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1. Introduction. A complex valued function <£(r) on (— «>, oo) will be

said to satisfy condition (A) if for some constant C

(A) | 23 a.n<PÍTn) | á C\\ XX exp (tr„j)||

for all finite sets of real numbers (t„) and complex numbers (a„), where

(1) ||/(-)|| =LUB[|/(i)||  -•<*<»].

Bochner [3](') has shown that a continuous function <p(r) satisfying (A)

can be uniquely represented by a Fourier-Stieltjes integral

/oo
exp (irs)dyis)

-OO

where y is) belongs to the class F of functions of bounded variation, continu-

ous on the right with y( — oo)«0. We shall show that this same representation

theorem remains valid for almost all t if <£(t) is any measurable function

satisfying (A)(2). The proof of this theorem is sufficiently general to include

functions <£(r) with values in a separable Banach space Y [l] provided that

the set of elements

(3) [izZan<t>irn))/\\zZa^ exP iiTns)\\ | all finite sets (r„) and («„)]

is contained in a weakly compact subset of Y.

Any function <£(t) satisfying condition (A) can be used to define a linear

bounded functional Lip) on the set of trigonometric polynomials:

(4) L[J^an exp (ir„j)] = XX'K7"»)

where the norm for pis) is given by (1). It follows that ||L|| = C*, the smallest

value of C satisfying (A). Since the trigonometric polynomials are dense in

the Bañach space X of almost period functions, £ can be extended in a unique

fashion to be a linear bounded functional on X. Conversely, given such a

functional, $(r) =£[exp iirs)] will satisfy (A). The functions <£(t) satisfying

(A) are therefore in one-to-one correspondence with the functionals LGX

and any classification of the functions satisfying (A) is at the same time a

Presented to the Society, April 28, 1950; received by the editors March 10, 1950 and, in

revised form, April 25, 1950.

(') Numbers in brackets refer to the references cited at the end of the paper.

(2) This result is analogous to that of F. Riesz [9] generalizing the Bochner theorem [2,

pp. 74-76] on positive definite functions.
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classification of the elements of X.

2. Fourier-Stieltjes integral. In this section we shall extend Bochner's

result [3] to measurable functions.

Theorem 1. If<pir) is measurable and satisfies (A), then there exists a unique

yi ■ ) G Vsuch that (2) holds a.e. and Var } y( ■ )} ^ C*. 7/0(r) is continuous, then

(2) holds for all t and Var {y( • )} = C*.

Thus if 0(t) is measurable and satisfies (A), it can differ from a continu-

ous function <p*ir) only on a set of measure zero. Thus 4>*iT) and hence 3/(5)

are uniquely determined (see, for example, [2, p. 67]).

The first step in the proof of this theorem is to show that 0(t) can be used

to define a linear bounded functional on the E-space X0 oí continuous func-

tions/^) which converge to zero as | s\ —>00. The norm in X0 is defined as in

Equation (1). Now the set of continuous functions M which are ultimately

zero and have piecewise continuous derivatives form a linear subspace of X0

dense in X0. For/(-)GM we define

1   rx

2w J_„,
(5) Ä(r) = — I    fis) exp (— irs)ds.

2tt J -a

It follows that A(r) is bounded, continuous, and absolutely integrable on

(- CO,   00).

If/(s) vanishes outside of the interval ( —1/2,1/2), then forsG( —1/2,1/2)

00

(6) fis) = 2Z a„ exp (/2-irins/l)
—CO

where

(7) an = Í2x/Í)hi2irn/Í).

The series converges uniformly on (-», 00); in fact, since/'(5) is piecewise

continuous it follows that

CO

Ë'l«-|s [2>-2]1/2[£U«»l2]1/2
—00

(8) r       r°°i     1  i1/2r /•* -11/2

^ci|j(2x)-2j     \f(s)\2ds\      ^

where c is independent of /.

We now define the functional £0 on M as

(9) Loif) = ^ h(r)4>ir)dr

cl1'2

where h is related to/ by (5). Since </>(t) is measurable and uniformly bounded
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by C and since h(r) is absolutely integrable, it follows that £0 is linear on M.

It remains to show that £0 is bounded and, in fact, that ||£o|| ^ C*. To this

end we consider the auxiliary function

«      / 2ttw \    / 2xre \ /2tt\
do, fay) -z *(_)«(_)(T)

which roughly approximates the integral on the right side of (9). Making use

of the linear bounded functional £ defined as in (4) together with the rela-

tions (7) and (8), we obtain

(ID

Hence by Equations (6) and (7)

(12) |£(/,/)|á||¿||-||/||.

We next consider £(re-1,/) = Y-» hi2wnu)(pi2vnu)2iru. As a function of

u, £(re-1,/) is the sum of measurable functions and hence measurable. By (7)

and (8)

X | Ä(2xrew)<K2*-rere)2xM | g C*[cm-1/2+ | A(0) |2ttm].
—oo

Hence the following integral exists and we can interchange the order of sum-

mation and integration.

/» e co y» e

e-1 J    Fiu-\f)du= 2Z e_1 j     hi2irnu)<t>i2irnu)2irudu
do -oo J 0

co /. Isnt

= Y, (27rre2e)-1  I *(t)*(t) \r\dr+ hiO)<t>iO)ne.
n=l -I —îxnt

If we now define

X,(t) = |r|(2xe)-i¿^

for 2ir(re —l)e^ \t\ <2irne, then for \t\ <2ire

Xe(r) = I r I (2«)-1(x2/6) â 2

whereas for 2x(re — l)eg |t| <2irne (re^2)

1/2 g (» - l)/re = 2x(re - l)É(2xe)-1«-1 g x,(r)

á 27rree(2xí)-1(re - l)"1 = «/(re - 1) á 2.
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Thus for all t, 0 ^x«(r) = 2 and for fixed t^O, x^t)—>1 as e—»0. It follows that

e-1 f Fiu-\ f)du =   f   *(T)Ä(r)x,(r)dr + A(0)«(0)«
do J -a

and, since we have majorized convergence, that

/»I p CO

Fiu~1,f)du =   I     <j>ir)hir)dr.
0 J -oo

Finally applying (12) to the left-hand side of this equation, we obtain

\Loif)\ -I   f    *(r)A(r)¿r    á||£||-11/11
I   "'-CO

and hence

(13) NI g ||£|| - C*.

Thus £o is a linear bounded functional on M and can be extended in a

unique fashion to be a linear bounded functional on Xa. The remainder of the

proof is straightforward and follows directly from a theorem due to I. J.

Schoenberg [lO]. For purposes of future reference, we shall sketch a different

proof, following an argument due to F. Riesz [9].

The general linear bounded functional on X0 can be uniquely represented

by a function y(-)GF as £0(f) =/r./(s)a"y(s) for all fGX0; Var {?(•)}

= ||Lo||^C*. In particular, for/(-)GM

(14) Loif) =   f°fis)dyis) =   C\(r)h(r)dr.
«/ —CO J —CO

Let/„(s) = exp iits)0is/n) where

Ois) = 1 - | 5 | for | í | < 1

= 0 for | s\ £ 1.

Then

1   r°° 2
finir) = —       Ms) exp iirs)ds =- [{sin nit - r)/2}(¿ - r)-*]2.

2t J -a, 7rre

Finally

XCO il«
Ms)dyis) =   I     exp iits)dyis),

-0O »  — 00
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whereas

(16) lim     I      4>(t)A„(t)¿T = <bit)
n—>oo   J _x

for almost all ¿ by a classical result due to Fejer and Lebesgue [ll, p. 49].

Therefore, combining (14), (15), and (16) we obtain

/CO

exp iÍTs)dyis)        a.e.
-00

If 0(t) is continuous, then this relation must hold for all r. In this case, let

P(s) —zlan exp (irns) be an arbitrary trigonometric polynomial. Then

| £ an<b(rn) I = I  f   p(s)dy(s)   g Var {y(-)}||#||
I *^ —oo

and hence Var {y(-)} ^ C*. Combining this with (13), we obtain

Var {y(-)} = C*.

3. Banach space valued functions. The proof of Theorem 1 can be re-

interpreted so as to give a representation theorem for Banach space valued

function 4>(t) which in addition to satisfying condition (A) also satisfy a cer-

tain compactness condition defined below. A function <p(r) on ( — oo , oo ) to a

£-space Y satisfying condition (A) corresponds as in (4) to a linear bounded

transformation £ on the set of trigonometric polynomials which can be ex-

tended in a unique way to be linear and bounded on the £-space of almost

periodic functions X to Y. Conversely any such transformation defines a

function 4>(t) = £[exp (irs)] on (— oo , oo) to F which satisfies (A). The com-

pactness condition which we shall impose on 4>(t) is equivalent to the condi-

tion that the corresponding transformation £ be weakly (or strongly) com-

pact and separable valued.

Definition. A function <p(r)on ( — *>, oo) to F will be said to satisfy

condition (C„) [or (C8) ] if the set of elements

(17) [(Z) an4>(rn))/\\Y a» exP (*r"*)|| I all finite sets (r«) and («n)j

is contained in a weakly (or strongly) compact and separable subset of Y.

Since the set of elements (17) is the £ transform of the set of all poly-

nomials of norm one, it is clear that £ weakly (or strongly) compact and sepa-

arable valued implies that this set is weakly (or strongly) conditionally com-

pact and separable valued. Conversely, since the closed convex extension of

conditionally compact sets is compact ([7] and [8]), it follows that if (CO

[or (C„)] is satisfied then T takes bounded subsets of X into weakly (or

strongly) conditionally compact and separable subsets of Y. If Fis separable

and reflexive, then (A) itself implies (Cœ), whereas if Y is finite-dimensional,
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(A) implies (C„). Without any loss of generality we shall restrict ourselves in

the remainder of this paper to separable £-spaces Y.

Before giving the proof of the representation theorem, we shall introduce

some appropriate concepts. For functions defined on ( — oo , oo ) to a separable

Y, weak measurability is equivalent to strong measurability [6, p. 37]. Inte-

grals involving <p(t) will be interpreted as Bochner integrals [6, p. 37],

whereas those involving y(s) will be interpreted as a generalized Riemann-

Stieltjes integral [6, p. 51]. We shall also be concerned with the following

function classes(3) :

Definition. Vw( Y) [or V,( Y) ] is the set of all functions y (s) on ( — oo, co )

to separable Y such that g[y(s)]G V for all gGY and the set

[]C [y(si) ~ y(sí)] I all finite sets of disjoint intervals (s,-, si)]

is weakly (or strongly) conditionally compact.

For y(-)GV(Y) we define the norm

\\yi-)\\ = LUB [Var {g[y(s)]} \gGY, \\g\\ = l].

It is clear that VW(Y)DVS(Y).

Lemma 1. Let {yn} be a weakly (or strongly) conditionally compact subset of

Y and let [ga\aGA]GY be total on Y. If lim„<0O ga(yn) exists for each aGA,

then there exists a unique y0GY such that yn converges weakly (strongly) to yo-

Suppose the contrary, then since {yn} is weakly (strongly) conditionally

compact, we can find two weakly convergent subsequences yn'k—*yo and yñ'k

—*yi, where yir^yo- However this implies

ga(yo) = lim ga(yñk)   = lim ga(yn¿) = ga(yi)

and hence that yi=yo-

We remark that the lemma itself is valid for weakly (strongly) condi-

tionally compact sets [yx|7rGdirected set II] such that limTg„(yx) exists for

allaG^C).

Lemma 2. //y(-)G F„(F), then y is) is right weakly continuous for all s,

weakly continuous at all but a denumerable set, weak lims__œ y(s) =0, and weak

lim,..«, y is) exists. If y(-)GF,(F) all of these limits are limits in the norm.

(3) Gelfand [4] has carried through a development similar to ours for the function class

V.(Y) on the interval [0, l].

(4) The sets Frsweak (strong) closure of [yT> | ir' &7r] have the finite intersection property

and are contined in a weakly (strongly) compact subset of Y. Hence there exists a yo common

to all FT. Clearly lim» g„(yx) — ga(yo) for all aG^4. On the other hand if y* does not converge to yn

in theweak (strong) topology, then there will exist a subset II ' of II cofinal with II, an e >0, and

a gGF such that | g(yn') —giyo) \ >e (or in the strong case \\y*> —yo \ >e) for all tt'GH'. Reiterat-

ing the above argument with II'instead of II leads to a y-i such that g(y\) — g(y<¡) \ ê« (or H311—>o||

è e) and ga(y0) =limT ga(yT) =limT> ga(y*>) =ga(yi)- Since the [gj are total this is impossible.
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If yi-)GVwiY) (or V,iY)), then the set [y(s)| ¿G (-<*>, »)] is weakly

(strongly) conditionally compact. Since lim,__«, g[y(s)]=0 for all gGY, we

have by Lemma 1 that weak (strong) lim,..-«, y (s) = 0. Likewise, weak (strong)

lim,,«, yis) exists. For a separable Y, there exists a denumerable set gk total

on Y. For each k, gk[yis)] is right continuous for all s and continuous at all

but a denumerable subset. The desired result therefore follows directly from

Lemma 1.

Lemma 3. If y( • ) G Fw( F) (or F,( Y)), then

K—\  Y aAyisi)~yisi-i)]  | «iISali all subdivisions sa<Si<s2< ■ • ■ <sn

is weakly istrongly) conditionally compact.

If £+, £_, J+, £_ are defined as K above for non-negative a's, non-positive

a's, imaginary non-negative a's, and imaginary non-positive a's respectively,

then £C£++£-+£f+/- and if each of these sets are weakly (strongly) con-

ditionally compact then so is K. We shall therefore limit the a's to be non-

negative, and show that £+ is contained in the convex extension of the set

(18) f ?.\'\v(si\ — yisi-i)] | all finite partial sums].

For a given set of a's, choose 0 = o0 < &i < • • • < o*, = 1 so that the b's contain

all of the a's. Let <r¡ be the set of i's such that a, = 63-. We can then write the

identity

¿oibisi) - yisi-i)] = ¿ ibm - *_i)I" Z( Z b(si) - y(*-i)]Y|.
»=»1 m=l L 3=m \   aj / _J

Since (bm — bm-i) SïO and ^=1 (bm — bm-i) "I, it follows that £+ is contained

in the convex extension of the set (18). By hypothesis, the set (18) is weakly

(strongly) conditionally compact, and, by a theorem due to Krein [7] for

the weak case and Mazur [8] for the strong case, so is its convex extension.

Now for any bounded continuous function/(s) defined on (— oo, co),

Jlf(s)dy(s) exists and is clearly contained in ||/|| • K(b). Further- for each gG Y,

lim        f  fis)dg[y(s)] =       lim      g\ f  f(s)dy(s)]
a—*—oo &—*«   «/ a a—>—» ö—►«      [_ J a _|

exists. Hence by Lemma 1, we may define

f. oo *. b

f(s)dy(s) =      lim        I    f(s)dy(s) [weak (strong) limit].
J — OO O—>— 00 , &—♦ »   */   a

Further

(6) K designates the weak (strong) closure of K and is likewise weakly (strongly) compact.
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\g\ f°fis)dyis)\ = I fXfis)dgyis)   ^ ||/||-Var {g[yis)]},
L J —CO I •» —oo

and taking the least upper bound over all gG Y of norm one we have

I/' á||/||-11,(011.fis)dyis)
11 «/ —oo

If we now define

H/) =   ff(s)dyis)
J -CO

for all bounded continuous /(s) on (— oo, oo), then £ is a bounded linear

transformation with ||£|| g||y(-)||. For ||/|| ál, £(/) G K, so that £ is a weakly

(strongly) compact linear bounded transformation. Finally even if we limit

/ in Xo (that is, to continuous functions such that/(s)—-K) as |s| —> oo),

||r||   =LUBLUB \g [£(/)] |   =LUBVar \g[yi-)]} = |]y(-)||.
I»l—i ll/ll=i 1*1—a

The converse is likewise true. In fact:

Lemma 4. If To is a weakly istrongly) compact linear transformation on X0

to Y, then there exists a unique y(-)G VwiY) ior F,(F)) such that

o(/) = r fis)dyis)

and\\To\\=\\yii-)\\.

We have shown above that ||£o|| =||y(-)||- The uniqueness follows from

the fact that the difference of two y(-)'s would again belong to F„(F),

represent the zero transformation, and so have norm zero.

In order to obtain a y(-)GF„(F) (or F,(F)), we first transform the

interval (— °°, °°) into (0, 1) by, say, the transformation u — il/ir) cot-1 i — s)

= w(s). Then U(f) =h{u) =/[co_1(re)] maps X0 isometrically onto the space Xi

of continuous functions on [0, l] which vanish at the end points. It is there-

fore clearly sufficient to prove the lemma for Xi and for this the methods of I.

Gelfand [4, §8] will suffice. For the sake of completeness, we sketch an inde-

pendent proof. In this we make use of the Bernstein polynomials and a device

due to Hildebrandt and Schoenberg [5]. We set W=ToU~1 so that \\w\\

= ||Foil-Now

A(re) = lim  Ydthi — \u (1 — u)
n-»»  k=o        \n/

uniformly on (0, 1) and hence
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Wih) = lim  ¿ h(—)w[clu\l - uf "]  = lim Wnih)
n->oo   k=0       \ re / n->»

where Wn(h) = Jlh(u)dyn(u) and yn(u) is defined to be zero at re = 0, constant

elsewhere except at the points k/n i0<k<n) where it has a jump of

W[Clukil-uy-"}. Since

\Wnih)\\ = \\w\-zcih(-\u\i -«r*l|| 35
II      L \re/ J ||

\W\

we have ||y„(-)|| á|| W||. The set of all sums

H = [¿2 [y*iui) — yniu'i )] | re = 1, 2, •• -, all finite sets of

disjoint intervals (re¿, u¡)]

consists of elements of the type

T—\ n   k , . n—k

W\ £       CkU (1 - re)

Hence H is contained in the transform of the unit sphere of Xi and is there-

fore a weakly (strongly) conditionally compact subset of F. Let {gk} be a

denumerable set of functionals of norm one total on F and such that

LUB \gkiy)\ = \\y\\
k

for every yG Y. By Helly's theorem there exists for each k a subsequence of

re's such that gk[yHiu)} converges pointwise to a function of bounded varia-

tion with variation not greater than ||W||. By the diagonal process there

exists a subsequence of re's (which we renumber) such that lim„ £*[,„(«)]

exists for all u and k. By Lemma 1, the weak (strong) limit of Vn(re) exists for

all re. Set z(re) equal to this limit. Then the values of z(w) are contained

in £and Var {g[z(«)]} glim sup Var {g[y„(«)]} =S|| JFK for all gG F of norm

one. Since all of the gi[z(re)] are continuous except perhaps at a denumerable

set of points and even at these points the right and left limits exist, it follows

from Lemma 1 that z(re) is weakly (strongly) continuous except at this de-

numerable set and can be redefined at these points to be right weakly

(strongly) continuous. We now define y(re) to be the so redefined z(w) less

z(0 + ). Since Var {g[y(w)]} ^ Var {g[«(»)]}, we have ||y(-)|| á|| W\\. Finally,

the set [ X) [y(uu —y(u'i)} \ all finite sets of disjoint intervals (re,-, u[) ] is con-

tained in the weak (strong) closure of H. Therefore y [w(í)jG VwiY) (or

VsiY)).¥orhGXi,

g[Wih)\ = \im g[Wn(h)\  = lim   f   h(u)dg[yn(u)] =   f   h(u)dg[y(u)];
n n      J n J 0
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so that

and

Wih) -   f   hiu)dyiu)
J 0

Toif) =   f   fis)dy[a(s)].
J — oo

We come now to the main theorem of this section.

Theorem 2. If <f>ir) is measurable on (— co, oo) to Y and satisfies (A) and

(C„) ior (C,)), then there exists a unique yi-)G F„,(F) ior F,( Y)) such that (2)

holds a.e. and ||y(-)|| ^ C*. If </>(T) is weakly continuous, then (2) holds for all t

and ||y(-)|| = C*.

The proof proceeds exactly as in Theorem 1. One shows that

/co
h(r)4>(r)dT

-00

is linear and bounded on AI as before. It is, however, also necessary to show

that To takes the unit sphere in M into a weakly (or strongly) conditionally

compact subset of F. By (10) and (12), F(l, f) is a linear bounded trans-

formation on those functions in M which vanish outside of ( — 1/2, 1/2).

For such functions, £(/,/) is precisely equal to the £ transform of/repeated

to be of period I. Since £ is weakly (strongly) compact, it follows that

[F(l, f) | / G M, u/11 á 1,1 sufficiently large]

is contained in a weakly (strongly) conditionally compact subset of Fand that

(19) s-1  f  F(trl, f)du \fGM, 11/11 S 1, e sufficiently small   ,

contained in the convex extension of this set, is likewise weakly (strongly)

conditionally compact. Since as before

limgle-1  f   F(u-1,f)du]   = lime-1  f   g[F(ir\ f)]du
e->0       L J 0 J <-*° J 0

=   Cg[<b(r)\h(r)dr
J —oo

= «[/    4>(r)h(r)dr^,

the set
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j   <bÍT)hÍT)dr\fGM, u/11 gl]

is in the weak closure of the set (19) and hence is weakly (strongly) condi-

tionally compact. As in (12),

\ÛFH,f)]\^UV\\T\\-\\îl
so that

I   r<b(r)h(r)dr á   21

Thus To is a weakly (strongly) compact linear bounded transformation.

With the aid of Lemma 4, the proof then proceeds as in Theorem 1. Thus

for all fGM we have, corresponding to (14),

Toif) =   f°fis)dyis) =   f    <b(r)h(r)dr,
J _«, J _«,

with ||y(-)j| =||£0|| iSC*. Let {gk} be a denumerable set of functionals total

on Y. Then as in (15) and (16), for each k we have

/oo r. oo r-    /» oo

/«•(*)<*£* [?(*)] =        exp (í7i)¿gi[y(í)] = gJ   I    exp (its)dy(s) \
-00 "^ —00 L  J - 0O J

for all t and

/oo
¿*[*(t)]A»(t)¿t = gk[<t>it)]

-00

for all tGE-k, where Ek is of measure zero. If £o = U£&, then

gjf   exp (iís)dy(í) J = gk[<b(t)]

and hence

(20) j     exp iirs)dyis) = 4>(t)
« — oo

for tG£o, that is, a.e. for <p(r) weakly continuous this relation holds for all r

since the left side of (20) is clearly weakly continuous in any case.
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