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1. Introduction. F. Riesz [13](2), S. Banach [2] and others have gen-

eralized the Fredholm theory of linear integral equations to Banach space.

However, except for a short note by R. Caccioppoli [3], nothing has been

done regarding the corresponding generalization for the theory of ramifica-

tions of solutions arising in the nonlinear integral equation theory as de-

veloped by E. Schmidt [17] and also by A. Liapounoff [ll]. The object of

the work is to fill this gap.

Schmidt considers the problem of determining the local solutions m(j) of

an integral equation, the linear part of which is of the form

m(j) -   I    C(i, t)uit)dt.

The generalization to Banach space of the case in which this expression, re-

garded as an operator on «(5), is nonsingular is contained in the work of

Hildebrandt and Graves [5]. We consider here the problem of generalizing

the case in which the operator is singular, that is, the case in which the

operator maps some functions which are not identically zero into the zero

function.

In §2, known theorems that are to be applied are listed. In §3, an equa-

tion in Banach space ï which is a generalization of the integral equation

studied by Schmidt is set up. This equation is

(1.1) il - C)x + Siy) + Tix, y) = 6

where / is the identity mapping, 0 is the zero element, C is linear, completely

continuous, 5 is a continuous transformation satisfying a Lipschitz condition,

and F is a continuous mapping from ï X ï into 3£ with certain jfeth order prop-

erties in x, where k — 2. (The hypotheses are such that if T is independent of

y, then the transformation (/— C) is the differential at 6 of the transforma-
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tion I—C+T.) The problem is to study, in neighborhoods of the given initial

solution x = y = 6, the local solutions x of equation (1.1) when y is given.

By applying the Riesz theory of completely continuous operators [13], a

multiplicity for the solutions x is defined. In order to define this multiplicity,

we use the fact from the Riesz theory that

ï = ïi + X1 (direct sum)

where 36i is the null space of the operator (/— C). In [13], it is proved that

36i is finite-dimensional. Let Ei, El be the projections of X into ïi, ïl respec-

tively, that is, if x = Xi+x1 in the direct sum decomposition, then

Ei'.x—> Xi       E1:x—*x1.

Multiplying equation (1.1) by Ei and E1, we obtain two equations:

(1.2) Miixi, x1, y) = 6,

(1.3) Ml(xi, x1, y) = 6

in 3£i and 361 respectively where x = Xi+x1. Now instead of solving equation

(1.1), we study the solutions Xi, x1 of (1.2) and (1.3) when they are solved

simultaneously. It is proved that the linear part of Af(xi, x1, y) in x1 is non-

singular and hence that the implicit function theorem of Hildebrandt and

Graves [5 ] may be applied to obtain a solution x1 = F(xi, y) of equation (1.3).

Substituting this expression in equation (1.2), we obtain

(1.2') Mi[xi,F(*i, y), y] = 6.

Thus the problem of studying the solutions x of equation (1.1) is reduced to

the study of the solutions Xi of equation (1.2') which is an equation in the

finite-dimensional Euclidean space Xi. The solutions Xi are studied by in-

vestigating the topological degree at 0 of the mapping Mi[xi, F(xi, y), y].

We define the multiplicity of the solutions x of the original equation (1.1) to

be this topological degree.

We obtain here complete results when the dimension of ïi is one; if H

is a Banach space over the complex numbers, it is proved that the multi-

plicity is k, the order of the transformation T. If 3£ is a Banach space over the

real numbers, the multiplicity is 1 or — 1 if k is odd and is 0 if k is even. For

the case in which the dimension of Hi is greater than one, some particular

examples of the multiplicity are computed. The general problem will be dealt

with in a later paper

In §4, some applications of the theory to differential and integral equa-

tions are considered. Finally, in §5, the multiplicity defined in §3 is connected

with the work of Leray and Schauder by showing that if the Leray-Schauder

topological degree is defined for the transformation I—C+T in the special

case of equation (1.1)
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(1.10 iI-C+T)x=y,

then the Leray-Schauder degree and the multiplicity we define differ at most

by a factor (—1).

2. Some preliminary theorems. For the discussion which follows, we shall

need certain known theorems from the theory of Banach spaces. For con-

venience, we state these theorems in that form in which they will be used

here.

Let 36 be a Banach space over the real numbers or the complex numbers(3).

In this work, x, y, z, u, v, w, • • • will be used to denote elements of 36;

a, ß, y, • • • will denote scalars; and/, g, h, ■ ■ • will denote elements of 3t*,

the Banach space of linear functionals on 3£. Capital letters, C, I, R,S,T, • • •

will be used to denote continuous transformations of 3c or 3tX3c into 36. The

symbols ||x|], ||/||, ||C|| will denote the norms of x,f, and C respectively where

C is a linear transformation.

First, certain parts of the theory of operators of the form (I—C) where /

is the identity and C is linear and completely continuous will be used(4).

We introduce the notation:

3t(n) = (/— C)"3c, where re is a positive integer.

3t„ = null space of (/— C)n where re is a positive integer, that is, 3t» is the

linear space of elements z in 3c such that (/— C)nz = 6.

Theorem 2.1. 3cpÇ3ip+s; £(p)2;ttp+,) where p and s are arbitrary positive

integers.

Theorem 2.2. For each re, 3c„ ¿5 a finite-dimensional linear space.

Theorem 2.3. There exists a positive integer m, called the index of the trans-

formation il—C), which is minimal with respect to each of the following two

properties :

(a) Hm — 3£m+„ for « any positive integer.

(b) 3c(m) = 3c(m+n) for « any positive integer.

It can be proved that C*, the transformation conjugate to C and acting

on 3c*, is also linear and completely continuous (see [2, pp. 99—101]). Hence

the analogs of Theorems 2.1, 2.2, 2.3 hold for /* — C* where /* is the identity

transformation on 3c*. Moreover, if 3c* is the null space of /*— C*, we have:

Theorem 2.4. Dimension of X* = Dimension of Hi.

Theorem 2.5. There exists a linear, closed subspace 3c1 of 3c such that

H = Hi ©3c1 idirect sum),

where 3£1=§)i©ï(m) and §)i ¿5 such that 3c„ = 3ciffi§!)i. That is, if x is an element of

O Sec [2].
«See [13], [4], and [2].
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3£, then x=xi+x1 where xi, x1 are elements of Hi and H1 respectively, and the

decomposition x = xi+x1 is unique.

Now we consider an arbitrary element x of 3c. If by the decomposition of

Theorem 2.6,

X =  Xi+ X1,

then the following transformations, Ei and E1, may be defined:

£i:x—>■ xi,

Elm.x —» x1.

Theorem 2.6. Ei, E1 are projections, that is, Ei, E1 are linear, continuous

transformations, and EiE1 and E1Ei are both the zero transformation. Also

E\=Eiand (EX)2 = EK

Since Hi is finite-dimensional (Theorem 2.2), there exists a basis

[xi, ■ • • , xn] of 3ci where ||x,-|| = 1 for ¿= 1, 2, • • • , re and re is the dimension

of 3c/. Then we have:

Theorem 2.7. There exists a set of linear functionals /i, /2, •••,/„, ele-

ments of 3c*, such that

n

-Ei(x) = E [fiix)]xi
<—i

for every x an element of H.

Now let gi, g2, ■ ■ ■ , gn be a basis for 3c * (Theorem 2. 4). Then it can be

proved that there exist elements x%, x2, ■ • ■ , x„ oí H with the following

property:

gi(xj) = hi (Kronecker delta).

We define the transformation on 3c: Co(x) = C(x)+ E"-i lf>(x)]%i-

Theorem 2.8. There exists (I— Co)-1 which we denote by R, and R is linear,

continuous. Hm, 36(m) are invariant subspaces under the transformation R, and

R is of the form I+Q where I is the identity transformation and Q is linear

and complete continuous.

Theorem 2.9. If x is an arbitrary element ofH, then

R(I - C)x = x - Eix.

We shall also need an implicit function theorem for Banach spaces.

Theorem 2.10. Let H, §), S be Banach spaces. Let U, V, W be open sets in

£, 2). 3 respectively. Consider V= UXVXW and a function L defined on V

such that
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L:V-+H.

Let the following hypotheses be satisfied :

(Hi) There exists (x0, y0, z0)GUXVX.W such that

x0 = L(x0, yo, zo).

(H2) There exists k<l such that

\\L(xi, y, z) — L(x2, y, z)\\ ^ k\\xi — x2||

for every (xi, y, z), (x2, y, z) in V.

(H3) L is uniformly continuous on the product space V.

Then the following conclusions hold :

id) For each iy, z) in FX W, there is at most one point (x, y, z) in V which

is a solution of the equation

iA) x = £(x, y, 2).

(C2) There exist open sets Fi(yo) and TFi(zo), neighborhoods of ya and z0

respectively, and a function

F:ViXWi-*H

such that the point (F(y, z), y, z) is an element of 1) and is a solution of equation

(A) for every iy, z) in Vi X Wi.

(C3) The solution F(y, z) of equation (A) is uniformly continuous on its

domain of definition.

This theorem is a restatement of Theorem 2, pp. 134-135 of [5].

3. The problem in Banach space. We consider the equation in Banach

space 3c

(3.1) (I -C)x + S(y) + T(x,y) = 6

where 6 is the zero element of 3c, / is the identity mapping of 3c onto itself,

and the following assumptions are made:

Assumption 3.1. C is a linear, completely continuous mapping of H into

itself.

Assumption 3.2. 5 is a continuous mapping of a subset of H into 3c with

the properties:

(a) 5(0) = 0. _

(b) There exists a neighborhood Nx(d) oíd, oí radius ru in which 5satisfies

a Lipschitz condition, that is, there exists a constant B > 0 such that if yi, y2

are elements of Ni(9), then

|[5yi — Sy2\\ ^ B\\yi — y2\\.

Assumption 3.3. T is a mapping of a subset of HXH into H with the fol-

lowing properties:



1950] SOLUTIONS OF EQUATIONS IN BANACH SPACE 213

(a) T(8,6)=8.
(b) There exists a neighborhood N2(6) of 8, of radius r2, and there exists

a constant Af >0 such that if Xi, x2, yi, y2 are elements of N2, then

||F(xi, yi) - T(x2,y2)\\

= M{\\xi\\ + 11*41 + ll^ill + IWIHUxi - x2|| + ||yi - y2\\}.
(c) The following &th order condition is imposed upon T: there exists a

maximal integer ¿3: 2 such that if a is a scalar, then

T[ax, 6] = a^ia, x]

where T1 is a continuous mapping of an open subset of the product space

ZX3c into ?c. (Z will denote always the space of scalars, that is, the space of

complex numbers or the space of real numbers.) This subset of the product

space contains points of the form (0, x) where 0 is the zero of Z and x£3c.

(It is tedious but straightforward to verify that the integral equation

studied by Schmidt [17] is a special case of equation (3.1).)

The object of the discussion is to obtain information concerning the local

solutions x of equation (3.1) when the transformation /— C is singular(6)

and y is given. This is the same as determining the local solutions xi, x1

(using the notation of Chapter 2) of the equation

(3.1') (/ - 0(*i + x1) + Siy) + Tixi + x1, y) = 8

when y is given. Since Xi is an element of the null space of (/— C), equation

(3.1') may be written

(3.1") (/ -C)x1 + Siy) + Tixi + x\ y) = 6.

Applying the transformation R, defined in Theorem 2.8, to equation

(3.1"), we obtain

(3.2) Ril -C)x1 + RSiy) + RTixi + x1, y) - 6.

Now by Theorems 2.9 and 2.6, i?(/—C)x1=x1 —Eix1 = xl. Hence equation

(3.2) becomes

Í3.3) x1 = - RSiy) - RTixi + x1, y).

Applying E1, the transformation defined in Theorem 2.6, to equation Í3.3)

we obtain, since E1xl = x1,

(3.4) x1 = - E1RSiy) - E^Tixi + x\ y).

Applying the transformation Ei, defined in Theorem 2.6, to equation Í3.3),

we obtain

(6) If (I—C) is nonsingular, then by multiplying through by (7 — C)_1, we put equation

(3.1) in a form in which it is easy to apply Theorem 2.10 to obtain a unique local solution x for

given y sufficiently close to 8.



214 JANE CRONIN [September

(3.5) 9 = EiRSiy) + EiRT[xi + x1, y].

(The symbol 8 will denote the zeros of 3c, Hi, and 3c1.)

It is clear from its derivation that the system of equations (3.4) and (3.5)

is equivalent to the equation (3.1") in terms of solutions Xi, x1.

Now we wish to solve equation (3.4) for x1 in terms of y and x%.

Lemma 3.1. There exist neighborhoods U, V, W of x1=8, Xi = 6, and y =8

in 3c1, 3ci, and H respectively such that the function

-E1RSiy) - E^Tlxi + x1, y]

may be regarded as a mapping from UXVXW into H1 and as such satisfies the

hypotheses of Theorem 2.10.

Proof. First, from Theorem 2.2 and 2.5, it follows that 3c/ and 3c1 are

Banach spaces. Hypothesis (Hi) of Theorem 2.10 is satisfied because, from

the definition of the transformations C, S, T, it follows that x1 = Xi=y=8 is

the required initial solution. That hypotheses (H2) and (H3) are satisfied in

sufficiently small neighborhoods of xl=0, Xi = 0, and y =8 follows from As-

sumptions 3.2(a), (b) and 3.3(a), (b).

It should be remarked at this point that the remainder of the discussion

will concern only the domain UX VXW or subsets thereof which will be

specified later. Thus we deal only with local properties of equation (3.1).

Lemma 3.1 permits us to apply Theorem 2.10 to equation (3.4). Doing

so, we obtain the unique solution

(3.6) x1^Fiy,Xi).

Substituting from equation (3.6) into equation (3.5), we obtain

(3.7) 8 = EiRSiy) + EiRT[xi + Fiy, xx), y].

The system of equations (3.4) and (3.5) is equivalent to the system of

equations (3.6) and (3.7). Hence we obtain finally:

Lemma 3.2. For fixed y, equation (3.1") ¿5 equivalent to the pair of equations

(3.6) and (3.7) ¿re terms of solutions Xj, x1.

Hence the study of the solutions x of equation (3.1) is reduced to a study

of the solutions Xi, x1 of the pair of equations (3.6) and (3.7). Since equation

(3.6) gives x1 explicitly in terms of xi and y, we are actually concerned only

with the solution xi of equation (3.7). Equation (3.7) is an equation in Euclid-

ean «-space where re is the dimension of the null space of (/— C). Hence in

order to obtain information concerning the solutions xi of equation (3.7), we

investigate, for fixed y, the topological degree at 8 of the mapping EiRSiy)

+EiEF[xi-|-F(y, Xi),y], which is the right side of equation (3.7) and is hence

a mapping of a neighborhood of 8 in Hi into 3c\.
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Definition 3.1. The multiplicity of solutions x of equation (3.1) for fixed

yo is the topological degree at 8 of the mapping

EiRSiyo) + EiRT[xi + F(y0, Xi), yo]

relative to the open set F0 in Hi where F0 is such that VoÇZ V.

(When we speak of the topological degree of a mapping/relative to a set

M, we shall mean the topological degree of the mapping f/M, that is, / re-

garded as a mapping whose domain is M.)

In order to define the multiplicity, only Assumptions 3.3(a) and (b) on

the transformation Fare used, that is, the Assumption 3.3(c) has not as yet

been used.

The multiplicity (Vielfachheit) considered by R. Iglisch [7] is a special

case of the multiplicity given in the definition above. Iglisch's definition is

based on a consideration of an integral equation of the type dealt with by

Schmidt.
To determine the topological degree, we obtain first some information

concerning the form of Fiy, Xi).

Lemma 3.3. There exists a neighborhood Nia) of 0 in the space of scalar s

and a neighborhood iV(Fi) of 8 in Hi such that if Xi is of the avi where a, vi

are in Nia), Nivi) respectively, then

Fi8, avi) = akGia, Vi)

where G(a, ^i) is a continuous mapping from Nia) XNivi) into H1 and k is the

integer described in (c) of Assumption 3.3.

Proof (6). Fi8, Xi) is the solution of equation (3.4) when y = 8, that is, the

equation

(3.4') x1 = - EWTixi + x1, 6).

We let x = avi and, for convenience, we denote the transformations

-EiRTixi+x1, 8) and -EWT' (a, Xi+x1) by /(xi+x1) and /'(a, Xi+x1)

respectively. Then (3.4') becomes

x1 = Jiavi + x1).

Letting z = x1/a, we have

x1 = J[aivi + z)] = akJ'ia, Vi + z)

or

(1) z = a^U'ia, vi + z).

Now we apply Theorem 2.10 to solve (1) for sin terms of vi and a. The initial

(') The writer is indebted to the referee for this proof which is much shorter and more

direct than the original proof given.
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solution of (1) is z=8, Vi=8, and a = 0. That hypotheses (H2) and (H3) of

Theorem 2.10 are satisfied follows from the fact that E1 and R are bounded

linear transformations and from Assumption 3.3(b). Hence there exist neigh-

borhoods Nia) and Nivi) of a = 0 and Vi=8 respectively such that if a G N (a),

ViGNivi), then

(2) z = Aia,vi).

Substituting from (2) into (1), we have

x1/« = z = ak~U'[a, Vi + Aia, Vi)]

or

x1 = akJ'[a, Vi + Aia, »i)].

This completes the proof of Lemma 3.3.

In the discussion which follows, we shall consider not Fo, the open set

of Definition 3.1, but a subset Mia) ■ Mivi) = ViÇ. V0 which has the property

that ViGNia)-Nivi) where Nia), Nivi) are the neighborhoods described in

Lemma 3.3.

Now we study two cases:

Case I. The dimension of Hi, the null space of (/— C), is 1. (Then if 3c is

over the complex numbers, 3c/ is the complex plane. If 3c is over the real num-

bers, ïi is the real line.) For this case, we make

Assumption 3.4. The

EiRTiavi, 8)
lim-;
a->0 ak

which is equal to EiEF[0, Vi] by (c) of Assumption 3.3, is not equal to 8 if

Hi is a basis for 3c i with the property that Vi is in Vi, the neighborhood defined

above. (It can be proved that this assumption becomes, for the problem

considered by Schmidt, exactly Schmidt's assumption: Lk^0. See [17, §9].)

If 3c is over the complex numbers, we have:

Lemma 3.4. The topological degree of the mapping akExRT1\0, vi] iwhere

a is a complex variable) relative to an arbitrary circle in 3c i with center 8 is k at

the point 8.

If 3c is over the real numbers, we have

Lemma 3.5. The topological degree of the mapping akEiRT1 [0, Vi ] iwhere a

is a real variable) relative to an arbitrary interval in 3c i with 8 as its midpoint is

0 at 8 if k is even and is +1 or — 1 at 8 if k is odd.

Both of these lemmas are known.

Suppose now that 3c is over the complex numbers.
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Theorem 3.1. There exists a number d0>0 and a number rd>0 which de-

pends on d^do such that if o is a solid circle in Hi of radius d^d0 and center

0 and if y is such that \\y\\ ^r¿, then the topological degree at 8 relative to o of the

mapping EiRSiy) + EiRT[xx+ Fiy, Xi), y] which takes a subset of Hi into 3ci

is k where k is the integer described in (c) of Assumption 3.3.

Proof. In this proof, we denote for convenience the transformations EiRS,

EiRT, and EiRT' by P, Ji, and J[ respectively. We prove first by applying

Rouché's Theorem for topological degree (see [l, p. 459]) that at the point

8 and relative to a sufficiently small sphere in Hi with center 8, the mapping

(i) Ji[xi + Fie,xi),e]

has topological degree k. We write the elements x in the form avi where vi is

the basis for Hi mentioned in Assumption 3.4 and a is a scalar. Then by

Lemma 3.3, the mapping (1) takes the form

Ji[aVi + akGia, Vi), d].

For convenience, we write the mapping in the form Ji[avi+akGia, Vi)].

No.w by Assumption 3.3(c), we have

Ji[aVi + akGia, Vi)] = akJ{ [a, Vi + ak^1G(a, Vi)].

Also by Assumption 3.3(c), T' is a continuous function. Hence if e>0, then

there exists ôe such that if \a\ <ô, and if ||x — !>i|| <ôe, then

\\Ji [a, x] - J{ [0, 0l]|| < e.

We takee = ||/i [0,Hi]í¿0 by Assumption 3.4. Fi is a closed, bounded sub-

set of the space ZXHi; hence Fi is compact. Since G(a, Vi) is a continuous

function defined on V, then ||G(a, t»i)|| has a maximum C^Oon V. Now we

require that a shall be contained in a spherical neighborhood Afi(a) of a = 0

with the following properties:

(1) The radius of M/a) is less than Se, where € = ||/i' [0, »i]||.

(2) Miia)GMia).

(3) If a G Mi (a), then \a\ k~lC<5t where e = ||7/ [0, vi]\\. Then

H«Vi' [a, Vi + a^Gia, Pi)] - akJ[ [O, Pl]||

< I «I*« - | «|*lki [0, Px]H = II«*// [0, vi\\
for all aGMi(a) except a = 0. In particular, inequality (2) holds for Vi fixed

to the value given in Assumption 3.4 and any circle oi — [d/\a\ =di] that is

contained in Mi(a). Hence by Rouché's Theorem, the topological degrees of

akJ{[0, vi] and J\ [xi + F(0, xi), 8] are the same at 8 and relative to a solid

circle cr2= [at»i/1 a | = <¿i]. The number d0 in the statement of the theorem is

lililí where avi is an element in the boundary of o2. But the mappingakJ{ [0,

Vi] has degree k by Lemma 3.4.
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Now by applying Rouché's Theorem again, we shall show that at0 and

relative to a sufficiently small circle in 3c/ with center 8, and for sufficiently

small fixed y, there exists a topological degree for the mapping: P(y)

+ Ji[xi+F{y, xi), y] acting on Hi, and that this topological degree is the

same as the topological degree of the mapping: /i[xi + F(0, Xi), 0]. This

demonstration will complete the proof of the theorem.

As before, we write xx = avi and keep vx fixed to the value given in Assump-

tion 3.4. Now since /i[xi + F(0, Xi), 0] has a degree at 0 and relative to any

sufficiently small solid circle in Hi with center 0, then for all Xi on the boundary

of such a fixed circle o-3CAfi(a) • M(vi),

||/i[xi+F(0, xi), 9]|| > Bi>0

where Bi is a constant. Also we note that the function P(y) + Ji

■ [xi+Fiy, Xi), y] is uniformly continuous, simultaneously in the two vari-

ables x and y. This is because, first, Ei, R, S are uniformly continuous trans-

formations. Secondly, the function F(y, Xi) is uniformly continuous simultane-

ously in the two variables Xi and y by conclusion (C3) of Theorem 2.10.

Finally, the transformation F has the proper continuity conditions in the

bounded region which we consider, by Assumption 3.3(b). Hence if e>0, then

there exists ôe such that if \\y\\ <Se, then

\\P(y) + Ji[xi + F(y, xi), y] - /»[*, + F(8, Xi), 8}\\ < e

for all XiGMi(a) ■ M(vi). Now take e =BX. Then for aviGd and y such that

l|y||<«*.
\\P(y) + Ji[xi + F(y, Xi), y] - Ji[xi + F(0, Xi), $]\\

<e= Bi < ||/i[xi + £(Ö, xi),e}\\.

Applying Rouché's Theorem, we obtain the desired result where r<¡ = 5Bl.

This completes the proof of the theorem.

Now suppose the Banach space 3c is over the real numbers. Then Hi is

the real line, and we obtain:

Theorem 3.2. There exists a number d0>0 and a number rd>0 which de-

pends ond^do such that if o is an interval in Hi of length 2d ^ 2d0 and midpoint

8 and y is such that ||y|| 0<¡, then the topological degree at 8 relative to a of the

mapping E.iRS(y)+EiRT\xi + F(y, Xi), y] which takes 3ci into Hi is +1 or

— I if k is odd and is 0 if k is even, where k is the integer described in (c) of

Assumption 3.3.

Proof. The proof of this theorem is carried out in the same manner as

the proof of Theorem 3.1 except that in this case, Lemma 3.5, instead of

Lemma 3.4, is applied.
Thus the multiplicity of Definition 3.1 is determined if y and Xi are suffi-

«
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ciently restricted. We may summarize the results of the preceding discussion

as follows:

Theorem 3.3. There exist numbers ri>0 and r2>0 such that if \\y0\\ <fi,

then in the complex case, there exist k solutions x (¿re the sense of the multiplicity

of Definition 3.1) for this y o and each solution x is such ¿Aa/||x|| <r2. In the real

case, there exist 1, — 1, or 0 solutions x such that \\x\\ <r2.

Definition 3.2. If k is the multiplicity of solutions, we call the point

x = 0, y =8 a branch point of order k of equation (3.1).

Case II. The dimension of 3ci, the null space of (I—C), is greater than 1.

For this case, we make the following additional assumptions concerning

the transformation T:

Assumption 3.5. The transformation F is split into a term of order k

(k^2) in x and a term of higher order, that is,

T(x, 0) = Tkix) + Tk+iix)

and

(a) Tk is homogeneous of degree k in x, that is, if m is an arbitrary

integer,

Tkl    E  <XiO>i)   =   E «1    "   •   •   OlmTßl...ßmiui,   •   •   ■   ,  C0ra)

where the summation is taken over all ßi such that p\ ^ 0 and Eïï- \ßi = k, and

Tßi---ßm (wi, • • • , com) is a continuous mapping from 3cX • • • X3c into 3c

which is independent of w¿ if ßi = 0. (From this assumption, it follows that if

ßi = k, FSl...flm = Fi(cü,).)

(b) There exists limu..9 Tk+iico, 8)/\\œ\\k, and this limit is zero.

Assumption 3.6. The element 0 is an isolated 0-point of the transformation

EiRTk[x]. We may express this assumption also in the following way: the

only 0-point of 3ci under the mapping EiRTk[x] is0. This seemingly stronger

condition is actually equivalent to the first mentioned condition because of

(a) in Assumption 3.5, that is, Tk[ax, 8]=akTk[x, 8].

Lemma 3.6. The mapping EiRTk[x] acting on Hi has a topological degree

defined at the point 8 and relative to an arbitrary sphere in 3c i having 8 as its

center.

Proof. This is an immediate consequence of the definition of topological

degree and Assumption 3.6.

Theorem 3.4. There exists a number d0>0 and a number r(d2)>0 which

depends on d2^d0 such that if o is a solid sphere in Hi of radius d2Sdo and center

8 and y is such that ||y|| <r(d2), then the topological degree at 8 relative to <r of

the mapping
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EiRSiy) + EiRT[xi+Fiy, xi), y]

is equal to the topological degree at 8 of the mapping EiRTk[xi] acting on Hi,

relative to cr.

Proof. In this proof, we use the notations P and Jx introduced in the proof

of Theorem 3.1 and we use the notations /u, /i,*+i, and Jiv,q in place of

EiRTk, EiRTk+i, and EiRTp,q respectively. We prove first that for a suffi-

ciently small sphere, the mapping

(1) Ji[xi+Fi6,xi),8]

has the same topological degree as /u[xi]. For convenience, we write the

mapping (1) in the form /i[xi-f-F(0, Xi)]. Also we write Xi in the form avi

where a, Vi are in Mia), Mivi), the neighborhoods defined immediately after

the proof of Lemma 3.3. By Lemma 3.3,

||/i*[«i] - Ji[avi+Fi8, avi)}\\ = ||/u[m>i] - Ji[oiVi + a*G(a, Vi)}\\.

But

||/i*[«wi] - Jil<wi + <**£(<*, »Olli

= | a\k /it[»i] — Jik[vi + a^HJia, Vi)]-~Ji,k+i[ctVi + akGia, Vi)]
cck

= | al*{j'/i*M - Jik[vi] -        ¿        ia^yjir.AvuGictVi)]

- (a*-1)kJik[Gi<x, Vi)] - —Juk+i[avi + akGia, Vi)] 1

by Assumption 3.5. Therefore

[|/l*[<Wl] - Ji[avi + akGia, Vi)}\\ ̂ \ a \ k j E I <**_1 HI^K G(«, »i)]||
(2) l P'q

1 )
+ I cc«-11 *||/i*[G(a, t»i)]|| + 7—r- \\Ji,k+i[c*vi + G(a, vi)}\\ \ .

| a I* ;

Since

||/u[«i] - /i[«»i + ockG(a, n)]|| = \a\k\\jik[vi]-J{ [a, vx + a^HS(a, b,)]||,

inequality (2) becomes, when divided by \a\k:

\\jik[vi] - JÍ [a, Vi + a^Gia, vx)}\\ ig E I «^ WiP.aW G(«, »i)]||

(3) M

+ I «*_1 |*|ki»[G(a, Di)]|| + y—y \\Ji.k+i[aVi + a*G(a, Vi)}\\.
a
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G(a, Vi) is, by Lemma 3.3, a continuous function of a and vi, and Ju is

a continuous transformation. Hence if

||/«[G(0, 0)]|| g B2> 0,

then there exist spherical neighborhoods M2ia)GMia) of a = 0 and M2iv¿)

of z/i=0such that if aGJlfs(a), i>iG.M2(i>i), then ||Ji*[G(a, »i)]||<252.
Also

-¡—¡y ||7i,*+i[atii + akGia, Vi)]\\

-    »i + a^-Xiiot, Vi)\\kl .. --rryj-
I I a |  ||»i + Of     (*(<*, »i)|| k )

= \\vi + .MCÍ«, Pl)||>|ll^^ + «»G(«,Pi)]|h
" "   I      ||mn+ a*G(a, »OH»      /

There exist spherical neighborhoods M3ia)GM2ia) and Af3(i>i)C-M"2(»i)

of a = 0 and »i = 0, respectively, such that if i»i£.Ms(»i) and aG-M^a), then

||»i + «»-'Gi«, n)|| < 2r

where r is the radius of Afa(»i).

Finally we deal with the term Ep.« |ct:* x[ a|]-7"i„,3[«'i, Gia, Vi)]\\. By

Assumption 3.5(b), each function TP,q is continuous in vi and Gia, vî). Hence

if Zij>,a[0. G(0, 0)]^Afp,g>O, then there exist spherical neighborhoods

Miia)GMoia), M¿Vi)GMzÍVi) of a = 0 and Vi=8 respectively such that if

aGMi(a), ViGMiivi), then

||/ip.,[»i,G(«, »i)]|[ < 2Mp,q

for each Jip,q.

Summarizing these results, we have: there exist spherical neighborhoods

í/(a), Uivi) oí a = 0,Vi=8 respectively such that if a G Uia), Vi G Uivi), then

(5) ||/i*[G(a, »,)]|| < 2B2,

(6) ||vx + a^Gia, Vi)\\ < 2r,

(7) ||Jrip.«[»i,G(a, i»i)]|| <2Mp,q,

where B2, r,  Mp,q are  positive constants.   Hence  by inequality  (3)  and

equation (4),

||/uk] - J! [ex, Vi + «*->G(«, Vi)\\\ ^ E [ a""1 \qMP.q + \ ak~1\k2B2
p.s

\Ji,k+i[ctVi + akGia, Vi)]\\
+ (2r)'

\aVi + a*G(a, Vi)\\ k
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Now consider the sphere o in 3c/: [öi/||i>i|| =d], where d<r3, the radius of

Uivi). Since a is compact, then ||/i,i[^i]|| has a minimum on this set. But this

minimum m is greater than zero by Assumption 3.6.

Now there exists a spherical neighborhood  Uiia)GUia) such that if

aGUiia), then

E | ex"-1 \"MPlQ + | a"-1 |*2|2 < —

P,3 2

Also by Assumption 3.5(b)

,.     Tk+i[o,,8]
hm —ri—ñ-= 0.
«-»       «o *

Hence there exists 5>0 such that if ||a;z)i-r-aÄ:G(a, z>i)|| <S, then

||/i,i+i[a»i + a*G(a, 0i)]|| m

\\avi + akGia, vi)\\k 2(2r)k

There exists a spherical neighborhood U2ia)GUiia) of a = 0 such that if

«G U2ia), then | a| (2r) <S, and hence by inequality (6), ||cH>i-|-a!*G(a:, »i|| <5

for aGU2Í0L) and ViGUivi).

Hence if aG U2ÍCÍ), and ||»i|| — d, then

\\Ju[vi] - JÍ [a, vt + a*-*Gia, Vl)]\\

|/i.*+i[c«>i + akGia, »i)]|h
á YJ\<*k-1\"MP,q + \ak-1\k2B2+ (2r)4|

P,<1 v(8) p,q {      \\avi + akGia, Vi)

m r   m   ~1 ,ir

<7+(2',,Lw_Hs||-'"!-„l»ll
2(2r)*

Multiplying inequality (8) by | ak\, we obtain

(9) H-Mowi] - JMvi + akG(°>, "i)]|| < ||-M<w>i]||

for aGU2(a) and ||»i|| =d. Hence by Lemma 3.5, the topological degree rela-

tive to the sphere

o- =   [ani/||i>i|| = d,   I a I = di]

at the point 8 of the mapping Jijtftfoi] is the same as the topological degree

of Ji[avi+akG(a, Vi)]. The number d0 in the statement of the theorem is

(r3)(ri). The topological degree of Ji[avi+akG(a, Vi)] is the same as the

topological degree of P(;y)-r-/i[m/i + F(y, ot>i), y] by the same proof as is used

for the proof of the analogous statement in Theorem 3.1. This completes the

proof of the theorem.

It will be noted that the discussion up to this point is quite general, that

is, the statements proved so far hold regardless of the dimension of 3c/. Hence
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if Assumption 3.6 holds, Theorem 3.2 would apply if the dimension of 3ci

were 1. If the dimension of 3c/ were 1, Assumption 3.6 could be replaced by

the simpler assumption: ||Ei2?F*[z;i, 0]|| 5^0 where Vi is any basis for 3c/.

Now we have the general problem of determining the topological degree

of 0 of the mapping EiRTk [x] of a subset of 3c/ into 3c/. First 3c/ is an re-dimen-

sional Euclidean space complex or real according as 3c is complex or real.

Hence EiRTk[xi] is a mapping of a subset of Euclidean re-space into itself.

Let Xi, x2, • • ■ , x„ be a basis for 3ci such that

||x<|| = d2, i = I, 2, • ■ • , re,

where d2 is the number defined in Theorem 3.4. Then each element x in 3c/

is of the form: x= E"-i a<x> where a< is a complex or real number

(»=1, ••-,«).
Then by Assumption 3.5, we may write

»

EiRTk(x) = EiRTkJ^aiXi
¿=i

= E oiiEiRTk[xi\ + E «i' • • • ccnnEiRTßl...ßn[xi, • • ■ , x„]
•=i

where the second sum is taken over non-negative integers ßi such that

E"=i ßi — k. The terms EiRTk[xi] and Tßl---ßn [xi, • • • , x„] are fixed ele-

ments of Hi. The a/s are variables. Now if P¡ is the projection of Hi onto the

subspace with basis x¡ (/= 1, • • • , re), then the mapping may be written in

the form

"        » ß ß
(1-/)      E ai P¡EiRTk[xi] + E «i* • ' • otnnPjEiRTßi...ßn[xi, • ■ ■ , xn] = b,Xj

<-i ßx

where j = l, 2, • • • , re. Thus the general problem is to determine the topo-

logical degree of a mapping which is given by n polynomials in re variables,

each polynomial being homogeneous of degree k and having complex or real

coefficients.

Some special cases of this problem were considered in my doctoral thesis.

More general results will be described in a later paper. We point out here

only two simple examples for which the topological degree is easily computed.

If 3c is over the complex numbers, then the mapping of Hi into itself,

h        ,
OiZi   =  Zi ,

(2-/) c2z2 = z2,

k _    i

has topological degree kn at (0, 0, • • • , 0).
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If 3c is over the real numbers, then the mapping

£IlXi  =  Xi ,

k        ,
,„ „ a2xi = x2 ,

(3-;)
J

* _    /
anxn       xn ,

has degree 0 if A is even and degree 1 or — 1 if A is odd.

If the mapping (1-j) is of the form (2-j) in the complex case or of the

form (3-j) in the real case, we have:

Theorem 3.5. There exist numbers ri>0 and r2>0 such that if \\yo\\ <ri,

then if H is over the complex numbers, there exist A" solutions x iin the sense of

the multiplicity of Definition 3.1) of equation (3.1) for this y o and each solution

x is such that \\x\\ <r2. If H is over the real numbers, there exist I, —I, or 0 solu-

tions x such that \\x\\ <r2.

4. Applications of the theory. We obtain now an extension of a special

case of Schmidt's work by considering the following functional equation:

(4.1) xis) +  f Gis, t){F[xit), yit)]}dt = 0.
J a

We wish to study the solutions xis) of equation (4.1) if Gis, t), Fix, y), and

yit) are given continuous functions of their arguments. It is assumed that

equation (4.1) has an initial solution, that is, that there exist functions

Xoit), y oit) continuous in the closed interval (a, b) such that

(1) x0(s) +  f  Gis, t) {F[xoit), yoit)]}dt = 0.
" a

Subtracting equation (1) from equation (4.1), we obtain

(4.2) xis) - xois) + j  Gis, t){F[x(t), y(t)j - F[x0(t), y0(t)]}it = 0.

We obtain a result which is an extension of Schmidt's work in the follow-

ing sense: Schmidt deals only with an infinite series. Hence in order to apply

Schmidt's work to the problem of solving equation (4.2), it is necessary to

assume that F(x, y) is an analytic function of the two variables x, y. In order

to apply the theory of §3, it is only necessary to assume that the function

Fix, y) has second or third derivatives in the two variables.

We introduce first the following constants. Let € be a positive number,

and let A, B, C, D be the numbers:

A   =  min  [xo(0 — e], B  = max [xoit) + e],
aglS¡> oSíSS
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C = min [yoit) — «j,        D = max [y0(2) + •].

Theorem 4.1. //¿Ae third derivatives of the function Fix, y) exist and satisfy

Lipschitz conditions for A^x^B, C^x^D, then equation (4.2) satisfies As-

sumptions 3.1, 3.2, 3.3, and 3.5 of §3. Hence the discussion of Case 11 in §3

applies to equation (4.2) and consequently to equation (4.1).

Proof. By hypothesis, we may write

r n r i (Aic)2
Fix, y) - F(x0, y0) = Ax[Fxix0, yo)\ + Ay[Fvixo, y0)J + F*,ix* yo)

(Ay)2
+ (Ax)(Ay)FX!/(xo, y0) H-— FS!/(x0, y0) + i?3,

where i?3 is the remainder in the Taylor's expansion and Ax = x —x0, Ay=y

— yo. Ro may be written in the form

R3 = — I     [(Ax)3FIII(xo + tAx, y0 + rAy)
2! J o

+ 3iAx)2iAy)Fxxyixo + tAx, yo + rAy)

+ 3iAx)iAy)2Fxyvixo + rAx, yo + rAy)

+ iAyYFyyyixo + tAx, yo + rAy)](l - r)dr.

Hence equation (4.2) takes the form

/(>            /                                                           (Ax)2Gis, t) ^Ax[Fx(xo, yo)] + Ay[F„(x0, yo)] H-— F„(x0, yo)

(Ay)2 •)
+ iAx)iAy)FXyixa, yo) + ——Fyvix0, yo) + Ro>dt = 0.

With the equation in this form, it is a matter of straightforward but tedious

verification to complete the proof of the theorem.

Theorem 4.2. // the second derivatives of the function Fix, y) exist and

satisfy Lipschitz conditions for

A-^x-^B,       C ¿ y£ D,

then equation (4.2) satisfies Assumptions 3.1, 3.2, 3.3. If, in addition, the null

space of the transformation

Ax +  I    Gis, t)Fxix0, y0)Axdt,

acting on Ax, has dimension one, then the discussion of Case I ¿re §3 applies to
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equation (4.2) and consequently to equation (4.1).

Proof. The same type of verification as for Theorem 4.1 is required here.

The theory of §3 permits us to deal with equation (4.2) if the functions

F and G are complex or if they are real. In the real case, equation (4.2) is a

generalization of the integral equation treated by R. Iglisch. (See equation

(31), p. 107 of [6].) Following Iglisch, we may apply the information con-

cerning the solutions xis) of (4.2) obtained from our theory to the study of a

differential equation of the form

(4.3) Aw=E(w).

Iglisch assumes that F(m) is real and analytic in re. In order to apply Theorems

4.1 and 4.2, it is necessary to assume only that F(re) has second or third

derivatives. Hence a generalization of Iglisch's results may be obtained.

This generalization is not obtained without some sacrifice however. In the

case when the dimension of the space Hi is one, Iglisch showed that equation

(4.3) has a unique solution if A is odd and no solution if A is even. By using the

multiplicity of Definition 3.1, we obtain the result that if A is odd, there is

at least one solution. If A is even, the multiplicity is zero, and hence we obtain

no definite information about the existence of solutions. The possibility of

obtaining results as sharp as those of Iglisch for this more general case is not

excluded. The theory of topological degree has been used to obtain proofs of

uniqueness theorems (see [14]). But the theory of §3 does not yield such

sharp results immediately.

When the dimension of 3ci is greater than one, the results obtained by ap-

plication of the theory in §3 are more general than those obtained by Iglisch

[8], for Iglisch deals almost entirely with the special case re = A = 2.

5. An extension of the Leray-Schauder definition of degree of a mapping

in Banach space. In this section, we establish a connection between the

multiplicity of Definition 3.1 in §3 and the topological degree defined by

Leray and Schauder [l0].

We consider the equation in Banach space 3c

(5.1) iI-C)x+ F(x) = y   or    (/ - C + T)x = y

which is a special case of equation (3.1), that is, / is the identity transforma-

tion, C is linear, completely continuous, the transformation F satisfies the

conditions of Assumption 3.3 and is independent of y, and Siy) = —y. It

will be proved here that if the Leray-Schauder topological degree is defined

for the transformation I—C+T (that is, if the transformation F is com-

pletely continuous), then the multiplicity of solutions x for equation (5.1)

for fixed y0 as given by Definition 3.1 is equal to the Leray-Schauder degree

of / — C+ T at y0 or differs from it by a factor ( — 1 ).

First we remark that the multiplicity given in Definition 3.1 has some

of the properties of a topological degree. If the topological degree at y of a
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mapping H, relative to a solid sphere a, is different from zero, then there

exists an element x of <r such that H(x) =y. From the corresponding state-

ment for the topological degree of a mapping from Euclidean re-space into

Euclidean re-space, it follows that this condition holds for the multiplicity

we have defined. Also the topological degree is the same relative to all y in a

sufficiently small neighborhood of yo. If the transformation F satisfies the

conditions of Assumption 3.4 or of Assumptions 3.5 and 3.6, then this prop-

erty holds for the multiplicity. (See Theorems 3.1 and 3.4 of §3.)

Before demonstrating the relationship between the Leray-Schauder de-

gree and the multiplicity of Definition 3.1, we exhibit a transformation

/— C+T for which the Leray-Schauder degree is not defined but for which

our multiplicity is defined. Thus we show that the multiplicity of Definition

3.1 is a true extension of the Leray-Schauder definition of degree(7).

The Leray-Schauder topological degree is defined for mappings of the

form (I+D) where / is the identity transformation and D is completely con-

tinuous (not necessarily linear). Hence we must exhibit a transformation

(/— C+ T) such that T is not completely continuous but for which our defini-

tion of multiplicity holds.

We consider the Banach space §) of complex-valued continuous functions

defined on the closed interval (0, 1) where, if x(t)Gty, then

||x(/)|| = max  | x(t) |.
oSiSi

The transformation G is the finite-dimensional (hence completely continu-

ous) mapping which takes x(t) into the function y(t) = [x(l)]í. C is clearly

linear and continuous. Also C maps g) into a one-dimensional linear sub-

space 2 of §). From the definition of C, it follows that the null space 3ci of

(/— C) is ?, hence is one-dimensional. The transformation F is defined as

F:«(<)-» [x(t)]2.

T is continuous. T(8) = 8. Also the transformation F is not completely continu-

ous. It is trivial to verify that the transformation F satisfies Assumption 3.3.

The transformation T'[a, x(t)} is simply F[x(¿)]. It is also easy to verify that

Assumption 3.4 is satisfied by showing that 3c\» = 3ci in this case and by using

the fact that Hm is invariant under R (Theorem 2.8).

We establish now the relationship between the Leray-Schauder topo-

logical degree and the multiplicity of Definition 3.1. For the proof, we re-

quire two lemmas concerning the Leray-Schauder topological degree.

(') The word "extension" is not used in the sense of "generalization" here. The multi-

plicity of Definition 3.1 is not a generalization of the Leray-Schauder degree. First, it has not

been proved that the multiplicity is invariant under homotopy. Secondly, the multiplicity is

defined only if the transformation has a differential, while the Leray-Schauder degree is de-

fined for an arbitrary mapping of the form I-\-D where D is completely continuous.
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Lemma 5.1. Let <b = I+H and~% = I+G be two mappings of subsets of

Banach space H into H such that :

(a) / is the identity mapping onH;H,G are completely continuous mappings

of subsets of H into H.
(b) co is a bounded open set with boundary co' smcA that H is defined on

w = oAJîû' and G is defined on the closure A of a bounded open set containing

(I+H)(5).
We denote by d a bounded component of 3c—<l?(6o'). If the point p is not in

^^(w') and is not in^l {Boundary i>(co)], and if [^"I», w, p] is defined, then

only a finite number of the terms [i>, co, d] ■ [it, d, p] are nonzero, and

[*#,«,*] = E [9,u,i]-[%i,p]

where E(<¡) means the summation over the bounded components d, \$!$, 03, p]

is the Leray-Schauder topological degree of the point p of the mapping^®, rela-

tive to co, and [í>, u¡, d], [SF, d, p] have similar meanings.

Proof. This lemma is known. See [9] for an outline of the proof.

In order to apply Lemma 5.1 here, it will be necessary to consider a

domain co such that there is just one nonzero term in Ew) [$> w> ̂ 3 L^i ^> c\-

Lemma 5.2. //4>(0) =0 and 0 ¿5 an isolated 8-point o/^, that is, there exists

a neighborhood ¿7(0) of 8 such that if x is an element of Uand^ix) =0, then x =8;

then there exists a bounded connected open set containing 8 and such that there

is at most one nonzero term in E(«o [*> w» ̂ ] fe> <^> ^L

Proof. Let w be a spherical neighborhood of 0 such that « is contained in

$~liU). Now consider 3c— <&((/). Since$(w') is closed, 3c — $(u/) is an open set.

This set has disjoint components F»i, Z>2, Do, • • • , Dn, • • • which are also

open since Banach space 3c is locally connected. We consider the set of those

Di such that [<í>, w, Z>¿]5¿0 and call this set {/?<}. Each such />,- is contained

in <I>(w) from the properties of topological degree. Since UiDiG&iu)

C Ui8), it follows from the definition of i/(0) that only /),• such that 8 is an

element of Di can be mapped so that 1F(/)i)I)0. Hence, at most one of the

terms in Ew)[^> w> ¿]" [^> d, 0] ls nonzero because at most one of the do-

mains Di contains 0. This completes the proof of the lemma.

Theorem 5.1. Given a mapping I—C+T of Banach space H into itself

such that the Leray-Schauder topological degree is defined for I—C+T and such

that the multiplicity of Definition 3.1 is defined for I— C+T. If transformation

T satisfies Assumption 3.4 or Assumptions 3.5 and 3.6 of §3, then Lil—C+T)

= Mil-C+T) or LiI-C+T) = i-l)[MiI-C+T)} where L(I- C+T) is
the Leray-Schauder topological degree at 0 of I— C+T relative to a sufficiently

small sphere co with center 8, and Mil— C+ T) is the multiplicity of Definition

3.1 relative to the same point and sphere.
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Proof. By Theorem 2.8, R = I+Q where / is the identity transformation

and Q is linear, completely continuous. Moreover, R is 1 — 1. Hence R has

Leray-Schauder topological degree +1 or —1 relative to 0 and w (see [10,

pp. 56-59)]. Hence by Lemmas 5.1 and 5.2, if co is made sufficiently small,

L[RiI -C+T)]- iL[R])iL[l - C + T]) = (± l)L[l -C+T].

We shall show that

L[RiI -C+ F)] = M [I -C+T].

This will complete the proof of the theorem.

We consider the equation

(1) Ril - C + T)x - Riy)

which is equivalent to the equation iI—C+T)x = y because there exists R"1

(see Theorem 2.8, §2). We carry out essentially the same procedure as used

in §3. Denoting Riy) by z and applying Theorem 2.9, we obtain

(2) x - Eiix) + RTix) = z.

Applying the transformations Ei, E1 of Theorem 2.6 to equation (2), we ob-

tain

(3) EiRT[x] = Eiz   or   EiRT[xi + x1] = E& = zx

and

(4) x1 + ExRT[xi + x1} = Eh = **.

By Lemma 3.1, Theorem 2.10 can be applied to (4) and we obtain

(5) x1 = F(xi, z1).

Substituting from (5) into (3), we obtain

(6) EiRT[xi + F(xi, 21)] = £i2 = tu

Now we defined two mappings <£ and SI' whose product is Ril— C+ T). The

mapping^ is defined as

$(x) = $(xi + x1) = xi + x1 + ElRT[xi + x1] = xi + z\

The mapping ^ is defined as

*(Xi + Z1)  =   (/ - Ei)(Xi + 31)

+ EiiiT{£i(xi + z1) +F[£i(xi + z1), Ei(xi + z1)]}

= z1 + EiRT[xi + Fixi, z1)]

=  31 + 2i = Z.

It is clear from the definitions of ^ and <i> and from equations (1) and (2) that
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*$=£(/-C+F).

Lemma 5.3. There exists a topological index iin the sense of Leray and

Schauder) of $ relative to 8 and this topological index is +1.

Proof. It is trivial to verify that the identity mapping / is the differential

(according to the definition of [5, p. 136]) at 0 of the mapping $ because of

the Ath order properties of F (A Si 2). The identity / has topological index +1

(see [10, p. 55]). Now we apply Lemma 3, §1 of [14]. By this lemma, the

mapping $ has topological index -f-1.

Lemma 5.4. FAe Leray-Schauder topological degree at 0 of the mapping S?

relative to a sufficiently small sphere lc with center 8 is equal to the topological

degree at 0 of the mapping £ii?F[xi+F(xi, 21)] relative to the intersection of w

with 361.

Proof. In the mapping SF, the mapping Eii?F[xi-(-F(xi, z1)] is a finite-

dimensional mapping into Hi. This mapping is continuous; also it is bounded.

Thus SI' is a layer mapping according to the definition of [15, p. 374]. Hence

by the definition of Leray-Schauder the topological degree at 0 of ^ relative

to a sphere with center 0, is the topological degree of ^ regarded as a

mapping of Hi into 3c/. If we denote this mapping by^/3ci, it is clear from the

definition of "% that

*/3ci= £i£F[xi+F(xi, z1)].

This completes the proof of the lemma.

It is clear that Lemma 5.1 may be applied to these mappings <£ and S?.

Moreover, since 4>(0) =0 from the definition of $, and since 0 is an isolated

0-point of ^ if Assumption 3.4 holds or if Assumptions 3.5 and 3.6 hold, the

hypotheses of Lemma 5.2 are satisfied. Hence if we consider a sufficiently

small sphere co with 0 as its center, then for topological degree L and multi-

plicity M relative to w and 0, we obtain

L[R(I-C+T)] -£[¥*] = {£[¥]}{£[*]} = {jf(7 - C + T)} {+l}.

This completes the proof of the theorem.
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