im {^^ c"»1/
J o i=i v2™

£K=r^£»n
By the lacunarity property and (1.16) and (1.24) we have for k>j

z1'2"!™-1 i/m   rx^'n—»rx^'n«'-rwn *-ljUn  rwnm_1 r wnl

(2    17) (?l/2(Ä/m+m-l)
V    " <   _i_ <   \/q(-k-i) (Ä/2m-3/(m-l)/2)

—     „(t-/)CB/m-(m-l))   —
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For k <j we have

rxtg^n -1 i,m < rxifji —* r\kgll2r

(2.18) çl/2(A/m+m-l)

„(i-Ä0(fl/m+m-l)

<   1/o()-*>W2m-3(m-l)/2)_

Substituting these results in (2.16) and applying (1.16) and (1.24), we have

f   (1 - e-3)m"1|/'W|",áí
Jo

[1 -lÄ/m-3(m-l)/2r       oo    /„l/2\ R/m-\ m-l\

.. i=s]     [2s(V) ] }
SE|..|-{¿C.,7

[oo     / I  \Ä/2m—3(m-l)/2-l r        °°     //»l/2\ B/m-| m—1\

£(■?)       ][2?,(V) ] }•
The product of the infinite series on the right of (2.19) can be made as

small as we wish and J can be made greater than one by choosing R large

enough. This in conjunction with (2.9) yields the lemma.

Theorem 2 may be deduced from this lemma by exactly the same argu-

ment as was used for Theorem 1.

A slight generalization of Theorem 2 can be proved and we state this

as a theorem.

Theorem 3. If the series (1.3) is lacunary, m>l, the sequence {X„} satisfies

(2.5), lá/3á*», and

(2.20) I    (1 - e-'y-11 f'(s) \mds < oo,
J o

then

00 « 00

(2.21) EU» I"- ^«.».m I    (1 - <r*)*-11/'(*)!"<*»•
n=l J 0

The proof of this theorem is almost exactly the same as that of Theorem 2

and so need not be given here.
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